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ABSTRACT
This thesis deals with the engineering aspects of con

trol electronics. It examines modern concepts of servo- 
control theory in- the light of recent developments in the 
technology of monolithic circuits. Applications! con
siderations are slanted towards Aerospace standards of 
reliability and power-consumption economy.

Conclusions drawn from the discussion of fabrication 
constraints and performance requirements lead to a prefer
ence for digital implementations. Yield probelrns on one hand 
and aging effects on the other greatly reduce the feasibil
ity rating of analog arrays.

Current practice in servo-ccircrol electronics revolves 
around purely analog implementations., sampled-data systems 
and primitive on-off arrangements. The motivation behind 
the status quo and the j ratification, of the proposed approach 
are discussed in detail.

The organization of digital systems is examined in
orc^r 10 demonsrrare reason i c\' or marge Sca^e mregra—
tion (LSI) in servo-co.vrroi elecrronies. The questions of 
hardware versatility and power-drssrpurion economy are 
emphasized from technological, economical and applications! 
standpoints.

Self-Contained loops and Computer-Aided systems are in
vestigated within the ramifications of a functional division 
into Detectors, Compensators and Drivers. Differential 
Frequency Modulation is assuraed to effect the information



transfer from the Pick-Off coil of the transducer to tie 

input ports of the Ratemeter. Pulse Width-Frequency 

Modulation is employed at the Driver-Torquer interface. 

The operation of the Ratameter conforms with classical 

logic, except for a slope-independent 

Level-Crossing-Dis-criminator (LCD), which is designed to provide a time-

resolution gain of 3 db.. over conventional frequency 

detectors. Circuit detais of the LCD are given in order to 

illustrate 	differences between integrated and discrete 

circuit configurations. Two types of compensators are 

discussed: canonic pole-zero arrangements with ROM 

multipliers and Kalman fiiters with stored-program implementations 

of covariance equations. 

The concept of Pulse-Width-Frequency-Modulation (PWFM) 

is introduced co reconcile the dynamic-range requirements 

or servo-control drivers with the time-resolution limitations 

of power transistors. Simple means of implementation of PWFM 

are also given; they take the form. of a combination of 

logic-gates and DDA elements, a technique which could be used to 

advantage in other applications, especially digital detection 

and filtration. 
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'Title of dissertation: Concepts in LSI Servo-Control 
ELectronics 
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INTRODUCTION

Confrontation with a significant new device or phenomenon 

stimulates research in associated sciences and technologies. The 

ensuing effort is usually directed towards the development of the 

basic concept, the improvement of the fabrication techniques or the 

utilization of advantageous characteristics of the given device. 

Quite frequently disappointment follows because of technological 

problems, as witnessed in the case of multi-grid gas tubes, or 

applicatory difficulties, as in the case of tunnel diodes.

Occasionally the utility and feasibility of a discovery may 

become immediately established, evoking wide-front research into all 

pertinent aspects of technology and engineering. This has happened 

in the case of the Junction Transistor, the Integrated-Circuit (IC) 

and, most recently, in the case of the Large-Scale-Integration (LSI) 

technology.

The greatest concentration of IC and LSI oriented research is 

understandably found in areas associated with mass-production items 

such as digital-computer elements, operational amplifiers and 

functional modules for TV. Devices of lesser market potential do 

not receive much attention during the early stages of the evolution 

of the solid-state technology. There is, however, a noticeable 

trend towards an unprecedented level of standardization of 

individual devices and complete systems.
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A stalemate situation prevails in the field of Servo-Gontrol 

hardware. Current practice in Servo-Electronics is confined to 

analog implementations; there is a slow trend towards Central- 

Computer processing of all control data.

We intend to explore the implementation of Servo-Control- 

Electronics in the light of the possibilities presented by the LSI 

technology, without bias induced by common usage in other 

applications, but with recognition of the advantages of proper 

standardization.

We investigate, in Chapters I and II, the theoretical concepts, 

applicatory requirements and technological limitations of Servo- 

Electronics, and arrive at a preference for digital, rather than 

analog, implementations. Digital implementations are compatible 

with the fabrication constraints of LSI. They also meet the 

stability requirements of modern control installations. Analog 

implementations do not fulfill either of the above two requisites.

Organizational concepts and module-level details for the 

implementation of LSI Control-Electronics are presented in 

Chapters II through V.
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CHAPTER I

SERVO-CONTROL ELECTRONICS— STATUS AND INNOVATIONS

Theory

The mathematical aspects of control-theory and associated sub

jects have received a good deal of attention during the last two 

decades. The "state-space" formulation of differential equations and 

the "state-transition-matrix" representation (H6, Zl, D3, S2, R8) of 

dynamic systems have attained the status of classical procedures. 

Optimization of filters progressed from the Wiener-Kolgomorov theory 

(L2, P3, W6) to the Kalman-Bucy realization (K3, K2, S12, FI), 

shifting the interest from the implementation of the Wiener-Hopf 

Equation to the solution of the Variance Equation. Popularization 

of topological methods diversified the approach to Active-Filter 

synthesis (Bl, B2, PI), while the development of computerized 

analysis (HI, K8, D2) lightened the burden of network computations.

Bellman's Principle of Optimality (B4, B5, B6, T6) and 

Pontryagin's Minimum Principle (P7, T3, A4) led to new concepts of 

system optimization. Kalman's Theory of Duality (Kl, K2, H3) 

linked stochastic filtration to deterministic optimal-control. The 

Z-transform became a standard tool of Sampled-Data analysis (F4, K7, 

L7) and Digital-Filter synthesis (K9, Rl, B7). The Fast-Fourier- 

Transform algorithm (C7, B12, M3) revitalized spectral analysis and 

strengthened the already prevalent trend towards central-computer 

processing of all control-data.
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Most of the above techniques can be grouped together under the 

heading of numerical methods in process control. The interest in 

these techniques has arisen in response to the popularization of 

digital computers, which have become everyday tools of human and 

machine operations. The proliferation of digital computers is in 

turn attributable to recent developments in solid-state physics.

There are applications in which general-purpose computers do 

not present the best engineering solution. Time-sharing is not a 

panacea, not even in large installations. Some specialized problems 

can be solved by relatively modest means. Analog methods are 

acceptable in many short-duration projects.

It is therefore necessary to investigate which functions can be 

best performed by analog and which by digital hardware. In the 

digital domain one must further discriminate between special-purpose 

hardware and central-computer implementations. We will deal with 

the above problems within the ramifications of Servo-Control- 

Electronics.

Technology
The first semi-conductor amplifying device, the point-contact- 

triode (B3), did not progress beyond the level of a demonstration 

model, but Shockley's invention of the junction-transistor (S9, Sll) 

has produced practical results. It has also established a principle 

of lasting value and utility.
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The junction-transistor was initially fabricated as a grown- 

junction device. In an attempt to boost the frequency response and 

to streamline fabrication techniques, other structures and processes 

(VI, K6, G3) were tried with various degrees of success. A major 

innovation by Hoerni led to the planar transistor (H4) and the pas

sivation techniques (P6), which are in general use today. The 

epitaxial process (C3, B13, M6), a breakthrough in crystal-growth 

technology, widened the performance horizons of discrete transistors 

and provided a workable basis for the fabrication of integrated- 

circuits. A good deal of present-day research is devoted to ion- 

implantation techniques (L3), which are expected to improve the 

controlability of the doping process.

Integrated-Circuits are a natural outcome of the planar tech

nology. Contemporary IC's are generally made by the six-masks pro

cess (Wl). Some new ideas have been introduced to overcome the 

drawbacks of the bi-polar IC technology: buried-layer diffusion

(C2) to reduce the collector-resistance, and lateral-transistors 

(M8) as well as substrate-collector transistors (S3) to replace con

ventional pnp devices. Diode isolation continues to maintain a 

dominant position by virtue of its simplicity and efficacy.

The development of practical field effect devices has been 

retarded by various surface state problems (Mil, W4). Threshold 

instability and gfeneral lack of dependability are still the worst 

drawbacks of MOS transistors, but steady progress in oxide formation 

and etching techniques (M7, Ml) begins to yield devices which are 

compatible with LSI concepts and requirements. MOS devices can be
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integrated without isolation. One simple structure can be used either 

as a transistor or a resistor. Slight modification of the pattern 

gives a capacitor. Multi-Phase logic (K4, Yl) overcomes the speed 

limitation of RC circuits. Complementary MOS arrangements (R4, L9) 

produce even better results, admittedly at the expense of technological 

complications.

Our concept of LSI is predicated on the use of multi-layer 

interconnect matrices (L10). The first layer interconnects separate 

devices into logic-elements such as gates, flip-flops, shift- 

registers, etc. The second layer assembles the logic-elements into 

modular groups such as counters, adders and multipliers. The third 

metallization layer, if used, converts modular groups into sub-system 

blocks at the level of scratch-pad memories, arithmetic-units, 

canonic filters and ratemeters (L5).

A three-sided comparison between bipolar, complementary MOS and 

multi-phase MOS implementations would appear to be in order, but an 

examination of the third technique with regard to long-term objec

tives reveals the distinct stigma of a stop-gap measure. It is, 

therefore, advisable to confine our comparison to the bipolar and 

the complementary MOS technologies.

Bipolar devices have a clean-cut advantage in speed (H2, L10);

LSI blocks of Emitter-Coupled-Logic operate at nano-second clock- 

rates (W7). Furthermore, junction transistors are still more stable 

and more reliable than MOS-FETs. Their intrinsically high 

transconductance (W2) is useful in sense-amplifier applications.
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MOS arrays have excellent speed/power characteristics (A2), 

facilitating operation of mega-Hertz gates at nano-Watt power levels. 

They are also very economical in terms of substrate-area (F2).

The choice between the two techniques depends on applicatory 

factors. In Servo-Control-Electronics speed requirements are modest, 

but reliability considerations dictate the choice of bipolar tech

niques. As the stability of MOS devices improves, FET implementations 

may become preferable because of power-economy considerations.

The LSI technology has its due share of disadvantages. There 

are power dissipation difficulties, interconnection problems, 

standardization requirements, tolerance limitations and some economic 

complications.

The first two disadvantages of LSI are inherent in the miniaturi

zation concept. As we shrink the dimensions of a device, we reduce 

its power dissipation rating and impose limitations on the size and 

number of terminals.

Other disadvantages are attributable to the empirical status of 

the semi-conductor technology. The end result of a series of oper

ations embracing crystal formation and surface preparation as well as 

a number of etching and diffusion operations cannot be expressed by a 

mathematical formula. We must therefore rely on conformance with 

empirically established procedures. Repeatability of device 

characteristics is the sole criterion of process control.
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The reliability of monolithic circuits can be very high (W3, M9) 

if mass production methods are combined with (1) stringent in-process 

inspection, (2) far-reaching electrical characterization, and 

(3) extensive follow-up testing. On the other hand, reliability will 

be poor, or at best indeterminate, if small-batch lots are produced 

under conventional laboratory conditions.

Reliability of low-demand items presents a problem which is 

especially severe in servo-control-electronics. The demand for any 

particular type of servo-contro3.-hardware is quite low in terms of 

IC-production quantities. It is therefore necessary to devise a 

scheme which will embrace a large section of the total servo-control 

market, and thus create a demand compatible with IC-fabrication 

economics.

Product standardization plays an important role in LSI science 

and economics. It boosts the yield and cuts the costs while it 

improves reliability and electrical performance, but it demands 

specialization and resourcefulness. Individual circuits must be 

sufficiently versatile to work in conjunction with a wide variety 

of other circuits and the performance of generic families must be 

sufficiently good to meet the requirements of many applications.

