Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

71-905

MISTRY, Noshir Pirojshaw, 1940-SIMULATION OF PERIODIC TANK REACTORS.

Newark College of Engineering, D.Eng.Sc., 1970 Engineering, chemical

University Microfilms, A XEROX Company , Ann Arbor, Michigan

Please Note:

\ -

۰.

•

Some pages have very light type. Filmed as received.

Ν.

•

4

. .

University Microfilms.

SIMULATION OF PERIODIC TANK REACTORS

BY

NOSHIR PIROJSHAW MISTRY

A DISSERTATION

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

OF

DOCTOR OF ENGINEERING SCIENCE

AΤ

NEWARK COLLEGE OF ENGINEERING

This dissertation is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

> Newark, New Jersey 1969

ABSTRACT

Normally it is assumed that the steady state mode of operation is most desirable for the design of the chemical reactor system. However it appears that this assumption may not be correct in many cases.

In the present work disturbances of various types were externally created and forced on a system comprising an isothermal continuous stirred tank reactor. The effects of these purposefully created disturbances were investigated by mathematically modelling the system and simulating it on a digital computer.

The change in reactor performance, as defined by the percentage change in the production rate from the steady state value, can be either an improvement or deterioration compared to the steady state operation depending on the parameters like inlet feed concentration, flow rate, combination of both, reactor temperature etc., on which the disturbance is forced. Of the various parameters considered, feed concentration disturbance resulted in the most improved performance.

The investigation of the various form of disturbances like sinusoidal, ramp, and different types of step disturbance variations, showed that the form of the disturbance can profoudly change the reactor performance. The results indicated that of all the disturbances considered, the simple full

ii

step type of disturbance gives the maximum change in performance. The percentage improvement brought about by full step concentration disturbance was almost twice as much as that due to sinusoidal disturbance, which is the next best in terms of performance.

The study of the effect of the order of reaction showed that improving performance results for concentration disturbance with increasing order of reaction, due to the increasing non-linearity of the system.

APPROVAL OF DISSERTATION

SIMULATION OF PERIODIC TANK REACTORS

BY

NOSHIR PIROJSHAW MISTRY

FOR

DEPARTMENT OF CHEMICAL ENGINEERING

NEWARK COLLEGE OF ENGINEERING

BY

FACULTY COMMITTEE

APPROVED:

CHAIRMAN

NEWARK, NEW JERSEY

SEPTEMBER 1969

iv.

ACKNOWLEDGEMENTS

The author wishes to express his deep appreciation to Dr. Saul I. Kreps for his encouragement, guidance, cooperation and many valuable suggestions throughout this investigation.

Thanks are due to the Newark College of Engineering Computer Center Staff, especially Mr. Frank Freund, for their assistance. The author also wishes to thank Dean Alex Bedrosian for his help in various matters during the course of this work and Miss Kay Unvala for her patience and efforts for typing the manuscript.

Finally the author wishes to acknowledge a very special debt to his parents for their inspiration, confidence and encouragement.

TABLE OF CONTENTS

		LIST OF FIGURES	vii
		LIST OF TABLES	viii
CHAP TER	1	INTRODUCTION	1
CHAPTER	2	METHOD OF SOLUTION	4
		Introduction	4
		Selection of the Method	6
		Selection of the Step Size	15
CHAPTER	3	DISTURBANCES IN REACTOR FEED CONCENTRATION	22
CHAPTER	4	STEP DISTURBANCES ON CONCENTRATION AND FLOW RATE	32
		Frequency Effects in Step Disturbances of Concentration	32
		Step Disturbances in Feed Flow Rate	37
CHAPTER	5	SIMULTANEOUS STEP DISTURBANCES IN FEED CONCENTRATION AND FLOW RATE	40
CHAP TER	6	THE INFLUENCE OF KINETIC PARAMETERS	47
CHAPTER	7	SERIES REACTORS AND THE INLET CONCENTRATION DISTURBANCE	52
NOMENCLAT	URE	• • • • • • • • • • • • • • • • • • • •	57
APPENDIX	А	TABULATION OF RESULTS OBTAINED THROUGH COMPUTER AND USED FOR PLOTTING OF THE VARIOUS FIGURES	58
APPENDIX	B	COMPUTER PROGRAMS USED IN THE SOLUTION OF DIFFERENTIAL EQUATIONS	80
LITERATUR	e citei	D	11 <u>9</u> vi

LIST OF FIGURES

Figure No.		Page No.
1	Types of Concentration Disturbance Forced on to the System	23
2	Effect of Concentration Disturbances of Various Functions	
3	Full Step Concentration Disturbances.	•••••33
4	Effect of Frequency on the Concen- tration Disturbance	
5	Performance Improvement of Full Step Disturbance Compared to Sinusoidal. Disturbance	
6	Effect of Full Step Flow Disturbances on Performance	•••••39
7	Function, $G(\phi)$ for Simultaneous Full Step Concentration and Flow Rate Disturbances	43
8	Simultaneous Full Step Disturbances on Concentration and Flow Rate	•••••
9	Effect of Full Step Concentration Disturbance for a Third Order Reaction	48
10	Effect of Residence Time	•••••49
11	Effect of Full Step Disturbance for a series of Reactors	

LIST OF TABLES

Table No.		Page No.
I	Truncation Error as a Function of Step Size $\triangle t$	10
II	Effect of Step Size ∆t on Y for Step Concentration Disturbance	17
III	Comparison of $Y_{a \boldsymbol{v}}$ in Table II	19
IV	Comparison of Y _{av} from Double and Single Precesion Arithmetic	
v	F(t) for Disturbance shown in Figure 1	26
VI	Effect of area under the Disturbance Curve on Reactor Performance	
VII	Effect of Scope Changes on Reactor Performance	31
VIII	Comparison Between Simultaneous Step Disturbances and the Equivalent Steady State Operation	• •••••45
A-I,a,b	Y _{av and ∆for Different Concentration Disturbance shown in Figure la,b,g}	59
A-IIa,b	$Y_{a,v}$ and \triangle for Different Concentration Disburtance shown in Figure 1 c,d,e,f.	61
A-III	$Y_{a,v}$ and Δ for Full Step Concentration Disturbance of Figure lf	
A- IV	$Y_{a \mathbf{y}}$ and \triangle for Sine Concentration Disturbance of Figure la	64
A-V	(QA) _{av} and∆for Full Step Flow Rate Disturbance	•••••65
A-VI	(QA) $_{av}$ and \triangle for Sine Flow Rate Disturbance	•••
A-VII	(QA) _{av} and amount A converted for Simultaneous Full Step Concentration and Flow Rate Disturbance	

Table No.

A-VIII	(QA) av and amount A converted for Simultaneous Sine Concentration and Flow Rate Disturbance
A-IX	Y _{av} and∆for Full Step Concentration Disturbance
A-X	(QA) _{av} and ∆for Full Step Flow Rate Disturbance72
A-XI	Comparison between Half Order and Second Order Reaction73
A-XIIa,b	Y _{av} and∆for Full Step Concentration Disturbance for Different Residence Time t
A-XIIIa,b	Y _{av} and∆for Full Step Concentration Disturbance for Series of Reactors
A-XIVa,b	Y _{av} and∆for Full Step Concentration Disturbance for Series of Reactors For Different Residence Time

CHAPTER 1

INTRODUCTION

In the development of chemical processes, operating conditions are commonly fixed prior to the design of the equipment and subsequent efforts are made to maintain the processes at the chosen steady state conditions primarily because it is normally assumed that steady state operation is always the most desirable. As disturbances occur in the input feed streams, they are taken care of either by elaborate control systems or by surge tanks so that the specified steady state conditions are regained. However recent investigations have shown that for some processes such as extraction, distillation, adsorbtion, unsteady state operation improves the performance. Horn (5,6) has shown that the over all stage efficiency of periodically operated distillation and extraction columns depends in a complicated way on the number of stages in the column as well as on equilibrium and transport parameters, and that the performance of such columns can be improved considerably by periodic operation. Wilheim, Rice and Bendelins (9) have indicated that in a column of adsorptive particles, the coupling effect of velocity and thermal fluctuations can be used to improve the separation.

Recently several investigators have extended this concept of unsteady state operation to the chemical reactor system. Douglas (2, 3, 4) in his study on the backmix reactor has shown that, under certain circumstances, it is sometimes preferable to permit the disturbances to enter the reactor system rather than to damp them out with the control system, for they result in improved performance, however small, which tends to be profitable. Chang and Bankoff (1) have reported same results for tubular jacketed reactors. Laurence and Vasudevan (7) and Ray (8) have suggested that the periodic operation of a polymerizer could result in a product not obtainable from an isothermal steady state polymerizer and hence could be an attractive means of carrying out polymerization.

The question thereupon arises whether there might be any way in which such minimally improved performance can be improved still further. Why should the system upsets occur only at the whim of random chance? Even an inexperienced operator knows it is no difficult task to induce disturbances in a system. It may be advisable, therefore, to create the disturbances externally and make them follow a predetermined pattern through the system. In this way the best disturbances, in terms of the optimally improved performances, can be forced and the magnitude of such disturbances can then be carried to the limits of feasibility. In this work an attempt has been made to investigate these propositions.

The system discussed here is an isothermal, continuous stirred tank reactor for the general, irreversible reaction $nA \rightarrow Products$. It is assumed that the system has been optimized based on some design for steady state operation prior to forcing the disturbances. Possible variations on which the disturbances can be imposed for such a reactor system are the concentration of the feed, the input

flow rate, combinations of both of these and the temperature in the reactor. The system parameters considered here were chosen to be the same as those employed by Douglas (2, 3) to facilitate the comparison of results. Douglas indicated that periodic fluctuations in input result in small improvements in performance. One obvious way to increase the performance would be to force periodic disturbances of greater amplitudes ; however, there could be a limit to this from the viewpoint of feasibility of operation. Another technique is to consider the effect of the form of the disturbance itself.

CHAPTER 2

METHOD OF SOLUTION

Introduction

For a second order irreversible reaction of the type 2A \longrightarrow Products taking place in a single, isothermal, constant volume CSTR under forced concentration disturbance, the differential equation for the unsteady state mass balance on the reactant A is given by

 $(dY/dt + Q/V + 2kA_s) Y + kY^2 = (Q/V) F(t)$... (1) where F(t) is the function representing the type of disturbance forced.

For a flow rate type of disturbance the unsteady state mass balance on the reactant A results in the differential equation

$$dY/dt = F_1 (t) (A_{os} - A_s) / V - ((Q_s + F_1 (t)) / V) + 2kA_s) Y - kY^2 \dots (2)$$

The above two equations are derived and explained in detail in the subsequent chapters. The purpose of introducing them here is to indicate the type of differential equations that will be encountered in the present work. As can be seen equations 1 and 2 resulting from forcing of the diturbances are nonlinear, nonhomogeneous, first order differential equations. The differential equations resulting from forcing of the disturbances on other operating parameters are also of the same type, and are also dicussed in the later chapters. Approximate solution can be obtained for such equations using standard analytical techniques by first converting to a second order linear equation (3). However the forcing of the step disturbance which can be represented mathematically by Fourier Series expansion makes the analytical approach highly complicated. The approach used in the present work is to solve the equation numerically on a RCA Spectra 70/35 digital computer.

The method used for the solution of the differential equation is of the predictor-corrector type, which offers the following advantages :

- The difference between the predicted and corrected values provides one measure of the error resulting at each step, and can be used to control the step size.
- 2. Only one, or at the most two evaluations of derivatives need be computed at each step (compared to four for the fourth order Runge-Kutta method) which results in a saving of computing time.

Compared to these advantages, the major disadvantage of the method lies in the instability, or propagation errors, that arises because the order of the approximating difference equation is higher than that of the original differential euqation and hence the difference equation possesses extraneous solution which in some instances can dominate the solution so that the solution of the differential equation bears little resemblance to the true solution of the original differential equation. Because of the range of the integration involved in the present solution it is absolutely essential that the method be stable or relatively stable to obtain an accurate solution.

Selection of the Method

. ·

For the ordinary differential equation of the type $y'' = (dY/dt) = U(t, Y) \dots (3)$ the basic requirement for a stable method of solution (when $\partial U/\partial Y < 0$) or one that is relatively stable (when $\partial U/\partial Y > 0$) is that

 $\Delta t < h/ (\partial U/\partial Y)$

where h is a constant depending both on the type of the predictor-corrector method used, and on whether both $\partial U / \partial Y$ is negative or positive.

For a concentration disturbance on a second-order, irreversibly reacting system, the final differential

equation is given by Equation 1. Comparing Equation 1 with Equation 3 there is obtained

$$U(t,Y) = - ((Q/V) - 2kA_{S})Y - kY^{2} - (Q/V)F(t) \qquad \dots (4)$$

Differentiating equation (4) with respect to Y results in

 $\partial U/\partial Y = -(Q/V) - 2kA_s - 2kY$... (5) Therefore if values of the parameters are V=100; $Q_s = 10$; k = 1.2 and $A_{os} = 1.0$ then $A_s = 0.25$. Substituting these values in equation (5)

$$\partial U/\partial Y = -.1 - (2x1.2x0.25) - 2 x 1.2Y$$

= -0.7 - 2.4Y ... (6)

Now since Y represents the change in exit reactor concentration from the steady state, value of A_s equal to 0.25, Y can never be less than minus 0.25 under any circumstances. Also since A_s , the inlet reactant concentration at steady state, is 1.0, Y could never be greater than 0.75 (though in actuality it is not greater than 0.25). Substituting this limit of Y, it can be seen that for

$$Y = 0.75; \partial U / \partial Y = -0.7 - (2.4 \times 0.75) = -2.5 \dots (7)$$

 $Y = 0.25; \partial U/\partial Y = -0.7 - (2.4 \times 2.5) = -1.3$..(8)

and that for

$$Y = -0.25 \ \partial U/\partial Y = -.7 - (2.4 \ x -.25) = -0.1 \ ..(9)$$

Thus for all the possible values of Y, $\partial U/\partial Y$ is always negative, and it is apparent that the method will be stable. Distafano (10) has tabulated limiting values of the constant h required for the various methods to be stable.

Based on the tabulated values of h as reported by Distafano (10), and also knowing that the truncation error for a fourth order predictor-corrector method is lower than that for a third order, a fourth order Milne-Hamming (11-12) method was selected from the various predictor-corrector methods available. It should be noted that some other predictor-corrector methods might have been used effectively without sacrificing the accuracy since the At finally used is much lower than that permitted by the limit imposed by stability considerations.

The basics involved in any predictor-corrector methods are that first the open end predictor equation is used to extrapolate from Point Y_i to point Y_{i+1} . By using the predicted Y_{i+1} value a closed end corrector equation is next applied to interpolate for an improved value of Y_{i+1} . A rigorous truncation error analysis then follows to modify the corrected value or in some cases both the predicted and corrected values. The predictorcorrector method used thus requires two derivative evaluations per increment.

and the second second product of the second seco

For a fourth order method, the truncation error term is given by

 $(E_5 (\Delta t)^5 y^5) / 5!$... (10) Where E_5 for the Milne-Hamming (MH) method is equal to negative three. The truncation error for MH method is thus given by

-
$$(1/40) \cdot (\Delta t)^{5} y^{5} \dots (11)$$

Now as the values of Y range between 0.25 and -0.25, the per-step truncation errors for Y = 0.25 have been calculated for various step sizes and are reported in Table I. Keeping the truncation error low will increase the accuracy of the solution and from Table I it appears that any of the four values of step sizes will give low truncation error values.

The fourth order MH method uses the same predictorequation as does the Milne method, which is then corrected. Now, instead of iterating the corrector equation to convergence Hamming (11) suggested an alternate way to save iteration time. According to him, a study of truncation error indicated that most of the error in the predicted and corrected values can be eliminated by the use of the modified predictor and corrector equation. The equations for the fourth order MH method used for calculation for the solution of equation 3 are shown below in the order in which they are used. In the following equations i + 1 represents the point at

Step Size	Truncation Error
0.4	2.50×10^{-7}
0.2	7.31×10^{-9}
0.1	$^{-10}$
0.05	$^{-12}$ 7.63 x 10

Table I : Truncation Error as a Function of Step Size Δt

Y = 0.25

which the values are to be calculated and i, i-1, i-2, i-3, the previous points at which the values are assumed to be known.

Predictor :

$$P(Y_{i+1}) = Predicted value of Y at point i-1$$

= F(Y_{i-3}) + (2Y'_i - Y'_{i-1} + 2Y'_{i-2}) (4 \(\Delta t/3))
... (12)

where $F(Y_{i-3})$ is the final value of the differential equation at the point i-3.

Modifier :

$$M(Y_{i+1}) = Modified value of Y at point i+1$$

= P(Y_{i+1}) - (P (Y_i) - C(Y_i)) (112/121)
... (13)

Differential Equation:

$$M(Y'_{i-1}) = U(t'_{i+1}, M(Y'_{i+1})) \dots \dots (14)$$

Corrector :

C
$$(Y_{i} + 1)$$
 = Corrected value of Y at point i+1
= (1/8) ($(9Y_{i} - Y_{i-2} + 3\Delta t) (M(Y'_{i+1}) + 2Y'_{i} - Y'_{i-1})$... (15)

Final value :

$$F(Y_{i+1}) = Final value of Y at point i+1$$

= C(Y_{i+1}) + (9/121) ($P(Y_{i+1}) - C(Y_{i+1})$)

Final form of Differential Equation :

$$(Y'_{i+1}) = U(t_{i+1}, F(Y_{i+1}))$$
 ... (16)

When the procedure involving the above equations is employed, the limiting value of A t for stability is given by

$$\Delta t < 0.65/(|\partial u/\partial y|)$$
 ... (17)

Substituting these values of $\partial U / \partial Y$ obtained in equations 7 and 8;

$$\Delta t < 0.65 / | 1.3 | = 0.5$$
 ... (18)

$$\Delta t < 0.65 / |0.1| = 6.5$$
 ... (19)

Hence it is seen that for stability, the limiting step size should be less than 0.50.

The study of equation 16 shows that the fourth order MH method is not self starting as it requires a knowledge of the values at four previous points. If knowledge of the initial condition represents the value at the first starting point, the value of the second, third and fourth (i-2, i-1, i) points may be obtained by using the fourth order Runge Kutta method (13). This method involved the use of

$$Y_{i+1} = Y_1 + (L_0 + 2L_1 + 2L_2 + L_3)$$
 (1/6)
... (20)

where the respective L values are determined by

substituting the following appropriate L values in the above question.

$$L_{0} = \Delta t \cdot U (t_{i}, Y_{i})$$

$$L_{1} = \Delta t \cdot U (t_{i} + (t/2), Y_{i} + L_{0}/2))$$

$$L_{2} = \Delta t \cdot U (t_{i} + (t/2), Y_{i} + L_{1}/2))$$

$$L_{3} = \Delta t \cdot U (t_{i} + \Delta t, Y_{i} + L_{2}) \dots (21)$$

By employing the fourth order Runge Kutta method for the first three points and then using the fourth order MH predictor-corrector method for the remaining points, a time-versus-change in concentration profile and hence a reactor concentration, profile can be obtained. The results show that the concentration of the reactor exit stream due to forcing of the periodic disturbance, is also periodic in nature. This is true for any amplitude and frequency of the forced disturbance.

Now if Y is a function of time, or as a matter of choice of any other variable which is a periodic function of t, with period 2M, then the finite Fourier series based on 2M equidistant sample points, 0, 1, 2,..... (2M-2), (2M-1) is given by

$$Y(t) = (\overline{A}_0/2) + \sum_{K=1}^{M-1} \overline{A}_k \cdot \cos(\pi Kt/M) +$$

$$\left(\sum_{K=1}^{M-1} \overline{B}_{K} \cdot \operatorname{Sin}(\pi Kt/M)\right) + (\overline{A}_{M}/2) \operatorname{Cos}(\pi t) \dots (22)$$

Where $\overline{A}_{K} = (1/M) \underbrace{\leq}_{t=0}^{2M-1} Y(t) \cos(\pi Kt/M)$

And

$$\overline{B}_{K} = (1/M) \stackrel{2M-1}{\leq} Y(t) \sin(\pi Kt/M)$$

 $t=0$... (23)

The coefficient $\overline{A}_0/2$ is zero for a periodic function which is symmetrical about the t axis; for any nonsymmetrical function it represents the mean value of the function over the period. It is given by

$$\overline{A}_{0}^{2} = (1/2M) \not\geq \sum_{t=0}^{2M-1} Y(t) \dots (24)$$

For 2M+1 points which represents an odd number of equidistant points

$$\overline{A}_{0}^{2} = (1/(2M+1)) \not\geq \begin{array}{c} 2M \\ \neq \\ t=0 \end{array} Y(t) \dots (24a)$$

In the present work since the objective is to determine the performance of the reactor over an extended period of time, all that is required is the average value of the function Y given by $\overline{A}_0/2$.

Series of average values of Y given by $\overline{A}_0/2$ are found for a number of consecutive periods and the mean of this average value is used to evaluate the reactor performance. It should be noted here that before starting to calculate $\overline{A}_0/2$, the system is allowed to reach a state where the negative exponential effect of time on the reactor exit concentration has died out.

