Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

EFFECT OF COLUMN DIARETER ON
 THE EREQUENCY RESPONSE OF
 WATER FLUIDIZED BEDS

BY
EDWARD C. MAIURO
A THESIS
FRESENTED IN PARTIAL FULFILLNENT OF THE REQUIREMENTS FOR THE DEGREE
OF
MASTER OF SCIENCE IN CHEVICAL ENGINEERING
AT
NEWARK COLLEGE OF ENGINEERING •

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages may not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, New Jersey 1968

AFPROVAL OF THESIS FOR

 DEFARTVENT OF CHENICAL ENGINEERING

 DEFARTVENT OF CHENICAL ENGINEERING NE:ARK COLLEGE CF ENGINEERING NE:ARK COLLEGE CF ENGINEERING
 BY
 FACULTY COMNITEE
 AFPROTED:
 \qquad

NDNARK, NET JERSEY JUNE, 1968

Abstract

The effect of column diameter on the frequency response of water fluidized beds was investigated.

Studies were made on four colums ranging from four to ten inches in diameter. Water was used to fluidize the beds which consisted of spherical glass beads . O185 inches in diameter. A trace solution of sodium chloride was sinusoically introduced into the beds. Inlet and outlet concentrations were continuously measured by an electrical conductivity recorder. Separate frequency response tests were conducted on the inlet calming section in an attempt to obtain the frecuency response of this region alone. Results of the tests were expressed as Bode plots.

As the bed diameter was increased, the system became more backmixed in nature. In an attempt to quantify this data, theoretical frequency response curves were calculated based on the mixing cell model. However, over the range of frequencies tested, poor correlation was obtained between this theoretical model and the empirical data.

ACKNONLEDGNENTS

The euthor wishes to express his indebtedness to Dr. Deran Fanesian for his guidance during the course of this study; and to his wife, AEnes Naiuro, for her encouragement and patient enduronce, as well as her aid in typing the manuscript.

TABLE OF CCNTENTS

Page No.
TITLE FAGE 1
AFFROVAL FAGE i1
ABSTRACT $1 i 1$
ACKNONLEDGENENTS iv
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES vili
INTRODUCTION 1
AFPROACH TO THE FROBLEM. 4
EXFERIMENTAL APPARATUS AND EGUIFMENT 6
THECRETICAL ANALYSIS 11
General Theory 11
Application of General Theory 14
RESULTS AND DISCUBSION 18
CONCLUSIONS 28
RECOMMENDATIONS 29
FCOTNOTES 30
BIBLIOGRAFHICAL ENTRIES 31
AFPENDIX 33
Instrument List 34
Rotameter Calibration Curve 35

TABLE OF CONTENTS (cont.)

Page No.
Experimental Data 36
Numerical Computations 38
Computer Program statement for Determination of N 42
Theoretical Computations of Total System Gain (AR) at Values of N from l-10 for the Four Colums (4 Time Constants). 46
Computer Program Statement for Determination of N_{2} 56
Computer Data for Determination of N_{2} 60

LIST OF FIGURES

Fleure No.
1 Experimental Equipment Layout 9
2 Column Assembly 10
3 Block Diagram of System 16
4 Typical Frecuency Response Test 19(High Frequency)
5 Typical Frequency Response Test 20(Low Frequency)
6 Experimental Amplitude Ratio Curves 22
7 Amplitude Ratio Curves (3.75 inch 23Column)
8 Amplitude Ratio Curves (5.75 inch 24Column
9 Amplitude Ratio Curves (7.75 inch 25 Column)
10 Amplitude Ratio Curves (9.75 inch 26Column)
11 Rotameter Calibration Curve 35

LIST OF TABLES

Table No.

2

5
6
Calculated Data
41
6 Computer Data for Determination of N_{2} (3.75 Inch Column)

7
Computer Data for Determination
61 of \mathbb{N}_{2} (5.75 inch Column)

Computer Data for Determination
62 of N_{2} (7.75 inch Column)

Computer Data for Determination 63 of N_{2} (9.75 inch Column)

1 Experimentally Determined Overall System Amplitude Ratio (3.75 inch Column)

Experimentally Determined Cverall System Amplitude Ratio (5.75 inch Column)

3 Experimentally Determined Overall System Anplitude Ratio (7.75 inch Column)

Experimentally Determined Cverall System Amplitude Ratio (9.75 inch System
Column)

Page No.
36

36 37

37

INTRODUCTION

Scaling up results from small to large size fluidized beds is an important and difficult problem. It has been recognized that large units generally give results differing from small scale laboratory units. A basic problem facing the designer of a fluidized system is that the flow behavior of large beds differs substantially from small units. (1)

The purpose of this study was to investigate the effect of colum diameter on the frequency response of the fluidized bed.

The dynamic characteristics of tubular flow systems, including fluidized systems, may be conveniently expressed in terms of frequency response data. The frequency response method yields results which are reproducible and relatively easy to compare with those cbtained from theoretical models.

In frequency response testing a sine wave of a given amplitude and frequency is used as the input signal to the system being studied. The output signal should also be a sine wave with the same frequency; but the amplitude and angular displacement of the wave will be altered in accordance with the dynamics of the system. The ratio of the output wave amplitude to the input wave amplitude, coupled with the angular displacement between the two waves constitute the data of frequency response.

In reality, the flow in a fluidized bed, as well as most other physical processes, is extremely complex and non-linear in nature. However, a system will respond linearly for a given amplitude and range of frequencies. A linear system is one that may be described by Inear differential equations. In frecuency response terms, a system is linear if the frequency of the output wave equals the frequency of the input wave. Therefore, to employ the frequency response technique readily, it is imperative to remain within the linear bounds of the system.

The purpose of this study was to investigate the effect of bed diameter on the frequency response of fluidized beds, not to develop a rigorous fluid bed model. In an attempt to quantify the empirical data obtained, a rather simplified model was used, the mixing cell model. In this.model, one attempts to account for the longitudinal mixing by assuming that the bed acts as a series of noninteracting perfect mixers.(2) Theoretical frequency response curves were calculated based on the mixing cell flow model. These theoretical curves were then compared to the experimental curves to arrive at the number of perfect mixers for each column.

Much work has been performed on the dynamic analysis of fluid bed systems by step, pulse and frequency response techniques. However, an exhaustive search of the literature has revealed that the bulk of this work has been performed on small size columns, 4 inch diameter and loss. There is a lack
of data for a broad range of column diameterg. It is for this reason that the 4 to 10 inch beds were evaluated.