Circuit Design

The last 15 years have witnessed two major evolutions of circuit- 

design concepts. The first marked the transition from electron- 

tube to transistor circuits; it reached its peak at the turn of the 

decade, when it became apparent that the advent of the Silicon-Planar
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technology (H4) had produced the best available amplifying device.

Many new circuit-configurations emerged, some utilizing unique 

advantages, others overcoming unique limitations of the transistor- 

technology. There was a significant increase in the number of active 

devices per circuit and a decrease in the number of passive devices.

On the system level, a slight preference for digital implementations 

became noticeable.

Popularity of thin-film resistor-matrices in the early sixties 

(T9) brought only minor changes in the approach to circuit design. 

However, since it coincided with an intensification of research work 

in Active Filters, it helped to eliminate the use of magnetic 

components in compensator applications.

The second evolution, much more drastic than the first, was set 

off by the emergence of the monolithic-circuit technology. Prefer

ence for digital implementations moved up another notch and circuit 

design began to merge with device design.

In analog circuits, some of the new arrangements arose from an 

observation disclosed by us in 1962 (T8) and extended by Hoffait and 

Thornton in 1964 (H5). This observation concerns the thermal drift of 

dual-transistors and states that the thermal coefficient of the 

offset-voltage is proportional to the offset-voltage itself.

Let AV be the offset-voltage of two generically similar 

transistors, then

d(AV)/dT - d(Vbel-Vbe2)/dT = k(AV) (1)
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where,
k «  3(microVolts/°C) per milliVolt of offset, if (2)

I d  = Ic2 an<i ^cel “ ^ce2*

Practical utilization of this principle in Integrated Circuits is 

predicated on the intrinsic matching of devices contained within one 

die. Matching to better than l/2mV-offset is typical, permitting 

implementation of simple constant-beta structures (W9, Wll) and 

transistor-controlled current-sources (BIO).

In digital circuits, development of multiple-emitter transis

tors produced the popular TTL gate (L10). Utilization of the pre

dictability of charge-storage ratios brought about the MTTL III 

family (M10). However, most conspicuous is the abundance of active 

elements, even in modest-performance circuits. Whereas a discrete 

component flip-flop may contain 4 to 8 active elements, an integrated 

flip-flop contains at least 30 transistors. The Level-Crossing- 

Detector, shown in figure III.2 as an example of IC design, comprises

11 transistors and 8 resistors, or 1.37 transistors per resistor.

Transition to Large-Scale-Integration does not provide any

benefits at the circuit level. On the contrary, it imposes a number

of design and fabrication constraints. Nevertheless, further circuit- 

research is required in order to utilize the sub-system advantages of 

LSI. The speed of digital modules is no longer limited by the 

parasitic effects of interconnection wires. It is therefore 

desirable to develop picosecond logic.
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Applications

Microscopic size may be the most spectacular feature of mono

lithic circuits, but there are other equally important character

istics. Their utility depends on applicatory requirements. To deal 

with LSI implementations of Servo-Control-Electronics, we have 

selected Aerospace applications. These applications call for a com

bination of features such as small size and low power consumption as 

well as high reliability and long-term stability, and thus display 

the entire spectrum of the advantages and limitations of molecular 

electronics (T7, Jl, L5).

Current practice in servo-control-electronics is essentially 

restricted to analog implementations. A typical system may contain 

8 integrated amplifiers, 10 discrete transistors, 6 micro-Farads of 

capacitors and a few discrete resistors. The quality of a set of 

hardware is determined by its frequency response, gain stability, 

offset-voltage and offset stability, general reliability, power 

consumption, mechanical factors and modular organization.

In typical designs, frequency response and gain-stability 

requirements do not present any difficulties, but offset-voltage and 

drift specifications do create some serious problems. We have 

learned to deal with thermal drift (W9, H5, T8), but we are still 

unable to cope with the offset-voltage and aging problems, except by 

MOS-chopper stabilization, a bulky and conceptually clumsy technique. 

Initial errors and aging effects are beyond the control of circuit 

designers. These are technological problems, the former being
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determined by the quality of the passivation techniques (Ml, M7) and 

the latter by the tolerances of the masking and etching processes.

The best available operational amplifiers display offsets of the order 

of 2 milli-Volts; aging drift of the offset voltage may exceed 

5 milli-Volts per year.

Periodic adjustments constitute the only practical but highly 

objectionable solution of the offset-voltage problem. First, because 

a military system may be called to instant action after years of 

storage, and there may not be any time nor opportunity for extensive 

calibration procedures. Second, because the incorporation of adjust

ment accessories degrades the reliability of the system, opening a 

Pandora's box of failure possibilities.

Many malfunctions and catastrophic failures of electronic 

circuits can be attributed to accidental overloads inflicted during 

the performance of calibration adjustments (V3). If damage does 

occur, a chain reaction may follow. Undetected partial damage may 

induce a catastrophic failure at a later time. Detected damage may 

bring forth all sorts of complications invariably associated with 

retrofit operations.

Reliability being the most pressing issue in Aerospace electronics, 

it is clearly necessary to reduce offset errors to acceptable levels. 

Initial-offsets could be eliminated, at least in theory, by a yield 

trade-off, but nothing significant can be done about the long-term 

drift of analog circuits. At fault is the basic principle of analog 

circuits, the "principle of voltage proportionality."
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To eliminate aging effects we must turn to the "threshold prin

ciple" of digital circuits. We can then proceed to realize the full 

reliability potential of LSI arrays by elimination of all unessential 

terminals and by provision of short-circuit protection on all inter

face gates. Where reliability requirements are exceptionally 

stringent, we can exercise the option of redundance techniques, 

easily implementable in digital circuits (majority voting) but 

unfeasible in analog circuits.
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CHAPTER II

ORGANIZATION OF THE ELECTRONIC SUBSYSTEM

Analog Systems

Simplicity is the dominant feature of conventional analog con

trol systems. The electronic subsystem of a typical control-loop 

(Figure II.1) comprises a Detector, a Compensator and a Driver.

The detector, functionally a phase-sensitive rectifier, usually 

contains a push-pull amplifier, two chopper transistors, two 

coupling capacitors and a few discrete resistors.

The compensator may resemble the arrangement of Figure 6 of 

Appendix III. Its configuration depends both on the order and the 

values of the coefficients of the transfer function.

The driver is, as a rule, a class B amplifier; discrete power- 

transistors are generally used in the output section, although an 

experimental version of a monolithic driver had been fabricated in 

1966 (R7).

Refinements may be introduced in one or more modules to comply 

with requirements of special applications. Where relatively sophis

ticated control is to be implemented or information interchange 

between various elements of a major installation is required, 

recourse can be taken to Sampled-Data techniques.
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The block-diagram of a Sampled-Data-System is shown in Figure

II.2. It is evident that an Analog-to-Digital converter is neces

sary to translate analog data into the language of the digital 

computer, but it is not intuitively obvious that a low-pass filter 

must precede the converter.

The frequency spectrum of a uniformly sampled signal (R2, P4,

J2, F4) is:
00

F*(jw) = £  F(jw + j2irr/T) (1)
r = _ o o

where:

F(jw) = Fourier transform of the original signal, 

l/T = Sampling rate, 

r = Dummy integer.

Thus, there is a simple relationship between the frequency 

spectrum of a sampled signal, F*(jw), and the frequency spectrum of

the original, continuous signal, F(jw), if the spectrum of F(jw) is

contained within the limits:

|w| < ti/T, (2)

in other words if

F(jw). = 0 for all |w| > ir/T (see Figure II.3). (3)

If, however,

F(jw) 4 0 at any |w| > ir/T (4)

then F*(jw) becomes distorted by overlap of excess frequencies. This 

phenomenon, called "aliasing" (C4), necessitates the use of a low-pass 

filter.
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Theoretically speaking, the low-pass filter would not be neces

sary if the input signal was known to be contained within the 

fundamental band defined by equations (2) and (3). However, in 

engineering deliberations one must recognize the existence of noise, 

and look upon equation (1) as a demonstration of noise-susceptibil- 

ity. Although low-frequency noise is expanded in the same fashion 

as the signal, aliasing of high-frequency noise increases the noise- 

energy-content of the fundamental band. It is, therefore, necessary 

to use the low-pass filter in all practical applications.

The Central Computer of the system, performing the function of 

a presumably complex compensator, transforms F*(jw) into another 

function G*(jw), in accordance with some predetermined equations.

To examine the restoration process, we observe that elimination 

from G*(jw) of all frequencies outside the fundamental band enables 

us to equate the Fourier-Integral representation (G(jw)) with the 

corresponding Fourier-Series representation and thus to arrive at 

the identity:
OO

g(t) = Y. g<kT>
k=-“

sin. ir(t - kT)/T 
n(t - kT)/T (5)

where:

G(jw) = 0 for all |w| > tt/T

G(jw), g(t) are Fourier integral pairs

(6)

k = Dummy integer
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Equation (5), known as the Sampling-Theorem (SI, S7, LI), 

explains the need for the restoration filter at the output end of 

the D/A converter. It contains the essence of all SDS operations, 

and states that a function g(t) is uniquely represented by its 

values at uniformly spaced instants, provided that G(jw) complies 

with equation (6).

The events which take place during the execution of a sampling 

cycle are portrayed in Figure II.4. A somewhat artificial example 

has been chosen for the sake of clarity.

Summarizing this section we recall the simplicity and compo- 

nent-economy of self-contained analog contro1-loops. We also note 

that extension of analog concepts to Sampled-Data-Control introduces 

a number of complications, resulting from the basic incompatibility 

of digital and analog techniques.

Digital Systems

Figure II.4 shows the block diagram of a self-contained dig

ital loop. As in the corresponding analog system, there are three 

functional modules, a Detector, a Compensator and a Driver. The 

operation of the three modules is coordinated by a system clock 

which is usually contained within the central-computer complex.
V

The circuit arrangement of the electronic detector depends on 

the principle of operation of the transducer. In some cases the 

detector can be omitted entirely, in others it may be sufficient to 

provide a code converter. The error detector of the transducer
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considered in this thesis is assumed to respond in the differential- 

frequency-modulation mode, generating two signals, one characterized 

by the frequency fQ + df and the other by fQ - df. The electronic 

detector takes, therefore, the form of a differential ratemeter.

Its output is proportional, or nearly proportional, to the deviation 

ratio df/fQ.

The configuration of the remaining two modules is independent 

of the error detection mechanism. The compensator may contain 

canonical pole-zero elements (Dl), or a Kalman filter, or both. The 

topological complexity of the driver depends on linearity specifica

tions but the proposed PWFM driver will meet all rational 

requirements.

Structural details of the three modules are discussed in 

Chapters III to V. Implementation of any one of these modules 

requires far more components than the implementation of an entire 

analog system, but the quality of the digital components need not be 

as high as the quality of the analog components.

The block-diagrams of two computer-aided control systems are 

given in Figure II.5. In Figure II.5a, all compensation functions 

are performed by the central computer. In Figure II.5b, the 

central computer controls the operation of the local compensator by 

periodic adjustment of its coefficients (Chapter IV).

The simplicity of the computer-aided arrangements stands in 

striking contrast to the complexity of Sampled Data Systems, which
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carry the burden of conceptually redundant hardware. All digital 

modules can be completely compatible. There need not be any 

difference between Ratemeters for autonomous loops and Ratemeters 

for computer-aided loops. The same applies to Drivers and other 

auxiliary equipment.

The Digital vs. Analog Decision

The main arguments in favor of digital techniques in servo- 

control-electronics can be listed as follows:

1 . Compatibility with the general trend in control theory.

2. Reliability and immunity to moderate aging effects.

3. Compatibility with the state of the art in Silicon 

Technology.