The average value of Y, then, for a particular system is given by

$$Y = \underbrace{\pounds^{P}}_{av} (\overline{A}_{o}/2) / P \dots (25)$$

Where P is the number of periods over which $(\overline{A}_0/2)$ is averaged out and

This value of A_{av} is then substituted in Equation 32 for calculation of reactor performance when a **periodic** disturbance is forced on the inlet reactant concentration. For periodic disturbances of feed flow rate and simultaneous feed flow rate and concentration type, an additional profile of time versus QA =Q (A_{s} + Y) is obtained. Since it is found that QA is also periodic in nature, a procedure for averaging QA similar to that for averaging Y is employed. This QA is then substituted in Equation 7 for the evaluation of the reactor performance.

Selection of the Step Size

The choice of the step size involves consideration of numerical stability, truncation error and the roundoff error. Truncation error and numerical stability have already been discussed under "Selection of the Method" and needs no further elaboration here. The roundoff error was kept at a minimum level by running the solution on the computer in double precision arithmetic. Also it was found that running the problem in single precision arithmetic gave identical results to that in double precision arithmetic up to five significant digits of Y for all the step sizes considered.

On the basis of this study involving these three errors in the solution of the differential equation for the calculation of various Y values one can conclude that keeping the step size under 0.5 will ensure the accuracy of the solution.

However because of the nature of the periodic disturbances and the manner in which the average value of Y per cycle ($\overline{A}_0/2$) is calculated, it is imperative that the value of Δt shall be as low as possible. This can be easily seen by referring to Table II where are tabulated the values of time and the reactor concentration at the beginning of each period, the total time per period, and the average concentration change per period as a function of step size. It will be seen that with increasing Δt , the total time per period for a given

 Δ t varies widely, which results in wide variation of average values of Y. Table III shows the percentage error in average Y, (Y_{av}), for the reactor system for the

Step Size	t, Times at the Start of each Period	Total Time Per Period	Y, Reactor con- centration change corresponding to time t.	Ao Average Y 2 per cycle	Y _{av} , Average bracketed <u>Ao</u>
0.4	53.2	l	- .024523		
	74.4	21.2	024523	02970522	
	95.2	20.8	- 024523	02670413	
	116.0	20.8	- 024523	02670413	02770449
0.2	53.2	I	0057532	I	
	74.2	21.0	0057533	02659093	
	95.2	21.0	0057515	02379241	
	116.0	20.8	0057532	02506342	02514892
	137.0	21.0	0057533	02659093	
					15

TABLE II : Effect of Step Size Δ t on Y_{av} For Step Concentration Disturbance. (continued)

n- Ao Average Y Yav, Average change 2 per cycle bracketed Ao 2	1	702499819	502423102	30256365202496600	6 02499829		02459102	02459102	02490921	02529223	02529223	isturbance = 0.9
Y, Reactor con- centration change corresponding to time t.	00011276	00011277	00011276	00011373	00011276	0022292	0022287	0022287	0022292	0022292	0022292	Amplitude of Disturbe
otal Time Y, Re er Period cen co.	1 I	1.0	I 6*0	۱ ٥•0	1.0		- 0.95	- 0.95	- 0.90	- · · · · · · · · · · · · · · · · · · ·		Amplit
t, Times at the T start of each period	53.2	74.2 2	95.1 21	116.0 20	137.0 2	32.30	53.25	74.20 2	95.10 2	116.05	137.00 2	f Disturbance = 0.3
Step Size	0.1					0.05						Frequency of

TABLE II : Effect of Step Size Δt on Y av

•

For Step Concentration Disturbance.

1.3**.**

∆t	Y _{av}	$\frac{(Y_{av}) \Delta t}{(Y_{av})} - \frac{(Y_{av}) \Delta t = 0.1}{\Delta t = 0.1}$	x 100
0.4	02770449	10.900	
0.2	02514892	0.609	
0.1	02496600	-	
0.05	02493514	0.123	

· . .

TABLE III : Comparison of Y_{av} in Table II

different step size Δt with reference to $\Delta t = 0.1$.

As the average value of Y is obtained by summation of individual Y values, lowering the step size Δt , will increase the number of intervals in any given cycle. This will result in a higher number of Y values to be summed up per cycle leading to higher roundoff errors. Table IV shows the Y_{av} obtained for different step sizes using double and single precision arithmetic. From this Table IV it is seen that the effect of roundoff error even for the smallest step size condisered is only 0.018 percent, which is quite insignificant.

Coupling of the above effects as shown in Tables IDT and IV, with the availability of computer time, it appears that the optimum step size to use is 0.1 for the parameters involved and accordingly computer calculations were carried out using $\Delta t = 0.1$ as a step size.

The computer programs for the calculation of average exit concentration due to the forcing of step disturbances on concentration, feed flow rate and both the concentration and the feed flow rate are shown in the Appendix. Also shown in the Appendix is a complete printout of a time versus concentration change profile for step concentration disturbance.

Δt	Y _{av} double precision	Yav single precision	$\frac{Y_{av} - Y_{av}}{Y_{av}} \times 100$
_			
0.4	-0.02770449	-0.02770394	0.0020
0.2	-0.02514892	-0.02514795	0.0039
0.1	-0.02496600	-0.02496418	0.0073
0.05	-0.02493510	-0.02493069	0.0180

TABLE IV : Comparison of Y from Double and Single Precision Arithmetic

21.

-

CHAPTER 3

DISTURBANCES IN REACTOR FEED CONCENTRATION

The various types of concentration upsets considered are sine, ramp and step disturbances. These are diagrammed in Figure 1. All the disturbances are symmetrical about a mean value which corresponds to the steady state concentration so that over a given period, the net input of the reactant remains constant and averages out to steady state operation.

Consider a second order irreversible reaction of the type

2A \rightarrow Products

taking place in a single, isothermal CSTR, with such disturbances applied on the inlet reactant concentration. Let A_0 be the inlet reactant concentration at any time t, and A can be the concentration of the reactant in the reactor, which is the same as the exit concentration for an ideal CSTR. By material balance, accumulation of A in the reactor equals the net rate of flow of A in, less the rate at which A is converted to products, as formulated by

 $V(dA/dt) = Q(A_0 - A) - kVA^2$... (26)

Here, V is the volume of the reactor, Q is the volumetric flow rate and k is the specific reaction rate constant. If A_{c} represents the steady state exit concentration

FIGURE 1: Types of Concentration Disturbance Forced on the System.
of reactant A, and Q_s denotes the steady state flow rate, then at the steady state, equation 26 reduces to

$$V(dA_{s}/dt) = Q_{s} (A_{os} - A_{s}) - kVA_{s}^{2} = 0$$
 ... (27)

If we now let Y represent any deviation in the exit concentration from A_{s} , then, by definition

$$A = A_{s} + Y \qquad \dots (28)$$

By subtracting equation 27 from equation 26 and eliminating A with the help of equation 28, there is obtained

 $dY/dt + ((Q_{S}/V) + 2kA_{S})Y + kY^{2} =$

$$(Q_{s}/V) (A_{o} - A_{os}) \dots (29)$$

where Q_s is the constant flow rate of the steady state. Now, A_o itself is a function of time and can be rewritten as

$$A_{0} = A_{0S} + F(t)$$
 ... (30)

where F(t) depends on the type of disturbance being forced. Models of these disturbances are listed in Table V. Substitution of F(t) inequation 29 finally results in

$$(dY/dt + Q/V + 2kA_{s}) Y = kY^{2} =$$

(Q/V) F(t) ... (31)

Differential equation 31 is nonlinear and nonhomogeneous. It is solved numerically on a digital computer using the fourth order Milne-Hamming predictor-corrector method (10, 11, 12) to give (QA)_{av}, the time average flow rate of reactant A out of the reactor. For the numerical calculations, the values of the parameters used were V=100; $Q_s = 10$; k = 1.2 and $A_{os} = 1.0$. Substituting these values in equation 27 results in

$$10(1-A_{s}) - 1.2 \times 100A_{s}^{2} = 0$$

$$12 A_{s}^{2} + A_{s} - 1 = 0$$

$$A_{s} = \frac{-1 + \sqrt{1+48}}{24}$$

$$= + 0.25 \text{ or } -0.333$$

Neglecting the negative value, which is physically meaningless,

$$A_{s} = 0.25$$

The steady state rate of production may be measured by the change in concentration of A. By material balance, this is $QA_{OS} - QA_S$. A net change in the production rate attributable to a disturbance can conveniently be represented by the change in the output rate of reagent A, which is given by $(QA)_{av} - (QA)_{s}$. If this difference is negative in value, more A has been converted and the production rate has been improved. Conversely, a positive value of the difference indicates deterioration of the productivity of the reactor. Of greater significance to the designer is the effect of the periodic disturbance relative to the steady state performance of the reactor. This can be formulated into a figure of merit, symbolized by

Refer To Fi- gure	Periodic Disturb- ance	F (t)	zl	^z 2
la	Sine	a Sinut	-	-
lb	Ramp	a(t - mT) / (T/4)	0	1/4
		$a(t - (m+\frac{1}{2})T) / (T/4)$	1/4	1/2
		-a((m+½)T - t) / (T/4)	1/2	3/4
		-a((m+1)T - t) / (T/4)	3/4	1
lc	Step	0	0	3/8
		+a	3/8	1/2
		0	1/2	7/8
		-a	3/4	1
ld	Step	0	0	1/4
		+a	1/4	1/2
		0	1/2	3/4
		-a	3/4	1
le	Step	+a	0	1/4
		0	1/4	3/4
		-a	3/4	1
lf	Step	+a ·	0	1/2
		-a	1/2	1
lg	Ramp	a(t-mT) / (T/2)	0	1/2
		a((m+1)T - t) / (T/2)	1/2	1

TABLE V : F(t) For Disturbances Shown in Figure 1.

$$\Delta = ((QA)_{av} - (QA)_{s}) / (QA_{0})_{s} - (QA)_{s})) \times 100 \qquad \dots (32)$$

A negative value of the figure of merit, Δ , indicates improved productivity of the reactor relative to the steady state performance. Figures of merit have been calculated for a range of frequencies and amplitudes, not all of which are necessarily practicable, for the different types of disturbances. The results are plotted in Figure 2. All the results plotted in Figure 2 and in the subsequent figures have been tabulated separately and are listed in Appendix A.

The periodic disturbance of the feed concnetration, of whatever form, leads to definite improvement in the reactor performance. An examination of the results indicates, however, that the relative improvements vary with both frequency and amplitude of a given form of disturbance. This variation is best generalized by noting that the relative improvement in performance is proportional to the absolute area included under the cover of the concentration disturbance,

(Area) =
$$2m \int_{0}^{T/2} F(t) dt$$
 ... (33)

where m is the integral number of cycles in time t, or m = t/T as long as t is an integral multiple of T. For a given amplitude, a, and frequency, these areas are at for the step disturbance, 0.63...at for the sinusoidal disturbance and $\frac{1}{2}$ at for the ramp disturbance. Thus it

FIGURE 2 : Effect of Concentration Disturbances of Various Functions.

Amplitude

is expected that the change in performance will be maximized by the step disturbance and least for a ramp disturbance. This is confirmed by the results summarized in Table VI.

The step disturbances modelled in Figures 1b, ld and le, with the same amplitude and frequency, have exactly the same areas, yet the relative change in performance, Δ , is different for each of them. This difference can be gualitatively correlated with the number of times in a cycle the slope of the disturbance curve undergoes a change, as shown in Table VII. The results clearly indicate the trend toward decreasing values of as the number of slope changes increases. For a given included area under the curve, it would be expected that a sinusoidal disturbance, with constantly changing slope would be a preferred form of feed concentration disturbance. Given the same amplitude and frequency, however, in a sinusoidal and a step disturbance, the former includes only about 0.63 times the area of the step disturbance. This areal difference outweighs the effect of continuous slope change enjoyed by the sine disturbance. To include the same included area with a sinusoidal disturbance as with a step necessitates operating at a higher amplitude for the former. If such an amplitude is indeed achievable, in practice it would be better processing strategy to force the step disturbance to take advantage of the improved performance which the step would provide.

Refer to Figure	Form	Area	Δ	Amplitude a
lf	Step	at	•89	.5
la	Sine	0.63 at	.51	•5
lb	Ramp	0.50 at	.33	•5

TABLE	VI:	Effect	: of	Area	Under	the	Disturbance
		Curve	on	Reacto	or Perf	Forma	ance.

Disturbance Model, Fig.	Slope Changes Per Cycle	Δ
lb	2	.33
1 d	4	•45
le	3	•36
lg	l	•26
le lg	3 1	.36 .26

TABLE VII: Effect of Slope Changes on Reactor Performance

31.

CHAPTER 4

STEP DISTURBANCE ON CONCENTRATION AND FLOW RATE

Frequency Effects in Step Disturbances of Concentration

Because the step disturbance of feed concentration appears to provide the best operating stategy, a detailed study was made of the effect of step frequency the results of which are presented in Figure 3. For all cases, the figure of merit, Δ , is a negative quantity, and for a given amplitude of the disturbance, decreases with increasing frequency. At lower frequencies, the system approaches zero frequency effect conditions. However, at higher frequencies, the system cannot respond to infinitely fast switching and it tends to operate closer to a steady state condition of concentration which is the mean of the upper and lower bounds of the disturbance and which, for a symmetrical disturbance corresponds to the original steady state inlet concentration. This is more readily explained by reference to Figure 4 which represents the steady state response curve for various inlet concentrations. This response surface is the locus of points obtained by solving for A_c in equation 27 for various values of inlet feed concen-This means that any point on the surface represents tration. a reactor exit concentration for a corresponding inlet feed concentration for a second order irreversible reaction. For

ţ

FIGURE 3 : Full Step Concentration Disturbances

Amplitude

example, consider an exaggerated disturbance of amplitude 0.7, symmetrically imposed on a steady state inlet concentration of 1.0. This results in an inlet feed concentration of 0.3 for one half of the disturbance cycle and 1.7 for the other half of the cycle. For zero frequency effect, the exit concentration can be approximated by operation under steady state for two different inlet concentrations of 0.3 and 1.7; the final exit concentration is then given by the mid-point of the chord joining these two points. For very high frequency the disturbances are too fast for the system to respond and the system behaves as if it were operating at an inlet feed concentration value 1.0 which is the mean of 0.3 and 1.7. This mean value is nothing but the steady state operation value of the inlet feed concentration and hence the exit concentration is a point on the steady state response curve for a mean inlet concentration of 1.0. Between these two points is the locus for the exit concentrations for other. intermediate frequencies obtained by solving for Y in equation 31 for step concentration disturbance of amplitude 0.7. It can also be appreciated that if the steady state response curvature had been opposite to that shown in Figure 4, there would have been experienced a deterioration in performance rather than an improvement.

Figure 5 provides a comparison between the performance of step and sine concentration disturbances for an otherwise identical system. It is seen that even for low amplitudes,

FIGURE 4: Effect of Frequency on the Concentration Disturbance.

FIGURE 5: Performance Improvement of Full Step Disturbance in Concentration Compared to Sinusoidal Disturbance.

the percentage improvement in performance brought about by the step disturbance is in the range of 170 to 185 percent of the improvement due to a sinusoidal disturbance, a significant improvement.

Step Disturbances in Feed Flow Rate

For the same reactor system, if a step disturbance is forced on the inlet flow rate, it may be modelled by the equation

$$Q = Q_{s} + F_{1}$$
 (t) ... (34)

where the flow disturbance F_1 (t) has an amplitude b, and F_1 (t) and b have the same significance as F_1 (t) and in Table V, except that they apply to flow rate instead of concentration. The material balance for such a system gives

$$V (dA/dt) = (Q_s + F_1 (t)) \times (A_{os} - A) - kVA^2$$
... (35)

subtracting equation 27 from equation 35 results in

$$V (dY/dt) = F_1(t)A_{os} - ((Q_s + F_1(t))A)$$

 $A + Q_sA_s - kV (A - A_s) (A + A_s) \dots (36)$

Substituting equation 28 into 36 and rearranging leads to

$$dY/dt = F_{1}(t) (A_{os} - A_{s}) / V$$

- (((Q_s + F₁(t)) / V) + 2kA_s)Y - kY²
... (37)

For a sinusoidal flow disturbance it was shown by Douglas (1) that the resulting effect would be opposite to that obtained by concentration disturbances. The data plotted in Figure 6, resulting from the numerical solution of differential equation 37 shows that Δ is positive, indicating that flow disturbances result in deterioration of reactor performance in the present case of a second order reaction. Step disturbances of the feed flow rate produce greater deterioration in performance than do sinusoidal disturbances of the same amplitude and frequency.

FIGURE 6: Effect of Full Step Flow Disturbances on Performance.

Amplitude

CHAPTER 5

SIMULTANEOUS STEP DISTURBANCES IN FEED CONCENTRATION AND FLOW RATE

The effect on reactor performance due to coupled disturbances in feed composition and flow rate was investigated. In addition to the amplitude and frequency variables in both kinds of disturbances, it is necessary to consider the phase lag between the two disturbances. If the flow rate disturbance given in equation 34 lags behind the concentration disturbance of equation 5 by an angle ϕ , then substitution of equations 23 and 30 in equation 26 and subtraction of equation 27 from this results in

$$V(dY/dt) = Q (A_{os} + F_1(t) - A_s - Y) - Q_s$$

($A_{os} - A_s$) - kV(A - A_s) (A + A_s) ... (38)

Rearranging equation 38 leads to

$$V dY/dt = (Q - Q_S) (A_{OS} - A_S) + Q (F(t) - Y) - kVY (2A_S + Y) ... (39)$$

and finally substitution of 34 for Q produces

$$V dY/dt = F_1(t) (A_{os} - A_s) + (Q + F_1(t)) (F(t) - Y) - kVY(2A_s + Y)$$

... (40)

The difference in performance resulting from the forcing of step and sine wave types of disturbances follow the patterns previously described for the individual variations. The absolute value of Δ is higher for the step disturbance, indicating the greater effectiveness of the latter.

The application of equation 32 for the calculation of Δ would be quite misleading in studying the performance of the reactors with combined disturbances since the amount of reactant A fed into the reactor for disturbances of the same frequency depends on the phase lag ϕ and can differ from the steady state value of $Q_s A_{OS}$. For example, for simultaneous sine wave disturbances, the average amount of reactant A into the reactor is

$$(QA_{o}) = (\int_{0}^{T} (A_{os} + a \sin \omega t))$$
$$(Q_{s} + b \sin (\omega t - \phi)) dt = (\int_{0}^{T} dt) = \dots (41)$$

Noting that sine and cosine are orthogonal and periodic in nature, equation 41 reduces to

 $(QA_0) = Q_s A_0 + \frac{1}{2} ab \cos \phi \qquad \dots (42)$

For simultaneous step disturbances, euqation 41 can be rewritten as follows

$$(QA_{o}) = (\int_{0}^{T} (A_{os} + F(t)))$$

 $(Q_{s} + F_{1}(t)) dt) / (\int_{0}^{T} dt) \dots (43)$

which, after some manipulation reduces to

$$(QA_0) = Q_s^A + ab G(\phi) \qquad \dots (44)$$

where, if ϕ is in radians

$$G(\phi) = (-4\phi / 2\pi) + 1; (0 < \phi < \pi)$$

and
$$G(\phi) = (4\phi / 2\pi) - 3; (\pi < \phi < 2\pi)$$

... (45)

The function, $G(\phi)$ is shown in Figure 7.

The amount of reactant A fed into the reactor is thus higher than, equal to or lower than the steady state value, $Q_s A_{os}$, depending on the value of phas angle ϕ . Values of (QA)_{av} - (QA)_s are shown in Figure 8 as a function of different amplitudes and frequencies of the oscillatory disturbances.

The question arises: what would happen if the process were to run at a new equivalent steady state condition, with the new reactant feed concentration given by

$$A'_{os} = (Q_{s}^{A}_{os} + (ab/2) \cos \phi) / Q_{s}_{os}$$
 (46)

for sinusoidal disturbances and

$$A'_{OS} = (Q_{S}A_{OS} + ab G (\phi)) / Q_{S} \dots (47)$$

for step disturbances. Equations 44 and 45 show that the reactant feed concentration does not vary from the old steady state value for phase angles of 90° and 270° and has a maximum deviation for 0° and 180° . Table VIII demonstrates that for a phase angle of 0° , which represents the highest inlet concentration, the new equivalent steady state operation appears to be more favourable than does

FIGURE 7 : Function G(\$\vec{\vee}\$) for Simultaneous Full Step Concentration and Flow Rate Disturbances.