A listing and summarization of previous work on Ionsitudinal dispersion of liquid in fixed and fluidized beds is presented in AIChE Preprint 33E, November 26-30, 1967.

APPROACH TO THE FROBLEM

Theoretical responses were calculated for each column over the range of frequencies tested by use of the mixing cell model. A computer was employed in the calculation of the theoretical responses for N perfect mixing cells. Bode plot data was obtained for values of N ranging from 1 to 200.

A frequency response analysis was performed on each column and the results plotted on Sode diagrams. These experimental results were then compared to the theoretical frecuency responses.

Each column consisted of two sections, the packed calmning section and the fluidized section. As it was the intent of this work to develop a scale-up correlation for fluidized beds, only the response of the fluidized section was desired. Therefore, the inlet conductivity cell was placed as close as possible to the base of the fluidized bed. (See Fig. 2) However, due to the construction of the cell, the signal measured was not the conductivity directly at the base of the fluidized bed. But rather, it was the conductivity $3-3 / 4$ inches below the fiuidbed base. It was therefore necessary to determine the response of this section alone. The response of the fluidized section. could then be obtained by subtracting the packed calmning section response from the overall system response.

To obtain the response of the calmning section alone, one must run frequency response tests on each column with the fluidized section emptied. This was attempted. However, when the
glass beads were removed from the columns, air bubbles formed on the conductivity electrodes. This resulted in completely meaningless conductivity readings and prevented experimental determination of the calmning section response. This difficulty necessitated a different approach to the problem. As experimental determination of the calming section response was impossible, a theoretical response based on the mixing cell model was calculated for this region.

EXPERTMENTAL APPARATUS AND EQUIFMENT

The experimental equipment included a low frequency sine Wave generator which applied a $3-15$ psig. air signal to a Mason Neilon control valve. This control valve was placed in the tracer inlet line. The control valve's opening and closing varied the amount of salt solution feed into the fluidized bed, thus causing the electrical conductivity of the bed to rise and fall.

The apparatus used for the experimentation is shown in Figures 1 and 2. The range of column diameters studied required the construction of an apparatus which was adaptable to all four columns.

Two 14 inch square steel plates were drilled and tapped at the centers to afford an entrance and exit for the liquid. Also, each plate was covered with soft rubber. This rubber functioned as a gasket at the plate and column interfaces. Each colum consisted of two sections, the 8 inch calmning section and the 4.5 foot fluidizing section. In assembling each column, the calmning section was set down on the plate and filled with Raching Rings. A easket and bed support screen were then placed over this first section. Another gasket followed and next the fluidizing section was bolted and clamped
to the calming section. The entire column was then clamped between the two steel plates. Dow Hi-Vac grease was applied between the gaskets, column and plates to insure a water-tight seal. The glass beads for the fluidizing section were added after the column was assembled, through the fitting in the top plate. To change columns with this system, only loosening the clamps and a replacement of the column was required. All four columns were made of Lucite with a wall thickness of $1 / 8$ inch.

The apparatus was constructed so that one conductivity cell was placed within the calmning section, and measured the conductivity at the base of the fluidized bed. The second conductivity cell was lowered through the top plate and positioned at the upper edge of the fluidized bed. These two cells transmitted the signals to a Beckmann Honeywell two pen electrolytic conductivity indicator recorder. The recorder range was $0-10,000$ micromhos, with a Inear 0-10 scale.

A pneumatic recorder was positioned in parallel with the control valve as a check on the air signal being supplied to the valve by the sine wave generator.

A saturated solvition of sodium chloride was used for the trace signal. The salt solution was stored in a 55 gallon polyethylene drum. This solution was delivered to the bed by means of a centrifugal pump which provided a nearly constant head of 22 psig.

The fluidizine water for the system was checked for variations in static pressure, only slight fluctustions were noted. The water was fod into the columns by e $3 / 4$ inch pipe through a rotameter. The overflow was carried to the sewer by a one inch rubber hose. The rotameters used for the fluid-i-zing liquid were two Fischer-Forter rotameters. These meters were rated at 2.7 and 8.8 gallons per minute at 100% flow. The meters were calibrated and found to be Iinear.

FIGURE 1
EXPERTMENTAL EQUIPMENT LAYOUT

Ficure 2

THEORETICAL ANALYSIS

General Theory

In the mixing cell model the system is represented as a series of finite, perfectly mixed cells. By definition the concentration in a perfect mixer has a value at every point equal to the concentration at the outlet C_{0}. For continuous flow through the mixer we have the material balance:

$$
C_{1}=C_{0}+T \frac{d C_{0}}{d T}
$$

where T is the average time of residence (volume of the mixer divided by the constant volumetric flow rate). If C_{1} is varied sinusoidally, then the value of the signal at any place in the system is given by:

$$
\begin{equation*}
c=x e^{j w t} \tag{2}
\end{equation*}
$$

X is a complex number which can be represented by a radius vector in the complex plane, having a certain length (magnitude) and a phase angle with respect to the positive real axis. In the frequency response analysis, the relationship between two signals C and their vectors X is of interest. It can be expressed by the ratio of their respective magnitudes (amplitude ratio) and the difference between their respective phase angle (phase leg). If the concentrations for the two sienals are recorded, the complex ratio between X_{0} and X_{i} is called the harmonic response
function of the entire system (transfer function). This function depends on the frequency w of the applied signal in a way which is characteristic of the system.

Substitution of equation 2 into equation 1 yields:
$x_{i}=x_{0}+j w T x_{0}$
and for the transfer function of one perfect mixer

$$
\begin{equation*}
\frac{x_{0}}{x_{1}}=\frac{1}{1+j w T} \tag{4}
\end{equation*}
$$

The value of the amplitude ratio (AR) and phase angle (\varnothing) are:

$$
\begin{aligned}
& A R=\left(1+w^{2} T^{2}\right)^{-\frac{1}{2}} \\
& \phi=-\arctan (W T)
\end{aligned}
$$

Applying the result of equation 4 to a system containing N perfect mixers in cascade having equal times of residence (T / N), the transfer function is:

$$
\begin{equation*}
G(s)=\left[\frac{1}{\frac{T}{N} s+1}\right] N \tag{5}
\end{equation*}
$$

$G(j w)=\left[\frac{1}{\frac{T}{N} j w+1}\right] N$
where

$$
\begin{aligned}
& \mathrm{T}=\text { Time Constant (min.) }=\mathrm{V} / \mathrm{q} \\
& \mathrm{~V}=\text { Total volume of } \mathrm{N} \text { mixers (ft } 3 \text {) } \\
& \mathrm{q}=\text { Flow rate (ft } 3 / \text { min.) } \\
& \mathrm{N}=\text { Number of perfect mixing cells }
\end{aligned}
$$

