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ABSTRACT

T his d isse rta tio n  extends the application of p a ra m e te r  plane 

techniques to  a  num ber of a re a s .  Specifically , the p a ra m e te r  plane 

technique can now be used  to  d e te rm in e  absolute s tab ility , re la tiv e  

s ta b ility , and the  location of ro o ts  of the  closed-loop c h a ra c te r is tic  

equation of sy s tem s containing both lum ped and d istribu ted  p a ra m e te r  

e lem en ts . The advantages of u tiliz ing  th is  technique a re  that r e s u lts  

can be obtained as two system  p a ra m e te rs  a re  varied  sim ultaneously  

and h igher o rd e r  sy s tem s can be tre a te d  a s  easily  as low o rd e r ones.

Investigation of the m apping of r e a l  ro o ts  resu lted  in the  d e riv 

ation of a  th eo rem  which re la te s  the num ber of re a l ro o ts  of the 

c h a ra c te r is tic  equation when p a ra m e te rs  specify a given point in the 

p a ra m e te r  p lane with the num ber of tangents which can be drawn 

fro m  the opera ting  point to ce rta in  segm ents of the ze ta  

equals ± 1 contours.



The p a ra m ete r p lane is a lso  u sed  to  tre a t sy s tem s containing a 

hypothetical elem ent whose tra n s fe r  function is  a  m em ber of the  se t 

of functions exp(-(sT)P/^  ) w here  p and q a re  in teg ers  and 

p is  le s s  than q „ The technique developed h e re  involves two 

d ifferen t mappings., The f i r s t  m apping tran sfo rm s the s-p lan e  

equation into a complex w -plane in which the equation is  sing le  

valued and then p a ra m e te r  p lane mapping techniques a re  a p p lie d .

In addition, the p a ra m e te r  p lane technique is a lso  extended to  

sy s tem s containing e lem ents with tra n s fe r  functions of the  fo rm  

exp( - ( s PT) ) .

The p red ic to r configuration described  in the l i te ra tu re  and used 

to com pensate tra n sp o rt lag  in the  p lan t of a feedback sy stem  is  

investigated  fiar sy s tem s with p lan ts  containing d is trib u ted  

p a ra m e te r  elem ents . The difficulty with this configuration of exactly 

syn thesiz ing  the d istribu ted  e lem ent in the au lilia ry  p red ic to r  loop 

is  overcom e through u se  of one of a s e t  of ra tiona l polynom ials fo r 

the  d is trib u ted  p a ra m ete r e lem ent. A system  w ith d is trib u ted  lag 

is  analyzed applying the newly extended p a ram ete r p lane m ethod in 

o rd e r to  de term ine  which polynom ial approxim ation  is  optim um  

fo r  the sy stem  under considera tion . Also, the m ethod is u sed  to  

show how p a ra m e te rs  a sso c ia ted  w ith the polynom ial can be chosen 

to  m ake the  system  stab le  w ith w ide gain varia tions and a lso  achieve 

a  m inim um  of damping of the  tra n s ie n t response  com pared  w ith the



uncom pensated sy s tem .

Several m ethods a re  derived  fo r estim ating  the tra n s ie n t 

re sp o n se  of feedback sy s tem s w ith d istribu ted  p a ra m e te r  elem ents. 

The concept of the  re sp o n se  consisting  of th e  sum  of ra tio n a l and 

ir ra tio n a l te rm s  is  in troduced and attention is focused  in itia lly  on 

the ra tional portion  of the re sp o n se . A geom etric  in te rp re ta tio n  is 

p resen ted  fo r the  tim e  to  f i r s t  peak, T , and the  am ount of f i r s t  

overshoot, M, fo r  the  case  of d istribu ted  lag in te rm s  of ro o ts  and 

z e ro s  of the c lo sed  loop tr a n s fe r  function tra n s fo rm e d  into a new 

com plex plane. T h is in te rp re ta tio n  assum es that one p a ir  of roo ts 

a re  dom inant. In addition, a  se t of curves a re  p resen te d  which 

show the re la tionsh ip  between T , M, and se ttlin g  tim e  T g and 

the s-p lane  location of the dom inant roo t fo r  sy s tem s w ith 

d istribu ted  lag.
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CHAPTER 1 