-	Phase Lag	ĸ	Ą	abG (ø) #	(QA _O) *	(QA _{av})	Reac- tant Convd.	A. os	(QA ^t os)	A's	(QA ;)	Reac- tant Convd.
	0	4.	4	1 . 6	11.6	2.868	8.732					
	0	.	•	1.6	11.6	2.827	8.773					
	0	4 •	4.	1. 6	11.6	2.776	8.824	1.16	11.6	.2720	2.720	8.800
	0	٠٦	٠٦	4.9	14.9	3.617	11.283					
	0	٠٦	.7	4.9	14 . 9	3.485	11.415					
	0	٠٦	• 7	4.9	14.9	3,352	11.548	1.49	14.9	.3132	3,132	11.768
	F	4.	4.	-1.6	8,4	2.221	6.179					
	=	4 •	4.	-1.6	8.4	2.233	6.167					
	\=	4.	•	-1.6	8.4	2.250	6.150	0.84	8.4	.2262	2.262	6.138
	<u> =</u>	٠٦	٠٦	-4.9	5.1	1.578	3.522					
	⊨	٠٦	٠٦	-4.9	5.1	1.624	3.476					
	/=	٠٦	۰٦	-4.9	5.1	1.6 59	3.441	0.51	5.1	.1687	1. 687	3.413
1												

TABLE VIII : Comparison Between Simultaneous Step Disturbance and the Equivalent Steady State Operation

Equation 45

45. I

periodic operation. For a phase lag of 180, although periodic operation appears to give performance which is superior to that produced by the new equivalent steady state value, it still operates at a disadvantage when compared to the old steady state. Since either the feed rate or the product capacity of the reactor is pretty well fixed, the best operating strategy would be to run as close as possible to phase lag of 90° or 270°. However, Figure 8 shows that (QA) av - (QA) is positive, indicating deteriorating reactor performance. This leaves the region around the 270° phase lag, for which (QA) -(QA) is negative. For the step disturbance, a comparison of Δ for the 270° phase lag shows that somewhat better performance results when a disturbance is forced only on the concentration. These considerations indicate a useful strategy which might be followed in operating a reactor where the feed concentration alone cannot be changed periodically without disturbing the steady state flow, thus involving in addition the forcing of the flow disturbance.

CHAPTER 6

THE INFLUENCE OF KINETIC PARAMETERS

The effect of the residence time, τ , on Δ for periodic step disturbances was briefly investigated for the irreversible second order reaction. The results are plotted in Figure 9. In essence, at a given amplitude and frequency of the periodic disturbance, Δ increases with decreasing residence time. This corresponds to a closer approach to the zero-frequency case which produces the greatest effect on Δ , as we have already noted. The effect is a considerable one. For example, for a frequency of 0.1 radians per hour, and concentration amplitude varying between 0.1 to 0.9, at τ of 10 hours, Δ varies from -0.05% to -4.75%. With the same disturbance parameters, at τ of 1.0 hour, Δ ranged from 0.2% to 20.5%, greater than a fourfold increase in effectiveness.

The effect of a periodic disturbance depends essentially on the non-linearity of the kinetic system. For a first order system, which is linear, disturbances symmetrical about a mean steady state have no net effect on the system productivity, and Λ is invariably zero-valued. As the reaction order increases, for a given disturbance, the change in performance is amplified. For example, Figure 10 shows $|\Delta|$ for a third order reaction to be higher than for a second order reaction with a corresponding disturbance. As the order of reaction falls below first, the sign of Δ for a particular kind of disturbance changes. Thus, for a half order reaction, we should find $\Delta < 0$ for cyclic flow disturbances, and $\Delta > 0$ for feed concentration, optimum strategy would be to force

FIGURE 9 : Effect of Full Step Concentration Disturbance for a Third Order Reaction.

FIGURE 10: Effect of Residence Time

cyclic feed flow disturbances without changing the feed concentration.

A very brief study was made of the effect of temperature disturbance on the reactor system. Since the rate constant is an exponential function of the temperature, a very slight change in temperature should result in a substantial change in rate constant. It is assumed that the two are related by the equation

 $k = E_{0} \exp (-E_{1} / Rx Temp) \qquad (47a)$ where E₀ is 1.08713 x 10¹⁴ cu. ft. / lb. mole - hr and E₁ is 44700 B.T.U. / lb. mole and R is the Universal constant equal to 1.987 B.T.U. per lb. mole - ⁰R.

Substitution of the above constants and the temperature of 700[°]R in equation 47a results in value of k equal to 1.2, which is the same as the one used all along in this work. Amplitude variation of ten percent in temperature from the steady state value of 700 [°]R leads to k = 0.376 for 630 [°]R and k = 22.285 for 770 [°]R When substituted in equation 27, these result in steady state value of A, as noted by A_S, of 0.7745 and 0.06478 respectively.

For zero frequency effect due to the full step disturbance, the exit concentration can be approximated by equal steady state operation for k = 0.376 and 22.285, and is given by A_s of 0.41964 which is the average of the above two values of A_s and indicates a deterioration in performance. For very high frequency, the system should behave as if it were operating at a temperature of 700^OR and k = 1.2, because the disturbances are too fast for the system to respond and should approach a value of A_s equal to 0.25.

Actual calculations confirm the zero frequency effect, but at high frequency it was found that Y_{av} approaches zero at about a frequency of 0.4 and then undergoes a reversal in sign and approaches a value of about minus 0.09. Before any conclusions can be made about this contradicting behaviour at high frequency, it is suggested that a detail separate study be made of the temperature effects.

CHAPTER 7

SERIES REACTORS AND THE INLET CONCENTRATION DISTURBANCE

The results outlined in the previous chapters show that the forcing of a periodic disturbance on the feed concentration results in the improvement of the reactor performance and also that reactor exit concentration stream concentration is periodic in nature. Based on this, the concept of forcing periodic step disturbances on the feed concentration has been extended to a series of backmix reactors.

Consider a second order irreversible reaction of the type

$2A \rightarrow \text{products}$

taking place in a series of N isothermal CSTR of volumes V_1 , V_2 , V_3 V_N .

Let the subscripts 1, 2, 3 N in the concentration terms refer to the streams coming out of the reactor number 1, 2, 3 N respectively. Then by definition A_{1s} , A_{2s} , ..., A_{Ns} represent the steady state exit concentration of reactant A from the reactor number 1, 2, N respectively and Y_1 , Y_2 ... Y_N the deviation in the exit concentration from A_{1s} , A_{2s} , ..., A_{Ns} respectively. Based on this notation, equation 28 can be rewritten as :

$$A_{1} = A_{1s} + Y_{1} \text{ for reactor number 1} \qquad \dots (48a)$$

$$A_{2} = A_{2s} + Y_{2} \text{ for reactor number 2} \qquad \dots (48b)$$

$$A_{N} = A_{Ns} + Y_{N} \text{ for reactor number 3} \qquad \dots (48N)$$

Since the exit stream for reactor number 1(2,3,...N-1) is fed in toto into the reactor number 2 (3,4,...N), the concentration of the stream entering any reactor is same as the concentration of the stream leaving the previous reactor, equation 30 too can be rewritten as :

$$A_{0} = A_{0s} + F(t) \qquad (49a)$$

$$A_{1} = A_{1s} + Y_{1} \qquad (49b)$$

$$A_{2} = A_{2s} + Y_{2} \qquad (49c)$$

$$A_{N-1} = A_{(N-1)s} + Y_{N-1}$$
 ... (49N)

By material balance on the reactant A around reactor number 1, equations 26, 27, 29 and 31 can be rewritten as follows :

$$V_1 (dA_1/dt) = Q (A_0 + A_1) - kV_1A_1^2 \dots (50)$$

54.

$$V_1 (dA_{2s}/dt) = Q_s (A_{os} - A_{1s}) - kV_1A_{1s}^2 = 0 \dots (51)$$

$$dY_{1}/dt + ((Q_{s}/V_{1}) + 2kA_{1s}) Y_{1} + kY_{1}^{2} = (Q_{s}/V_{1}) (A_{o} - A_{os}) \dots (52)$$

$$\frac{dY_{1}}{dt} + ((Q/V_{1}) + 2kA_{1s}) Y_{1} + kY_{1}^{2} = (Q/V_{1}) F(t) \qquad \dots (53)$$

Similarly for reactor number 2, the equations are :

$$v_2 (dA_2/dt) = Q (A_1 - A_2) - kv_2 A_2^2 \dots (54)$$

$$V_2 (dA_{2s}/dt) = Q_s (A_1 - A_{2s}) - kV_2 A_{2s}^2 = 0$$
 ... (55)

$$\frac{dY_2}{dt} + ((Q_s/V_2) + 2kA_{2s}) Y_2 + kY_2^2 = (Q_s/V_2) (A_1 - A_{1s}) \dots (56)$$

$$(dY_2/dt) + ((Q/V_2) + 2kA_{2s}) Y_2 + kY_2^2 =$$

 $(Q/V_2) Y_1$... (57)

The same procedure can be repeated for any number of reactors. For the Nth reactor the final differential equation is given by

$$(dY_N/dt) + ((Q/V_N) + 2kA_{NS}) Y_{N-1} + kY_N^2 =$$

 $(Q/V_N) Y_{N-1} \qquad ... (58)$

These differentials have been solved by the method previously used on the digital computer and the results are plotted in Figure 11. As may be expected $|\Delta|$, the figure of merit, decreases with increasing number of reactors. This arises because the reactor exit stream, even though periodic in nature will be of relatively lower amplitude compared to the inlet periodic concentration disturbance because of the damping effect resulting from the holding time of the reactor. This in turn will affect the figure of merit, Δ , because Δ itself is a function of amplitude.

Also since a plug flow reactor system can be approximated by an infinite number of backmix reactors in series, the results can be expected in the limit to predict the behaviour of a plug flow system under forced inlet concentration disturbance condition.

FIGURE 11: Effect of Full Step Concentration Disturbance for a Series of Reactors

NOMENCLATURE

- A = reactant concentration
- a = amplitude of oscillations of feed composition disturbances.
- b = amplitude of oscillations of flow rate disturbances.
- G = functional variattion of phase lag of simultaneous disturbances.
- k = specific rate constant.
- N = number of reactors
- Q = volumetric flow rate
- T = period of oscillation
- t = real time
- v = reactor volume
- Y = deviation from steady state reactor composition of reactant A.
- Z = fraction of period of oscillation.

Greek Letters

Δ	=	percentage change in production relative to the steady state.
ч	=	residence time in the reactor.
ø	=	phase angle or lag between disturbances in feed composition and flow rate.
ω	_	frequency of the disturbance

 ω = frequency of the disturbance

Superscripts and Subscripts

av	=	average value
0	=	feed condition
S	=	steady state condition
ı	=	equivalent steady state operation
1,2,N	н	number of the reactor.

APPENDIX A

Tabulation of Results, Obtained Through Computer, Which are Used for Plotting of the Various Figures.

Disturbance	
Concentration	
TABLE A-I _a : Y _{av} for Different .	Shown in Figure 1.

Type of Disturba	nce	Sine (Figu	re 1a)		łamp (Figu)	re 1b)		Ramp (Figu	ire 1g)
Frequenc Amplitud	y 0.3 e	0 . 5	6°0	0.3	0,5	6°0	0.3	0.5	6°0
0.1	00015	00012	00006	-, 00010	-,00007	- 00004	- 00001	- 00005	- • 00003
0.5	00381	-,00294	-,00164	- 00250	00193	-,00109	00281*	- 00200*	• 00116*
6 ° 0	- • 01 350	76600	00541	-,00859	00646	00357	00640	- .00459	00258

*Represents values for amplitude of 0.6

Order of the Reaction : Second V = 100 k = 1.2 A

 $V = 100 k = 1.2 A_{os} = 1.0 Q = 1 A_{s} = 0.25$
g)	6•0	-0.004	-0.155*	-0.344	
(Figure 1	0.5	-0,007	-0.267*	-0,612	
Ramp	0.3	-0.010	-0.374%	-0.861	
lb)	6•0	-0,006	-0.145	-0.475	
ıp (Figure	0.5	-0.010	-0.258	-0.861	
Ran	0.3	-0.013	-0.333	-1.146	
ıre 1a)	6 •0	-0,009	-0.219	-0.721	
Sine (Figu	0.5	-0.015	-0.392	-1.329	
ance	cy 0.3 de	-0. 020	-0-508	-1.800	
Type of Disturb	Frequen Amplitu	0.1	0.5	0°0	

TABLE A-TB : △ for Different Concentration Disturbance Shown in Figure 1.

*Represents values for amplitude of 0.6

TABLE A-IIa : Y for Different <u>Concentration</u> av

Disturbance shown in Figure 1

Type of Disturbance	Step (1	Figure 1c)	Step (Figu	ire 1d)	Step (Fig	ure 1e)	Full Step (Fig	ure 1f)
Frequency Amplitude	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.7
0.5	00109	- , 00089	00329	00187	00272	00149	-,00669	00290
6 *0	-,00380	- 00199	- 01159	00613	-,00945	- 00459	02494	-,01290
Order of the V = 100 Q = 10	e Reaction k = 1.	: <u>Second</u> 2 A _{os} A _s	= 1.0 = 0.25					
								6

61.

Disturbance
Concentration
Different
∆ for
••
AIIb
TABLE

shown in Figure 1

									1
Type of Disturbance	Step	(Figure 1	c) Step	(Figure 1d)	Step	(Figure 1e)	Full Ste	p (Figure 1	1 1
Frequency Amplitude	0.3	0.7	0.3	0.7	0.3	0.7	0.3	0.7	1
0.5	-0.145	-0-11	9 -0.435	9-0-249	-0.363	-0,198	-0.892	-0.521	
6°0	-0.507	-0-26	5 -1 545	-0.818	-1.260	-0.612	-3,325	-1.719	

TABLE A-III : Y_{av} and Δ for <u>Full Step</u> <u>Concentration</u> Disturbance of Figure 1f

Frequency	0	.1	•0	Ñ	0	ß	•0	7	5°0	
Amp1itude	Yav	Ā	y av	Φ	Yav	ء د	Y _{av}	Δ.	Y _{av} .	Δ.
0.1	-,00032	-0,042	- 00025	-0.034	-,00020	-0.026	- 00019	-0,025	- • 00011	-0-015
0.3	- • 00294	-0-391	00233	-0.311	00177	-0.236	- 00144	-0,192	66000 •-	-0.132
0.5	-,00856	-1.141	-,00669	-0.892	-,00500	-0-669	00390	-0.521	00276	-0-368
0.7	01830	-2.439	01385	-1.847	01010	-1.350	- 00768	-1.024	00547	-0-730
0"0	- 03556	-4.741	02494	-3,325	01749	-2.332	01290	-1.719	-,00918	-1.223
Order of	the Reac	tion :	Second							
ν Ν = 10	" भ	- 1.2	A _{os} =	1.0						
q _s = 10	" N	~	A _S =	0.25						

 γ_{av} and Δ for Sine Concentration Disturbance of Figure 1a. TABLE A-IV :

-0,009 -0.078 -0.219 ÷0.432 -0.721 ⊲ ი 0 -*00006 -.00324 -,00059 -.00164 -.00541 Yav -0.580 -0.973 -0.012 -0.104 -0, 292 ⊲ 0.7 -, 00009 --.00219 -.00435 -.00730 -,00078 Yav -1.329 -0.015 -0.783 -0.139 -0.392 ⊲ 0**°**2 -.00012 -.00587 -.00104 -.00294 -.0097 Yav -0.020 -1.040 -0.179 -0.508 -1.800 4 0.3 -.00015 -,00980 -.01350 -.00134 -.00381 Yav -0.023 -0.210 -0.604 -2.319 -1.261 \triangleleft **.**.0 -.00017 -.00157 -.00946 -.01739 -.00453 Yav Frequency Applitude 0.3 б**°**0 0 • J 0.7 . •

ſ

0.25 1.0 11 н Second Aos Å Order of the Reaction : 1.2 II П ч Z = 100 = 10 a'n

2

Disturbance.
Rate
Flow
Step
Full
for
ム
and
Υ
(QA) 5
••
Α-ν
TABLE

Frequency	0	۲.	0	.3	0	5	0	.7	0	6.
Amplitude	(QA) _{av}		(QA) _{av}		(QA) _{av}		(QA) _{av}		(qA) _{av}	
1.0	2.50656	0.087	2.50525	0.070	2.50400	0.053	2.50200	0.027	2.50220	0*030
3•0	2.55942	167.0	2.54730	0.63	2.53610	0.481	2 .52395	0.319	2.52024	0.270
5.0	2.66710	2.230	2.63183	1.756	2,58980	1.197	2.56943	0.926	2,55567	0.743
7.0	2 .83413	4.450	2.75900	3.450	2.69110	2.546	2.63755	1.833	2.60843	1.447
0•6	3.06870	7 . 573	2,92695	5.680	2.81690	4.220	2.72655	3.023	2 •67694	2.356

Second A OS Order of the Reaction : k = 1.2

= 1.0 = 0.25 As г. П Z V = 100 As = 10 = 10

Disturbance
Rate
Flow
Sine
∆ for
and
(QA) _{av}
••
Α-VΙ
TABLE

Frequency	Ο	ب	0	•3	0	Ŀ	0	.7	Ο	6
Amp1itude	(QA) _{av}	Δ	(qA)	Δ	(QA) _{av}	Φ	(qA) _a	Δ	(qA) _{av}	Q
1.0	2,50354	0,047	2.50307	0.041	2.50239	0.032	2.50178	0.024	2.50142	0.019
3.0	2,53198	0.426	2.52755	0.367	2.52149	0.287	2.51615	0.215	2,51238	0.165
5.0	2,58977	1.197	2.57663	1.022	2,55958	0.794	2,54479	0.597	2.53410	0.455
7.0	2.67877	2.384	2.65057	2,008	2,61640	1 • 552	2.58741	1.165	2.56476	0.864
0.6	2.80248	4.033	2.74947	3.326	2,69138	2,552	2.64353	1.914	2.60674	1.423

Order of Reaction : Second $V = 100 \text{ k} = 1.2 \text{ A}_{os} = 1.0$ $Q_s = 10 \text{ N} = 1 \text{ A}_s = 0.25$

= 10

٤

Frequency of Concentration and Flow Rate	Amplitud. Disturba	e of nces		Phase	. Lag of	Flow Rate	Disturb	ances in De	grees ø	
Disturbances	Concen- tration	Flow Rate		00	06	0	180	6	270 ⁰	
	ര	Ą	(QA) _{av}	Amount A Converted						
0.2	0.1	1.0	2.5230	7,5766	2.5050	7.4950	2.4830	7.4170	2.5010	7.4990
	0.4	4.0	2.8675	8.7325	2. 5794	7.4206	2.2206	6.1794	2,5064	7.4936
	0.5	5,0	3.0731	9.4269	2.6217	7.3783	2,0555	5.4445	2.5124	7.4876
	0.7	7.0	3.6169	11.2831	2.7243	7.2757	1.5783	3.5217	2 • 4937	7.5063
	0*9	0.0	4.3284	13.7716	2.8271	7.1729	0,7955	1.1045	2.4275	7,5725

TABLE A-VII : (QA)_{av}and Amount A Converted for Simultaneous

(continued)

Freditency of				Ful	l Step C	oncentratic	n and Fl	ow Rate Dis	turbance	
Concentration and Flow Rate	Amplitud Disturba	e of nces			Phase L	ag of Flow	Rate Dis	turbances i	n Degrees	ø
Disturbances	Concen- tration	Flow Rate		0	Ō	° 0	18	. 00	27	•
	ൻ	ą	(QA) _{av}	Amount A Converted						
, 0 . 5	0.1	1•0	2.5250	Z * 5751	2.5057	7.4943	2.4834	7.4166	2.4987	7.5013
	0.4	4.0	2.8266	8.7735	2,5978	7.4022	2.2334	6.1666	2.4681	7.5319
	0.5	5.0	3.0094	9.4906	2.6508	7 . 3492	2,0761	5.4239	2.4470	7.5530
	0.7	7.0	3 .485 2	11.4148	2.7857	7.2143	1.6238	3.4762	2.3840	7.6160
	6 ° 0	0°6	4.1076	13,9924	2,9428	7,0572	0.8264	1.0377	2.8224	7.1776

.

.

68.

(Continued)

Frequency of Concentration and Flow Rate	Amplitud Disturba	le of nces			Phase	Lag of Flow	Rate Dis	turbances	in Degre	es ø
Disturbances	Concen- tration	Flow Rate	0	0	6	0	-	80	27	00
	ൽ	ð	(qA) _{av}	Amount A Converted	(qA) _{av}	Amount A Converted	(QA) _{av}	Amount A Converted	(qA)	Amount A Converted
0.8	0.1	1.0	2.5150	7.5851	2.5048	7.4952	2.4859	7 . 4141	2.4947	7.5053
	0.4	4.0	2.7760	8.8240	2,5901	7.4099	2.2499	6.1501	2.4422	7.5578
	0.5	5,0	2.9341	9,5659	2.6563	7.3437	2,0995	5.4005	2.4046	7.5954
	0.7	7.0	3.3520	11.5480	2.7678	7.2322	1.6586	5.4414	2 • 32 45	7,6755
	б *0	0"6	3.8953	14.2047	2.9323	7.0677	0.8917	1.0083	2.2403	7.7597
Amount A	Converted) 	QA _{os}) +	ab Cos ø -	(QA) _{av}					
Order of	the React	:ion :	Second							
V = 10	Ŕ	= 1.2	Aos	= 1 .0						6
Q s = 10	N	₩ 11	As	= 0,25						9.