From the transfer function, the amplitude ratio and phase angle may be obtained.

$$
\begin{align*}
& G(j w)=\left[\frac{1}{\sqrt{1+(w T / N)^{2}}}\right]^{N} \tag{6}\\
& G(j w)=-N \arctan (w T / N) \tag{7}
\end{align*}
$$

where

$$
\begin{aligned}
G(j w) & =\text { amplitude ratio }=A R \\
G(j w) & =\text { phase angle }=\varnothing \\
& =\text { frequency (cycles } / \mathrm{min})
\end{aligned}
$$

When a sinusoidal disturbance is introduced into a flow system, the outgoing signal is smaller in amplitude and exhibits a phase lag with respect to the entering signal. In general, the amplitude ratio is ≤ 1 and the phase angle ≤ 0.3

Application of General Theory

The system studied consisted of two recions, the packed calming section and the fluidized section, each with its own transfer function. The mixing cell model assumes that the response of each element is independent of conditions in the other elements. The elements are considered non-interacting and the total system transfer function is the product of the individuel transfer functions.

$$
\begin{equation*}
\dot{G}=G_{1} \cdot G_{2} \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
& G=\text { total system transfer function. } \\
& G_{1}=\text { packed calmning section transfer function } \\
& G_{2}=\text { fluidized bed transfer function }
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \mathrm{AR}=A \mathrm{R}_{1} \cdots \mathrm{AR}_{2} \\
& \varnothing=\phi_{1}+\varnothing_{2}
\end{aligned}
$$

Amplitude ratios will be utilized throughout this discussion, to obtain the number of mixing cells in each section. Values for N can be obtained from the phase angle curves of Bode plots, since a system with \mathbb{N} mixing cells exhibits a phase lag of
$N \pi / 2$ as the frequency approaches ∞. However as real systems exhibit dead time, which effects the phase angle but not the amplitude ratio, the experimental determination of N from phase angle diagrams was not attempted.

$$
\begin{align*}
& A R=A R_{1} \cdot A R_{2} \\
& {\left[1+\left(\frac{W T}{N}\right)^{2}\right]^{-N / 2}=\left[1+\left(\frac{w T_{1}}{N_{1}}\right)^{2}\right]^{-N_{1} / 2} \cdot\left[1+\left(\frac{w T_{2}}{N_{2}}\right)^{2}\right]^{-N_{2} / 2}} \tag{9}
\end{align*}
$$

where

$$
\mathrm{N}=\text { number of mixing cells in total system. }
$$ This value is determined from the experimental frequency response curve of the total system.

$N_{1}=$ number of mixing cells in section 1 (packed calmning section)
$N_{2}=$ number of mixing cells in section 2 (fluidized bed)

$$
T, T_{2}, T_{3}, W
$$

$$
=\text { are known quantities. }
$$

$$
\mathrm{N}, \mathrm{~N}_{2}
$$

$$
=\text { unknown quantities }
$$

but

$$
\begin{equation*}
\mathbb{N}=N_{1}+N_{2} \tag{10}
\end{equation*}
$$

therefore

$$
\begin{equation*}
N_{2}=N-N_{1} \tag{11}
\end{equation*}
$$

Fleure 3
BLOCK DIAGRAM OF SYSTEM

Equations 9 and 10 comprise two equetions in two unknows which were solved for \mathbb{N}_{2}, the number of mixing cells in the fluidized region. The solution was performed by a trial and error technique on a computer. This calculation yielded the amplitude ratio of the fluidized bed and in turn the number of perfect mixing cells.

RESULTS AND DISCUSSION

The frequency response tests were conducted to obtain the total system amplitude ratio curve, from which by a comparison with the theoretical model N could be obtained.

These tests were run on each colurn over a range of frequencies ranging from 7.50 cycles $/ \mathrm{min}$ to 0.12 cycles $/ \mathrm{min}$. The input signal to the bed was sinusoldal in shape, while the outlet wave wes less sinusoidal, in appearance it was more triangular. This effect was more noticeable at the lower frequencies. Typical experimental frequency response tests are presented in Figures 4 and 5. The system responded linearly over the range of frequencies tested. Figures 7, 8, 9, 10 are amplitude ratio plots obtained from the experimental data superimposed over the theoretical amplitude ratio plot for the N value which best fit the experimental data. Figure 6 contains the experimental amplitude ratio curves for all four bed diameters, computed from curves similar to those in Figures 4 and 5. It can be seen from Figure 6 that for a given frequency as bed diameter increases the amplitude ratio decreases.

Ferfect plus flow is postulated for a system where no axplitude attenuation of the incomine sinusoidal occurs. A plug flow system can be thought of as consisting of an infinite number of infinitesmally small perfect mixine cells, which would result in

TYPICAL FREQUENCY RESPONSE TEST
Figure 4

TYFICAL FREQUENOY RESPONSE TEST
(LCN FREQUENCY)
Figure 5
an amplitude ratio equivalent to unity. For a given frequency as the amplitude ratio decreases, more attenuation of the input sinusoidal, the system becomes less plug flow in nature, i.e., exhibits more backmixing. Hence, the experimental data tabulated in Figure 6 indicates that an increase in bed diameter results in increased backmixing. Kramer and Alberda ${ }^{4}$ have demonstrated that the frequency response diagrams of real systems generally Ile between those for one perfect mixer and for perfect plug flow. However, it is not at all necessary that the diagram for a real system coincides with one for a certain number of perfect mixers.

A theoretical model, the mixing cell model, was employed In an attempt to quantify the empirical data obtained. However, attempts to represent the mixing phenomena of the total system by the mixing cell model proved unfruitful. The model yielded amplitude ratio curves whose shapes did not agree with the plots of the experimental values. It is perhaps significant however, that the curves did approach each other at the highest test frequency, 7.5 cycles $/ \mathrm{min}$. It seems logical to test at still higher frequencies to see if this trend is continued. This was attempted. A sinusoidal input of 15 cycles/min was introduced into the system. However, the noise inherent in the system obscurred the outlet sine vave making a computation of the amplitude for this higher frequency impossible.

Hence, the theoretical values of N which yielded the best fit to the experimental data were chosen for the number of mixing cells for the total system, fluidized section and packed calmning section.