INTRODUCTION

1-1. P u rpose  and Definitions

The p r im a ry  pu rp o se  of th is  d is se r ta tio n  is  to p resen t to the 

engineer the  m e4 fr&to design feedback sy s tem s containing both 

lumped and d is trib u ted  p a ra m e te r  e lem en ts by m eans of p a ra m e te r  

plane techniques. The u se  of these  techn iques, in  conjunction w ith 

a  digital com puter, w ill enable the desig n er to investigate  the stab ility  

and tra n s ie n t resp o n se  of these  sy s tem s when two p a ra m e te rs  a re  

varied  sim ultaneously .

The spec ific  goa ls  of th is d isse r ta tio n  a re :
1

1. To extend the p a ra m e te r  p lane technique to feedback sy s tem s 

containing d istribu ted  p a ra m e te r  e lem en ts with t ra n s fe r  func

tio n s of the fo rm

FD(s) = e3q>( - d  ^ ( L s  + R) (Cs + G) ) (1 .1 .1 )

1
2. To investiga te  applications of the p a ra m e te r  plane technique 

by which sy s tem s containing e lem en ts with tra n s fe r  functions 

of the  fo rm

F d (s ) = exp (-(sT)P/(1) (1 .1 .2 )

can be analyzed for stab ility .
1 The p a ra m e te rs  a and £  chosen fo r  the p a ra m e te r  plane a re  

assum m ed to  be a sso c ia ted  with the  lum ped p a ra m ete r e lem ents 
in the sy s tem . Exam ples a re  gain and tim e  constant.
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T he effect of both abso lu te  and re la tiv e  stab ility  is  considered  

when two f re e  system  p a ra m e te rs  (such as gain and co n tro lle r  

tim e  constant) a re  v a rie d .

3. To investiga te  the  u se  of polynom ial approxim ants w hich w ill 

m ax im ize  the allow able gain fo r a  specified p lant containing a 

d is tr ib u ted  lag  elem ent. Specifically  the c la ss  of polynom ial 

approxim ants derived  by P ie r r e  [ 80] w ill be  in  a  netw ork con

figu ration  proposed by Sm ith £ 105] fo r tra n sp o rt  lag  and ex

tended h e re  to d is tr ib u te d  lag .

4. To investigate  techniques by w hich the  tra n s ie n t re sp o n se  of 

sy s te m s with d istribu ted  lag  can be  approxim ated . The b a s is  

of th is  approxim ation is  th e  extension of the dom inant roo t 

philosophy developed by M ulligan [ 71] fo r lum ped p a ra m e te r  

sy s te m s.

In genera l, te rm s  appearing  in  th is  d isse rta tio n  w ill be  defined as 

they  a r e  in troduced . H ow ever, in the  ca se  of te rm s  involving s tab ility , 

th e  definition of te rm s  a re  a s  follow s:

•  System  stab ility  - defined  a s  lim it h(t) =0 w here  h(t) is  the  im -
t - » o o

pu lse  resp o n se .

•  A bsolute stab ility  - A lin e a r  sy s tem  in which th e  tra n s fe r .fu n c 

tion  i s  analy tic  in  th e  c losed  r ig h t half of the  p rin c ip a l sh ee t of 

the  s -p la n e  (including th e  im ag inary  a x is ) . A lso " s ta b ility ” .
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© R elative s tab ility  - A lin e a r  system  in w hich the  t r a n s fe r  func

tion  is  analy tic  in  a  c losed  region to the  r ig h t of a  p a ir  of con

jugate rad ia l lin e s  on the  p rincipal sheet of the s -p la n e .

1. 2. Potentia l V alue of th is  D isserta tio n

System s containing d is tr ib u ted  p a ra m e te r  e lem ents occur in 

m any fie ld s of sc ien ce . P ro b lem s of d is tribu ted  p a ra m e te r  feedback 

con tro l a r is e  as a  consequence of efforts to con tro l p ro c e sse s  con

ta in in g  these  e lem en ts. Some a re a s  in which d is tr ib u ted  p a ra m ete r 

e lem en ts a r is e  include:

1. E lec trica l T ra n sm iss io n  L in es. When a  signa l i s  tran sm itte d  

over a  line , i t  i s  d is to rte d , attenuated and delayed a s  a  conse

quence of the  p a ra m e te rs  of the line .