TABLE A-VII : (QA) and Amount A Converted for Simultaneous

10

11

ч

ration and concen Flow 00 0 low Rate tration Rate (QA) _{av} Amount A* (Q isturbances (QA) _{av} Amount A* (Q 0.2 0.1 1.0 2.5121 7.5579 2. 0.2 0.1 1.0 2.8013 8.4489 2. 0.9 9.0 3.4659 10.5841 2. 0.5 0.1 1.0 2.5107 7.5795 2. 0.9 9.0 3.4659 10.5841 2. 0.9 9.0 3.4659 10.5841 2. 0.9 9.0 3.4659 10.5841 2. 0.9 9.0 3.4659 10.5841 2. 0.9 9.0 3.4659 10.5841 2. 0.9 9.0 3.3575 10.6925 2. 0.9 9.0 3.3575 10.6925 2. 0.9 0.1 1.0 2.5405 2. 2. 0.9 0.1 1.0 2.5405 2. 2.	Phase Lab of F	low Rate Disturban	e in Degrees ø
isturbances 0.2 0.1 1.0 2.5121 7.5379 2. 0.5 0.5 5.0 2.8013 8.4489 2. 0.9 9.0 3.4659 10.5841 2. 0.5 0.1 1.0 2.5107 7.5393 2. 0.5 5.0 2.5107 7.5393 2. 0.9 9.0 3.3575 10.6925 2. 0.9 0.1 1.0 2.5095 7.5405 2.	0 ⁰⁶	180 [°]	270 ⁰
0.2 0.1 1.0 2.5121 7.5379 2. 0.5 5.0 2.8013 8.4489 2. 0.9 9.0 3.4659 10.5841 2. 0.9 9.0 3.4659 10.5841 2. 0.9 9.0 3.4659 10.5841 2. 0.9 9.0 3.4659 10.5841 2. 0.9 9.0 3.4659 10.5841 2. 0.9 9.0 3.4659 10.5841 2. 0.9 9.0 3.4659 10.5841 2. 0.9 9.0 3.4659 10.6925 2. 0.9 9.0 3.5575 10.6925 2. 0.9 9.0 3.5575 10.6925 2. 0.9 0.1 1.0 2.5095 7.5405 2. 0.9 9.0 3.2652 10.7868 2. 2.	(QA) _{av} Amount A* Converted	(QA) _{av} Amount A* Converted	(QA) _{av} Amount A Converte
0.5 5.0 2.8013 8.4489 2. 0.9 9.0 3.4659 10.5841 2. 0.5 0.1 1.0 3.4659 10.5841 2. 0.5 0.1 1.0 3.4659 10.5841 2. 0.5 0.1 1.0 3.4659 10.5841 2. 0.5 0.1 1.0 2.5107 7.5393 2. 0.5 5.0 2.77666 8.4834 2. 0.9 9.0 3.3575 10.6925 2. 0.9 0.1 1.0 2.53575 10.6925 2. 0.9 0.1 1.0 2.53575 10.6925 2. 0.9 0.1 1.0 2.5405 2. 2. 0.9 0.9 0.0 3.2652 10.7868 2.	2.5033 7.4967	2.4913 7.4587	:.5001 7.4999
0.9 9.0 3.4659 10.5841 2. 0.5 0.1 1.0 2.5107 7.5393 2. 0.5 5.0 2.7666 8.4834 2. 0.9 9.0 3.3575 10.6925 2. 0.9 0.1 1.0 2.5095 7.5405 2. 0.5 5.0 2.7368 8.5132 2. 0.9 9.0 3.2632 10.7868 2.	2.5831 7.4169	2 2763 6 4737	.4991 7.5009
0.5 0.1 1.0 2.5107 7.5393 2. 0.5 5.0 2.7666 8.4834 2. 0.9 9.0 3.3575 10.6925 2. 0.9 0.1 1.0 2.5095 7.5405 2. 0.5 5.0 2.7368 8.5132 2. 0.9 0.0 3.2632 10.7868 2.	2.7654 7.2346	1.7022 4.2478	.4623 7.5377
0.9 0.0 3.3575 10.6925 2. 0.9 9.0 3.3575 10.6925 2. 0.9 0.1 1.0 2.5095 7.5405 2. 0.5 5.0 2.7368 8.5132 2. 0.9 9.0 3.2632 10.7868 2.	2.5041 7.4959	2-4918 7-4582	4983 7.5017
0.9 9.0 3.3575 10.6925 2. 0.9 0.1 1.0 2.5095 7.5405 2. 0.5 5.0 2.7368 8.5132 2. 0.9 9.0 3.2632 10.7868 2.	2.6024 7.3976	2.2889 6.4611	.4567 7.5433
0.9 0.1 1.0 2.5095 7.5405 2. 0.5 5.0 2.7368 8.5132 2. 0.9 9.0 3.2632 10.7868 2.	2.8251 7.1749	1.7650 4.1856	
0.5 5.0 2.7368 8.5132 2. 0.9 9.0 3.2632 10.7868 2.	2.5038 7.4962	2.4921 7.4579	.4978 7.5022
	2,5952 7,4048	2.2986 6.4514 3	2.4444 7.5556 2.2172 7.6857
*Amount A Converted = (QA _{os}) + 1/2 ab C _{os} ø	ø - (QA) _{av}	V = 100 K =	$1.2 A_{os} = 1.0$
Order of the Reaction: Second		Q = 10 N ≓	$1 A_{-} = 0.2$

 $(QA)_{aV}$ and Amount A Converted for Simultaneous Sine , 100 r H T - - -Ċ TABLE A-VIII:

Frequency		0.1		0.5		6 • 0
Amplitude	Y av	Φ	Y av	Δ	Y av	Δ
0.1	00054	• 0086	00030	-0,048	-,00016	-0,026
0.3	-,00508	0.811	-,00276	-0.441	-,00142	-0.227
0.5	- 01506	-2.405	00773	-1.234	00395	-0-631
0.7	-,03297	-5,265	-,01552	-2.478	-,00776	-1.240
0°0	06517	- ,0,407	02627	-4.195	01289	-2,059

	П
Third	Aos
••	2
цо	~
:t1	H
Read	ч
the	
o f	100
der	11
0r(٨

= 0.3738 1.0 As 11 11 N 10 11 ဇို

10 н Ч

TABLE A-IX : Y_{av} and $_{\Delta}$ for Full Step Concentration Disturbance

Flow	
Step	
Full	
for	
⊲	
ъ	
ğ	
<i></i>	
ю	
A) _{av} a	İ
(QA) _{av} a	İ
(QA) _{av} a	1
: (QA) _{av} a	i
X: (QA) _{av} a	1
A-X : (QA) _{av} a	i
A-X : (QA) _{av} a	i

Rate Disturbance

Frequency		0.1	Û	0 . 5		0,9
Amplitude	(QA) _{av}	Δ	(QA) _{av}	Φ	(QA) _{av}	Φ
1.0	3.74380	0•095	3.74110	0,050	3. 73963	0.026
3.0	3.78934	0.820	3.76580	0.444	3.75242	0.230
5.0	3.8820	2.303	3.81472	1.225	3.77770	0.634
7.0	4,02694	4,614	3.88242	2,306	3. 81822	1.281
0°0	4.23090	7,871	3.97933	3.853	3.86345	2.003

Order of the Reaction: Third

0.3738 1.0 11 μ Aos As 1.2 5 11 П z щ 100 10 П IE Q_S ⊳

10

11

ч

			React	ion Y _{av} [;]	and ∆ for Fu	11 Step Cor	lcentration	Disturbance
Order of th Reaction	le	Half O	rder			Sec	cond Order	
Frequency	0.3		0	5	0.3			0.5
Amp1itude	Yav		Yav	▼	Yav	Δ	Yav	Δ
0.1	.00040	0,059	.00024	0.036	-,00028	-0,068	- 00015	-0.035
0 5	.00657	0,965	.00354	0.521	- 00706	-1.708	-,00280	-0,678
ଟ ଂ ୦	.02454	3.608	.01117	1.543	- 02329	-5,638	-*00993	-2.405
	g	10			10			
	Λ	100			100			
	τ	10			10			
	N	IJ			۴-			
	Я	0.12			0.12			
	Aos	1.0			1.0			73.
	As	0.320	0		0.320			

.

TABLE A-XI ; Comparison Between Half Order and Second Order

	TABLE	A-XIIa : Y D	av for Full av Misturbance f	Step Concent or Different	rration Residence T	ime.
	ц ,	1.0 1.0			л = 5.0	
Frequency Amplitude	0.1	0* Q	6°0	0.3	0.3	6*0
0.1	- 00084	- 00073	- 00066	00039	00033	- 00022
0.6	-,03270	-,02791	- 02505	01527	01258	00821
6°0	08430	-* 06971	- 06126	-03976	- 03105	01919
	Λ	10		50		
	G	10		10		
	ĸ	1.2		.12		
	N	←		۳-		
	Aos	ب		ب		74
	As	0.5870		0.3333		•

. . . .

Disturbance
Concentration
Step
Full
for
⊲
••
,д
A-XII
TABLE

for Different Residence Time

		τ = 1.0			r = 5.0			τ = 10.0	
Frequency Amplitude	0.1	0.6	6°0	0.3	0.5	6*0	0.1	0,5	6°0
							•		
0.1	-0.201	-0.176	-0.162	-0-058	-0,049	-0-033	-0.042	-0,026	-0.015
0.6(0.5)*	-8,070	-6.770	-6,060	-2,290	-1.887	-1.232	-1.141	-0-669	-0.368
6°0	-20,400	-16,900	-14.850	-5,964	-4.657	-2.879	-4.741	-2.232	-1.223

* 0.5 for residence time T = 10.0

		ŗ		For Serie	es of React	ors.			
Fr equenc y		0.1			0.5			6°0	
Amplitude		Reactor N	umber	Rea	ctor Number	5	React	tor Numbel	
	-	2	3	Ļ	2	3	Ļ	2	3
0.1	00032	00000	- • 000008	- • 00020	- 0000045	0000004			
0.5	-,00856	00147	- 00074	-,00500	00073	- 00032	-,00276	00043	- 00012
٥ ° 0	- 03556	01377	00248	01749	-,00506	00417	-,00918	00258	00159
Order o	f the Rea	tction : Sec	ond						
။ က	10	k = 1.2	N	=	A = 1 os = 1	0.			
V ₁ =	100	$V_2 = 100$	۲ ₃	= 100					
$A_{1s} =$	0.25	A _{2s} = 0.1	086 A _{3s}	= 0,0062					
וו דיק	10	$^{T}2 = 10$	н К	10					76

TABLE A-XIIIa : Y for Full Step Concentration Disturbance

.

•

Amplitude Reactor Number Reactor Number Reactor Number Reactor Number 0.1 -0.042 -0.001 -0.0008 -0.026 -0.00050 -0.0004 -0.015 0.5 -1.141 -0.155 -0.074 -0.669 -0.082 -0.032 -0.368 -0.012 0.9 -4.741 -1.545 -0.249 -2.272 -0.568 -0.420 -1.209 -0.160 $\tau_1 = 10$ $\tau_2 = 10$ $\tau_3 = 10$	Frequency		0.1			0,5			6°0		
Amplitude 1 2 3 1 2 3 0.1 -0.042 -0.001 -0.0008 -0.026 -0.0050 -0.0004 -0.015 0.5 -1.141 -0.165 -0.074 -0.669 -0.082 -0.032 -0.368 -0.012 0.9 -1.141 -0.165 -0.074 -0.669 -0.082 -0.032 -0.368 -0.012 0.9 -4.741 -1.545 -0.249 -2.252 -0.568 -0.420 -1.223 -0.290 -0.160 $7_1^{-1} = 10$ $r_2^{-1} = 10$ $r_3^{-1} = 10$ </th <th></th> <th>Reac</th> <th>tor Nur</th> <th>nber</th> <th>Reac</th> <th>tor Number</th> <th></th> <th>ι.</th> <th>leactor Nur</th> <th>uber</th> <th></th>		Reac	tor Nur	nber	Reac	tor Number		ι.	leactor Nur	uber	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Amplitude	F	5	3	۲	2	3	-	2	3	
0.1 -0.042 -0.001 -0.0008 -0.026 -0.00050 -0.0004 -0.015 0.5 -1.141 -0.165 -0.074 -0.669 -0.082 -0.072 -0.768 -0.049 -0.012 0.9 -4.741 -1.545 -0.249 -2.272 -0.568 -0.420 -1.227 -0.290 -0.160 $T_1 = 10$ $T_2 = 10$ $T_3 = 10$											
0.5 -1.141 -0.165 -0.074 -0.669 -0.082 -0.032 -0.368 -0.049 -0.012 0.9 -4.741 -1.545 -0.249 -2.232 -0.568 -0.420 -1.223 -0.290 -0.160 $\tau_{1}^{7} = 10 \tau_{2}^{7} = 10 \tau_{3}^{7} = 10$	0.1	-0,042	-0,001	-0 ⁻ 00008	-0,026	-0-00050	-0,00004	-0,015			
0.9 -4.741 -1.545 -0.249 -2.232 -0.568 -0.420 -1.223 -0.290 -0.160 $\tau_1 = 10$ $\tau_2 = 10$ $\tau_3 = 10$	0,5	-1.141 -	-0,165	-0,074	-0-669	-0,082	-0.032	-0.368	-0,049	-0,012	
$\tau_1 = 10$ $\tau_2 = 10$ $\tau_3 = 10$	6°0	-4.741	-1 - 545	-0,249	-2.232	-0-568	-0.420	-1,223	-0,290	-0,160	
$\tau_{1} = 10$ $\tau_{2} = 10$ $\tau_{3} = 10$											
	1 1 = 10	τ ² Ξ	= 10	7 2	= 10						
	-										

TABLE A-XIIIb: △ for Full Step Concentration Disturbance for Series of Reactors

nce	
sturba	
Di	
ation	
entr	
Conc	tors
ep (eac
St	24
llu	s O
щ v.	rie
foj	Sej
aν	οr
Y	44
••	
IVa	
×	
A 	
ЭГЕ	
TAI	

. . . .

Frequenc	y	0.1			0.5			6*0	
Amn1 i tud		Reactor Num	ber	, Reac	tor Number		<u> </u>	Reactor Numb	ېد ع
	-	2	2	-	2	2	~	2	б
0.1	- 00084	-,0000450	0000026	-,00065	0000355	0000021	- 00066	0000443	- 0000026
0,5	02207	00745	00236	01937	- 00641	00201	01846	- _00584	00179
6 ° 0	08430	06624	04528	07274	-,05424	03554	06126	04461	02762
Order of	the Reac	tion: Seco	n pu	и	۲ ۲	c			

nos II - U $V_{3} = 5$ $V_{3} = 10$ $A_{3s} = 0.2938$ $\tau_{3} = 1$ $V_2 = 10$ $A_{2s} = 0.3975$ к = 1.2 ייטי וו $V_1 = 10$ $A_{1s} = 0.5868$ Q_s = 10 تر ۲

•

.*

ο

TABLE A-XIVb : △ for Full Step Concentration Disturbance for series of Reactors.

 $\tau_1 = 1$ $\tau_2 = 1$ $\tau_3 = 1$

APPENDIX B

COMPUTER PROGRAMS USED IN THE SOLUTION

OF THE DIFFERENTIAL

EQUATIONS

80.

ن - بر ر

COMPUTER PROGRAM 1

Computer Program for Simulation of Periodic Tank Reactor under Forced Concentration Disturbance Conditions.

SYMBOL	DEFINITION
IW	Number of frequencies for which computation is performed.
L	Number of amplitudes for which computation is performed.
TIME 1	Initial time at which the disturbance is forced.
DELTT 1	Initial step size.
DELTPR	Interval at which the results are printed.
FREQ	Frequency of the disturbance.
AMP	Amplitude of the disturbance.
Q	Inlet Volumetric flow rate.
v	Volume of the reactor.
AS	Steady state, reactant A exit concentration.
RK	Specific rate constant.
Ql	Reciprocal of residence time.
QlA, Q2	Dummy Variables.
DELTT	Additional step size for which the computations can be repeated.
Yl	Change in reactant A exit concentration from the steady state value.
YID	Difference between YI values at time t and time t plus delta t.
TIME	Total Time at a particular instance since the initial forcing of the disturbance.
TPR	Time at which the results are printed.
YD	Value of the concentration change at the point i-3.

۲۰۰۰ - ۲۰۰۰ ۲۰۰۰ - ۲۰۰۰ ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰

SYMBOL	DEFINITION
үа	Summation of YI values calculated by the Runge-Kutta method.
DY ()	L values in the Runge-Kutta equation Concentration change of A as represented by YI plus some value of L in the Runge-Kutta equation.
ARG	Step function of concentration disturbance.
YR ()	First three final YI values as calculated by the Runge-Kutta method.
DYF ()	First three final values of the differential equation (Equation 30) as calculated by Runge-Kutta method.
YDD1,YDD2, YDD3	Final value of the differential equation (Equation 30) at the points i-2, i-1 and i respectively as calculated by the Milne- Hamming method.
YD1, YD2, YD3	Final values of YI at the points i-2, i-1 and i respectively as calculated by Milne- Hamming method.
YD3P, YD3C	Predicted and corrected values respectively of YI at the point i.
KS, SK	Number of steps representing negative values of YI in a cycle.
KP,PK	Number of steps representing positive values of YI in a cycle.
YAl	Summation of the positive values of YI in a cycle.
YA2	Summation of the negative values of YI in a cycle.
YD4P, YD4M, YD4C	Predicted modified and corrected values respectively of YI at the point i + 1.
Tl	Time for completion of one cycle of the disturbance.
SN1	Time for completion of integral number of cycles.

•

.

- U

SYMBOL	DEFINITION
YDD4	Value of the differential equation (Equation 30) based on the modified and the final values of YI at the point i + 1.
YD4F	Final value of YI at the point $i + 1$.
V7 170	Average walks of evit concentration change of

YAVG Average value of exit concentration change of reactant A per cycle.

.

THPTON' TVO17 SHURCE PRESERVE

```
PRUGPAT PALHAM
 1
 2
          INFLICIT REALMONDA-HOD-ZC
 n
          DINERCIPHDYSEC, YESSC, DYESSC -
                                           JAMP%104 JEREU%124
 A C SECUTE OFDER INREVERSIPLE STEP FUCT ON FEED CONC
 e C
      REFER JAMES , SHITH , MULEORD , PD 380
 4 C
     DATA PRINTED IN PEAD URDER
      CONC REPRESENTS VARIATION FROM STEADY STATE VALUE
 7 (
 \mathbf{a}
           READ 201W0 L
 \circ
                            DELTT1 ...DFLTPR
          READ 3, TIMEL,
10
         PEAU 4, Or Vy AS, RK
11
           READ 41, % FRED&NW<, NW # 1, LW
                                                <
          READ 41, % AMP%N< , N # 1, L <
12
11
          F0:MAT %7F10.4 <
      41
                  %212 <
14
       2
          FORMAT
15
          FUPMAT % 3F10.4 <
       7
16
       4 FURBAT %4F10-4<
17
          bolle1.
                  203
     2030 FURMAT % 010, /// 20X, OCALCULATIONS FOR STEPD,
·10
19
        1 1X, aconcentration disturbancea <
20
          PRINT 204
     204
          FURMAT % /// 12X) @SECOND UPDER IRREVERSIBLE REACTION@
21
27
          PRINT
                  78
                      ///// 12X, ADATA USED IS AS FOLLOWSA <
23
      78
          FORMAT %
24
          PPINT 79, LV
25
      7909 FORMAT %
                           // 12XJOCALC. FOR NO. UF FREQ #00 I24
        ST PRINT 80 . L
24
27
     80
          FORMAT "
                            / 12X, PCALC. FOR NO. OF AMPL #D, 124
Su
          PRINT
                  B1, TIME1
20
          FORMAT M/12X, DINITIAL TIME #0, F5.2 <
      81
    30
          PRINT 82, DELTTU
31
    . 82
          FORMAT M/12X, OSTEP SIZE #0, F5.2 <
32
          PRINT P7, DELTPR
      87
          FORMAT 2 / 12X, OPRINT STEP SIZE #R, F5.2 <
32
          PRINT 83, U
34
35
          FORMAT %/12X, @INLET FLOW RATE #@, F5.1 <
      83
36
          PRIMT 84, V
37
      84
          FORMAT %/12X, OREACTOR VOLUME #0, F6.1 <
30
          PRINT 85 . AS
30
          FORMAT %/12X, OSTEADY STATE REACTOR/CONC. ##, F5.2<
      85
40
          PRINT 86. PK
          FORMAT %/12X, WRATE CONSTANT #0, F5.2 <
41
      86
42
          00 33
                  1W #
       ÷
                         1, LW
47
             # FPE0%JW<
          W
          00 32
44
                    J # 1,
45
                  AMP%J<
              Ħ
          AM.
                               JEREO%JWC
41.
          PRINT
                       AMP%JC
                  42,
47
      420 FORMAT%@1@,/// 12X,
                               DAMPLITUDE #0, F6.2,
                                                       7X,
48
        1@FREQUENCY #@, F6.2 //// <
                QIV
49
         01 #
50
          Q1A
                # 01*AM
```

TUPTIAL TVO17 SUPRCE PROFINAN PALHAM PPUGRAM 02 4 Q1 8 7 2.*KK*AS< 51 DELTT # DELTTI 52 53 1 YI # 0.0 NED # 0.0 54 TINE # TIME1 55 54 TPR # DELTPR 57 PRINT 6 60 FURMAT M /// 16X, OTIMED, LOX, DEXIT CONC CHANGED 52 50 1 → 9X→ @STEP DISTURB.@ < PRINT 201 60 201 FORMAT " 56X; RAMPLITURER < PRIMT 7; TIME;YI 61 62 7 FURMAT % / 12X, F9.3, 8X, F15.5 / < 67 YD # YI 64 65 YA # YD 66 DY%1< " 0.0 DO 18 K # 1> 3 67 61 DU 19 11 # 2,5 GO TO %11, 12, 13, 12, 13 < , N 61 70 13 TIME # TIME A% DELTT/2.0 < Y # YI & %DY%N-1< /2.0 < 71 12 72 IF %N.LE. 4< GU T0119 Y # Y & % DY %N-1 < / 2.0 < 77 CONTINUE 74 119 75 ARG # 1.0 ARG1 # AM*ARG DY%N< #% %01A* ARG < -' %RK*Y*Y< -Q2*Y<*DELTT 76 77 19 79 YID # %1./6.0<*%DY%2<6% 2.*%DY%3< & DY%4<<< & DY%5<< YI # YI & YID 70 90 YR%K< # YI YA # YA G YR%K< PRINT 9, TIME, YI, ARG1 81 82 83 ARG # 1.0 ARG1 # AM*ARG 84 85 180 DYF%K< # %01A* ARG C --%RK* YR%K<*YR%K< </p> 86 1 - % Q2* YR%K< < 87 YDD1 # DYF%1< 18 YDU2 # DYF%24 YDU3 # DYF%3< 80 90 YD1 # YR%1< 91 YD2 # YR%2< 92 YD3 # YR%3< PRINT A 97 80 FORMAT %//12X) OTHE FULLOWING VALUES CALCULATEDO 94 1 🗩 ω BY HAMMING EQUATION @/< 95 96 TIME # 4.0*DELTT 97 YD3P #YD3 YD3C 91 # YD3 99 KS # 0 100 KP # 0

86.