It is felt that better correlation between model and experimental data could have been obtained, if the response of the empty column could be obtained. It appears that at the low flow velocity utilized, a correction to the amplitude is required for interaction with the bed support and column wall. As was mentioned previously, this was attempted. The low flows had to be maintained due to the fact that the small beads chosen, . 0185 in. diameter, were easily driven from the column. At these low flows, air bubbles entering the system dissolved in the water would accumulate on the conductivity electrode. This was not too severe a problem when beads were in the column, as they would circulate through the cell and displace the air bubbles. But When attempts were made at running the column empty, to measure entrance, column wall and bed support responses, bubbles accumulated on the electrodes and made conductivity measurement impossible.

The interaction with the bed support and column wall undoubtedly contributed to the disagreement between empirical results and theoretical predictions.

The values of N for the total system are listed in tables 6-9 As the N values were extremely low, computation of meaningful N_{1} and N_{2} values was impractical.

CONCLUSIONS

For the flow rate employed in this study, as bed diameter increased the flow pattern in the bed became less plug flow in nature and exhibited increased backmixing.

The fluidized and packed bed systems used in this study were Iinear.

It is believed that the poor correlation between experimental data and the theoretical mixing cell model, is in part due to the interaction of the wall and bed support.

The theoretical model used did not accurately describe the mixing phenomena in the fluidized beds studied. It is obvious that a different model, perhaps more sophisticated than the mixing cell model is required to describe the system.

RECOMMENDATIONS

1--

This study may be performed using a considerably larger bead size. This will allow the use of higher flow rates, without the fear of displacing beads from the column. fit hizher flow rates air bubbles do not accumulate on the conductivity cells, which tend to introduce noise into the system. Also, the higher flows and the resulting lower noise level will allow testing at higher frequencies. At the higher flow rate it will also be possible to test the effect of the erapty column response, the wall response and bed support response, without having air bubbles hindering the measurement.

2--
A study similar to the one performed over a range of flow rates may be of value.

3--
Utilization of a different model perhaps the axial diffusion model in arriving at a scale-up factor for fluidized beds.

FOCTNOTES

lolaf Winter, Gas Mixing In Fluidized Beds: Nodel ExperimentsFor Scaling-Up Furposes, Chemical EngineerinE Frogress,Tolume 62, 1966, pp. 1-9
$2_{\text {Grey }}$ R. $\frac{I}{}$ and J. W. Prados, AICHE Journal 9, 211 (1963)
$3-4$ H. Kramers and G. Alberda, Frequency Response of Continuous Flow Systems, Laboratorium voor Fhysische Technologie, Tech- nological University, Delft, Netherlands, June, 1953
5P. V. Danckwerts, Chem. Eng. Sc1. 2, 1 (1953)
$6_{\text {M. }}$ Leva, Fluidization, N. Y. NeGraw Hill, 1959, pp 64-87

BIBLIOGRAFYICAL ENTRIES

Ferlmutter, Daniel D., Introduction to Chemical Frocess Control, New York, John Wiley \& Sons Inc. 1965

Liang-Tseñ Fan, Yong-Kee Ahn, Frequency Response of Tubular Flow Systems, Chem. Ens. Frogreas, Frocess System Eneineering

Barnstone L.A. and Harriot P., Frequency Response of Gas Mixing in a Fluidized-Bed Reactor, AIChe Journal, Vol. 13, No. 3 May 1967, pp. 465-474

Adler I. L. and Happel J., The Fluidization of Uniform Smooth Spheres in Licuid Media, Chem. Eng. Progress, Vol. 58 (1962)

Gray, R. I., The Dynemics of a Facked Gas Absorber by Frequency Response Analysis, AIChe Journal, Vol. 9, No. 2, March 1963, pp. 211-215

Gabor J. D., Axial Solids Mixine In Fluidized-Packed Beds, Chem. Ene. Frogress, Vol. 62 (1966)

Staffin H. K. and Staffin R., Approximatinx Transfer Functions from Frecuency Response Date, Instruments and Control Systems, Vol. 38, February 1965, pp. 137-144

Harriot, F., Erocess Control, New York, NcGraw-Hill, 1964
Coughanowr, D. R., Process Systems Analysis and Control, New York, McGraw-Hill, 1965

Caldwell, W. I., Coon, G. A., and Zoss, L. M., Frequency Response for Frocess Control, New York, McGraw-Hill, 1959
Chemical Engineer Handbook, Third Edition, John H. Perry (ed.) New York: McGraw-Hill, 1950

Heimlich, B. N., and Gruet, I. C., Transfer Function Analysis of Fluidized-Bed, Chern. Eng. Prozress, Vol. 62 (1966) pp. 28-34

Littman, H., and Stone A. P., Ges-Farticle Heat Transfer Coefficients in Fluidized Beds by Frecuency Response Techniques, Chern. Whe. Frogress, Tol. 62, (1966) pp. 47-55

Gallier, P. W., Sliepcevich, C. M., and Fuckett, T. H. Eractical Limitations on Correlation Technioues in Determining Frocess Frequency Response, Chem. Ene. Erogress, Vol. 57 (1961) pp. 59-67

Cearlske, N. H., Transient 7 . Frequency Response in Analyzing Chemical Frocess Systems, Vol. 57 (1961) pp. 53-58

Othmer, D. F., Fluidization, New York, Reinhold Publishing Corporation (1956) pp. 1-19

APFENDIX

Page
Instrument List 34
Rotameter Calibration Curve 35
Experimental Data 36
Numerical Computations 38
Computer Procram Statement for Determination of N 42
Theoretical Computations of Total System Gain (AR) at Values of N from l-10 for the Four Columns (4 Time Constants) 46
Computer Froeram Statement for Determination of N_{2} for the Four Columns (4 Time Constants) 56
Computer Data for Determination of N_{2} 60

INSTRUPENT IIST

1. Conductivity Cells, Type Cel-VH2OKFT and Cel-yH2OKFT-Y-15 Beckman Instruments
2. Ultra Low Frequency Sinusoidel Signel Generator, Model SG-lolf, Frocedyne Associates Inc., New Brunswick, New Jersey
3. Consotrol Controller, Mode 58, Foxboro Co. Foxboro, Massachusetts
4. Control Valve, Model \#37-24681, Mason Neilon Inc., Norwood, Massachusetts
5. Electrolytic Conductivity Recorder, Nodel Yl5302816-02-99 Beckmen/Honeywell
6. Rotameters -- Three -- . $68 \mathrm{gmm}, 2.7 \mathrm{gmm} ., 8.8 \mathrm{gmm}$, Fischer-Porter, Warminster, Fennsylvania.