4. Simplicity of Adaptive-Control implementations.

There are two significant arguments for analog techniques, 

namely tradition and component economy.

Although some of the disadvantages of analog implementations 

are sufficiently severe to disqualify analog concepts from all LSI 

considerations, it would be unwise to overlook the possibility of 

compromise solutions. We cannot ignore the question of current 

practice in servo-control electronics. To present a complete 

argument in favor of digital techniques, we must explain why analog 

techniques are being used at present.

Component economy is the main reason behind the past and 

present popularity of analog implementations. The analog double-pole,
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double-zero active filter of Figure 6 of Appendix III consists of 

one amplifier, two capacitors and five resistors. An equivalent 

11-bit digital filter would require twenty-two Delay Flip-Flops, 

two 11-bit, 4-input adders and five 11-bit multipliers; evidently, 

realization of such filters in terms of discrete transistors is 

unfeasible, except for demonstration purposes. The choice between 

digital and analog hardware was only brought about by the emergence 

of integrated circuits.

The criterion of component economy, which dominated the approach 

to circuit design until recently, has been deflated by LSI; more 

important are the questions of component quality, margins against 

malfunctions and susceptibility to parasitic oscillations (Cl, P5).

Where reliability, long-term stability or sophistication are 

important, digital LSI presents the only rational solution. Analog 

techniques will be used in various hybrid implementations of non- 

critical systems for a few years to come, but they will be eventually 

eliminated by economic factors, even from these applications.

The remainder of this thesis will be devoted to the realization 

of ratemeters, digital-filters and pulsed drivers, with particular 

attention to applicatory diversity and modular compatibility.
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CHAPTER III 

DIGITAL DETECTORS

Principle of Operation

The digital detector generates a binary output in response to 

two sinusoidal or square-wave inputs. The output of the detector 

represents the frequency-deviation-ratio of the input signals.

The principle of operation of the proposed detector is 

portrayed in Figure III.l.

Two input signals, characterized by frequencies fQ + df and 

fQ - df, are respectively fed into two Level-Crossing Discriminators 

(LCD-A and LCD-B). The discriminators generate two pulse trains, 

one at a repetition rate of 2 (f0 + df) and the other at 2 (f0 - df).

While the Inhibit-Gates (F3, H7) are open, the pulses flow into 

two counters (P8 , Gl) until saturation occurs in the counter with 

the faster input. The saturation event shuts the Inhibit-Gates; it 

also feeds the complement of the other counter into the 

Output-Register.

Assuming relaxation of both counters at t = 0, the overflow 

event will occur at time

tx  ----- 3------------ 3----  (D
2 (f0 + df) 2f0 (l + x)
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where:

N = 2n - 1 «= Capacity of each of the counters. (2)

n *» Number of storage elements in each counter,

x => df/fQ *» Frequency-deviation ratio. (3)

The state of the other counter at time tx is 

m = 2tx(f0 - df) = 2txf0(l - x)

- ■ t t S  (4)

The complement of m is equal to m,

m = N - m (5)

= 2xN/(l + x) (6)

or,
x B ------S----- (7)

2N(1 - m/2N)

Equations (6 ) and (7) give the relationship between x, the fre- 

quency-deviation-ratio, and m, the output read-out of the detector. 

At low deviation ratios, the read-out is proportional to x,

m = kx (x << 1) (8)

Noteworthy is the fact that f0 appears in equation (6) only in

the form of the deviation ratio df/f0. This means that the read-out

of the ratemeter is independent of f0, if the sensitivity of the 

transducer is independent of fQ.

The Level-Crossing-Discriminator

The schematic diagram of a new type of Level-Crossing- 

Discriminator is presented in Figure III.2.
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Transistor Qx conducts whenever the input voltage exceeds V^, 

transistor Q2 conducts when the input voltage drops below -V]_. Thus, 

the voltage at the common collector of and Q2 is low, except when 

the input voltage falls within the limits:

The output voltage (V0) conforms, therefore, with the following 

equations:

Under normal operating conditions, the amplitude of the input 

signal is considerably larger than V^. Consequently, a positive 

output pulse is produced whenever the input signal crosses zero in 

either direction. The output pulses are centered on V^n = 0. Their 

width depends on the amplitude and shape of the input signal.

Compared to conventional Sense-Amplifiers (Tl, T2, W10), the 

proposed LCD has two advantages. It has a better time-resolution, 

since it generates output pulses both at the positive-going and at 

the negative-going crossings of the zero-voltage level. Also, it 

produces pulses of optional width instead of the square-waves 

associated with Sense-Amplifiers.

The schematic diagram of the LCD discloses a few features which 

are peculiar to Integrated-Circuit designs. It has 8 resistors and 

11 transistors, or less than one resistor per transistor. The 

common-collector devices QxQ2 and Q3Q4 combine surface-area economy

-Vi < vln < +Vx (9)

V0 = Low, when Vin > |Vi|

VG = High, when -V^ < V-jn < +V^

(10)
(11)
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with metallization-pattern simplicity. The current sources Q5 and 

Qg are controlled by the emitter-collector voltage of a transistor 

(Qg) whose base is shorted to the collector. The compound 

emitter-follower (Q9 - Qiq) overcomes the beta limitations of 

lateral pnp transistors.

The above LCD is intended only for operation with sine-wave 

inputs. In applications utilizing square-wave inputs, the LCD would 

be omitted or replaced by some pulse-shaping network, if necessary.

The Ratemeter

The block diagram of the ratemeter section of the detector is 

given in Figure in.3. It shows a half-adder (P9), some control 

logic and two counters.

The operational cycle of the ratemeter can be broken down into 

three action periods:

0,1 The externally controlled "synchronization pulse" resets the 

counters and enables input gates G1 and G2.

0,2 Incoming pulses are fed into the counters.

0,3 At t = tx, one of the counters saturates (minterm = 2n - 1), 

inhibiting the input gates.

1,1 At t = T, the "synchronization pulse" initiates the next 

operational cycle.

During the time interval from tx to T, gate K1 is in the "true" 

state, thus indicating the availability of output data. The Boolean 

equation of K1 is:
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n n
K1 - TT a± + TT Bi

i«=l i>=l

The inhibit flip-flop is controlled by K1 and the external

(12)

synchronization pulse K2 , in accordance with the equations 

S = K1K2 (13)

R = K2 (14)

The half-adder is used for two*s-complenient coding of negative 

deviation ratios. To unravel the coding mechanism, assume that df, 

as shown in Figure IIL3, is negative.

In a normal operating cycle counter A will saturate first, 

forcing gate Fn+^ into the true state and thus indicating that the 

deviation ratio is negative.

Gates to Fn are then supposed to display the negative 

equivalent of the complement of the state of counter B. In other 

words, we want the two's-complement of

The one1s-complement of the above number is obviously given by

To get the two's complement code, we add unity to the minterm of B, 

and thus obtain:

Bn Bn-1 Bn-2

Bn fin-l Bn-2 b 2 b1 -

minterm(E) = minterm (B) + 1 (15)

The problem of selecting the output information from either 

channel A or channel B does not exist, since all A^s are zero when 

any of the E^s are different from zero, and vice versa. We can thus
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combine them by simple "or" gates, operating In accordance with the 

Boolean equation (T5, S4, C8 , F3)

F± = Ai + E± (16)

Although fQ does not enter into equation (6 ), it is necessary 

to impose certain restrictions on the values of fQ and T, in order 

to ensure proper operation of the ratemeter. Obviously, tx , the 

time to load the counter, must be shorter than T, the period of the 

synchronization pulses. Hence,

T > 2n/f0 (17)

for ratemeters working in conjunction with conventional sense 

amplifiers and

T > (2n~l)/f0 (18)

for ratemeters working in conjunction with the LCD.

The proportionality-error in equation (8) must be considered in 

relation to the quantization-error, which is equal to the least- 

significant-bit of the output word. The transient behavior of the 

ratemeter resembles the behavior of a low-pass filter with a cut-off 

frequency of 1/T.

The above proposed detector can be used as a mixer-detector of 

conventional FM data, if a Local Oscillator is added to the arrange

ment of Figure III.l. The frequency deviation ratio of single 

channel FM signals is equal to

x =  S  (19)
N(1 - S/N)
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CHAPTER IV

DIGITAX compensators

Digital processing resembles the sampling operation. Both 

techniques are discrete-time procedures which handle data collected 

at specific instants of time. The clock period of digital systems 

corresponds to the sampling period of sampled-data systems.

It is, therefore, convenient to apply to digital systems the 

difference-equation and Z-transform methods, which are generally 

used in sampled-data systems.

The Canonical Filter

A difference equation of the type

can be implemented as shown in Figure IV. 1. It can also be written 

as

and expanded by introduction of an intermediate variable w, such

(1 + b^E-1 + b2E“2 ....+ bnE"n)y = (aQ + ajE-1 ...+ a ^ -1")*

where:
E”1 = Delay Operator (1)

(2)

that

(3a)

y = Aw (3b)
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Development of equations (3) and (4) gives

w - x - (bjE-1 + b2E"2 +  bnE“n)w (4)

y =■ (aQ + a^E”l + a2E“2 .... + a^E”® ^  (5)

Equations (4) and (5) suggest the implementation of Figure IV.2> 

sometimes called the "canonical filter" (Dl, C5) because it employs 

the minimal number of delay elements.

Examining Figures 17.1 and IV.2, we discern three basic components 

of digital filters namely delay-elements, multipliers and adders.

There is a good deal of freedom in the design of digital-filter 

hardware. First, there is the option of series or parallel arith

metic and second, there are many logic elements which, properly 

combined, will perform the functions of the basic filter-components.

In LSI implementations of small systems, parallel arithmetic is 

preferable. Thus, a third-order 12-bit filter would comprise 

thirty-six 1-bit delay elements, two 4-input 12-bit adders and 

seven 12-bit multipliers.

Shift-registers or flip-flops can be used as the delay-elements 

of the filter. Any flip-flop will serve the purpose, but D 

flip-flops offer the convenience of single-line inputs.

The organization of the Adders depends on the speed require

ments. Ripple-propagation carry is acceptable in slow machines, but 

various look-ahead carry-propagation schemes (F3) are employed in



CL
O

0 £ 
UJ
_JCL

I- 2
>■ uJ

Qir1 -J uj
9 111 J<  Q  UJ

39
cc
ul

® ® 0

®  3 ®  S ®  < ®

CC
UJ
H
-J
ll

J<
J-
3
5
oof
UJN
UJ-J
o
Q-

LL)
-J
CL

cC

CM

>M

lL



40

fast machines. Servo-control electronics generally fall into the 

former category; ripple-propagation carry should, therefore, suffice.

Multipliers are the most critical components of digital filters. 

They determine the versatility of the entire filter. Note that the 

configuration of the filter (Figure IV.2) is independent of the 

coefficients of the transfer function; it depends only on the order 

of the transfer function. The coefficients show up in the 

Multipliers and nowhere else.

It may be advisable to elaborate on this statement with regard 

to the order of the transfer function. To realize a third order 

function, we need three Delay-Elements, but a second order function 

can be generated by the same filter, if we include "zero" among the 

possible values of 33 and b3 » Thus an n-th order filter will take 

care of all transfer functions of order n and less than n.

The versatility of digital filters stands in vivid contrast to 

the restrictive nature of analog filters.

Appendix III demonstrates some of the limitations of analog 

implementations. Equations (14) and (17) of Appendix III state the 

realizability conditions imposed on the coefficients of the transfer 

function by the configuration of Figure 6 . To be reasonably rigor

ous, we would have to go one step further and determine the Bode- 

Sensitivity (B8) as the dependent variable of the coefficients of 

the transfer function. Sensitivity is in fact one of the reasons
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behind the demand for comparative evaluation of alternative 

realizations of transfer functions (Appendix III and references 

S5, S6).