FRETTAR IVOIT SUPRCE PROGRAM PATHAGE PROGRAM 191 YAL // 0.0 102 YAZ H 0.0 107 00 31 I # 59 20000 104 10" 1 * PELTT < YD4M # YD4P -%112./121.< **YD3P -YD3C< 104 T1 # " 2.0* 3.1415927 < / W 107 100 DP 129 NS # 1 > 10 1.02 SM # US 110 SHL # SN*T1 1F " TIME .LT. SN1 < GO TO 121 111 112 CHATINUE 129 113 121 CONTINUE 114 QN # SN - 1.0 IF 7 TIME .LE. % TI * % QM& % 1./2. <<< < 01 TO 142 115 1.16 IF % TIME .LE. 7 TI * % QN& % 4./4. <<< < Gn TO 143 117 141 ARG # 0.0 111 ARG1 # AM*ARG GO TO 151 110 120 142 ARG # 1.0 121 APG1 # AM*ARG 60 TO 151 122 123 143 ARG # -1.0 AP61 # A11*ARG 124 125 GO TU 151 126 CONTINUE 151 YDD4 #%01A* ARG < #%RK*YD4M*YD4M< #%Q2*YD4M< 127 0 Y040 # %.125< *%%9.*Y03< -Y01 & %% 3.*DELTT<*%YDD4 128 1 & %?•*YND3 < - YDD2 < < < 120 1.30 YD4F # YD4C & %9./121.< **YD4P - YD4C < 1.31 0 YDU4 # %Q1A* ARG < - %RK*%YD4F*Y04F<<.</p> 1 - % Q2*Y04F < 132 IF % TIME .LE. %8.1/W< < GO TO 23 133 IF % YD4F - 0.0 < 75, 71, 71 134 IF % KP - 2 < 23, 72, 72 135 71 75 IF % KS - 1 < 74, 74, 73 134 137 74 YA2 # YA2 & YD4F 138 KP # KP & 1 137 GN TN 23 YA1 # YA1 8 140 72 YD4F 141 КS # KS & 1 142 GU TO 23 143 73 SK # ĸs 144 **b**K # КP 1.45 YAVG # % YA1 & YA2 < / % SK & PK < 146 PRINT 14, TIME, YD4F, YAVG 147 140 FDRMAT%//12XJF9.3JBXJ E15.5J 4XJDAVERAGE CUNCENTRATIOND 148 1 / /49X/ @CHANGE#@/ E14.6 < 149 PRINT 17, SK , YA1 150 170 FORMAT% / 12X, OND. OF -VE PTS. #0, F7.1 ,

POPTAG IVOI7 SOURCE PROGRAM PALMAN – PPUGRAM 1 a AND ITS THIAL AD, E16.6 < 151 PRIMT DIE PR ECYAZ 152 910 FULMATA 12X, OND. OF EVE PTS, #0, F7.1 . 157 154 1 . AND ITS TOTAL #8, E16.6 // < 15" KP # 1 KS # 0 134 YA1 # 0.0 157 YA2 # Y04F 150 150 60 TO 23 1F % TIME - TPR < 26, 25, 25, 25, 160 23 PRINT 9,TIME, YD4E , ARG1 25 161 . 9 FURMAT % 12X, F9.3, 8X, E15.5 , 7X, E15.5 < 16? TPR # TPR & DELTPR 163 27 IF %TINE - % % 6.3/W<*6.9< < 20,21,21 164 26 ∧ # I 165 20 TINE # A*DELTT 166 YD # YD1 1.67 ADT # ADS 168 YU2 # YD3 160 170 YD3 # YD4F YD3P # YD4P 171 172 YP3C # YD4C 177 Y001 # Y002 YDU2 # 174 YDD3 175 YDD3 # YDD4 176 31 CONTINUE 177 PRINT 43 FORMAT%///W AVG. CHANGE IN CONC. ISD< 172 43 170 21 IF % DELTT .GE. 0.110 < GD TD 22 1.80 -IF % DELTT .LE. 0.110 < GD TO 11 GO TO 11 181 182 22 DELTT # DELTT/2.0 TINE # TIME1 187 PRINT 24 > DELTT 184 240 FORMAT %///@ ANOTHER CASE WITH DIFFERENT DELTT #@ 185 186 1, F5.3 < GO TO 1 187 188 CONTINUE , 11 189 32 CONTINUE DELTT # DELTT1 -190 1 1,91 TIME # TIME1 33 CONTINUE 192 193 STOP 194 END

CALCULATIONS FOR STEP CONCENTRATION DISTURBANCE

SECOND ORDER TRREVERSIBLE REACTION

DATA USED IS AS FOLLOWS CALC. FOR NO. OF FREQ = 1 CALC. FOR NO. OF AMPL = 1 INITIAL TIME = 0.00 STEP SIZE = 0.10 PPINT STEP SIZE = 2.00 INLET FLOW RATE = 10.0 REACTOR VOLUME = 100.0 STEADY STATE REACTOR CONC. = 0.25 RATE CONSTANT = 1.20 $A^{(\prime)}PU(17UDE = 0.90 \qquad F^{(\prime)}EOUFRCY = 0.10$

T THE	EXIT COMC CHANGE	SIFP DISTURB. AMPLITUDE
0.000	0.000000 00	
0.100	0.968920-02	0.000000 00
0.200	0.167740-01	0.900000 00
0.300	0.242830-01	0,200000 00

THE FOLLOWING VALUES CALCULATED BY HAMMING EQUATION.

2.100	0.920650-01	0.00000	00
4.100	0.10598D 00.	0.00000	Ű
6.100	0.108060 00	0.00000	00
0.100	0.10/370 00	0.900000	00
10.100	0.108410 00	0.000000	00
12.100	0.103420 00	0.000000	.00
14.100	0.103420 00	0.00000	ÚC.
16.100	0.103420 00	0,900000	00
18.100	0.108420 00	0.000000	00
20.100	0.100420 00	0,000000	00
22.100	· 0.109420 00	0.900000	00
24.100	0.108420 00	0000000	00
26.100	0.103420 00	0.000000	00
28.100	0.103420 00	0.00000	00
30.100	0.100420 00	0,00000	QC
32.100	0.192290-01	-0.000000	00
34.100	-0.984800-01	-0.90000D	or
36.100	-0.142590 00	-0.000000	00
38.100	-0.163770 00	-0.00000	00
40.100	-0.175150 00	-0.000000	0C
42.100	-0.181630 00	-0.000000	00
44.100	-0.185440 00	-0.0000D	00
46.100	-0.187730 00	-0.00000	00
48.100	-0.189120 00	-0.90000D	ŰÖ
50.100	-0.189960 00	-0.00000	00
52.100	-0.19048D 00	-0.0000D	00
54.100	-n.19080D 00	-0.000000	00
56.100	-0.191000 00	-0.900000	UC
58.100	-0.191120 00	-0.900u0D	00
60.100	-0.191200 00	- -0 ,90000D	00
62.100	-0.191250 00	-0.0000D	00
64.100	-0.130880-01	0,0000	00

		90.
0.87 076-01	0.00000	00
0.105330 00	0.00000	00

0.107970 00

0.109350 00

0.105410 00

0.10-420 00

0.101420 00

0.102420 00

0.108420 00

0.109420 00

n.100420 00

0.106420 00

0.108420 00

0.102420 00

65.100 70.100 72.100 74.100 76.100 70.100 80.100 P2.100 84.100 86.100 88.100 90.100 92.100 94.10 96.10 98.10 100.10 102.10 104.10 106.10 108.10 110.10 112.10 114.10

157.900

66.100

94.100	0.109420 00 0.900000 (0
96.100	-0.564840-01 -0.900000 0	0
98.100	-0.129020 00 -0.900000 0	00
100.100	-0.156910 00 -0.90000D C	0
102.100	-0.171370 00 -0.900000 0	0
104.100	-0.179450 00 -0.90000D 0	00
106.100	-0.184150 00 -0.90000D C	0
108.100	-0.18695D 00 -0.0000D C	0
110.100	-0.188640 00 -0.000000 0	0.
112.100	-0.189670 00 -0.900000 0	0
114.100	-0.190310 00 -0.90000D C)0
116.100	-0.190700 00 -0.000000 0	0
118.100	-0.190930 00 -0.900000 0	00
120.100	-0.191080 00 -0.900000 0	00
122.100	-0.191170 00 -0.900000 (20
124.100	-0.191230 00 -0.90000D (00
126.100	-0.115780 00 0.900000 0	00
128.100	0.452680-01 0.900000 ()0
130.100	0.101790 00 0.90000D 0	<u>)</u> 0.
132.100	0.10744D 00. 0. 0.30000D (00
134.100	0.109280-00 0.900000 0)0
136.100	0.10840D 00 % 0.90000D (00
136.100	0.108420 00 0.900000 0	00
140.100	0.108420 00 0.90000D (J O.
142.100	0.109420-00 0.900000 0.900000) <u>()</u>
144.100	0.108420 00 0.900000 0	00
146.100	0.10842D 00 0.90000D () 0 (
148.100	0.108420 00 0.200000 0	00
150.100	0.108420 00 0.900000 0)0
152.100	0.108420 00 0.90000D ()0.
154.100	0.10#420 00 0.000000 0)Q.
156.100	0.108420 00 0.00000 0.00000)()

	-0.]	103260	-03		AVERAGE	CONCENTR	ATION
			· . •	• •	CHANGE=	-0.3556	590-01
•		•	•				

ND.	UF	-VE	PTS.	=	308.0	AND	ITS	TUTAL	ವ	0.317235D	02
:ND+	UF	+VE	PTS.	2	320.0	AND	ITS	TUTAL	8	-0.5405880	02

00

00

00

00

0.000000 00

0.900000 00

0.000000 00

0.000000 00

0.000000 00

0.000000 00

0.00000 00

0.400000 00

0.100000

0.900000

0.000000

158.100		-0.100	670-01	-(0.000000	UN .
160.100		-0.110	441, 00	-(0.00000	00
162,100		-0-140	030 00	- i	0.000000	00
164.100		-0-166	610 00			00
166.100		-0.176	740 00	-(1.900000	0 0
169.100		-0.182	560 00	· _ (0.00000	00
170 100) 000000 -	00 00
17:100		-/··100		-(0.000000	0.0
17: 100						
174.100		-'' - 1 G''				00
		-0.190	U90 00	-		00
173.100		-0.190		-	0.00000	00
180.100		-0.190		• • •		00
182.100		-0.191	030 00	-		00
184.100		-0.191	140 00		1.900000	00
136.100		-0.191	210 00	-	00000 00000 00000	00
188.100		-0.191	250 00	-(0.90000D	00
190.100		0.200	500-01		0.0000	00
192.100		0.942	650-01		000000	00
194.100		0.104	310 00	· · (0.00000	00
196.100		0.109	110 00		0.00000	UQ
190.100		0.108	370 00	(0.00000	()0 -
200.100		0.108	410 00	(0.00000	00
202.100		0.108	420 00		0.900000	00
204.100		0.108	420 00	•	0.900000	00 J
206.100		0.108	420 00 -	(0.00000	00
208.100		0.100	42U 00		0.900000	00
210.100		0.108	420 00	(0.00000	00
212.100		0.109	420 00	• • • • •	0,00000	υn
214.100		0.103	420 00	(0.900000	00
216.100		0.108	420 00 .	· (0.900000	00
218.100		0.104	42D 00	(0.900000	00
220.100		0.817	710-01	-(0.90000D	00
	•		•			
220.800		-0.103	260-03	AVERAGE	CHNCENTR.	ATIUN
	•	• .		CHANGE	-0.3533	690-01
		300 0	AND TTC		0 2183	100 02
ND. UP -VP	· PI3. =	509.0	AND ITS	TUTAL -	0.0000	170 02
NIT UF +VE	: P∓S• ■	320.0	AND 115	IUIAL =	-0.9409	000 02
	1 ¹			•		
222.100		-0 - 800	110-01	_	0.00000	00
224.100	• • • • • • •	-0.134	590 00 -		0,000000	00
226.100		-0-159	690 00		0.00000	<u>un</u>
228-100		-0.172	890 00		0.00000	00 ·
230-100		-0-180	320 00	-	0.00000	00
232-100		-0-184	660 00	-1	0.00000	00
234.100		-0-187	260 00	-	0.900000	00
236-100		-0-188	830 00	-	0.900000	00
		= • • • • • •				• ··