Figure 11
ROTAMETER CALIBRATION CURVES

TABLE 1

EXFERIMENTALLY DETERAINED CYERALL SYSTEM ANFLITUDE RATIO
3.75 INCH COLUMN

$w($ Cycles $/ \mathrm{min})$	Amplitude Ratio $(A R)$
7.50	.24
3.75	.38
1.88	.43
0.94	.69
0.47	.86
0.23	.94
0.12	.96

TABLE 2
EXPERIMENTALLY DETERNINED OTERALL SYSTEF AMFLITUDE RATIO
5.75 INCH COLUMN

w (Cycles $/ \mathrm{min}$)	Amplitude Ratio (AR)
7.50	.19
3.75	.31
1.88	.35
0.94	.51
0.47	.76
0.23	.86
0.12	.92

TABLE 3
EXPERIMENTALLY DETERMINED OVERALL SYSTEM AMPLITUDE RATIO
7.75 INCH COLUMN

$w(C y c l e s / m i n)$	Amplitude Ratio (AR)
7.50	.15
3.75	.20
1.88	.26
0.94	.46
0.47	.69
0.23	.82
0.12	.85

TABLE 4
EXPERIMENTALLY DETERMINED OVERALL SYSTEM AMPLITUDE RATIO
9.75 INCH COLUMN

$w(C y c l e s / m i n)$	Amplitude Ratio (AR)
7.50	.09
3.75	.12
1.88	.23
0.94	.64
0.47	.76
0.23	.79

NUMERICAL COMFUTATICNS

Time Constant Calculation

Danciwerts 5 has shown that if a volume V is fed with a flow rate q, regardless of the transfer function of the region, the average time of travel through the region is V / q. This is the time constant (T) for a mixing process.

The time constant of the overall system studied is equal to the sum of the time constants of two sections.

$$
\begin{aligned}
T & =T_{1}+T_{2} \\
T & =V / q \\
\mathrm{Q} & =\text { constant to each section. }
\end{aligned}
$$

Hence, in order to calculate the time constants for each section it is necessary to compute the void volume in each section.

Fluidized Section

$$
v_{2}=v_{s} \cdot\left(E_{2}\right)+v_{E}
$$

where

$$
\begin{aligned}
& V_{2}=\text { void volume of fluidized region } \\
& V_{s}=\text { volume of static bed } \\
& E_{2}=\text { calculated voldage factor }(.44) \\
& V_{E}=\text { expanded volume }
\end{aligned}
$$

Packed Section

$$
V_{1}=V_{p}\left(E_{1}\right)
$$

where

$$
\begin{aligned}
V_{1}= & \text { void volume of packed region } \\
V_{p}= & \text { volume of packed region } \\
E_{1}= & \text { calculated voidage factor for packing section } \\
& (.65)
\end{aligned}
$$

The voidage factor (E) for the static bed was experimentally determined by filling a cylinder with a known volume of water. To this the beads were added up to a given volume. The total
volume of beads and water was then read, from this data the voidage factor was easily calculated. In a similar fashion, the voidege factor (E_{1}) for the packed calming section was obtained.

Minimum Fluidization Mass Velocity Calculation

The mass flow rate $\left(G_{m f}\right)$ at minimum fluidization ${ }^{6}$ is given by:

$$
G_{\mathrm{mf}}=\frac{688 \mathrm{D}_{\mathrm{p}}^{1.82}\left(\rho_{\mathrm{f}}\left[\rho_{\mathrm{g}}-\rho_{\mathrm{f}}\right]\right)}{u \cdot 88}
$$

where

$$
\begin{aligned}
G_{m f} & \left.=\text { mass flow rate (lb/hr-ft } t^{2}\right) \\
D_{p} & =\text { diameter of beads (in) } \\
f & \left.=\text { density of fluidizing medium (lb/ft }{ }^{3}\right) \\
\mathbf{s} & \left.=\text { density of beads (1b/ft }{ }^{3}\right) \\
u & =\text { viscosity of fluidizing medium (1b/hr-sec) } \\
G_{m f} & =\frac{688(.0185)^{1.8}[62.3(155.7-62.3)]}{(1.3) .88} \\
G_{m f} & =1,3101 \mathrm{l} / \mathrm{hr}-\mathrm{ft}^{2}
\end{aligned}
$$

The four column were operated at approximately three times (2.96)this value. The study was limited to low flows because beads were driven out of the smaller columns at flows higher than three times the minimum fluidization velocity.

TABLE 5

Columns	$\begin{gathered} \text { Inside } \\ \text { Diameter } \\ \text { In } \\ \hline \end{gathered}$	3.75'	$5.75{ }^{\prime \prime}$	$7.75^{\prime \prime}$	$9.75{ }^{\prime \prime}$
V	$f t^{3}$. 0404	. 1097	.2300	. 4235
V_{1}	ft^{3}	.0155	. 0366	. 0664	. 1050
V_{2}	$f t^{3}$. 0249	. 0731	. 1636	. 3189
9	$\mathrm{ft}^{3} / \mathrm{min}$. 09	. 20	. 36	. 57
T	min	. 45	. 54	. 64	. 75
T_{1}	min	. 17	.18	. 19	. 19
T_{2}	\min	. 28	. 36	. 45	. 56
Heizht of Static Bed	in	4^{11}	$6^{\prime \prime}$	$8^{\prime \prime}$	10"
Height of Fluidized Bed (Section 2)	in	6^{18}	$8.25{ }^{\prime \prime}$	10.51	11^{11}
Height of Facked Bed (Section 1)	in	3.751	3.75 "	3.751	$3.75{ }^{\prime \prime}$

FROGRAM STATEMENT FOR DETERMINATION OF N

PHASE ANGLE CALCULATIONS. ED M
ISN
SOURCE STATEMENT
FORTRAN SOURCE LIST

0 SIBFTC PHANGL NOLIST, NODECK,REF
1 DIMENSION TO\%5[
DATA TO/0.45:0.54,0.64,0.75,0.01
3 11\#1
4 12\#5
$5 \quad 13 \# 4$
$6 \quad$ XXI\#1000.
7 PRINT 102
10 IWT\#O
$11 \quad 50020$ 1\#11,12.13
12
13
14 XI\#XI/XXI
15 DO 15 IW\#1,9
16 DO 10 IT\#1,4
$17 \quad G * * 1.0 / S Q R T \% 1.08 \% W * T O \% I T[/ X I[* * 2[[* * X I$
$20 \quad W T X \# W * T 0 \% I T / / X I$
$21 \quad A \#-X I * A T A N \% W T X[$
$22 A \# A * 57.29578$
23 PRINT 101,XI,W,TO\%ITL,G,A
24 TWT\#IWT\&1
25
30
31
32
34
$35-15$ NANT.
15 CONTINUE
$37 \quad 20$ CONTINUE
41 IF $4 \times X I . G T \cdot 10 \cdot \mathrm{C}$ GO TO 30
44 IF\&I2.EQ.5[GO TO 35
47 IF\%I2.EQ. 251 GO TO 25
52 GO TO 200
C
$53 \quad 25 \quad 11 \# 30$
54 12\#200
$55 \quad 13 \# 10$
56 GO TO 5
$57-30 \times 1 \pm \times 1 / 10$.
$\begin{array}{ll}60 \\ 61 & 3511 \# 1\end{array}$
$613511 \# 1$
63 I3\#1
64
65
66
$67^{-101 \text { FORMAT\% }} 10,5 \%$ F12.4,6XIT
70102 FORMAT\%IH1,7X,12HNO. REACTORS, $7 \mathrm{X}, 11$ HCYCLES/MIN,,7X,1OHTIMEZMIN.L