Returning to the multipliers we observe that we want the 

product of a variable and a constant

ui(n) = kiWi(n) (6 )

This operation could be easily performed by primitive logic or 

a few shift-registers in combination with an adder. However, when 

designing LSI electronics, we must attempt to retain the intrinsic 

versatility of the digital-filter concept, in order to comply with 

the mass-production requisites of our technology. We turn, there

fore, to "Read-Only-Memories" (ROMs) for the implementation of 

multipliers.

The fabrication and the principle of operation of solid-state ROMs 

are discussed in references Bll and Nl. These devices are produced 

in large quantities in the form of "master-dice." Some custom pro

cessing of the dice is necessary, but its extent is limited to a 

metallization operation which determines the contents of the memory.

In our application, we use the independent variable w^(n) as 

the address and obtain the dependent variable u^(n) as the output of 

the memory. The constant multiplier designates the contents of a 

given memory. Thus, in response to the address w(n), a ROM labeled 

kj. will produce an output krw(n) and a ROM labeled ks will produce
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the output ksw(n). To change the transfer function, we simply 

discard the old set of memories and insert a new one in its place.

The above discussion leads us into the topic of Adaptive-Filter 

hardware. Reverting to Figure II.5b, we consider the problem of 

modification of transfer functions under the control of commands 

from the central computer.

One solution is self-evident: we equip the filter with a few

sets of memories and allow the computer to select the appropriate 

set.

Limited in scope as this method appears to be, it provides an 

answer to a real problem. As a missile moves through space its 

dynamics change because of variations in the density of the sur

rounding atmosphere and because of loss of balast due to expenditure 

of fuel. It is therefore necessary to have a repertoire of three or 

four transfer functions of the same basic structure, but slightly 

different coefficients. The selective-multiplier filter, proposed 

above, will provide these facilities.

The versatility of the adaptive process can be improved by a 

different realization of the multipliers. We consider the product

ui(n) = ki(n)wi(n) (7)

where w^(n) is the original multiplicand of equation (6), and k^Cn) 

is a variable multiplier. To implement equation (7), we provide a 

compound multiplier to handle two variables and a Multiplier-Register
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to store the number k^. The contents of the Multiplier-Register can 

be updated by the central computer, when necessary.

Concluding this section, we observe once more the great versa

tility of digital-filters. The canonical filter configuration can 

be used for all rational transfer functions; implementation of 

adaptive filtration is equally simple.

The Digital Integrator

Our list of filter elements comprises three basic components, 

called the Adder, the Delay-Element and the Multiplier. It is 

expedient to add to this list one derived component, namely the 

Integrator.

To clarify the meaning of digital integration, let the level of 

data on a particular line be

f (0) , f(l), f (2), ........ f (n).........  (8)

at instants

0, 1, 2 ............ n .......... (9)

Take a function g(n), such that

g(n-l) = f(0) + f(l) ........ + f(n-l) (10)

g(n) = f(0) + f(l) ........ + f(n-l) + f(n) (11)

g(n+l) = f(0) + f(l) ........ + f(n-l) + f(n) + f(n+l) (12)

The function g(n), defined by equation (11), is the digital integral

of the sequence f(n).
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To attain some proficiency in the manipulation of the digital 

integral, we refer to Figure IV.3 and write the sequence f(n) as

f(n) = f(t)6 (t) + f(t)6(t-l) + ... f(t)<5(t-m) ... (13)

where:

6 (t) = Dirac's delta-function.

Equation (13) is equivalent to the expression:

f (n) = f (0)6(t) + f (1)6(t-1) + ... f(m)6 (t-m) ... (14)

It is, therefore, evident that f(n-1) can be written as

f(n-l) = f (0)6 (t-1) + f(l)S(t-2) ... + f(m-l)6(t-m) ... (15)

= E-1f(n) (!6 )

where:
E“1 = The Delay-Operator

In all of the above operations we have tacitly assumed that 

f(n) is equal to zero at negative values of t. We will obviously 

design our hardware to behave accordingly; philosophical niceties do 

not enter into the argument.

The transfer function, H(n), of the integrator can be obtained 

by subtraction of equation (10) from equation (11):

g(n) - g(n-l) = f(n) (17a)

or, in accordance with equation (16),

g(n)(1 - E"1) = f(n) (17b)
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Hence:

-Sllll = H(n) = 
f(n) 1 - E-l

1 (18)

Utilization of the digital integrator in function generators 

and frequency modulators will be demonstrated below.

The Z-Transform and the State-Space Representation

Mathematical details of the Z-transform are discussed in 

references L7, F4, A3 and practically all textbooks on transform 

calculus. For our purpose it is sufficient to associate the z-vari- 

able with the exponential of the Laplacian s-variable (esT). Let f(t) 

be a continuous well behaved function and let us expose it to 

uniform sampling. The sampled function f*(t) can be written as:

where:

6(t) = Dirac's delta function 

1/T = Sampling rate 

m = Integer 

The Laplace transform of f*(t) is:

00 00

f*(t) = I mT)dt (19)
m=0 0

00 (20)
0

00

= Y. f(mT)e“sml (21)
m=0



47

Substitution "z" for "esT," we obtain the Z-transformation,
CO

F(z) - Y. f(mT)z_m (22)
m=0

depicted in line 5 of Figure IV. 3.

Of immediate interest in filter work is the transform of the 

delayed function f(t-T). By reference to line 3 of Figure IV. 3 and 

the reasoning employed in the derivation of equation (16), we 

find that
Z[f(t-T)] = z-1F(z) (23)

Comparing equation (23) with equation (16), we conclude that 

z~l can be identified with E~^, for the purpose of digital-filter 

synthesis.

It does not make any difference whether a rational transfer 

function is written as H(z“l) or H(E“^); any set of components and 

any configuration which satisfies one of these expressions also 

satisfies the other.

Flow diagrams in State-Space variables differ from the corre

sponding block diagrams of digital filters only in symbolism and 

terminology. A weighted link in the former is a multiplier in the 

latter, while a node is equivalent to an adder and the delay-elements 

are the same in both interpretations.

Figure IV.4 shows the flow diagram and the schematic circuit of 

the equation:
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y(n) + b3y(n - 1) + b2y(n - 2) + b3y(n - 3) =

= aQu(n) + a;ju(n - 1) + a2u(n - 2) (24)

State-Space interpretations are not unique. As with the previously 

discussed representations, there are many options. One convenient 

variation is shown in Figure IV.4. It is based on the following set 

of matrix equations:

xl(n) -bi 1 0

x2 (n) 83 -b2 0 1

x3(n) -b3 0 0

xl(n - 1 ) a 0

x2 (n - 1) + al
x3(n - 1 ) _a2_

u(n)

y(n) = xl(n)

(25)

(26)

Although one could standardize State-Space interpretations 

around Jordan's canonical matrices, no practical advantages would be 

derived therefrom. It is easier to transform from State-Space to a 

difference equation and then to the canonical filter of Figure IV.2.

Digital Differential Analyzer Implementations

Block diagrams of Digital Differential Analyzers (DDAs) resem

ble Analog Computer diagrams. DDA hardware resembles the digital 

filter components discussed in the preceding sections of this chapter.

Originally considered to be economical substitutes for regular 

digital computers, DDAs have been used occasionally as small, 

special-purpose machines. However, research-work in DDAs has been 

overshadowed by rapid progress in the development of conventional 

computers.
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The emergence of the LSI technology will stimulate further 

development of DDA techniques. LSI facilitates decentralization of 

control-installations and generally favors small-system implementa

tions. In their own right, DDAs have the advantage of compatability 

with Delta-Miodulation (S8 , P2, AI) , which is increasingly used in 

aircraft navigation. Furthermore, they can be used to advantage in 

Kalman Filters, since they are very effective in the solution of 

linear and non-linear differential equations.

To illustrate the programming of DDAs, let us take Riccati's 

equation with constant coefficients:

y ,f + ay' + by2 <s f(x) (28)

Transformation of equation (28) into the form

d(^) = -a(rĵ -)dx - by^dx + f(x)dx (29)

explains the derivation of the block diagram of FigureIV.5a. Figure

IV.5b depicts the same equation in the symbolism employed by

Monroe (M9).

Monroe and other writers (M4, S8 ) use DDA blocks of one type 

only, while we employ the integrator and all basic digital-filter 

components. The former approach is directed at the user of DDA hard

ware; our method is clearer and more flexible from the standpoint of 

the designer of digital-filter components.

The application of Integrators to Pulse-Width-Frequencv-Modula- 

tion is illustrated in Chapter V, The scaling and design of DDA 

systems is discussed in reference MA.
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Realization of Optimal Filters

The design of digital electronics generally allows for adequate 

margins against all reasonable noise phenomena. Nevertheless, some 

filtration may be necessary to cope with noise generated within the 

analog section (transducer) of a control system.

In simple cases, noise-effects can be taken into account in the 

design of the compensator. In complex cases, a separate module, 

designed around optimal-filtration principles, may be necessary.

Literature on optimal filters is still limited to computer 

algorithms for the optimization of stochastic data. This does not 

fulfill our requirements. We must go a step further in order to 

utilize LSI for the implementation of optimal filters. We will take, 

therefore, the best known filter algorithm (Kl, H3, R5) and attempt 

to adapt it to our needs. We will examine Kalman's equations in 

order to: 1) reveal their physical meaning, 2) introduce some

engineering simplifications and 3) justify the format of the 

covariance equation.

The following section is not self-contained. It should be read 

in conjunction with reference Kl.

Kalman's filtering algorithm is derived in the fifth section 

(Solution of the Wiener Problem) of his paper.^

1r . E. Kalman, "A New Approach to Linear Filtering and Predic
tion Problems," ASME Transactions, vol. 82, part B, March 1960, 
pp. 35-45, Ref. Kl.



He deals with a dynamic model described by the following set of 

discrete-time vector-equations:

x(t + 1) =» <j>(t + 1; t)x(t) + u(t) K(16)

y(t) => M(t)x(t) K(17)

where:

x(t) = State variables of random process (unobservable).

y(t) = Observable random variables.

<J>(t + s; t) = Transition matrix (deterministic).

M(t) «* Transformation matrix (deterministic).

The problem of Kalman's paper is formulated as follows: "Given

the observed values of y(tQ), •••, y(t) find an estimate x*(tjjt) of

x(ti) which minimizes the expected loss."

A partial solution of the problem is given by equations (21) 

and (2 2) of the above reference:

x*(t + ljt) = <f>*(t + 1; t)x*(t|t - 1) - A*(t)y(t) K(21)

<j>*(t + 1 ;t) = <p(t + 1; t) - A*(t)M(t) K(22)

where A* is a deterministic matrix which will be determined later.

Some insight into the meaning of the above two equations can be 

gained by combining them as follows:

x*(t + ljt) « <#>(t + l;t)x*(t|t - 1) + A*[y(t) - Mx*(t|t - 1)]
(30)

= <|>(t + l;t)x*(t|t - 1) + A*[y(t) - y*(t|t - 1)]
(31)

where:
y*(t|t - 1) = Predicted value of y(t); an estimate based on 

the information available at t - 1.
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Equation (31) shows that the estimate of x(t + 1) is given by 

the sum of two terms. The first term,

u = (|>(t + l;t)x*(t|t - 1) (32)

is the updated value of the previous best estimate, i.e. an estimate

of x(t + 1) based on information available at t - 1. The second term, 

v = A*[y(t) - y*(t|t - 1)] (33)

is a correction deducted from the information which became available 

at event t. It is the weighted difference of the actual reading y(t) 

and the projected reading y*(t|t - 1).