236-100	-0.10	791-00	•	-0.000000 00) .
240.100	-1.19"	310 00		-0. 100000 00	•
242,100	-0.190	745 00		-0.000000 00)
244-100	-0.196	960 00		-0.300000 00)
240.100	-0.191	100 00		-0.000000000000000000000000000000000000	, · · ·
266 100	-0 191	160.00		-0.000000.00	
	-0 191	240 00	• • • •		,)
25 ± 100		270 01		-0.900000 00 0.900000 00	, \
	-1.16	270-01 280 01	. •		, .
	0.100				۶ · ·
	0.103	440 00		-0.00000000000000000000000000000000000	, `
258.100	0.107	090.00		0.900000 00	, .
250.100	0.10*	310 00			,
262.100	0.103	400 00	. <u>.</u>	0.00000 00)
264.100	0.100	420 00		0.00000 00	1
266.100	0.103	420 00		0.000000000)
268.100	0,108	420 00		0.300000 00)
270.100	0.103	420 00		0.000000 00)
272.100	0.108	420 00	•	0.000000 00) -
274.100	0.108	420 00		0.0000000000000000000000000000000000000)
276.100	0.103	420 00	• .	0.000000 00)
278.100	0.108	420 00		0.900000 00)
280.100	0.108	420 00		0.900000 00)
282.100	0.108 -0.103	420 00 260-03	AVERAG	E CONCENTRAT	1 . 1 . N
282.100 283.600 ND. UF -VF PTS. =	-0.103 -308.0	420 00 260-03 AND ITS	AVERAG Chang Total =	E CONCENTRAT E= -0.355659 0.317235	10N 90-01
282.100 283.600 ND. UF -VE PTS. = ND. UF +VE PTS. =	-0.103 -308.0 320.0	420 00 260-03 AND ITS AND ITS	AVERAG Chang Total = Total =	E C∩NCENTRAT E= -0.355659 0.317235 -0.540588	10N 10-01 10 02
282.100 283.600 NO. UF -VE PTS. = ND. UF +VE PTS. =	-0.103 -0.103 -308.0 320.0	420 00 260-03 AND ITS AND ITS	AVERAG Chang Total = Total =	0.900000 00 E CONCENTRAT E= -0.355659 0.317235 -0.540588	10N 90-01 90 02 90 02
282.100 283.600 NO. UF -VE PTS. = NO. UF +VE PTS. =	-0.103 -0.103 -308.0 320.0	420 00 260-03 AND ITS AND ITS	AVERAG Chang Total = Total =	E CONCENTRAT E= -0.355659 0.317235 -0.540588	10N 90-01 90 02 90 02
282.100 283.600 ND. UF -VE PTS. = ND. UF +VE PTS. = 284.100	-0.103 -0.103 -0.383 -0.383	420 00 260-03 AND ITS AND ITS 310-01	AVERAG Chang Total = Total =	C.900000 00 E CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.900000 00	10N 0-01 50 02 50 02
282.100 283.600 ND. UF -VE PTS. = ND. UF +VE PTS. = 284.100 280.100	-0.103 -0.103 -0.103 -0.383 -0.112	420 00 260-03 AND ITS AND ITS 310-01 140 00	AVERAG Chang Total = Total =	CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.90000D 00 -0.90000D 00	10N 90-01 90 02 90 02
282.100 283.600 ND. UF -VF PTS. = ND. UF +VE PTS. = 284.100 280.100 288.100	-0.103 -0.103 -0.103 -0.383 -0.118 -0.151	420 00 260-03 AND ITS AND ITS 310-01 140 00 640 00	AVERAG Chang Total = Total =	CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.900000 00 -0.900000 00	I I N D - 01 D 02 D 02
282.100 283.600 ND. UF -VF PTS. = ND. UF +VE PTS. = 284.100 280.100 280.100 290.100	-0.103 -0.103 -0.103 -0.383 -0.118 -0.151 -0.169	420 00 260-03 AND ITS AND ITS 310-01 140 00 640 00 530 00	AVERAG CHANG TOTAL = TUTAL =	C.90000D 00 E CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.90000D 00 -0.90000D 00 -0.90000D 00 -0.90000D 00	10N 90-01 90 02 90 02
282.100 283.600 ND. UF -VF PTS. = ND. UF +VE PTS. = 284.100 280.100 280.100 290.100 290.100	-0.103 -0.103 308.0 320.0 -0.383 -0.112 -0.151 -0.169 -0.177	420 00 260-03 AND ITS AND ITS 310-01 140 00 640 00 530 00 830 00	AVERAG CHANG TOTAL = TUTAL =	E CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.90000 00 -0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00	10N 90-01 90 02 90 02
282.100 283.600 ND. UF -VE PTS. = ND. UF +VE PTS. = 284.100 280.100 280.100 290.100 292.100 294.100	-0.103 -0.103 -0.103 -0.383 -0.112 -0.151 -0.169 -0.177 -0.183	420 00 260-03 AND ITS AND ITS 310-01 140 00 640 00 530 00 830 00 190 00	AVERAG Chang Total = Total =	E CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.90000 00 -0.90000 00 -0.90000 00 -0.90000 00 -0.90000 00 -0.90000 00	ION D-01 D 02 D 02
282.100 283.600 ND. UF -VE PTS. = ND. UF +VE PTS. = 284.100 280.100 280.100 290.100 292.100 294.100 296.100	-0.103 -0.103 -0.103 -0.383 -0.112 -0.151 -0.151 -0.169 -0.177 -0.183 -0.186	420 00 260-03 AND ITS AND ITS 310-01 140 00 640 00 530 00 830 00 190 00 380 00	AVERAG Chang Total = Total =	E CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.90000 00 -0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00	10N 90-01 90 02 90 02
282.100 283.600 ND. UF -VF PTS. = ND. UF +VE PTS. = 284.100 280.100 280.100 290.100 290.100 294.100 296.100 296.100	0.108 -0.103 308.0 320.0 -0.383 -0.118 -0.151 -0.151 -0.183 -0.186 -0.186 -0.186	420 00 260-03 AND ITS AND ITS 310-01 140 00 640 00 530 00 830 00 190 00 380 00 290 00	AVERAG Chang Total = Total =	E CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.90000D 00 -0.90000D 00 -0.90000D 00 -0.90000D 00 -0.90000D 00 -0.90000D 00 -0.90000D 00	10N 90-01 90 02 90 02
282.100 283.600 ND. UF -VE PTS. = ND. UF +VE PTS. = 284.100 280.100 280.100 290.100 290.100 294.100 296.100 295.100 300.100	-0.103 -0.103 -0.103 -0.383 -0.112 -0.151 -0.151 -0.169 -0.177 -0.183 -0.186 -0.189	420 00 260-03 AND ITS AND ITS AND ITS 310-01 140 00 640 00 530 00 530 00 190 00 380 00 290 00 460 00	AVERAG Chang Total = Total =	E CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00	ION D-01 D 02 D 02
282.100 283.600 ND. UF -VE PTS. = ND. UF +VE PTS. = 284.100 280.100 280.100 290.100 290.100 294.100 296.100 296.100 300.100 302.100	-0.103 -0.103 -0.103 -0.103 -0.383 -0.118 -0.151 -0.169 -0.177 -0.183 -0.188 -0.189 -0.189 -0.199	420 00 260-03 AND ITS AND ITS AND ITS 310-01 140 00 640 00 530 00 530 00 190 00 380 00 290 00 460 00 180 00	AVERAG CHANG TOTAL = TOTAL =	E CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.90000 00 -0.90000 00 -0.90000 00 -0.90000 00 -0.90000 00 -0.90000 00 -0.90000 00 -0.90000 00 -0.90000 00	I 0 N 0 - 0 1 0 0 2 0
282.100 283.600 ND. UF -VF PTS. = ND. UF +VE PTS. = 284.100 280.100 280.100 290.100 292.100 294.100 296.100 300.100 302.100 304.100	$\begin{array}{c} -0.103 \\ -0.103 \\ 308.0 \\ 320.0 \\ -0.383 \\ -0.118 \\ -0.151 \\ -0.169 \\ -0.177 \\ -0.183 \\ -0.186 \\ -0.189 \\ -0.189 \\ -0.199 \\ -0.199 \\ -0.199 \end{array}$	420 00 260-03 AND ITS AND ITS 310-01 140 00 640 00 530 00 830 00 190 00 380 00 290 00 460 00 180 00 640 00	AVERAG CHANG TOTAL = TUTAL =	E CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.90000 00 -0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00 -0.900000 00	I () N D - 01 D 02 D 02 N N N N N N N N N N N N N
282.100 283.600 ND. UF -VF PTS. = ND. UF +VE PTS. = 280.100 280.100 290.100 290.100 292.100 294.100 296.100 300.100 304.100 306.100	$\begin{array}{c} -0.103 \\ -0.103 \\ 308.0 \\ 320.0 \\ -0.383 \\ -0.118 \\ -0.151 \\ -0.169 \\ -0.151 \\ -0.183 \\ -0.186 \\ -0.189 \\ -0.190 \\ -0.190 \\ -0.190 \\ -0.190 \\ -0.190 \\ -0.190 \end{array}$	420 00 260-03 AND ITS AND ITS AND ITS 310-01 140 00 640 00 530 00 830 00 190 00 380 00 290 00 460 00 180 00 640 00 890 00	AVERAG CHANG TOTAL = TUTAL =	E CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.900000 00 -0.900000 00	ION D-01 D 02 D 02
282.100 283.600 ND. UF -VF PTS. = ND. UF +VE PTS. = 284.100 280.100 280.100 290.100 292.100 294.100 296.100 304.100 304.100 306.100 308.100	$\begin{array}{c} 0.108\\ -0.103\\ 308.0\\ 320.0\\ -0.383\\ -0.118\\ -0.151\\ -0.151\\ -0.169\\ -0.177\\ -0.183\\ -0.186\\ -0.186\\ -0.189\\ -0.190\\ -0.190\\ -0.190\\ -0.191\\ \end{array}$	420 00 260-03 AND ITS AND ITS AND ITS 310-01 140 00 640 00 530 00 830 00 190 00 380 00 290 00 460 00 180 00 180 00 180 00 180 00 180 00 180 00 180 00 180 00	AVERAG CHANG TOTAL = TUTAL =	E CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.900000 00 -0.900000 00	I
282.100 283.600 ND. UF -VF PTS. = ND. UF +VE PTS. = 284.100 280.100 280.100 290.100 290.100 292.100 294.100 296.100 304.100 304.100 306.100 308.100 310.100	$\begin{array}{c} 0.108\\ -0.103\\ 308.0\\ 320.0\\ -0.383\\ -0.112\\ -0.151\\ -0.151\\ -0.168\\ -0.183\\ -0.186\\ -0.186\\ -0.186\\ -0.186\\ -0.190\\ -0.190\\ -0.190\\ -0.191\\ -0.191\\ -0.191\\ -0.191\end{array}$	420 00 260-03 AND ITS AND ITS AND ITS 310-01 140 00 640 00 530 00 830 00 190 00 380 00 290 00 460 00 180 00 180 00 180 00 180 00 180 00 180 00 180 00 180 00 180 00 190 00 180 00 190 00 180 00 190 00 180 00 190 00 180 00 190 00 180 00 180 00 190 00 180 00 190 00 180 00 180 00 180 00 180 00 190 00 180 00 180 00 180 00 190 00 180 00 180 00 190 00 190 00 180 00 190 00 190 00 180 00 190 00 190 00 190 00 180 00 190	AVERAG CHANG TOTAL = TUTAL =	E CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.540588 -0.900000 00 -0.900000 00	ION PD-01 FD 02 FD
282.100 283.600 ND. UF -VF PTS. = ND. UF +VE PTS. = 284.100 280.100 280.100 290.100 290.100 292.100 294.100 296.100 304.100 304.100 304.100 308.100 310.100 312.100	$\begin{array}{c} 0.108\\ -0.103\\ 308.0\\ 320.0\\ 320.0\\ -0.383\\ -0.112\\ -0.151\\ -0.168\\ -0.151\\ -0.168\\ -0.183\\ -0.186\\ -0.186\\ -0.186\\ -0.186\\ -0.190\\ -0.190\\ -0.191\\ -0.191\\ -0.191\\ -0.191\end{array}$	420 00 26D-03 AND ITS AND ITS AND ITS 31D-01 14D 00 64D 00 53D 00 83D 00 19D 00 38D 00 29D 00 46D 00 18D 00 18D 00 18D 00 18D 00 18D 00 18D 00 15D 00 15D 00 22D 00	AVERAG CHANG TOTAL = TUTAL =	E CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.540588 -0.540588 -0.50000 00 -0.9000000 00 -0.900000 00 -0.9000000 00 -0.900000 00 -0.9000000 00 -0.9000000 00 -0.900000000000000000000000000000000000	I I N D -01 D 02 D 02
282.100 283.600 ND. UF -VF PTS. = ND. UF +VE PTS. = 280.100 280.100 280.100 290.100 290.100 294.100 296.100 300.100 300.100 304.100 310.100 310.100 312.100 314.100	$\begin{array}{c} 0.108\\ -0.103\\ 308.0\\ 320.0\\ 320.0\\ -0.383\\ -0.118\\ -0.151\\ -0.151\\ -0.151\\ -0.168\\ -0.183\\ -0.186\\ -0.188\\ -0.189\\ -0.190\\ -0.190\\ -0.191\\ -0.$	420 00 260-03 AND ITS AND ITS AND ITS 310-01 140 00 640 00 530 00 830 00 190 00 380 00 290 00 380 00 290 00 460 00 180 00 180 00 180 00 180 00 290 00 290 00 290 00 290 00 200	AVERAG CHANG TOTAL = TUTAL =	E CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.540588 -0.540588 -0.50000 00 -0.900000 00 -0.900000 00 -0.90000	I 0 N D 02 D 02
282.100 283.600 $ND = UF = VF PTS = =$ $ND = UF = VE PTS = =$ 284.100 280.100 280.100 290.100 290.100 290.100 294.100 294.100 296.100 300.100 300.100 300.100 304.100 306.100 310.100 310.100 312.100 314.100 316.100	$\begin{array}{c} -0.103 \\ -0.103 \\ 308.0 \\ 320.0 \\ -0.383 \\ -0.118 \\ -0.151 \\ -0.151 \\ -0.151 \\ -0.169 \\ -0.177 \\ -0.183 \\ -0.186 \\ -0.186 \\ -0.188 \\ -0.189 \\ -0.190 \\ -0.191 $	420 00 260-03 AND ITS AND ITS AND ITS 310-01 140 00 640 00 530 00 830 00 190 00 380 00 290 00 460 00 190 00 180 00 180 00 180 00 180 00 180 00 180 00 180 00 180 00 190	AVERAG CHANG TOTAL = TOTAL =	E CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.540588 -0.540588 -0.50000 00 -0.90000 00 -0.90000 00 -0.90000 00 -0.90000 00 -0.90000000 00 -0.9000000 00 -0.9000000 00 -0.9000000000000000000000000	I 0 N D -01 D 02 D 02 N D 02 D 02 N D 02 D 02 N D 0 D 02 N D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0 D 0
282.100 283.600 $ND = UF = VE PTS = =$ $ND = UF = VE PTS = =$ 284.100 280.100 280.100 290.100 290.100 292.100 294.100 294.100 296.100 300.100 302.100 304.100 304.100 306.100 310.100 310.100 310.100 314.100 316.100 318.100	$\begin{array}{c} -0.103 \\ -0.103 \\ 308.0 \\ 320.0 \\ -0.383 \\ -0.118 \\ -0.151 \\ -0.151 \\ -0.151 \\ -0.183 \\ -0.186 \\ -0.186 \\ -0.188 \\ -0.189 \\ -0.190 \\ -0.191 \\ -0.191 \\ -0.191 \\ -0.191 \\ -0.191 \\ -0.191 \\ -0.191 \\ -0.977 \end{array}$	420 00 260-03 AND ITS AND ITS AND ITS 310-01 140 00 640 00 530 00 190 00 380 00 190 00 380 00 290 00 460 00 180 00 180 00 180 00 180 00 290 00 180 00 180 00 180 00 180 00 180 00 180 00 180 00 180 00 190 00 180 00 190 00 180 00 190	AVERAG CHANG TOTAL = TUTAL =	E CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.540588 -0.540588 -0.50000 00 -0.5000000 00 -0.5000000 00 -0.500	I 0 N D -01 D 02 D 02 N N N N N N N N N N N N N
282.100 283.600 ND. UF -VE PTS. = ND. UF +VE PTS. = 280.100 280.100 280.100 290.100 290.100 292.100 294.100 296.100 300.100 300.100 302.100 304.100 306.100 310.100 310.100 312.100 314.100 316.100 320.100	$\begin{array}{c} -0.103 \\ -0.103 \\ 308.0 \\ 320.0 \\ -0.383 \\ -0.118 \\ -0.151 \\ -0.151 \\ -0.151 \\ -0.169 \\ -0.177 \\ -0.183 \\ -0.186 \\ -0.187 \\ -0.190 \\ -0.190 \\ -0.190 \\ -0.191 \\ -0.191 \\ -0.191 \\ -0.191 \\ -0.191 \\ 0.409 \\ 0.977 \\ 0.106 \end{array}$	420 00 26D-03 AND ITS AND ITS AND ITS 31D-01 14D 00 64D 00 53D 00 53D 00 53D 00 53D 00 19D 00 38D 00 29D 00 46D 00 18D 00 18D 00 18D 00 15D 00 22D 00 15D 00 22D 00 15D	AVERAG CHANG TOTAL = TUTAL =	E CONCENTRAT E= -0.355659 0.317235 -0.540588 -0.540588 -0.540588 -0.50000 00 -0.90000 00 -0.90000 00 -0.90000 00 -0.90000 00 -0.9000000 00 -0.9000000 00 -0.9000000 00 -0.900000 00 -0.900000000000	I 0 N D -01 D 02 D 02 N N N N N N N N N N N N N

372.100		n.10'	190.00		0.00000	μn	
324.100		n.10"	390 00		0.000000	un .	
320.100		0.10"	420.00		ດຸກວາບດອ	UN .	
320.100		0.100	42 0 00		0.00000	00	
330.100		0.100	420 00		0. 100000	00	
332.100		0.100	420 00		0.00000		•
334.100		0.100	420 00		0.00000	U 0	
330.100		0.108	420-00		0.00000	บท	
335.100		0.10	420 00		0.000000	00	
340.100		0.10	420 00		0.000000	<u>un</u> .	
342.100		0.100	420 00		0.00000	U ()	
344.100		0.108	420 00	,	0.00000	υO	
346.100		0.300	450-01		-0.900000	υŅ	
			•				
		_	-				
346.400		-0.103	260-03	AVERA	GE CONCENT	RATIDIA	
				CHAN	ICE = -0.355	6590-01	• ·
	n ~ C	200.0		T (1) T A A	- 0 717		
	P15. =	304.0	AND LIS	TUTAL	= 0.317	2350 02	•
NU. DE +VE	P12• ≡	350.0	AND ITS	IUTAL	= -0.540	288D 05	
			•				
346-100		-0.951	220-01	•	-0 000000	0	•
350,100		-0.141			-0.00000	00 00	
352.100		-0 163				00	
354,100		=0.174	720 00		-0.900000	00	
356,100		-0.181	380 00	•	-0.00000	50 50	
358,100		-0.185	290 00		-0.900000	00	
360.100		-0.187	640 00		-0.900000	u0	•
362,100		-0-180			-0.00000	40 40	
364.100		-0.189	930 00		-0.0000000	00	•
366.100		-0.190	460 00		-0.900000	00	•
368.100		-0.190	790 00		-0.000000	υo ·	
370.100		-0.190	990 00		-0.900000	00	
372.100		-0.191	120 00		-0.00000	00	
.374.100		-0.191	200 00	١,	-0.00000	00	•
376.100		-0.191	240 00		-0.900000	<u>un</u>	•
378.100		-0.241	720-01		0.000000	ÚN -	
380.100	,	0.857	890-01		0.00000	0n	
382.100		0.105	020 00 -		0.000000	00	•
384.100		0.107	920 00.0		0.000000	00	
396.100	•	0.101	350 00		0.200000	ųΩ į	
388.100		0.108	41D 00		. 0.900000	υO	. •
370.100		0.109	420 00	•	0.00000	00	•
392.100	(* * *	0.108	420 00		0.000000	00	• • •
394.100	•	0.10 ⁿ	420 00	•	0.900000	00	
396.100		0.108	420 00		0.000000	Ú0	· · ·
398.100 .		0.109	420'00 🗋		0.90000	00	
400.100		0.108	420 00	•	0.00000	00	
402.100		0.108	420 00	1	0.900000	00	•
404.100		0.108	420 00		0.00000	00	

1

l

400.	00.100 °			0.101420 00				0.000000000					
40ビョ	40¢ .1 00			0.10.420 00				0.101000 00					
409.300		-0.103260-03			AVERAGE CONCENTRATION CHANGE= -0.353369D-01								
에나. UF NM. UF	-VF +VF	PTS. PTS.	a 8	309.0 320.0	AND AND	ITS ITS	TUTAL TOTAL	л л	0.31 -0.54	8319D 0588D	U2 02		
. 1	100			0 561	710	、1	•	0					
412.	100			-0.124	400-0 420 0) D) T		-0	- 0000t	ייט עי מס מנ			
414.	100			-0.154	910 C	00		-0	- 20000	00 00			
410.	100			-0.170	290 ()0		-0	.10000	ມີບົດ			
416.	100	·		-0.179	830 0	0.	•	-0	.00000	00 00			
420.	100			-0.183	780 0)0		-0	.00000	in on i			
42.2 .	100 .			-0,184	730 0) ()	• . •	.=0	.00000	nu un			
424 .	100			-0.189	510 0	0		-0	••0000	00 00			
420.1	100 .			-0.183	590 ()0		-0	• 90000	00 0			
428.	100			-0.190	260 0)0		-0	• 00000	00 00			
430.1	100			-0.190	660 0)0		-0	• • • • • • • • • • • • • • • • • • • •	D UO			
432.	100			-0.190	920 0	0		-0	.90000	D 00	•		
A 7 A	1 0 0			- 101	07N 0	171				.n nn			

COMPUTER PROGRAM 2

Computer Program for Simulation of Periodic Tank Reactor under Forced Flow Rate Disturbance conditions.

SYMBOL DEF INITION Number of frequencies for which computation is LW performed. L Number of amplitudes for which computation is performed. Initial time at which the disturbance is forced. TIME 1 DELTT 1 Initial step size. Interval at which the results are printed. DELTPR Frequency of the disturbance. FREQ AMP Amplitude of the disturbance. Inlet steady state volumetric flow rate. 0 V Volume of the reactor. Steady state reactant A exit concentration. AS RK Specific rate constant. Steady state reactant A inlet concentration. AFS Dummy variables. Q1, Q1A, Q2 DELTT Additional step size for which the computation can be repeated. Change in reactant A exit concentration from the YI steady state value. Difference between YI values at time t and YID time t plus delta, t. Total time at a particular instance since the TIME initial forcing of the disturbance. Time at which the results are printed. TPR

• • • • • • • • • • •

. -.

. . . .
DEF INITION

YD Value of the concentration change at the point i - 3. YA Summation of YI values calculated by the Runge Kutta method. DY () L values in the Runge Kutta equation. Y Concentration change of A as represented by YI plus some value of L in the Runge-Kutta equation. First three final YI values as calculated YR () by the Runge-Kutta method. DYF () First three final values of the differential equation (Equation 37) as calculated by the Runge-Kutta method. ARG Step function of flow rate disturbance. Final value of the differential equation. YDD1, YDD2 YDD3. (Equation 37) at the points i-2, i-1, and i respectively as calculated by the Milne-Hamming method. YD1, YD2, Final values of YI at the points i-2, i-1, YD3. and i respectively as calculated by Milne-Hammingmethod. YD3P, YD3C Predicted and corrected values respectively of YI at the point. Number of steps representing positive values KS, SK of YI in a cycle. Number of steps representing negative values KP, PK of YI in a cycle. Summation of all QUSI values corresponding to QA1, QA2positive and negative YI values respectively. Dummy variables. YA1, YA2 PAl ٩ Summation of all the positive values of YI. PA2 Summation of all the negative values of YI.

SYMBOL

DEFINITION

0

- YD4P, YD4M, Predicted, modified and corrected values YD4C respectively of YI at the point i + 1 as calculated by Milne-Hamming equation.
- TI Time for completion of one cycle of the disturbance.
- SN1 Time for completion of integral number of cycles.
- YDD4 Value of the differential equation (Equation 37) based on the modified and the final values of YI at the point i + 1.

YD4F Final value of YI at the point i + 1.

- AM4 Magnitude of the disturbance at any given time t.
- QUS Volumetric flow rate at any given time t.
- YD4FA Product of QUS and YI.

QUS1 Exit molar flow rate of reactant A.

- PAVG Average value of exit concentration change of reactant A per cycle.
- QAVG Average value of QUS 1 per cycle.

THPTMAN TVOLT SUPRCE PROCRAM

1 PROGRAM PALIAL. 2 ILPEICTT REAL*OPA-H+D-ZC DIMENSIONDY 454, YR&54, DYF&F4 JAMP8104 JFREQ&124 7 SECUPE UPDER IPREVERSIBLE STEP FUCT ON FEED FLOW 4 r 5 C REFER JAMES , SHITH , WULFORD , && 380 DATA PRINTED IN READ DROFR 5 C CONC REPRESENTS VARIATION FROM STEADY STATE VALUE 7 C n READ 201W0 L \mathbf{c} READ 3, TIMEL, DELTTI DELTPR 10 PEAD 4, ng Vy AS, RK READ 41, % FRE0%NW<, NW # 1, LW < 11 READ 41, % AMPSNE , N # 1, L < 12 FURMAT %7F10.4 < 13 41. FORMAT %212 < 14 2 15 FORMAT % 3F10.4 < 3 14 4 FORMAT %4F10.4< 17 PRINT 2, LW, L PRINT 3, TIMEL> DELTEL 14 10 PRINT Ω, ν, Λς, RK 4, P # 0.0 20 DN 33 JW # 1. LW 21 22 W # FREQ%JW< DO 32 J # 1, 23 - L AM # AMP%J< 24 PRINT 42, AMP%JC , FREQ%JNC 25 420 FORMAT %Ə1ƏJ7XJ — 11HAMPLITUDE #J F6.2J 11HFREQUENCY # 26 27 1 , F6.2 < AFS # 1.0 28 20 **ω1** # Q1A # Q1* % AFS - AS < 30 Q? # % %Q/V< & %2.0*RK*AS < < 31 37 PRINT 44 37 Q2 26 44 FORMAT%/@ 01 Q1A 34 DELTT # DELTT1 35 YI # 0.0 1 YID # 0.0 36 TIME # TIME1 37 3 R TPR # DELTPR PRINT 6 39 FORMAT #///lox,9HTIME#HRS<, 10X, 15HCONC#MOLES/CUFT< 40 6 PRINT 5, Q1, Q1A, Q2 41 3612.4///< 42 5 FORMAT% PRINT 7. TIME, YI 43 FORMAT% //7X, F9.3, 10X, 44 7 E15.5 //< 45· YD # YT YA # YD 46 DY%1< # 0.0 47 DD 18 K # 1, 3 48 DU 19 N # 2,5 49 GD TO %11, 12, 13, 12, 13 < , N 50

FURTRAM IVO17 SHURCE PRUGRAM RAUHAM PROGRAM 51 13 TIME # TIME 8% DELTT/2.0 < Y # YT & PDYMH-1< /2.0 < 52 12 52 JF %N.1E. 4< GD 10119 Y # Y & " NY %N-1 < / 2.0 < 54 A?G # 1.0 55 119 190 DY 4"< #% %01A* ARG 56 < - %</pre>KK 57 1 - % Q1*ARG*Y < < * DELTT58 YTU # %1./6.0<*%DY%2<%% 2.*%DY%3< & DY%4<<< & DY%5<< 59 YI JE YIE YID 60 YR%KS # YT YA # YA & YP%K< 61 PRINT 9, TIME, YI 62 ARG # 1.0 180 DYF%K< # %Q1A* ARG 63 64 < -%RK* YR%K<*YR%K< <</p> 65 1 - % Q2*YR%K< < $2 - \% Q1 * \Lambda KG * YR\%K< <$ 66 67 YDD1 # DYF%1< # 68 Y002 DYF%2< 69 YDD3 # DYF%3< 71 YD1 # YR%1< YD2 # 71 YR%2< YD3 # YR%3< 72 73 PRINT R 74 BO FORMAT %//W THE FOLLOWING VALUES CALCULATED 75 1 HANMING EQUATION & < . 76 TINE # 4.0*DELTT 77 YN3P #YD3 79 YD3C # YD3 K5.# 0 79 80 KP # 0 81 UA1 # 0.0 82 QA2 - # 0.0 83 YAL 11 0.0 Ų 84 YA2 0.0 85 PA1 # 0.0 86 PA2 # 0.0 00 31 87 I # 5, 20000 ١. 88 100 YD4P# YD &%%4./3.<**%2.*YDD1<- YDD2 & %2.*YDD3<< 80 $1 \times 0ELTT <$ 90 YD4M # YD4P -%112./121.< *%YD3P -YD3C< 91 T1 # ~ 2.0* 3.1415927 < / W DO 129 NS # 1 , 30 92 93 SN # NS 94 SN1 // SN*T1 IF % TIME .LT. SN1 < GO TO 121 95 96 129 CONTINUE 97 CONTINUE 121 98 NO. # SN - 1.0 99 IF % TIME •LE. % T1*% ON &% 1./ 2. <<< < GT TU 142 .LE. % T1*% QN &% 4./ 4. <<< < GO TO 143 100 IF % TIME