71 END

PHASE ANGLE CALCULATIDNS. ED M CROSS-REFERENCE DICTIONARY

IBMAP ASSEMBLY PHANGL

PHASE ANGLE CALCULATIONS. ED M CROSS-REFERENCE DICTIONARY

IBMAP ASSEMBLY -

00163	$S .0074$	133
00024	$S .0075$	237
00043	$S .0076$	232
00145	$S .0077$	154.223
00047	$S .0100$	224
00350	$P .0101$	304
00353	$P .0102$	6
00350	$P .0103$	310
00350	$P .0104$	139
00351	$P .0105$	141
00352	$P .0106$	148.151

REFERENCES TO LOCATION COUNTERS
LC START NAME STARTING AND ENDING STATEMENT NUMBERS

```
00000 1-1
00350 DATCT. 4-4.20-26
00000 PLGCT. 282-298
00000 PRGCT. 2-2,113-281,299-300
00236 SFLCT. 3-3,27-93,301-311
00350 STRCT, 5-19,94-112
```

NO MESSAGES FOR ABDVE ASSEMBLY

PHASE ANGLE CALCULATIONS. ED M IBLDR - - JOB PHANGL

$$
M E M O R Y \quad M A P
$$

SYSTEM, INCLUDING INCS 00000 THRU 12273
FILE BLOCK ORIGIN 12302
NUMBER OF FILES - 1

1. S.FBOU 12302
OBJECT PROGRAM 12325 THRU 16620

\%* - insertions or deletions made in this deck e

INPUT - OUTPUT BUFFERS
UNITED CORE

77317 THRU 77776
16621 THRU 77313

NO. REACTIRS	YCLES/MIN.----- TIMEXMIN.		GAIN.
4.0000	15.0000	0.4500	0.0675
4,0000	15.0000	0.5400	0.0384
4.0000	15.0000	0.6400	0.0219
4.0000	15.0000	0.7500	0.0126
4.0000	7.5000	0.4500	0.3412
4.0000	7.5000	0.5400	0.2438
4.0000	7,5000	0.6400	0.1680
4.0000	7.5000	0.7500	0.112 z
4.0000	3,7500	0.4500	0.7207
4.0000	3.7500	0.5400	0.6336
4.0000	3.7500	0.6400	0.5407
4.0000	3.7500	0.7500	0.4478
4.0000	1.8750	0.4500	0.9156
4.0000	1.8750	0.5400	0.8832
4.0000	1.8750	0.6400	0.8417
4.0000	1.8750	0.7500	0.7921
4.0000	0.9375	0.4500	0.9781
4.0000	0.9375	0.5400	0.9687
4.0000	0.9375	0.6400	0.9565
4.0000	0.9375	0.7500	0.9410
4.0000	0.4688	0.4500	0.9945
4.0000	0.4688	0.5400	0.9920
4.0000	0.4688	0.6400	0.9838
4.0000	0.4688	0.7500	0.9847
4.0000	0.2344	0.4500	0.9986
4.0000	0.2344	0.5400	0.9980
4.0000	0.2344	0.6400	0.9972
4.0000	0.2344	0.7500	0.9961
4.0000	0.1172	0.4500	0.9997
4.0000	0,1172	0.5400	0.9995
4.0000	0.1172	0.6400	0.9993
4.0000	0.1172	0.7500	0.9990
4.0000	0.0586	0.4500	0.9999
4.0000	0.0586	0.5400	0.9999
4.0000	0.0586	0.6400	0.9998
4.0000	0.0586	0.7500	0.9998

EACIORS	CYCLES/MIN.		GAIN
6.0000	15.0000	0.4500	0.0860
6.0000	15.0000	0.5400	0,0445
6.0000	15.0000	0.6400	0.0222
6.0000	15.0000	0.7500	0.0109
6.0000	7.5000	0.4500	0.4384
6.0000	7.5000	0.5400	0,3242
6.0000	7.5000	0.6400	0.2267
6.0000	7.5000	0.7500	0.1508
6.0000	3.7500	0.4500	0.7958
6.0000	3.7500	0.5400	0,7235
6.0000	3.7500	0.6400	0.6407
6.0000	3.7500	0.7500	0.5511
6.0000	1.8750	0.4500	0.9429
0.0000	1.8750	0.5400	0.9192
6.0000	1.8750	0.6400	0.8890
6.0000	1.8750	0,7500	0.8518
6.0000	0.9375	0.4500	0.9853
8.0000	0.9375	0.5400	0.9789
6.0000	0.9375	0.6400	0.9706
6.0000	0.9375	0.7500	0.9599
6.0000	0.4688	0.4500	0.9963
6.0000	0.4688	0.5400	0.9947
6.0000	0.4688	0.6400	0.9925
6.0000	0.4688	0.7500	0.9898
6.0000	0.2344	0.4500	0.9991
6.0000	0.2344	0.5400	0.9987
6.0000	0.2344	0.6400	0.9981
6.0000	0.2344	0.7500	0.9974
6.0000	0.1172	0.4500	0.9998
6.0000	0.1172	0.5400	0.9997
6.0000	0.1172	0.6400	0.9995
6.0000	0.1172	0.7500	0.9994
6.0000	0.0586	0.4500	0.9999
6.0000	0.0586	0.5400	0.9999
6.0000	0.0586	0.6400	0.9999
6.0000	0.0586	0.7500	0.9998