Equations (31) through (33) deserve some elaboration. Since

the transition matrix <j>(t + l|t) is deterministic, we do not detract

from the generality of the stochastic considerations by assumption 

of a unitary <j>. We can then write

x*(t + 1 |t) = x*(t|t - 1) + R[x(t) - x*(t|t - 1)] (34)

where: R = A*M.

Equation (34) tells us that the best estimate of x(t + 1) after t 

observations is equal to the best estimate of x(t) after t - 1  

observations plus the weighted difference of the observed and 

estimated values of x(t).

This is an intuitively obvious result. It resembles the conven

tional procedure for prediction of a stochastic variable on the basis 

of gradual influx of data. It is closely related to Bellman's Principle 

of Optimality and Swerling's approach to data-smoothing (S12).

Equation (30) could be taken as the starting point of the derivation
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of optimal filters. The essential problem is the derivation of the 

matrix A*, regardless of the preliminary steps.

Returning to Kalman's paper, we note that

x(t + 1 11) = <J>*£(t|t - 1) + u(t) K(23)

where:

‘x(tilt) = Error in the optimal estimate of x(ti) at event time t.
4* s 4, _ a*m

The covariance matrix P*(t + 1) is defined as the expectation of the

dot product of x(t + l|t):

P*(t + 1) = E5c(t + 1 1 t)5(' (t + 1 11) (35)

where:

E(x) = Expectation of x 

x 1 Transpose of x 

Substitution of equation K(23) into equation (35) yields:

P*(t + 1) = <f>*(t + 1;t)P(t)<f>** (t + 1; t) + Q(t) (36)

where:

Q(t) = Eu(t)u'(t)

Kalman's result of the same operation is stated as:

P*(t + 1) = d>*(t + l;t)P(t)d>' (t + l;t) + Q(t) K(24)

Subtracting equation K(24) from (35), we obtain the

difference V,

V - [<f>(t + l;t) - A*(t)M(t)]M'(t)A*'(t) (37)

Since we cannot explain the above discrepancy with the available 

equations, we proceed to equation K(25) and the derivation of A*.
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Kalman obtains A* from the orthogonality between 

x(t + 1) - A*$r(t J t - 1) and A*y(tjt - 1), by writing:
E[x(t + 1) - A*y(t|t - l)]$f'(tjt - 1) = 0

He thus arrives at:

A*(t) = <j)(t •¥ l;t)P*(t)M'(t) [M(t)P*(t)M,(t)]“ 1 K(25)

Substitution of equation K(25) into (37) discloses the identity 

V = 0. One can, therefore, assume that Kalman tacitly anticipated 

equation K(25), in his derivation of P*(t + 1).

The optimal estimate of x(t + 1) can now be expressed as 

follows:

x*(t+l|t) = <Kt+l;t){x*(tJt-l) + R(t) [y(t) - M(t)x*(t 11-1)]]• (37)

The implementation of the above principles must necessarily 

depend on the complexity of the control installation.

Where there are many observables (y), co-ordination of opera

tions by the Central Computer is necessary. Also, the solution of 

equations (37) through (39) is fairly complex (fl). One would, 

therefore, use the Central Computer for the execution of all 

calculations involved in the above Optima1-Estimate algorithm.

In self-contained loops, similar to those depicted by Figure 

II.4, there is only one observable. The matrix M(t) is, therefore,

R(t) = P(t)M'(t)[M(t)P(t)M,(t)]-l (38)

P(t+1) - <|>{P(t) - R(t)M(t)P(t)H* + Q(t) (39)
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a row-matrix and the product M(t)P(t)M' (t) is a scalar. This 

simplifies equation (38) by elimination of the matrix inversion 

operation.

To detect further simplifications, note that although <J> and P 

vary with time, they are not affected by the observable y. The 

covariance P(t) depends only on time and P(0), a pre-wired estimate 

of the initial errors. Note also that in practical cases M is a 

constant matrix, not M(t) as generalized by Kalman.

Thus, it is feasible to use pre-calculated sequences of numbers 

for Kb) as well as P(t), if the asymptotic values of these quanti

ties can be reached in a reasonable number of steps. A Read-Only- 

Memory, equipped with a program counter, will supply the necessary 

data at the appropriate time.

Where the dynamics of the system vary with time as described on 

page 42, different sets of memories can be selected by commands from 

the Central Computer.

Figure IV.6 depicts the implementation of the xl(t + 1 |t) 

component of a third order system. Quite a few elements are required. 

Discrete-transistor hardware would be awkward, but LSI implementa

tions are easily realizable. Thus, single-observable Kalman filters 

can be implemented without recourse to central-computer calculations; 

LSI enables us to perform the pertinent operations in situ.
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CHAPTER V

DRIVERS AND PULSE WIDTH-FREQUENCY MODULATION

Linearity and efficiency are important characteristics of power- 

drivers (W8). The linearity of the driver affects the dynamics and 

the accuracy of the entire system. Efficiency determines the excess 

power. Low efficiency calls for heat-dissipation accessories, while 

it imposes unwarranted demands on the batteries and other sources of 

energy.

Both of the above characteristics are particularly important in 

Aerospace applications. In a typical mission, the short-duration 

maneuver requirements are orders of magnitude higher than the 

prolonged stady-flight torquing-requirements.

In a discussion of efficiency (E), one must be guided by the 

overall efficiency (E).

T
E = (1/T) J E[i(t)]dt (1)

0

where: E[i(t)] = Efficiency as a function of load current,

T = Mission time, 

or simply ask for high efficiency at all power levels.

Class B modulation is obsolete, by now, because it is ineffi

cient at fractional loads. Modern systems employ Pulse-Frequency- 

Modulation (PFM) or Pulse-Width-Modulation (PWM). Analog versions of 

both techniques have been discussed in the literature. Reference MS
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is a complete treatise on PFM systems, including analog to PFM con

version techniques of exceptional simplicity and elegance.

Reference R7 provides some details of an Integrated-Circuit 

implementation of a PWM driver.

Our own interest lies in digital-input drivers. We present, 

therefore, all-digital versions of PWM and PFM and, subsequently, 

introduce the concept of Pulse-Width-Frequency-Modulation (PWFM), 

developed to overcome the limitations of the older techniques (see 

Figure V.l). Some component redundance is knowingly accepted, in 

order to simplify the explanation of PWFM.

Pulse Width Modulation

The transfer function of PWM can be expressed by the summation 

formula:

U(t - rT) » Unit step at t = rT 

T = Clock period 

bT = Width of the output pulse = kp 

p = Magnitude of the input quantity 

k = Proportionality constant 

n = m - 1 when rT < t < (r + b)T 

n => m (r + b)T < t < (r + 1)T 

Equation (2) displays the proportionality between the width of the

m n (2)

where
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output pulse and the magnitude of the input signal, Implementation 

of this principle is demonstrated in Figure V.2. The key-element 

of the basic width modulator is a 6-bit backward counter. The input 

gates (Gl through G6 and terminal D of FF1) accept a 7-bit word in 

sign-amplitude format (C8). Output pulses exit through one of two 

gates (G8 or G9), selected by the "sign" flip-flop FF1.

To examine the operation of the modulator, let a constant 

positive word of magnitude "p" be applied to the input gates. Also 

assume that gate G7 is initially in state zero and observe that the 

repetition rate of the triggers Tgl and Tg2 is 64 times higher than 

the clock rate.

Begin with event C4(l), which sets the counter into state p 

(minterm of the counter equal to p), forcing gate G7 into state
II.-* IIone •

Trigger event Tgl(l) puts FF2 into state "one," marking the 

beginning of the output pulse and enabling input gate G1Q, The 

output pulse exits through gate G9.

Event Tg2(l) feeds a pulse into the counter, reducing its state 

to p - 1 .

Tg2(2) sets the counter to p - 2, ... and so on, until event 

Tg2(p) finally brings the counter to state "zero," forcing G7 into 

state "zero."
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Event Tgl(p + 1) resets FF2, terminating the output pulse and 

returning the modulator to the state assumed to exist prior to C4(l).

The next operational cycle begins at C4(2).

The above width modulator is only one of three elements of a 

typical power driver. To go from the modulator to the driver, we 

must add two peripheral units, as shown in Figure V.3: a format

converter (Figure V.4) at the input and a power stage (Figure "V.5) 

at the output end of the modulator.

The Format Converter

The purpose of the format converter is to reconcile the "two's 

complement" code of the compensator with the "sign magnitude" code 

required by the width modulator. In anticipation of PWFM, we assume 

a 12-bit input to the driver, although we dealt with a 6-bit 

modulator above.

The input word is divided into various subsets (Figure V. 6) 

whose identity will be clarified as the argument develops. In the 

present context, the 5 least-significant bits (subset R) are used 

only for the purpose of proper conversion of negative numbers.

The logic-circuitry of the format converter operates in 
conformance with the following Boolean equations:

5 _ 11
x = TT Aj( Yi A-j) (3)

j-0 j=6

y± = SB± + SD± (4)
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Pulse Frequency Modulation

Pulse Frequency Modulation (P2, M5) Implies proportionality 

between the magnitude of an input quantity v(t) and the repetition 

rate f(t) of otherwise uniform output pulses. The output sequence, 

i(t), can be specified in terms of the Unit Step function U(t): 

m j 3
*<*> = Y  - Y  Tr> " U(t - x - Y  V I  (5)j=l r=l r=l

where: 6mj = Kronecker delta

Tr(t) = tr - tr_i = Spacing between consecutive pulses at t = tr

x = Width of the pulse in seconds.

The delta function representation 

“ m
i(t) = J k Y  6 (t - tr)dt (6)

0 r=l

is also legitimate, if its usage is restricted to frequency variation 

problems.

Analog Reset-Integrator implementations (M5) generally comply 

with the following equations:

f(t) = 1/T (7)

fcm
J v(t)dt =■ k, a constant (8)
tm-l

tm - fcm-l " TCt)

The proposed configuration of digital-input frequency modulators 

relies also on the principle of Reset-Integration, generally discussed 

in conjunction with Digital Differential Analyzers (M4, S8 ).
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Before we examine the operation of the modulator, it should be 

stressed that we will use set H of Figure ty«6 as the input signal. 

The six integer-order bits (set P) shall be disregarded in the 

following discussion of PFM.

Returning to set H, we refer to Figure V.7 which presents the 

block arrangement of the Reset-Integrator and to Figure V .8 which 

depicts the clock schedule of all Driver elements.

The input word is fed into the Increment-Register by clock Cl, 

while the contents of the Transfer-Register are simultaneously but 

independently shifted to the Augend Register. The sum of the 

Increment and Augend words, formed in the Full-Adder block, is 

clocked into the Transfer-Register by event C2.

An overflow occurs whenever the above sum exceeds the capacity 

of the registers. This condition is detected by the gate complex G3 

through G5, which performs the operation:

x » ABD + ABD, (10)

The output of G5 is clocked into the Overflow Flip-Flop at clock 

time C3. Gates G1 and G2 restore the sign-bit of the Transfer- 

Register to its proper value at C4, in accordance with the equations: 

S = AB(C4)

R «= AB(C4)

The polarity of the overflow can be taken from A or B, if required.

It should be noted that the re-setting of the sign-bit does not



-IS?
-\oO

-1̂ 5-

-l<0

CO

00

v9

id
cO

2S3tf>
Q
tro
?
HD
az
t
CQ
«

QJ

a:
ul
a 
d: o
-^2

h u <o:
u.