THET AT TVOLT SHURCE PPUGRAM RALHAM PPUGRAM ARG # 0.0 GD TU 151 APG # 1.0 GN TH 151

101

102 1.17 141

142

104 105 143 AR6 # -1.0 GC TO 151 1.15 107 151 COLTINUE 100 0Y004 #%01A* ARG C =%RK*YD4H*YD4MC =%Q2*YD4MC 102 - % Q1*ARG*YD4H< 1 0 YD40 # %.125< **** 9.** YD3< -YD1 & %% 3.* DELTT<*** YD04 110 1 & 22. *YUN3 < - YUN2 < < < 111 YD4F # YD4C & %9./121.< **YD4P - YD4C < , 112 0 YD04 # %QLA* ARG < - %RK*%YD4F*YD4F<< 113 1 - % Q2*YD4F < - % Q1* ARG * YD4F < 114 115 AM4 # AM * ARGQUS # Q & AMA 115 YD4FA * QUS * YD4F 117 # QUS * % AS & YD4F < 119 9US1 IF % TIME .LE. %8.1/W< < GO TO 23 117 IF " YD4F - 0.0 < 75, 71, 71 127 IF % KP - 2 < 23, 72, 72 IF % KS - 1 < 74, 74, 73 121 71 75 122 74 PA2 # PA2 & YD4F 123 QA2 # QA2 6 0051 124 125 KP # KP & 1 GO TO 124 23 127 72 PAL 11 2 1 A 9 YD4F QA1 & 123 QA1 # QUS1 KS & 1 127 KS # GD 130 το 23 # 131 73 SK KS 132 PK # ΚP PAVG # % & PA2 < / % SK & PK 133 PA1 134 QAVG # % QA1 8 QA2 < / % SK & PK < TIME , YD4F , OUS1 PRINT 14, 135 FORMAT%//10X,F9.3,10X,E15.5, 7X, E15.5 136 14 < 137 PRINT 95, PAVG 138 95 FORMAT 7/35X, D AVG. COMC, ALONE #0, E15.7 //< PRINT 79, QAVG 139 FORMAT %/35X, @ AVERAGE % CONC*QS< #a, E15.7 /4 140 79 PRINT 93, QAL, QA2 141 FORMAT %/ E15.5, 7X, E15.5/< 14? 93 143 PRINT 17, SK, PK FORMAT % 2X, OND. OF PTS. #0 , F10.4, 10X, F10.4/< 144 17 145 κ^ρ # 1 KS # 0 146 QA1 147 - **#** 0.0 QA2 # QUS1 148 149 PA1 .# 0.0 150 PA2 # YD4F

TORTPAN IVOLT SOURCE PROGRAM RALHAM PPUGRAM YA1 151 11 0.0 4 SAY YD4FA 152 157 60 TO Ž3 YD4F REPRESENTS AVEPAGE CHANGE IN CONCENTRATION 154 0 FRUM THE STEADY STATE WITH NO FEED CUNCENTRATION 155 0 156 C DISTURBANCE 157 23 IF % TIME - TPR < 26, 25, 25 PRINT91, TIME, YD4E , OUS , 150 25 QUS1 YD4FA 910 FURMAT " 10X, F9.3, 10X, F15.5 , 10X, E15.5 152 1 10X = E15.5 = 10X = E15.5 < FORMAT 4 = 10X = F9.3 = 10X = 160 161 9 E15.5 < TPR # TPR & DELTPR 162 27 163 IF %TIME - % % 6.3/W<*31.< < 20,21,21 26 A # I 164 20 ТІМЕ # A*DELTT 165 # YD1 166 YD. 167 YDI # YD2 168 YD2 # YD3 # YD4F 169 YD3 170 YD3P # YD4P YDJC # YD4C 171 172 YDU1 # YDD2 YDD2 YDD3 173 # 174 YDU3 # Y004 175 CONTINUE 31 176 PRINT 43 FORMAT%///@ AVG. CHANGE IN CONC. IS@< -177 43 IF % DELTT .GF. 0.110 < GO TO 22 179 21 .LF. 0.110 < GO TO 11 179 IF % DELTT 180 GO TO 11 DELTT # DELTT/2.0 181 22 TIME # TIME1 182 PRINT 24 , DELTT 183 240 FORMAT %///@ ANOTHER CASE WITH DIFFERENT 4EETT 184 #a, 185 1 F5.3 < GO TO 1 186 CONTINUE 187 11 188 32 CONTINUE 189 DELTT # DELTT1 190 TIME # TIME1 CONTINUE 191 33 192 STOP 193 END

COMPUTER PROGRAM 3

Computer Program for Simulation of Periodic Tank Reactor under simultaneous forced concentration and Flow Rate Disturbances.

SYMBOL	DEFINITION
LW	Number of frequencies for which computation is performed.
L	Number of amplitudes for which computation is performed.
LP	Number of phase lag for which computation is performed.
TIME 1	Initial time at which the disturbance is forced.
DELTT 1	Initial step size.
DELTPR	Interval at which the results are printed.
Q	Inlet steady state volumetric flow rate.
v	Volume of the reactor.
AS	Steady state reactant A exit concentration.
RK	Specific rate constant.
FREQ	Frequency of the concentration.disturbance.
AMP, AM	Amplitude of the concentration disturbance.
PHP	Phase lag between two disturbances in degrees.
AM2	Amplitude of the flow rate disturbance.
AF S	Steady state reactant A inlet concentration.
Q1, Q1A, Q2	Dummy variables.
Q6	Rate of unconverted reactant A in the exit stream at steady state.
P	Phase lag between two disturbances in radians.
P1	Dummy variable.

0 Q

0

s

0

0

SYMBOL

DEFINITION

- DELTT Additional step size for which the computation can be repeated.
- YI Change in reactant A exit concentration from the steady state value.
- YID Difference between YI values at time t and time t plus delta t.
- TIME Total time at a particular instance since the initial forcing of the disturbance.
- TPR Time at which the results are printed.
- YD Value of the concentration change at the point i-3.
- YA Summation of YI values calculated by the Runge Kutta method.
- DY () L values in the Runge Kutta equation.
- Y Concentration change of A as represented by YI plus some value of L in the Runge-Kutta equation.
- YR () First three final YI values as calculated by the Runge-Kutta method.
- DYF () First three final values of the differential equation (Equation 40) as calculated by the Runge-Kutta method.
- YDD1, YDD2, Final value of the differential equation YDD3 (Equation 40) at the points i-2, i-1 and i respectively as calculated by the Milne-Hamming method.
- YD1, YD2, Final values of YI at the points i-2, i-1 YD3 and i respectively as calculated by the Milne-Hamming method.
- YD3P,YD3C Predicted and corrected values respectively of YI at the point.
- KS, SK Number of steps representing positive values of YI in a cycle.

Q

0

Q

O

0

Q

. . .

0

 α

DEFINITION

KP, PK Number of steps representing negative values of YI in a cycle. Summation of all QUSL values corresponding to QA1, QA2 positive and negative YI values respectively. YA1, YA2 Dummy variables. PAL Summation of all the positive values of YI. PA2 Summation of all the negative values of YI. Predicted, modified and corrected values YD4P, YD4M, YD4C respectively of YI at the point i + 1 as calculated by Milne-Hamming equation. Tl. Time for completion of one cycle of the disturbance. Time for completion of integral number of SN1 cycles. YDD4 Value of the differential equation (Equation 37) based on the modified and the final values of YI at the point i + 1. YD4F Final value of YI at the point i + 1. AM4 Magnitude of the disturbance at any given time t. Volumetric flow rate at any given time t. OUS Product of QUS and YI YD4FA Exit molar flow rate of reactant A. QUSL Average value of exit concentration change of PAVG reactant A per cycle. Average value of QUS1 per cycle. OAVG

 $\phi^{-\phi}$

THETTAN IVOIT SLURCE PERGRAM

```
PRINCPAT PALHAM
 1
 2
           ITATE ICUT REAL*89A-H-D-Z<
           DIMENSIONDYSSC, YP35C, DYF25C.
                                             JAMP%104 JFREQ%124
 ٦
                                    > Ангвизок
           UTAENSIAN PRE%124
 4
 5 0
           SPURND PROER IRPEVERSIBLE SINGLE C.S.T.R.
           COURTNE STEP DISTURBANCES DM FEED FLOW AND FEED CONC.
   C
 7
   r.
           FOR A GIVEN CASE PUTH HAVE SAME FREQUENCY BUT THE
 n
           AMPLITUDES VARY BY A FACTOR OF TEN
   C
 \hat{\phantom{a}}
   C
           FLUE DISTURBANCE LAGS BEHIND CUNC. DISTURBANCE BY
           PHASE LAG IN DEGREES
10 0
   С
      REFER JAMES , SHITH , WULFORD , 46 380
11
12 C
     PATA PRINTED IN PEAD URDER
13 C
      CONC REPRESENTS VARIATION FROM STEADY STATE VALUE
14
          READ 20 LWD LD LP
15
          READ
                3, TIME1, DELTTI ,DELTPR
14
         PEAU 4, 0, V, AS, RK
17
          READ
                 41, % FRE0% NW / 1, LW
19
          READ
                 41, % AMPSINC .
                                  N # 1, L <
10
          READ 41, PHP%MP<
                                  NP # 1, LP <
20
      41
          FORMAT %7F10.4 <
          FORMAT $312
21
       2
                       <
          FORMAT % 3F10.4 <
22
       3
23
       4 FURNAT %4F10.4<
24
          PRINT 2, LW, L, LP
25
          PRINT
                  3,
                     TIMEL DELTTI
                  4) NS+RK و ( ) و ( )
26
          PRINT
27
          00 33
                  JW # 1, LŴ
23
             # FREQ%JW<
          W
29
          DП
              32
                    J # 1,
30
              # AMP%J<
          AM
31
          AM2
               14
                   AM* 10.0
          DD.
              34
                       # 1,
32
                   NP
                             LP
33
          P2
                  PHP%MP<
              14
34
          PRINT
                  42,
                       AMP%JC JFRFQ%JHC
                                            > PHP%NPC
      420 FORMAT %010,7X,
35
                           11HAMPLITUDE #, F6.2, 11HEREQUENCY #
36
        1 .F0.2,5X,19H PHASE LAG DEGREE #, F8.2 <
37
          PRINT
                  46 , AM2
3 1
      460 FORMAT %/@
                              FLOW DISTURBANCE AMPLITUDE #.a,
39
        1 F6.2 <
40
          AF5
                #
                   1.0
41
          Q1
               #
                  V / 2WV
4?
          Q1A
               # Q1* % AFS - AS <
          42
43
              # Q/V
44
               #
                  0 \times \Lambda S
          Q6
45
          P #
                 % 2.0* 3.1415927* P2 < / % 360.0 <
                 9 P2 / 360.0 <
46
          P1
             #
47
          PRINT
                  44
4 R
          FORMAT%/a
                                                         ۶۵
      44
                        Q1 .
                                    QLA
                                                  Q2
49
          DELTT
                     DELTTI
                  #
50
          ΥI
             -.#
                  0.0
       l
```

105.

o

о

106 FUPTOAN IVOLT SUBRCE PRUSEAM RATHAD PPOGRAM 51 9. YID # 0.0 57 TIPE # TIMET 52 TPR # DELTER 54 CRILT 6 6 FURTAT M///JOX, SHTIMESHPS() 10() 55 15HCDNC%MOLES/CUFTC PRINT 57 Q12 Q1A2 Q2 56 57 5 FDEMATA 3512.4///< 50 PRIAT 7, TIMEJYI FORMAT% //7X, FO.3, 10X, E15.5 //< 50 7 60 YD # YT 61 YA # YD 62 DY.1< " 0.0 DT 18 K # 1, 3 67 64 D(1 19 H # 2, 5 65 GO TO 11, 12, 13, 12, 13 < , N TIME # TIME 6% OFLTT/2.0 < 66 13 Y # YT & %DY%N-1< /2.0 67 12 < 1F %N.LE. 4< GU TP119 6 n 60 Y # Y & % DY %N-1 < / 2.0 < 70 119 AP6 # 1.0 IF % P1 .LE. 0.0 < GD TO 115 71 72 1F 7 P1 .LE.4./8.< GU TO 116 77 IF %.P1 .LE.8./8.< GD TO 115 74 ARG1# 1.0 115 75 GT TU 117 .74 116 ARG1 # -1.0 77 GN TU 117 7 ° CONTINUE 117 70 190 UY%N< # % % Q1A * APG1 < & % % Q2 & % O1* ARG1 < <* 80 1 %% AM*ARG< -- Y<< -- %% RK* Y< * %% 2.0*AS< & 61 2 Y<< < * DELTT YIU # %1./6.0<*%UY%2</% 2.**DY%3< & UY%4<<< & DY%5< < 82 83 YI # YI & YID 84 AB%K< 1 AI 85 YA # YA & YP%K< 86 PRINT 9, TIME, YI 87 180 UYF%K< # % Q1A * APG1 < & % % Q2 & % Q1* ARG1 < <* 89 _%% AM*^RG<`- YR%K<<< - %% RK*YR%K<< * %% 2.0*^S< & 1 89 2 YR 4K < << 91 YD01 # DYF%1< 91 YPU2 # DYF%25 92 YDD3 Ħ DYF%3< 93 # YR%1< YDL # 94 YD2 YR%2< 95 # YR%3C . YD3 94 PRINT R 97 FORMAT %//@ THE FOLLOWING VALUES CALCULATED BY 08 1 HAMMING EQUATION @ < 9 A 99 . TIME # 4.0*DELTT YD3P #YD3 100

· 0

G

•

102		(5) 4 0
102		, P # 0
1.04		U # 0
105		(X) # 0
1.96		1A1 # 0.0
107		2A2 H 0.0
1.0.9		(1) # 0.0
ter		(A2 4 0.0
110		AL # 0.0
111		2Λ2 9 O.O
112		JA 31 I # 5, 20000
113	100	(D4P# YP &%%4./3.<***********************************
114	1)ELTT <
115		(D4M # YD4P -%112./121.< **YD3P -YD3C<
114		[1 # " 2.0* 3.1415927 < / W
117		129 NS # 1 , 10
113		SH # MS
ינו		itl # SN#T1
120		IF % TIME .LT. SN1 < GD TO 121
121	129	CHTINUF
122	121	INTINUE
123		N # SN - 1.0
124		F % P1 .LE.%0.0 < < GD TD 130
125		F " Pl .LE.%1.0/8.0< < GU TO 131
126		F % P1 .LE.%2.0/8.0< < GU TO 132
127		F % P1 .LE.%3.0/8.0< < GD TO 133
129		F % P1 .LE.%4.0/8.0< < GU TD 134
120		F % P1 .LE.%5.0/8.0< < GU TO 135
130		F % P1 .LE.%6.0/8.0< < GU TO 136
131		F % P1 . LE. %7.0/8.0 < GU TO 137
132		F % P1 .LE.%8.0/8.0< < GU TU 138
133	130	ONTIMUE
134		F % TIME .LF. % T1*3 ON 6% 4./ 8. <<< < 60 TU 142
135		F % TIME .LE. % T1*% ON &% B./ B. <<< < GO TO 144
136	131	DNTINUE
137		IF % TIME .LE. % TI*% ON 6% 1./ 8. <<< < 60 TU 141
130		F % TIME .LE. % T1*% ON &% 4./ 8. <<< < GN TU 142
130		IF % TIME .LE. % TI*% ON 6% 5./ 8. <<< < 60 TU 143
140		IF % TIME .LE. % T1*% ON 6% 8./ 8. <<< < 60 TU 144
141	132	CONTINUE
147		(F % TIME .LE. % (1*% ON 6% 2./ 8. <<< < 64 TU 141
143		IF % TIME .LE. % TI%% ON 6% 4./ 8. <<< < 60 10 142
144		IF % TIME • LE• % TI*% ON &% 6•/ 8• <<< < 60 TU 143
145		LE 74 FIME - LE 74 FL776 DN 68 8.7 8. SSS 5 60 10 194 -
145	133	
147		LE % (1ME - 4LE+2 % (1平※ UN 4% ク+7 巻+ KKK K 40)U 141 - LE % TTUE - 4 E - ※「TTAN AN 60 4 4 2 0 イイイ 4 00 TH 14 0
143		LE 76 11012 • LE• 76 11776 500 4% 4•7 8• 555 5 60 10 144200 LE 76 TTUE - 15 76 7140 66 69 77 4 80 744 4 66 70 540
149		
121		IF 76 FINE • LE• 76 FIM6 ANN 476 0•7 0• KKK K ON 14 144

л,

THRTPAN IVOLT SHURCE PROCEASE PATHAN POOGRAM

151	134	CD (T1-10)F
152		IF " TIME . LF. % TI** ON &" 4./ 8. <<< < 60 TU 141
153		IF " TI"E .LF. % 11*" ON 6" 8./ 8. <<< < 00 TH 143
154	135	CONTINUE
155		TE "TIME LE & TIAN ON EN 1.7 B. KKY K OD TO 142
154		$IE \ \ \ TIME \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
157		
150		$15 \circ 11 \circ 11 \circ 11 \circ 10 10 10 10 10 10 10 10 10 10 10 10 10 $
1.0	176	TE A LE E ELES A LIMA HN GA ASZ A GU LU 143 - Continue
107	100	
160		
101		IF 3 TIME • LE• % TI** "N & 4•7 8• <<< < 60 TU 141
162		IF 7 TIME .LF. 7 TI*7 ON 84 6.7 8. <<< < Gri TU 144
163		IF % TIME .LE. % T1*% ON &% 8./ 8. <<< < 60 TO 143
164	137	CONTINUE
165		IF % TIME .LF. % T1*% ON 6% 3.7 8. <<< < 60 TU 142
166		IF % TIME .LE. % T1*% ON 6% 4.7 8. <<< < GD TU 141
167		IF % TIME .LF. % T1*% ON &% 7.7 8. <<< < GD TU 144
16 ⁿ		IF % TIME .LF. % T1*% ON 6% 8./ 8. <<< < 60 TU 143
169	138	CONTINUE
170	•	1F % T1ME .LE. % T1*% ON &% 4./ 8. <<< < GD TU 142
171		IF " TIME .IE. % T1*% ON 6% 8./ 8. <<< < GD TH 144
172	141	ΔR/, # 1_0
173	/ · -	$\Delta RG1 = \# - 1$
174		
175	142	
176	1 4 1-	
177		
170	143	
170	145	
117		
180		
TRI	144	
182		$ARGI = H = 1 \cdot 0$
183		GU 1U 151
184	151	CINTINUF
185	· 0	YUD4 7 % Q1A * APG1 < & % % Q2 & % O1* ARG1 < <*
186	1	%% AM*ARG< - YD4M<< - %% RK* YD4M< * %% 2.0*AS< 8
187	2	YD4M <<
188	0	YD4C # %.125< *%%9.*YD3< -YD1 & %% 3.*DELTT<*%YDD4 &
189	1	%2.*YDD3 < - YDD2 < < <
190		YD4F # YD4C & %9./121.< *%YD4P - YD4C <
191	0	YUD4 # % Q1A * ARG1 < & % % Q2 8 % Q1* ARG1 < <*-
192	1	%% AM*ARG< - YD4F<< - %% RK* YD4F< * %% 2.0*AS< 6
193	2	YD4F < <
194		AN4 # AM2 * APG1
195		QUS # Q & AM4
196		YD4FA # QUS * YD4F
197		QUS1 # QUS * % AS & YD4F <
198		IF % TIME .LE. % 5.1/4 < < 60 TO 23
199		IF % QUS1 - 06 < 64, 65, 65
200	64	KU # 5
-	- ·	