EACTORS	CYCLES/MIN	TIMEKMIN. -m-n-0-mon	GAIN
8.0000	15.0000	0.4500	0.1164
8.0000	15.0000	0.5400	0.0595
8.0000	15,0000	0.6400	0.0282
8.0000	15,0000	0.7500	0.0127
8.0000	7.5000	0.4500	0.5193
8.0000	7,5000	0.5400	0.4015
8.0000	7.5000	0.6400	0,2923
8.0000	7.5000	-0.7500	0.2005
8.0000	3.7500	0.4500	0.8402
8.0000	3.7500	0.5400	0.7800
8.0000	3.7500	0.6400	0.7084
8.0000	3.7500	0.7500	0.6274
8.0000	1.8750	0.4500	0.9567
8.0000	1.8750	0.5400	0.9384
8.0000	1.8750	0.6400	0.9148
8.0000	1.8750	0.7500	0.8854
8.0000	0.9375	0.4500	0.9890
8.0000	0.9375	0.5400	0.9841
8.0000	0.9375	0.6400	0,9778
8.0000	0.9375	0.7500	0,9697
8.0000	0.4688	0.4500	0.9972
8.0000	0.4688	0.5400	0.9960
8.0000	0.4688	0.6400	0.9944
8.0000	0.4688	0.7500	0.9923
8.0000	0.2344	0.4500	0.9993
8.0000	0.2344	0.5400	0.9990
8.0000	0.2344	0.6400	0.9986
8.0000	0.2344	0.7500	0.9981
8.0000	0.1172	0.4500	0.9998
8.0000	0,1172	0.5400	0.9997
8.0000	0.1172	0.6400	0.9996
8.0000	0.1172	0.7500	0.9995
8.0000	0.0586	0.4500	1.0000
8.0000	0.0586	0.5400	0.9999
8.0000	0.0586	0.6400	0.9999
8.0000	0.0586	0.7500	0.9999

NO. REACTORS	CYCLES/MIN, TIMESMIN,		GAIN.
10.0000	15.0000	0.4500	0.1530
10.0000	15.0000	0.5400	0.0803
10.0000	15.0000	0.6400	0.0382
10.0000	15.0000	0.7500	0.0168
10.0000	7.5000	0.4500	0.5831
10.0000	7.5000	0.5400	0.4679
10.0000	7.5000	0.6400	0.3546
10.0000	7.5000	0.7500	0.2530
10.0000	3.7500	0.4500	0.8690
10.0000	3,7500	0.5400	0.8180
10.0000	3.7500	0.6400	0.7558
10.0000	3.7500	0.7500	0.6834
10.0000	1.8750	0.4500	0.9652
10.0000.	1.8750	0.5400	0.9503
10.0000	1.8750	0.6400	0.9310
10.0000	1.8750	0.7500	0.9067
10.0000	0.9375	0.4500	0.9911
10.0000	0.9375	0.5400	0.9873
10.0000	0.9375	0.6400	0,9822
10.0000	0.9375	0.7500	0,9756
10.0000	0.4688	0.4500	0.9978
10.0000	0.4688	0.5400	0.9968
10.0000	0.4088	0.6400	0.9955
10.0000	0.4688	0.7500	0.9938
10.0000	0.2344	0.4500	0.9994
10.0000	0.2344	0.5400	0.9992
10.0000	0.2344	0.6400	0.9989
10.0000	0.2344	0.7500	0.9985
10.0000	0.1172	0.4500	0.9999
10.0000	0.1172	0.5400	0.9998
10.0000	0.1172	0.6400	0.9997
10.0000	0.1172	0.7500	0,9996
10.0000	0.0586	0.4500	1,0000
10.0000	0.0586	0.5400	0.9999
10.0000	0.0586	0.6400	0.9999
10.0000	0.0586	0.7500	0.9999

```
PFASE ANGLE CALCULATIDNS, ED M MNGNT
$IBFTC DELTA NOLIST,NODECK,REF
            REAL N,N1,N2,NN
            DIMENSION N%10[,T0%10E,T1%10[,T2%10C
            DATA N/2.,2.,3.,3., 6*0.1
            DATA T0/0.45,0.54,0.64,0.75,6*0.1
            DATA T1/0.17,0.18.0.19,0.19.6*0.1
            N#7.50
            DO 30 IN#1.4
            IT#IN
            T2%ITE#T0%ITE-T1%ITE
            PRINT 100
            PRINT 101,N%INE,T1%ITE,T2%ITE,TO%ITE,W
            PRINT 102
            M#N%INC*50.
            N1#O.
            DO 10 IM##1,M
            N1#N1&0.02
            N2#N%IN[-N1
            G1#%1.0/SQRT%1.08%N*T1%ITC/N1C[[**N1
            G2#%1.0/SQRT%1.08%W*T2%IT[/N2[[C**N2
            NN#N%INE
            G #%1.0/SQRT%1.08%W*TO%IT[/N%IN[CC[**NN
            DEL#G*G1*G2
            PRINT 103,N1,N2,G1,G2,G,DEL
            10 CONTINUE
            20 CONTINUE
            30 CONTINUE
            CALL EXIT
    100 FORMAT&1H1,8X,1HN,14X,2HT1,13X,2HT2,13X,2HTO,11X,5HOMEGA,1[
    101 FORMAT%5%2X,F13.2[,1[
    102 FORMAT%/,7X,2HN1,13X,2HN2,13X,2HG1,13X,2HG2,13X,1HG,13X,5HDELTA,
    103 FORMAT%2%2X,F13,2!,3%F12.3,3X[,E15.8!
        END
```

phase angle calculations. ed m IBMAP ASSEMBLY DELTA CROSS-REFERENCE DICTIDNARY

- IbMar assembly delfa, i
REFFRENCES TO DEFINED SYMBOLS
VALUE NAME STATEMENT NUMBERS

00231	1005	174
00267	1015	178
00300	1025	193
00341	1035	277
00208	105	
00212	205	
00212	305	
00403	DEL	274,288

$\begin{array}{ll}\text { VIRTUAL EXIT } & 306 \\ \text { VIRTUAL FILIO. } & 175,190,194,290\end{array}$
VIPTUAL FILPR. 173.177,192,276
00417 G 269.272.286
00420 G1 233.271.282
00404 G2 250.270 .284
VIRTUAL HNLIO. ... 181.183.185,187,189.279.281,283,285,287.289
00440 IM 204.292.294
00434 IN $\quad 159.163 .304$
VIRTUAL IOHEC. 131
VIRTUAL IOHEF. $74,83,116,133$
VIRTUAL IOHFC. 79.121.126
VIRTUAL IOHHC. $\quad 45,50,55,60,65,70,87,92,97,102,107,112$
VIRTUAL IOHID. 73.82 .84 .115
VIRTIJAL IOHLP. $76.118,125$
VIRTUAL IOHRP, 81.123.130
VIRTUAL IOHXC. $48,53,58,63,68,77,85,90,95,100,105,110,119,128$
00453 IT
VIRTUAL EXP3. 232.249.268
VIRTUAL LITCT. $220,227.237,244,256.263$
VIRTUAL LTCRZ.
00370 M
00422 N
00436 N1
1.,205
$11,180,195,213,251,254$
00421 N2 215.235,247.280
001437 NN 252,266
VPRTUAL SETFP, 155
VIRTUAL S.JXIT 309
00365 SNGCT. $156,196.209$
VIRTUAL SQRT 222.239.258
VIRTJAL STHIO. $172,176,191,275$
00405 TO 22.169.186.255
$00371 \quad$ T1 33.168.182,210
00441 T2 171.184.236
00435
002250.0000