>

o :
Ul
Q
K i n  
o  H
c r S
lij
13
ul
hZ

CJ

oO

v9

cocQ
2
S3Co

H
3

3 0.
z1-lilin
>>CL

Z
0
hUU
Hul
Q
CC
oIL
Ul
(0
D

*
2
oz
0

5orD
10
L.
O

CO

CO

i9

oJcO

h*ullO
U.O

Q. (0 j-
fc 10in to 

Q 3 H
Z0
<

1(0
1(0

-If

-|C0

-Id-

- 1(0

z0Co

U1
in

H
D
CLz
2
u.
CL

Z
o
zo
intr
OJ
zz0
CJ1
<c
5CCoU-
C*o
u.
ulm3

“ISl
“If
-|cQ

-jd-

-IcJ

{£.

i— ui m
u. o
m
h

1- DO
U lin in 

Q  
3 
H
Z
13<

in
i-ul
in
j
<Zo
hoz
Du.
0 
hz
4t—<
D1
)r
3aZ
u.o
2
O
i—<o

inin<
u

\9I
>•
13
Ul

71



72

IW ice

to C,J



CM

o

1

CM

CM
U
C

CM

CO

n
CM

uc r

o

VJ
CM
O

rO
O
c z

r»
VJ
o

+

*cm

je
CMv-/

1

COVJcr*
cy>v—

CMv-»«—4

tz:

Ao
V_»

CP
» -

+
&
CM

a
( =

73

CMv _ /
CM
X P

I—

cO
N_/ '

CM
H *
CZ

CM

CM

l~

v-»
CM

jH*
CZ

AoV -/
CM

£ -c r

ll)
J
D
D
ul
£
u</)

uo
-J
0

ui
1  
I -  

• •

cO

0
\L



n

affect the remaining 5 bits of the Transfer-Register. The 

Transfer-Register contains the correct remainder at all times.

The operation of the Reset Integrator can be further clarified 

by reference to Figures V.l and V.9. At constant inputs, the 

modulator behaves like a frequency divider. Thus, with a fixed 

input of l(2-r), the output sequence is:
CO 00

0 ( 0  = f r  $(t - kNT)dt (12)
0 k=0

where: T = clock period
N = 2r

r + 1 = Capacity of the Integrator, expressed in binary bits. 

At inputs of 2m (2-r), with m < r, equation (12) becomes:
00 00

0(0 = I  L  6(t - kNT/2m )dt (13)
0 k=0

At inputs which are not expressible in simple powers of 2, some 

complications arise as a consequence of time and magnitude quanti

zation. The response to step inputs, sometimes called the "Indicial 

Function" (G4), can be written as:
00 _  00

e(t) = J  [ JT (5x2)6(t - kNT - xT) ... + (6xi)6(t - kNT - xT) ...

+ (6xN)6(t - kNT - xT)Jdt (14)
0 k=0

00 oo

= /  [  i  (<Sxv>6(t - kNT - xT)dt (15)
0 k=0 y=2 **

where: (5^) = Kronecker Delta

6 (t) = Dirac's Delta Function
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x = y if yi > mN, while (y - l)i < mN

x 4 y in all other cases

i = Magnitude of the input signal, pre-multiplied by N.

k, y and m are integers.

It is apparent from equations (14) and (15) that the output 

sequence is periodic in the 2r-th sub-harmonic with a period of 

Tz o (2r)T.

The distribution of the pulses within the interval Tz may, however, 

be non-uniform to the extent of one bit (Figure V.9).

Representation of the indicial transfer function by a set of 

algebraic expressions is inconvenient from the point of view of 

analytic procedures. There are, however, a few extenuating factors. 

First, the format of equation (15) is entirely satisfactory for

computer analysis purposes; Figure V.7 can be interpreted as an

elementary form of a Reset-Integrator algorithm. Second, if the 

clock rate is sufficiently high, fractional width-bit interpretations 

are permissible. An output sequence of the form

0001000100010___

is then approximated by the fictitious sequence

A i l l l l i l l l l i l4 4 4 4 4 4 4 4 4 4 4 4 4

In principle, this procedure is always possible since, contrary to

PWM practice, FWFM clocks can be run at almost arbitrarily high

frequencies.
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Deliberations on the topic of arithmetic representation, of the 

Reset-lntegrator response suggest a different implementation of 

this device.

Let us again consider the fractional-order input-set H, but 

with the assumption that it is in sign-amplitude format, not in 

two's-complement format. Treating the 5 magnitude bits as independ

ent signals, let us feed them into a bank of individually weighted 

counters, as shown in Figure V.10. The 2~* weighted bit is fed 

into an up-down counter, whose capacity is equal to 2+*; algebraic 

accumulation of 2* input pulses produces an overflow signal which is 

fed to the overflow register. All overflow lines are weighted at 

2®; the minterm of the summer is equal t o m s = A + B + C + D +  E, 

in regular arithmetic notation.

Limitations of PWM and PFM

In principle, pulsed systems are 100% efficient. In practice, 

performance degradation shows up in the form of resistive losses and 

finite slewing. Both effects can be controlled, within reasonable 

limits, by device and circuit design. They are, however, inter

dependent and require different trade-offs for different applications. 

Device-wise, resistive losses depend on doping.densities, horizontal 

geometry, vertical profile and metalization techniques. Storage 

phenomena and rise-time effects, evidenced as delays and deforma

tions of the edges of the pulses, are controlled by the same factors, 

but in a different manner. Horizontal geometry creates the greatest 

conflicts in the design of fast, power switches.



SIGN l/l6 1 /3 2

IQOWN

UP

UP-DOWN 
COUNTERS 
CAPACITY 2 ,4 - - - -32

O V E R  F L O ’C3

OVERFLOW REGISTER

FIG.V.10: ALTERNATIVE IMPLEMENTATION 
OF THE RESET INTEGRATOR.
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Undesirable effects can be controlled to a certain extent by 

circuit-design measures, but compensation to better than 25% of the 

original error is unfeasible, because of fabrication tolerances.

There may also be applicational constraints on the maximum 

slewing rate of the output transistors, some imposed by EMI 

regulations, others by cross-talk precautions.

Our interest is confined to transient effects. We derive in

Appendix I numerical expressions for the efficiency and linearity

of pulsed drivers.

Omitting resistive losses and assuming the rhombic approxima

tion of Figure V.ll, the efficiency E works out to be 

1 - 2T /3bT + Tf/3bTn — r O I O /-I /-\
= 1 - Tr/2bTQ + Tf/2bTo

where:

bT0 = Width of the control pulse 

Tr = Rise time of the output pulse

Tf = Fall time of the output pulse

bTc > Tr
For pulse width shorter than Tr, or equal to Tr, the efficiency is 67%. 

The linearity error is equal to

!e " - f(Tr " Tf)/bT0 (17)

when bT0 > Tr,
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and

le = 1 - |bT0(l + Tf/Tr)/Tr (18)

when bT0 < Tr.

The term "linearity error," as used above, applies only to PWM. 

PPM systems are highly linear over the entire range of operations, 

especially at low signal levels. They are, however, relatively 

inefficient and suffer from severe power losses at high current 

levels. To improve efficiency, we must increase the basic output 

quantum; this is the main reason why PFM has been displaced by PWM 

in power-driver applications.

Speaking of PWM, we can reverse the above statement regarding 

efficiency and linearity. PWM is practically 100% efficient at high 

power levels but is very non-linear at low signal levels. This 

means that PWM has a badly restricted dynamic range. The linearity 

error is of the order of 25% at pulse widths (bT0) comparable to the 

rise-time (Tr) of the output pulse.

In the system described by reference R7, the rise time is 

approximately .2 micro second. Operation at clock rates of 20 kHz. 

results in a linearity error of 10% at 1% and 87% at 0.1% of full 

output. This sounds well in general terms, but we must remember that 

Aerospace applications are somewhat unusual. Steady flight torquing 

is orders of magnitude below maneuver torquing. It is therefore 

necessary to maintain good linearity not only at 1% but also at 

0 .01% of full scale output.
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We can improve the linearity of PWM drivers by reducing the 

clock-rate, but there are solid arguments against this trade-off.
iOperation at high clock rates reduces the delay indeterminance; it 

also simplifies supply-line decoupling, an important aspect of over

all system engineering. Even more significant are the factors 

brought up in Appendix II, briefly outlined below.

Torquer coils are generally inductive, as the name implies. 

Therefore, some smoothing of the torquer current takes place auto

matically. The degree of smoothing depends on the clock-rate. The 

maximum ripple current (ir) is given by equation (16), Appendix II, 

as

ir = tanh(gT/4)

where: g = R/L = 5e.̂*e.s. ■Ig£.i.?.t-aft,c.e of the torquer coil.Series inductance

Thus, ir can be reduced to 5% of the average current, if the clock 

rate is chosen to be 10 times higher than R/L. Equally interesting 

is the effective time constant (tgf) of reactive loads under PWM 

excitation. By equation (26), Appendix II:

tef - a/s) + a/s)in. -<*BbI ?-€)..
b g T ( e S T  - 1)

where: b.T = width of the pulse.

It reduces to L/R at clock rates in excess of 3R/L, an intuitively 

obvious result once it is stated.

Combining the remarks concerning equations (16) and (26) of 

Appendix II, we can state that, except for efficiency,
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pulse-excitation of inductive loads at sufficiently high clock rates 

is equivalent to class A amplification, an important analytical and 

practical advantage.

Summarizing the advantages and limitations of pulsed systems, 

we conclude that a good servo driver should combine the efficiency 

of PWM with the linearity of PFM, while operating at relatively high 

frequencies. The concept of Pulse Width Frequency Modulation, 

described in the following section, has been developed by us to 

meet these requirements.

Pulse Width-Frequency Modulation

Having described all-digital versions of Pulse Width Modulation 

and Pulse Frequency Modulation we hardly need more than the princi

ple of superposition to explain the concept of Pulse Width-Frequency 

Modulation. We recall that the input word was divided into various 

subsets (Figure V.6 ). Two of these are of immediate interest: 

subset J weighted in positive powers of 2 and subset H in negative 

powers of 2 .

The somewhat unorthodox weighting scheme has been introduced

for narrative purposes. Using it, we can say that PWFM responds to

integer-order inputs in the width-modulation mode and to fractional-

order inputs in the frequency-modulation mode. Integer-order inputs

are fed directly to the basic width modulator, while fractional-
/

order inputs are accumulated in the Reset Integrator until they add
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up to unity and thus produce an overflow pulse which is subsequently 

summed with the prevailing integer-order input.

We turn now to Figure V.12, which shows a Reset Integrator 

tied into a width modulation system by means of a half-adder. Over

flow pulses from the Integrator are fed into the half-adder at clock 

time C3, except when inhibited by gate Gl. The latter event takes 

place only in case of saturation of the integer-order channel.

To follow the operation of the Pulse Width-Frequency Modulator, 

we assume that all registers are initially set to zero and we let 

the binary number

0000010,10000 = +2-i (decimal) 

represent the input quantity.

Subset J, the most significant seven bits,

0000010 = +2 (decimal) 

enters the Augend ports of the Half-Adder at clock time Cl(l), via 

the Format Converter.
Subset H, consisting of the five least significant bits and the sign 

bit,

0,10000 = +1/2 (decimal) 

is fed into the Reset Integrator, also at Cl(l). At clock time C3(l), 

an overflow pulse from the Reset Integrator may appear at the Addend 

port of the Half-Adder. In the present instance the Overflow line 

remains at zero, since the total count in the Integrator is less
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than one. Consequently, the Input to the Basic Width Modulator at 

clock time C4(l) is

0000010 = +2 (decimal).