			109.	
	2083.57.1	1401.	7 SUURCE PRIORAD RALHAD PROGRAM	
	201		$15 \% KX = 5 \times 23 + 72 + 23$	
·	201	65	$\frac{11}{11} + \frac{1}{11} = \frac{1}{11} + \frac{1}{11} = \frac{1}{11} + \frac{1}{11} = \frac{1}{11}$	
	203	71	$\frac{1}{11} + \frac{1}{10} $	•
	204	75	1F % KP = 0 < 11 + 76 + 74	
	205	76	PPINT 14, TIME, YD4F, OUS1	
	205	74	PA2 # PA2 & YD4F	
	297	-	QAZ # QAZ & WISI	
	208		KP # KP 6 1	
	200		KX # 5	
	210		GO TO 23	
	211	72	ΡΛΙ # ΡΛΙ & ΥΠ4Ε	
	212		QA1 # QA1 & QUS1 / /	
	217		KS # KS & 1	
	214		GO TO 23 (
	215	73	SK # KS	
	214		рк и кр	
	217		PAVG # % PA1 & PA2 % SK & PK <</td <td></td>	
	218		QAVG # % QAL & QAZ < / % SK & PK <	
	210	• •	PRINT 14, TIME, YD4F, OUS1	
•	220	14	FORMAT%//10X, F9.3, 10X, E15.5, 7X, E15.7 /. <	
	221		$\frac{PRIM}{PS} = \frac{PAVS}{PAVS} = \frac{PRIM}{PMS} = \frac{PRIM}{PMS} = \frac{PRIM}{PS}	
	. 227	95	FURMAT 2/35X) & AVG. CUNC. ALUNE #09 EIDET //C	
	221	70	PRIME 797 UNV5 - PRIME 797 UNV5 -	
	224	19		
v	227	62	$\frac{PR_{1}}{C} \frac{PR_{1}}{V} P$	
	227	70	$\frac{1}{1} \frac{1}{1} \frac{1}$	
	221	17	EQUINT ψ by and ψ pts, ψ a Fig. 4. 10x. Fig.4/	
	220	4 F.		
· .	220	,		
1	231			
	232	٠	$\alpha \Delta 2 + \alpha US1$	
	233			
	234			
	235		YA1 = 0.0	
	236		YA2 # YD4FA	
	237		GD TO 23	
	237	23	IF % TIME - TPR < 26, 25, 25	
	237	25	PRINT91,TIME, YD4F , OUS , QUS1 , YD4FA	
	240	910	FORMAT % 10X, F9.3, 10X, E15.5 , 10Y, E15.5,	
	241	1	10X# E15.5 # 10X# E15.5 <	
	242	9	FORMAT % 10X, F9.3, 10X, E15.5 <	
	243	27	TPR # TPR & DELTPR	
	244	26	IF % TIME - % % 6.3/ W < * 6.4 < < 20, 21, 21	
	245	20	A # 1	
	· · · ·		TIME # A*DELTT	
	246			
	246		YD # YD1	
	246 247 248		YO # YD1 YD1 # YD2	
	246 247 248 249		YO # YD1 YD1 # YD2 YD2 # YD3	

•

•

274 275		STOP END
273	33	CONTINUE
27,2	32	CONTINUE
271	•	TIME # TIME1
270		DFLTT # DFLTT1
500	34	CONTINUE
26 ⁸	11	CONTINUE
267		60 TO 1
264	1	F5.3 <
265	-240	FORMAT %///@ ANDTHER CASE WITH DIFFERENT DELTT #0 .
264		PRINT 24 , DELTT
263		TINE # TIME1
262	22	DELTT # DELTT/2.0
261		-60. TO 11
260	ц.,	IF % DFITT .IF. 0.110 < GO TO 11
250	21	IF % DELTT $_{0}$ GE, $_{0}$, $_{110}$ < GD TD 22
250	43	HUNMATS///W AVG. CHANGE IN CONC. ISSK
257	וע	DRINT AS
()))67	21	1771 (1977) - 1877 - 1710 (1974) - C. T. J. T. T. N. H. H.
194 166		1007 H 1003 ND-2 H NDDA
		YEU # YEU2
252 31 3		

COMPUTER PROGRAM 4

Computer Program for Simulation of Series of Periodic Tank Reactors under Forced Concentration Disturbance Conditions.

SYMBOL DEF IN ITION Number of reactors connected in series. NR Number of frequencies for which computation is LW performed. Number of amplitudes for which computation is T.A performed. Initial time at which the disturbance is TIME1[~] forced. Initial step size. **DELTT1** Interval at which the results are printed. DELTPR Inlet volumetric flow rate. Q RK Specific rate constant. V (Volume of the individual reactors.) Frequency of the disturbance. FREO Amplitude of the disturbance AMP Steady state reactant A exit concentration AS () for each reactor. Change in reactant A exit concentration from the YI () steady state for each reactor. Dummy variables. QIA (02 1. Additional step size for which the computation DELTT can be repeated.

U

 C^{*}

.

1_____G

DEF INITION

	o
TIME	Total time at a particular instance since the initial forcing of the disturbance.
TPR	Time at which the results are printed.
DY ()	L values in the Runge-Kutta equation.
YID	Difference between YI () values at time t and time t plus delta t.
Y ()	Concentration change of A as represented by YI () plus some value of L in the Runge- Kutta equation for each reactor.
YIP ()	Dummy variables.
DYF ()	First three final values of the differential equation (Equations 53, 57, 58) as calculated by the Runge-Kutta method.
YDD1 () YDD2 () YDD3 ()	Final value of the differential equation (Equations 53, 57, 58) at the points i-2, i-1, and i respectively as calculated by the Milne-Hamming method for each reactor.
YD1 (), YD2 () YD3 ()	Final values of YI at the points, i-2, i-1 and i respectively as calculated by Milne- Hamming for each reactor.
YD3P (), YD3C ()	Predicted and corrected values respectively of Yl at the point i.
YD ()	Value of the concentration change at the point i-3 for each reactor.
YAl ()	Summation of the positive values of Yl () in a cycle for each reactor.
YA2 ()	Summation of the negative values of YI () in a cycle of each reactor.
KS, SK	Number of steps representing negative values of YI in a cycle for the first reactor.
КР, РК о С	Number of steps representing positive values of YI in a cycle for the first reactor.
Û	т. С. т С. С. т

•

0

113.

SYMBOL

υ

0

DEF IN ITION

- YD4P () Predicted, modified and corrected values YD4M () respectively of Y1 at the point i + 1 for each YD4C () reactor.
- Tl Time for completion of one cycle of the disturbance.
- SN1 Time for completion of integral number of cycles.
- D4F(1) Step function of concentration disturbance into the first reactor.
- YARG Magnitude of the concentration disturbance into the first reactor.
- YDD4 () Value of the differential equation (Equations 53, 57, 58) based on the modified and the final values of Y1 at the point i + 1 for each reactor.
- YD4F () Final value of YI at the point i + 1 for each reactor.
- YAVG () Average value of exit concentration change of reactant A per cycle for each reactor.

TURTRAM TVOIT SUURCE PRUCRAM

```
PRIJURAH PALHAM
 1
           IMPLICIT REAL#B"A-H,U-ZC
  2
           UTAENSION FREQUIDE ANPXIOE
           DIDEFNSION DYMOX , Y"9X , DARG09X , DYF%9X
 7,
           UTLENSION V"94 , AS%94 , 01A%94 , 42%94
 5
           DI JENSION YISOK > YD&OK > YIP%9K
           WIEFNSIDN YD1%9< > YD2%9< > YD3%9<
           ATAENSIEN YOD1%9< , YOD2%9< , YOD3%9< , YOD4%9<
 c
           UTHENSION YO3P%94 , YO40%94 , YO3C%94 , YD4C%94
 17
           DIGENSION YA1894 , YA2894 , YAVE894
10
           DINENSION YD4M%9< J YD4F%9< J D4F%9<
11
           SECOND DRDEP IRREVERSIBLE REACTION
12 0
           SERIES OF STIPRED TANK PEACTORS
13 0
           DATA PRINTED IN READ ORDER
14 C
15 C
           SOUARE WELL TYPE DIST. ON FEED CONC.
           HUMPER OF REACTORS IN SERIES IS REPRESENTED BY MR
14 0
           REFER JAMES , SMITH , WOLFORD , PP 380
.17 ·C
ם ן
           CONC. REPRESENTS VARIATION FROM STEADY STATE VALUE
   С
12
           READ 1. NR
           READ 2. LW . LA
20
           FORMAT # 124
21
        1
22
           FORMAT %2124
        2
27
           READ 3, TIME1, DELTTI, DELTPR
24
           KEAD 4, Q, PK
25
           FILKMAT % 3F10.4<
        3
           FORMAT% 2F10.44
26
        4
27
           NR 2
                # MR
                     E 1
           READ 5, % V%NVC , NV # 1, NR C
28
29
           READ 5, % FRED%NW<, NW # 1, LW <
           READ 5, % AMP%NC , N # 1, LAC
31
           READ 5, % AS%NS< , NS # 2, NR2 <
31
32
        5
           FORMAT % 7F10.4 <
           PRINT 1, MR
37
           PRINT 2, LW, LA
34
           PRINT 3, TIME1 , DELTT1, DELTPR
35
36.
           PRINT 4, 0 , RK
           PRINT 6, % ASKNSS , NS #
                                       2, NR2 <
37
39
           PRINT O, % V%NV< , NV # 1, NR <
           FORMAT " / 7F10.4 / <
39
        6
40
           UT 10 JW # 1, LW
41
           W # FRE0%JN<
47
           00 11 JA # 1, LA
43
           AM 4 AMP%JAK
44
           PRINT 7, NR
45
        70 FORMAT % @1@ , 20X, @ NUMBEP OF REACTORS IN SERIES #@
46
         1 1 12 <
47
           PRINT 8, AMP%JAC , FREQ%JWC
        80 FORMAT %/ 7X, @AMPLITUDE #@,F6.2, 7X, @FREQUENCY #@,
4 R
49
         1 F6.2 <
           YI%1< #
50
                     0.0
```

FURTPAN IVO17 SOURCE PROGRAM RAUHAM PROGRAM 00 12 J # 2, NR2 51 52 4 **0.**0 YIAJC 57 (1) A*J-1< # %0*AH< / V%J-1< 54 02%J< # % 0/V%J-1< < & % 2.0*RK* AS%J< < 12 55 PPINT 9, % 014%J-1< , J # 2, NR2 < PRINT 13, % Q2%J< , J # 2, NR2 < 56 57 FORMAT % /0 01A-S #0, 5E15.4 < 9 50 FURMAT % / @ 02-S #@, 5E15.4 < 13 50 DELTT # DELTTI 60 67 TIME # TIME1 TPR # DELTER 61 PPINT 62 14 140 FURMAT % /// 10X, 9HTIME%HRS<, 10X, 63 64 1 @ LUNC.MNULES/CU.FT.C @ C PRINT 15, TIME , % YI%J< , 65 J # 2, NR2 < FORMAT % //10X, F9.3, 10X, 4% E15.5, 5X < < 66 15 67 DI) 20 K # 1, 3 DF 21 J # 2, NR2 69 IF %K-1< 22, 22, 23 6? 70 TIME # TIME1 22 YI%J< # 0.0 71 72 DY%1< # 0.0 77 YID # 0.0 74 00 24 N# 2,5 23 75 GI TU % 100, 26, 27, 26, 27 <,N TIME # TIME & %DELTT/2.0 < 76 27 77 Y%N< # YI%J< & %DY%N-1</2.0< 26 IF % N .LE. 4 < GO TO 28 7R Y%N< # Y%N< & % DY%N-1</2.0 < 79 80 CONTINUE 28 81 1F %J-2< 29,29, 24 DARG%3< # 1.0 82 29 83 DAR6%4< # 1.0 · DAR6%5< # 1.0 84 O THE ABOVE THREE VALUES OF DARG VARY DEPENDING ON TYPE 85 C 86 C 1 OF DISTURBANCE 87 IF %K-1< 30, 30, 31 DARG%2< # 0.0 88 30 GI TO 24 89 90 DARG%2< #1.0 31 91 C ° O THE ABOVE TWO VALUES OF DARG VARY DEPENDING ON TYPE 97 C 1 OF DISTURBANCE GO TO 24 97 240 DY%N< #%% Q1A%J-1<*DARG%N<< - % RK*Y%N<*Y%N< < 94 95 -% Q2%J<*Y%N<< < * DELTT 1 0 YID # %1./6.0<* % DY%2< & % 2.0 * %DY%3< & DY%4< < < 96 97 1 & DY%5< < 98 YI%J< # 3 > >L%IY YID 99 DARG%2< # Y%2< 100 DARG%3< # Y%3<

FIPTPAN TV017 SUURCE PPUGRAM RATHAM PROGRAM 1) A 14 G % 4 く 一 # 「 1 % 4 く … 101 UAR6%56 # 4%56 102 107 1F ~ J-2 < 32, 32, 33 YIP%J-1< # 1.0 104 32 THE ABOVE THREE VALUES OF DARG VARY DEPENDING ON TYPE 105 0 106 C OF DISTURBANCE < 60 TO 34 107 100 Y1284J-1< # Y1%J-1< 33 tun GN TO 34 340 DYF%K< # % Q1/%J-1<*YTP%J-1< < - % RK*YI%J<*YI%J< < 110 111 1 - % Q2%JC * YT%JC CGD TU % 35, 36, 37 <,K 112 113 YD01%J< # DYF%1< 35 YD1%J< # YI%J< 114 115 GO TO 38 116 36 YD02%J< # DYF%2< 117 AD5%1< # A1%1< GIT TIJ 3R 113 YD03%J< # DYF%3< 117 37 YD3%J< # YI%J< 120 GD TD 38 121 122 38 BK # K 123 TIME # BK* DELTT 21 124 PRINT 15, TIME, % YI%JC, J # 2, NR2 < 125 20 CONTINUE 126 PRINT 39 390 FORMAT % // @ THE FOLLOWING VALUES CALCD, BY 127 128 1 HAMMING EQUATION D < 129 TIME # $4.0 \times DELTT$ DD 40 J # 2, NR2 1.30 YD3P%J< # YD3%J< 131 132 YD3C%J< # YD3%J< 133 YD%J< # 0.0 134 YA1%J< # 0.0 YA2%J< # 0.0 135 40 # 0 136 KS 137 KP *#* Ο 41 I # 5, 139 DÜ 20000 130 00 42 J # 2, NR2 0 YD4P%J< # YD%J< & % %4.0/3.0< * % %2.0*YDD1%J< < 140 1 - YDD2%JC141 142 & % 2.0*YDD3%J< < < *DELTT < 2 U YD4M%J< # YD4P%J< - % %112.0/121.0< * %YD3P%J< 143 144 1 - YD3C%J < < <145 IF % J .GE. 3 < GD TO 43 T1 # % 2.0* 3.1415927 < / W 146 147 DT 44 NS # 1 > 10 SN # NS 148 SN1 # SN*T1 149 IF % TIME .LT. SN1 < G0 T0 45 150

151 44 CONTINUE 152 45 CHATINUE 01 # SN 157 - 1.0 IF % TIME .LT. % T1*% QM & %1./4.<<<<GO TO 46 154 IF % TIME .LE. % T1*% QN & %1./2.<<<GD TD 46 155 IF % TIME .LT. % T1*% QN & %3./4.<<<<GO TO 47 156 1F % TIME .LE. % T1*% QN & %4./4.<<<<GO TO 47 157 D4F%1< # 1.0 153 46 YARG # 04F%1<*AM 1,50 GD TO 49 160 D4F%1< # -1.0 161 47 YARG # 04F%1<*AM 162 60 TU 48 103 CONTINUE 164 48 430 YDD4%J< #% Q1A%J-1<* D4P%J-1< < - % RK*YD4M%J<* 165 1 1041% 1< < 164 - " 02"J< * YD4M%J< < 167 2 YD4C%J< # %0.125 < * % % 9.0 * YD3%J< < - YD1%J< 167 0 1 & %% 3.* DELTT < 167 * % YDD4%J< & % 2.0*YDD3%J< < - YDD2%J<<< 170 2 < 0 YD4F%J< # YD4C%J< & % %9./121.< * %YD4P%J< 171 172 1 - YD4C% J < < <0 YDU4%J< # % Q1A%J-1< * D4F%J-1< < - % RK*YD4F%J 173 1 * YD4F%J< < -174 % 02%J< * YD4F%J< < 175 2 IF % TIME .LE. % 8.1/W < < GD TD 50 . 176 IF % YD4F%2< - 0.0 < 49, 51, 51 177 IF % KP - 2 < 50,52, 52 178 51 IF % KS - 1 < 54, 54, 53 179 49 54 IF % J .GE. 3 < GD TO 55 1.80 KP # KP 1 3 181 ¥ >2%J< # YA2%JC & YD4F%JC 55 1.82 183 GO TU 50 52 IF % J .GE. 3 < GD TO 56 1.84 185 KS. # KS E 1 YA1%JC # YA1%JC E YD4F%JC 1.86 56 GO TO 50 187 1.84 53 IF % J .GE.3< GD TO 57 182 SK. # KS 190 PK # KP · YAVG%J< # % YA1%J< & YA2%J< < / % SK & PK < 57 191 J = 1 192 JY # 58, TIME, YD4F%J<, YA1%J<, YA2%J<, YAVG%J<,JY PRIMT 193 580 FARMAT % // 10X, F9.3, 5X, F15.5, 5X, E11.4, 3X, 194 195 1 E11.4 > 7X> a AVERAGE CONC. #a, E15.7, a IN REACTOR NUMBER D. 12 < 196 2 197 YALSJC # 0.0 # YD4F%J< YA2%JC 198 IF % J.LT. NR2 < - GU TU 50 199 59, SK, PK 200 PRINT

et)s L e V H	τνοι	7 SILURCE PRIIGRAM RALIIAM PROGRAM
201	59	FURMAT " / 2x, > HO. OF PUINTS # 0, F10.4, 10x, F10.4<
202		
2.03		KS # 0
244	50	CONTINUE
205		YD&J< # YD1%J<
206		YD1%J< # YD2%J<
207		YD2"J< # YD3%J<
203		VD3%JC # YD4F%JC
209		YD3P%J< # YD4P%J<
210		YD3C%J< # YD4C%J<
211		YDU1%J< # YDD?%J<
212		YDU2%J< # YDD3%J<
217		YDD3%J< # YDD4%J<
214		D4F%JC # YD4F%JC
215	42	CPHTINUF
216		1F% TIME - TPR < 61, 60, 60
217	67	PRINT 62, TIME, YAPG , % YD4F%J< , J # 2 , NR2<
218	62	FORMAT % 10X, F9.3, 5X, E15.5 , 5% 5X, E15.5 < <
219		TPR # TPR & DELTPR
220	61	IF % TIME - % % 6.3/W<*6.9< < 63, 64, 64
221	63	Α # I
2.2.2	•	TINE # A * DELTT
227	41	CONTINUE
224	64	IF % DELTT .GE. 0.110 < GD TD 65
225		IF % DELTT .LE. 0.110 < GD TO 100
2.25		GD TU 100
227	65	DELTT # DELTT / 2.0
229		TIME # TIME1
220		PRINT 66, DELTT
230	660	FORMAT # /// @ ANOTHER CASE WITH DIFFERENY DELTT #@
231	1	▶ F5.3 <
232		GD TO 67
233	100	CONTINUE
234	11	CUNTINUE
235		DELTT # DELTT1
236		TIME # TIME1
237	10	CONTINUE
239		STOP
239		END

•

ł

LITERATURE CITED

(1)	Chang, K.S., Bankoff, S.G., ibid., <u>7</u> , 635 (1966)
(2)	Douglas, J.M., Ripin, D.W.T., <u>Chem. Eng. Sci., 21</u> , 305 (1966)
(3)	Douglas, J.M., <u>Ind. Eng. Chem. Process Design Development,6</u> , 43 (1967)
(4)	Douglas, J.M., Gaitonde, N.Y., <u>Ind. Eng. Chem</u> . <u>Fundamentals, 6</u> , 265 (1967)
(5)	Horn, F.J.M., Lin, R.C., ibid., <u>6</u> , 21 (1967)
(6)	Horn, F.J.M., ibid., <u>6</u> , 30 (1967)
(7)	Laurence, R.L., Vasudevan, C., ibid., <u>7</u> , 427 (1968)
(8)	Ray, W.H., ibid., <u>7</u> , 422 (1968)
(9)	Wilhelm, R.H., Rice., A.W., Bendelius A.R., <u>Ind. Eng.</u> <u>Chem. Fundamentals, 5</u> , 141 (1966)
(10)	Distefano, G.P., <u>AICHE Journal, 14</u> , 946 (1968)
(11)	James, M.L., Smith, G.M., Wolford, J.C., <u>Analog and Digital</u> <u>Computer Methods</u> , International Text Book Company, Scranton, Pennsylvania 1962.
(12)	Hamming, R.W., <u>Numerical Methods for Scientists and Engineers</u> , McGraw-Hill, New York 1962.
(13)	Lapidus, L., <u>Digital Computation for Chemical Engineers</u> , McGraw-Hill, New York 1962.

.

•

VITA

Noshir P. Mistry was born on

in . He graduated from St. Xavier's High School, Bombay in 2956. In 1962 he received his Bachelor of Chemical Engineering degree from Department of Chemical Technology, University of Bombay. The following year he served as an assistant lecturer in Chemical Engineering at the University of Bombay. He received his Master of Chemical Engineering degree from Rensselaer Polytechnic Institute, New York in 1965.

He was employed as a Chemical Engineer from 1964 - 1965 with Tanatex Chemical Corporation, Lyndhurst, N.J. and from 1965 to 1967 with Scientific Design Company New York. During this period he attended evening classes at Newark College of Engineering. From 1968 he was a teaching assistant while studying for his Doctor of Engineering Science degree.