00013 ... 5.004
002125.0045

00007 S.0046
157,188,216,234,253
$221,225,226,228,229,231,238,242,243,245,246,248,257,261,262,26$

00211 S.0047 206
00053 S.0050 295
$00362 \mathrm{P} .0051 \quad 336$

```
phase angle calculations. ED m
    CRDSS-REFERENCE DICTIONARY
    \(00365 \quad 9.0052 \quad 6\)
    00362 - P. 0053342
    00362 P.0054 158,203
    00363 P.0055 197
    00364 P. 0056303
REFERENCES TO LOCATION COUNTERS
LC START NAME STARTING AND ENDING STATEMENT NUMBERS
    00000 1-1
    00362 OATCT. \(4-4.10 .43\)
    00000 PLGCT. \(313-330\)
    00000 PRGCT. 2-2,154-312,331-332
    00231 SFICT. \(3-3,44=133,333=343\)
    00362 STRCT. 5-9.134-153
        NO MESSAGES FOR ABOVE ASSEMBLY
```

phase angle calculations. Ed m IBLDR -- JOB DELTA
MEMORYMAP
SYSTEM, INCLUDING IOCS00000 THRU12273
FILE BLOCK ORIGIN 12302
NUMBER DF FILES - 1

1. S.FBOU 12302
OBJECT PROGRAM 12325 THRU 16676
2. DECK ODELTA 12325
3. SUBR ROUSYFBe 00000
4. SUBR gPMSTX a 13001
5. SUBR ©CNSTNTE 13114
6. SUBR @FPR B 13123
7. SUBR aIns @ 13124
8. SUBR ©RND © 13401
9. SUBR aEcV @ 14061
10. SUBR afCV e 14327
11. SUBR eHCV a 14421
12. SUBR aXCV @ 14524
13. SUBR ©INTJ ® 1454513. SUBR @FFC a * 15061
14. SUBR @FPT @ 15470
15. SUBR AXEM \& * 16040
16. SJBR ®XIT \& 16251
17. SUBR @XP3 @ 16253
18. SUBR @XPN 16324
19. SUBR ®LnG ® 16432
20. SUBR ASOR © 16577
** - INSERTIONS OR DELETIONS MADE IN THIS DECK[INPUT - חUTPUT BIJFFERS77317 THRU77776
UNUSED CTRE 16677 THRU 77313

TABLE 6
CONFUTER DATA FOR DETERMINATION OF N_{2} (NUMBER OF PERFECT MIXERS IN FLUIDIZED SECTION)

$$
3.75 \underset{\substack{\text { INCH } \\ \mathrm{N}=2}}{\mathrm{COLUMN}}
$$

N_{1}	N_{2}	$A R_{1}$	$A R_{2}$	$A R$	Delta $\left(A R-A R_{1} \cdot A R_{2}\right)$
.2	1.8	.819	.499	.372	.0362
.4	1.6	.751	.511	.372	.0119
.6	1.4	.710	.527	.372	.0020
.8	1.2	.683	.545	.372	.0001
1.0	1.0	.663	.568	.372	.0044
1.2	0.8	.648	.597	.372	.0148
1.4	0.6	.636	.637	.372	.0326
1.6	0.4	.626	.693	.372	.0616
1.8	0.2	.618	.783	.372	.1116

TABLE 7
COUPUTER DATA FOR DETERMINATION OF N2 (NUMBER OF FERFECT MTXERS II FLUIDIZED SECTION)
5.75 INCH COLUMN
$N=2$

N_{1}	N_{2}	$A R_{1}$	$A R_{2}$	$A R$	Delta $\left(A R-A R_{1} \cdot A R_{2}\right)$
0.2	1.8	.815	.438	.331	.0266
0.4	1.6	.744	.453	.331	.0069
0.6	1.4	.702	.471	.331	.0003
0.8	1.2	.673	.493	.331	.0014
1.0	1.0	.652	.520	.331	.0085
1.2	0.8	.636	.554	.331	.0219
1.4	0.6	.623	.600	.331	.0432
1.6	0.4	.613	.664	.331	.0764
1.8	0.2	.604	.765	.331	.1319

TABLE 8
COMFUTER DATA FOR DETERMINATION OF N_{2} (NUMBER OF FERFECT MIXERS IN FLUIDIZED SECTION)
7.75 INCH COLUMN $\mathrm{N}=3$

N_{1}	N_{2}	AR_{1}	AR_{2}	AR	$\begin{gathered} \text { Delta } \\ \left(A R-A R_{1} \cdot A R_{2}\right) \end{gathered}$
0.3	2.7	. 769	. 335	.239	. 0188
0.6	2.4	.694	. 349	. 239	. 0035
0.9	2.1	. 652	.366	. 239	.000003
1.2	1.8	. 625	. 387	. 239	. 0031
1.5	1.5	. 606	. 413	. 239	. 0118
1.8	1.2	. 592	.448	. 239	.0265
2.1	0.9	. 581	. 496	. 239	. 0494
2.4	0.6	. 572	. 567	.239	. 0856
2.7	0.3	. 564	. 687	. 239	.1489

TABLE 9

COMPUTER DATA FOR DETERMINATION OF N2 (NUMBER OF PERFECT MIXERS IN FLUIDIZED SECTION)
9.75 INCH COLUNN

N_{1}	N_{2}	$A R_{1}$	$A R_{2}$	$A R$	Delta $\left(A R-R_{1} \cdot R_{2}\right)$
0.3	2.7	.769	.282	.205	.0116
0.6	2.4	.694	.297	.205	.0010
0.9	2.1	.652	.316	.205	.0007
1.2	1.8	.625	.338	.205	.0064
1.5	1.5	.606	.367	.205	.0175
1.8	1.2	.592	.406	.205	.0348
2.1	0.9	.581	.458	.205	.0608
2.4	0.6	.572	.536	.205	.1011
2.7	0.3	.564	.666	.205	.1707