It produces an output pulse of 2 width-units, one unit being equiva

lent to 1/2^ parts of the clock period. During the next operational 

cycle at time Cl(2), the input registers are in the same state as 

they were at clock time Cl(l). However, at C3(2), the overflow line 

is at "one," since the accumulated count is then equal to 1. Conse

quently, the input to the Basic Width Modulator is equal to 3 at 

C4(2), producing an output pulse of three units. During the third 

cycle a pulse of 2 width-units is again produced, followed by a 

pulse of 3 units during the fourth cycle. Thus, with an input of 

2-1/2, the width of the output pulses alternates between 2 and 3 

units (Figure V.l).

Incorporation of the second type of integrator (Figure V.10) 

into the Width-Modulation system is depicted in Figure V.13. It 

differs from the arrangement of Figure V.12 in three details: the

Reset-Integrator is fed from the Format-Converter, the Saturation- 

Inhibit block is slightly more complicated and a Full-Adder is used 

to combine the WM and FM channels.

If we now represent a constant input signal by the equation

i(t) = Sign, Xp2P“l + Xp_]2P-2 ... + x;j20 + x_i2“l ... + x_r2_r,

(19)
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then we can write the output of the modified PWFM system as
00 00

e = Sign, (xp2P-1 + ... x j ^ M j  U(t - kT) - £  U(t - kT - bT)]
k=0 k=0

+ x_x r ^  U(t - 2kT) - J] U(t - 2kT - bT)]
4^=0 k=0

+ x_r [ £  U(t - 2rkT) - £  ~ 2rkT - bT] (2 0 )
k=0 k=0

At this stage of development of PWFM, the two implementations are

considered to be comparible in merits and limitations.

To conclude this chapter let us examine the performance of an 

n-bit PWFM system operating at a clock-rate of 1/T seconds. Let 

n 1 + p + r 

where:

p = // of magnitude-bits in the WM channel

r = it of magnitude-bits in the FM channel.

The basic pulse-width unit (w) is

w = T/2P seconds. (21)

The worst case linearity error (ei) is

<el W .  - W - V / T  (22)
It sets-in at inputs equal to (2~P) of full scale and remains con

stant down to zero-level signals. Thus, the dynamic range of the

Basic Width Modulator is essentially infinite.

The dynamic range of a complete PWFM system is, of course, 

limited by the resolution of the input word (IR). This is equal to
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the fractional value of the least significant bit. Thus,

IK = 2“(r+P) of full scale, (23)

the standard quantization error of digital systems.
• >>

Efficiency, as interpreted in Appendix I, runs close to 100% at 

medium and high signal levels. It degrades slightly at low signal 

levels, the worst case being

= 1 - Tr/6w = 1 - 2P"lTr/3T (24)

= 96% when p = 6 , T = .2 micro sec., 1/T = 20 kHz.

To be realistic we must allow an extra 2% for resistive losses, and

thus arrive at an overall efficiency of 94%.

This concludes the argument for PWFM, a modulation system 

characterized by good linearity and high efficiency. Operation at 

sufficiently high clock-frequencies results in performance equiva

lent to that of class A amplifiers. Implementation of PWFM is very 

simple, especially within the framework of digital servo-control 

electronics.
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CONCLUSION

Approaching Servo-Control-Electronics from the extreme position 

of LSI for the sake of LSI, one would exclude analog implementations 

on the sole premise of storage-element requirements. Justifiable as 

this attitude might be, in the light of recent developments in the 

solid-state technology, it would detract from the strength of argu

ments based on the intrinsic advantages of digital techniques. These 

intrinsic advantages are as important as the indirect benefits which 

result from the LSI compatibility of digital circuits.

The past and present monopoly of analog techniques in servo- 

electronics is founded on traditional concepts of component economy. 

For every transistor in an analog circuit, we need at least 20 

transistors in a comparable digital circuit. The LSI philosophy 

rejects the component-economy approach. We are allowed an almost 

arbitrary number of devices, provided that we use them in 

trouble-free circuit-configurations.

Revision of Sampled-Data electronics is long overdue. The 

designer may be restricted in the choice of hardware for the input 

side of the computer, but he has full control of the output hardware. 

Once the input information has been converted into digital format, 

there is no reason to convert back to analog; the computer can feed 

directly into a PW or PWF modulator. The power economy of pulsed 

drivers is advantageous in many applications. The ripple effects can 

be reduced to negligible proportions in all practical cases.



91

The mass-productlon character of the Silicon Technology is 

responsible for many of the complications encountered in the 

development of LSI servo-control electronics. Problems of centrali

zation and standardization cannot be avoided. Standardization 

requisites are imposed by technological as well as economic factors.

At the circuit-fabrication level, we cannot limit ourselves to 

individual systems. Instead, we must evaluate the whole domain of 

servo-control applications and then design sets of different but 

compatible Detectors, Compensators and Drivers, to meet the demands 

of at least 60% of the total servo-electronics market.

Fortunately, digital systems are highly amenable to manipula

tions of scale factors. Provision of modular compatibility does 

not present any difficulty. The operating range of all modules 

proposed in Chapters Ill-rV can be varied by adjustment of 

metallization masks alone.

Fringe benefits of digital techniques have been revealed by the 

discussion of organizational details of the proposed set of digital 

electronics.

The simplicity of computer-aided loops is remarkable. A stand

ard Ratemeter feeds into the Central Computer which, in turn, 

activates a Width-Modulator. No peripheral hardware is required, 

conventional I/O facilities of the computer take care of all 

interface problems.
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Implementation of certain adaptive-control schemes is equally 

simple. In stationary systems, the coefficients of the compensator 

(Figure IF.2) are fixed, and the multipliers perform the scaling 

operation

u^ = k^x^, => a constant. (1 )

In adaptive control, the coefficients change with time and the

multipliers perform proper multiplication

ui = yi^i, (2 )
the variable y± originating in the Central Computer.

Where the repertoire of y comprises but a few predetermined 

numbers, computer control of y can be exercised by selection of an 

appropriate Read-Only memory. Similarly, in Kalman filtration, a 

program counter can be used to align the components of the 

covariance matrix.

Functional division into operations performed by the Central 

Computer and operations performed by special purpose hardware 

depends on applicatory requirements. Autonomous loop organization 

should be used wherever specifications permit.

Where the operation of a particular loop is predicated on 

receipt of information from the Central Computer, the organization 

of the system is determined by the transmission rate of this informa

tion. If it is low, the adaptive-control configuration of 

Figure II.5b should suffice. If it is high, recourse must be 

taken to the arrangement of Figure II.5a.
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Feasibility of digital techniques in servo electronics is 

demonstrated in Chapters III-V. Enough material is presented to 

reveal the intrinsic flexibility of the digital approach. Chapter V 

introduces the concept of Pulse-Width-Frequency Modulation. Circuit- 

level details are included in that chapter, in order to demonstrate 

the simplicity of PWFM hardware. The principle of PWFM is useful 

in applications which call for a combination of high efficiency 

and good linearity over a wide range of output power.
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RECOMMENDATIONS

In our presentation of LSI electronics, we have proposed a few 

ideas related to the organization and implementation of functional 

modules for servo-control. A list of unsolved problems would be 

endless. Optimization of IC elements requires massive effort. It 

took five research teams, working continually since 1962, to bring 

the TTL gate to its present state of development.

Research-wise, analog implementations are still as important as 

digital implementations. Aging effects will be reduced sooner or 

later to acceptable proportions by improvements in passivation 

techniques. The capacitor problem is debatable. Capacitors are 

incompatible with LSI, but we continue to use them for line- 

decoupling purposes.

We will list, therefore, a few pressing problems in digital 

and analog microelectronics.

The Speed-Power Product is a perpetual problem, especially in 

Aerospace applications. We want higher speed and lower power dissi

pation, irrespective of the state of the art. This includes the 

performance of individual transistors, complete gates and complete 

subsystems.

The Threshold Level of logic gates is related to speed problems. 

Less swing means higher speed. The question is: how much, and what

are i.he acceptable noise margins?
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A Vbe differential of 60 milli-Volts corresponds to current 

ratios of 1 0:1, yet commercially available gates are designed around 

noise-margins of about one Volt.

We must distinguish between internal gates and externally 

accessible gates of a system. Internal gates do not need the same 

noise protection as the external gates. It is therefore necessary 

to investigate the problem of trading noise margins against speed 

and power dissipation.

Digital filters, especially hardware implementations of digital 

filters require a good deal of research effort. Most of the papers 

which were published over the last few years dealt exclusively with 

the digitalization of analog filters and with computer algorithms 

of transfer-function equations. The emergence of LSI facilitates 

the implementation of small special-purpose machines, digital 

filters among them. This opens the question of optimization, 

including criteria of optimization. We are not greatly concerned 

with the total number of transistors or gates. The number of 

external terminals and cross-connections is far more significant; 

hence the importance of multi-function elements.

Stability of recursive implementations is a pressing problem. 

Stability of a difference equation does not imply stability of a 

filter which is subject to truncation errors. We are not neces

sarily interested in general solutions. Identification of configura

tions whose stability is insensitive to truncation errors is more 

important.
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Kalman filters warrant a thorough engineering investigation. 

Their theoretical value is beyond dispute, but more research is 

required to determine their performance under practical conditions. 

The assumptions of white noise and predetermined noise power are 

highly speculative. In adaptive filtration, the effect of the rate 

of the noise variations should be further explored.

Structural simplifications of Kalman filters may be feasible. 

For example, where a fixed value of the initial covariance matrix is 

assumed, there is no need to perform the covariance calculations in 

situ; the results can be taken from a pre-wired memory. Further

more, in some applications it may be permissible to work with the 

assymptotic values of the covariance matrix.

Digital Differential Analyzer realizations of servo-electronics 

deserve attention. The DDA principle provides easy means of imple

mentation of regression equations. It can be used to advantage in 

Ratemeters and Filters; its utility in PFM and PWFM Drivers has been 

demonstrated in Chapter V.

It is advisable to revise the symbolism and the structure of 

the elementary DDA cell. Current practice in these matters, exem

plified by references M9 and M4, is unnecessarily restrictive. The 

digital integrator, discussed in Chapter IV, is far more flexible, 

in our opinion.

Active RC Filters retain their importance and utility, in spite 

of current trends in technology.



One of the drawbacks of analog filters is illustrated by the 

material of Appendix III. The configuration of the filter depends 

not only on the order of the transfer function, but also on the 

magnitudes of its coefficients. It would be convenient, therefore, 

to have a computer program for the selection of feasible configura

tions of third and fourth order transfer functions.

A word of caution regarding over-simplification of the problem 

may be in order. A mathematician may claim that tandem arrangements 

of second order networks provide a "complete" solution of qhe 

compensator problem. This is a highly misleading statement from 

the point of view of engineering practice. Cross-cancellation of 

poles and zeros leads to gross errors and economic penalties. 

Performance criteria of active filters cover a number of factors 

which do not appear in the transfer function equation.

Noise effects in active filters require further research. For 

example, let us add another pole to equation (17) of Appendix III.

If we produce the extra pole at the input end of the amplifier, 

it will not attenuate the high-frequency noise of the amplifier. 

However, a low-pass network at the output end of the amplifier will 

attenuate the noise of the amplifier. The latter approach does not 

provide a practical answer; the complete solution of the problem may 

require considerable research effort.

Parasitic oscillations create the most pressing issue in all 

analog implementations, including active filters. Difficult as the
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problem Is, It can be solved by research in the area of device 

characterization. Currently used equivalent-circuit representation 

are too primitive to disclose the actual high-frequency performance 

of active devices. We need not be deterred by relatively complex 

representations, Appropriate computer programs will take care of 

the computational difficulties.
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APPENDIX I

EFFICIENCY AND LINEARITY OF DIGITAL DRIVERS

The performance of pulsed drivers is degraded by resistive 

losses and various transient phenomena. Resistive losses show up 

as finite Vce potentials across transistors connected in series with 

the load. They can be kept below 2% of the output power by appro

priate circuit design methods. Transient effects induce delays and 

deform the edges of the output pulses. Delays can be controlled by 

various methods, but sloping of the edges of the pulses is a matter 

of basic device limitations.

Therefore, we will confine our attention to errors due to 

finite slewing of the output waves. Using the rhombic approximation 

of Figure V.ll, we associate the slope of the leading edge with the 

rise-time Tr and the slope of the trailing edge with the fall-time

There are two possibilities: the control pulse may be longer

or shorter than the rise-time of the output pulse. In the first 

case:

Tf

i(t) = t/Tr 0 < t < Tr (1)
i(t) = 1 Tr < t < bT (2)
i(t) - 1 - (t - bT)/Tf bT < t < bT + Tf (3)

where
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i(t) = Output current or voltage (Resistive load)

T = Clock period 

bT “ Width of the control pulse.

The integrated current (charge) per cycle is:

q - bT + Tf/2 - Tr/2 (4)

while the energy per cycle (e) is:

e = bT + Tf/3 - 2Tr/3 (5)

and the supply-line energy per cycle (s) is:

s = bT + Tf/2 - Tr/2 = q (6)

We define the linearity error as

ef = (bT - q)/bT (7)

It is therefore equal to

e1 - l/2(Tr/bT - Tf/bT). (8)

The efficiency (E) is equal to the quotient of e over s, 

bT + Tf/3 - 2Tr/3
bT + Tf/2 - Tr/2 (9)

The corresponding equations for the second case are: 

q * (bT)2(l + Tf/Tr)/2Tr = s (10)

e =

ei = 1 - bT(l + Tf/Tr)/2Tr (12)

E = 2bT/3Tr

(bT)3 (1 + Tf/Tr)/3T2r (11)

With resistive loads, the voltage rise-time is considerably 

longer than the fall time. We can, therefore, simplify the above 

equations as follows:



Case

Case

_1: bT > Tr

ex o Tr/2bT (14)

1 - 2Tr/3bT
E = <15)

_2: bT < Tr

ei = 1 - bT/2Tr (16)

E = 2bT/3Tr (17)
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APPENDIX II

ANALYSIS OF PWM EXCITATION 

The current in an inductive load under PWM excitation (Figure 

Appendix II.1) can be evaluated by means of the convolution integral: 

t
i(t) = j v(x)y(t - x)dx (1)

0

where:
m n

v(x) = £  U(x - rT) - Y. U(x - bT - rT) (2)
r=0 r=0

U(x - rT) = Unit step at time x = rT (3)

n = m - 1, when mT < x < (b + m)T (4)

n = m 9 when (b + m)T < x < (1 + m)T (5)

y(x) = (1/L)exp.(-gx) (6)

g = R/L = 1/TX (7)

Substitution of equations (2) and (6) into (1) gives

m n
i(t) = Y  (1 “ e-gtegrT) - £  (i - e-gtegbTegrT) (8 )

1=0 X=0

- n _(e-gt) eg(m + 1>T - 1 - e8bT(eg<n + 1'>T - 1)m
egT - 1

(9)

Consider separately periods 1 and 2, defined by equations (4) 

and (5) respectively.
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Period 1; mT <  t <  (m + b)T, n = m - 1

i(t) = 1 - Ae-gt (10)

A » egmT(egT - egbT) + egbT - i
eST _ i U±;

The steady state current is obtained by taking the limit of 

equation (1 0) as m tends to infinity,

eST - eSbTLin. i(t) = 1 - e-Stt "  ~ ---------------   (1 2)
nr*-°° eg - 1

It varies between the limits:

i(mT) = 1 - egT - e--b-T (13)
SS egT - 1

and
gT gbT

i(mT + bT).,. = 1 - e-gbT S. --------------- (14)
SS egT - 1

The steady state ripple current is obtained by subtraction of 

equation (13) from (14), which yields:

irss - <1 - e-SbI> 8gI ~ 681,1Lrss ~ «= ■= / — — — — —  (15)
egT - 1

Differentiation of equation (15) with respect to "b" shows that 

the ripple attains a maximum at 50% duty cycle (b = 1/2), an 

intuitively obvious result. The value of irss at b = 1/2 reduces 

to the compact expression:

ir(b a 1/2) = tanh(gT/4) = tanh(T/4T1) (16)
As expected, the ripple current is a function of the relative magni

tudes of the load time-constant and the sampling frequency 1/T.
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Figure Appendix II.1 shows that the ripple Is equal to 5% of the 

average current when T = O.IT^.

To find an expression for the average current i(t), we must 

integrate equation (1 0) over period 1 , and a corresponding equation 

over period 2. Let

(m + b)T
Ql(t) - f i(t)dt, then (17)

mT

Ql(t) = bT - (A/g)(e"gmT - e“g(ni + b)T) (18)

Period 2: (m + b)T < t < (m + 1)T n ° m

Substitution of the above conditions into equation (8) gives

i(t) - Be"^ (19)

where:

(e8bT _ i)(e8(m + 1)T - 1)B = AS A2AS------------ LL_ (2 0)
eST - 1

Let:
(m + 1)T

Q2(t) = f i(t)dt, then (21)
(m + b)T

Q2(t) = (B/g)(e-g(m + b)T _ e~g(m + DT) (22)

We can now evaluate i(t) by addition of equations (18) and (22).

i(t) = (23)

. „ . e-enl (eSW ~ W  - e'gI)' (24)
gT(egT - l)

The steady state value of i(t) is "b," as it would be with a purely 

resistive load.



106

The concept of the "time constant" creates some difficulties. 

Since the definition which is used in conjunction with step-excita- 

tion does not apply, we will define the effective time constant 

(tef) as the time required for i(t) to attain 1 - e“l of its final 

value.

To evaluate tef, we divide the second element on the RHS of 

equation (24) by "b" and compare it to e“l.

e-gmT C e * * .-. 1) (1 - e-S.T), = e-lf or (25)
bgT(e8T - 1)

tef = mT = (1/g) + (l/g)ln. ^ gbT ~ 1 ) (1 ~ .e-~8-T>.
bgT(egT - 1)

(26)

For small values of gT, equation (26) simplifies to

tef = 1/g - L/R (27)
the conventional time constant of the load impedance.
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APPENDIX III

ACTIVE ANALOG RC FILTERS

Unlike their digital counterparts, analog filters are highly 

diversified. The configuration of analog networks varies not only 

with the order of the transfer-function, but also with the magnitude 

of its coefficients.

To arrive at a satisfactory realization, it is often necessary 

to synthesize a particular transfer-function by different procedures 

and to compare the merits of the resultant networks. While investi

gating the lack of commonalty in analog filters, we have discovered 

a new method of synthesis of active RC filters. We will present it 

here, although it appears to be out of context. It does illustrate 

the reasons for the diversity of analog implementations and it does 

present the derivation of the network which was used in the text of 

the thesis, for the purpose of comparison of analog and digital 

filters.

Let T(s) be the open-circuit voltage transfer function of a 

three-terminal, passive, RC network. Then,

T(s) . I M  (1)
Q(s)

where P(s) and Q(s) are polynomials in s. For reasons which will 

become apparent as the argument develops, rewrite equation (1) as

T(s) - -------- ^ --------  (2)
P(s) + [Q(s) - P(s>]
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Let the passive network be connected to two Ideal voltage-amplifiers, 

as shown in Figure 1. Denote the voltage at the output node of the 

passive network by VQ and observe that a voltage equal to kVD is 

applied to the ground node of the passive network. Using the 

notation of Figure 1, formulate the following equations:

Equation (4) shows that the numerator of the transfer function T(s) 

is immune to ground node feedback. Except for a gain constant, the 

numerator of the transfer function of the active filter is the same 

as the numerator of the passive network.

To shed some light on the denominator of equation (4), let us 

turn to a few equations of network topology. The concepts of 

"trees" and two-trees" are defined in references S5 and S6 . The 

open-circuit voltage transfer function of a two-port (Figure 2) is 

given by reference L6 as follows:

where:

Wab,cd " Sum two-tree admittance products, nodes a and b in 

one part, c and d in the other.

Two subsidiary equations are necessary:

(3)

P(s) + (1 - k)(Q(s) - P(s))
PCs) (4)

V2 U l 2 . 1 ' 2 '  ~ W1 2 ' . 1 ’2
Vi = w ltVVl (5)
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b]b2. • .bm " Sum of two-tree admittance products, 
nodes aia2 ...% in one part, 

nodes b;jb2 ...bm in the other. (6)

^aa,cd = ^a,cd (7)

In a three terminal network, terminals 1’ and 2' merge into a 

single terminal. Thus.

w12', 1'2 " wll\ 1'2 " 0 
Furthermore, since

wa,cd " wab,cd + wa,bcd (if b belongs to the set acd) (9)
equation (5) degenerates to:

Vo V/lO-ll Wio 1 '_£ = ..Air.,1.., = ---------  (10)
V1 wl,l' w12,l’ + wl,21'

Let us now stipulate that the polynomials P(s) and Q(s) be expressed

in terms of admittance products, in order that we may compare 

equation (10) with equation (2 ) and make the following 

identifications:

P(s) - W1 2>i* (11)

Q(s) - P(s) = Wif21' (12)

Substitution of equations (11) and (12) into equation (4) leads to

V,o w1 2.1 * (13)
Vin W1 2 ,l* + U  - k>Wl,2 1 '

Equation (13) displays the desired result. It shows that two-trees 

Wi 21' are susceptible to ground node feedback. Furthermore, since 

subsets Wi2>it and Wif2 1 ' are mutually exclusive subsets, equation 
(13) shows also that two-trees W 12 i» are immune to ground node 

feedback.
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The application of the above conclusions to the analysis of 

filters whose configurations conform to Figure 1 is self-evident. 

Utilization of equation (13) in the synthesis of active RC filters 

will be demonstrated below.

Example.

Synthesize the transfer function 0(s), 

k s2 + k s + 1
8(s) = m — ------ ------  , (14)

s2 + k^s + 1
1/2where: 0 < k^ < 2 ; 0 < k£ < 1 ; 0 < k3 < 2 (k£)

From past experience, or from tabulated data on passive RC 

filters (Bl, B2) select a network which can produce the complex zero.

One candidate is shown in Figure 3. The numerator polynomial 

of this network is

w*12,l' “ s2CjC2 + sg^(C^ + C2) + g]_g2 (15)
and the feedback-susceptible term of the denominator is

W*ij2i' c 8S2̂ 2 (̂ ^
Realization of the complex pole is predicated on the availa

bility of a subset 2 1 ' with odd and even powers of s (recall 

k2 4 1). It is therefore apparent that the desired transfer 

function cannot be realized by the network of Figure 3.

However, re-examination of equation (13) reveals an answer to

the dilemma: the network must be modified by addition of components

which change > ^ut not W*i2 ,l'* Multiplication of by

a constant is permissible.
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Figures 4 and 5 present two examples of such modifications. 

Both will realize the required transfer-function, at least for some 

values of the parameters k^.

The limiting conditions are: 

kik2 > k3 

for Figure 4, and

kz + k3 (k3 - k3) > 1 

for Figure 5.

Equations (17) and (18) illustrate the restrictive nature of 

analog implementations. It is clearly impracticable to work with 

universal implementations, although one can develop better methods 

of synthesis of particular functions.

Figure 6 depicts a complete solution of the problem:

(17)

(18)

e(s) = 5 (s /2000)2 + (s/5000) + 1 
(s/1000)2 + (s/1000) + 1

(19)
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