2. Pneum atic and H ydraulic  L in e s . T hese  lin e s  a r e  used  when 

la rg e  fo rce s  a r e  tra n sm itte d  over sh o rt d is tan c es , a s  in m ove

m ent of a ir c ra f t  con tro l su rfa ce s , o r when sm a ll fo rc e s  a re  

tran sm itted  o v e r long d is tan ces , as in te m p e ra tu re  contro l of 

la rg e  buildings [5 7 , 74, 90, 91] .

3. T em p era tu re  Dependent P ro c e s se s . T h erm o sta tic  devices

[ 16, 17] and hea t se n s itiv e  chem ical p ro c e ss e s  [ 3, 123, 113] 

a r e  sub ject to  th e  law s of heat flow.

4. Control of N uclear R e a c to rs . The neu tron  diffusion p ro cesses  

within a  re a c to r  a r e  d is trib u ted  in  n a tu re  [ 95, 42 ].
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5 Applied E le c tro n ic s . D istribu ted  p a ra m e te r  p rob lem s 

include tim e  delay equations c h a rac te riz in g  e lec tro n  energy 

d istribu tion  in a  gas tube [ 28 ], and ir ra tio n a l and tra n s 

cendental base  t ra n s p o r t  fac to rs  in the  p e rfo rm an ce  equa

tions of t r a n s is to r s  [ 5, 67 ]. In addition, the m icrom in ia t

u riza tion  of e lec tro n ic  c ircu its  has led  to  the  developm ent

of new RC d is tr ib u ted  p a ra m e te r  com ponents [20, 43, 48 ].

6 B iom edical R e se a rc h . Man has been c h a ra c te r iz e d  as a 

d is trib u ted  p a ra m e te r  system  and v a rio u s  se n se  organs 

respond  d is trib u tiv e ly , see  [112]. In addition, when a 

human being fo rm s  an inte :ra l p a r t  of a  sy s tem  [33,46 ] 

his d is tr ib u tiv e  c h a ra c te r is tic s  [8 ] effects o v e ra ll sy stem  

p erfo rm ance .

7 A irc ra ft and M iss ile  Control. P ro b le m s include the 

effect of tim e  delay on the contro l of v e r tic a l and la te ra l  

m otions [2 ] and , in m iss ile  con tro l , the effects of 

com bustion in stab ility  caused by tim e  delay [ 26 ].

8 Econom ic S ystem s. Mans econom ic and organizational 

so c ie tie s  a r e  c h a ra c te r iz e d  by d is tr ib u te d  tim e  delay 

elem ents [ 121 ].



The above m entioned applications i l lu s tra te  the value and u s e 

fu lness of fo rm ula tion  of p rob lem s in  te rm s  of d istribu ted  p a ra m e te rs . 

In addition to th is , a  new p a ram ete r p lane technique [ 98, 99, 29 ,30  ] 

has recen tly  been  developed in  which lin e a r  feedback system s can be 

analyzed in  te rm s  of two free  system  p a ra m e te rs . T his technique is  

superio r to  the ro o t locus method developed by E vans [ 34 ]in  which 

system  p e rfo rm an ce  can be investigated  when only one system  p a ra 

m eter (usually  gain) is  varied . One of the p u rp o ses  of th is  d is s e r ta 

tion is  to extend the p a ra m e te r  plane technique to~ system s w ith 

d istribu ted  p a ra m e te r  e lem en ts . T his i s  accom plished  in  Chapter 4.

A c la ss  of d is trib u ted  p a ra m e te r  e lem en ts w ith tra n s fe r  function

F d (s ) = exp ( -C sT )P//q) (1. 1 .3)

is  defined in  C hapter 5. Gain and phase  (ie. complex)

functions fo r th is  c la ss  of elem ent a re  a lso  developed and the p a ra 

m eter p lane technique is  applied to feedback sy s te m s containing th is  

type of elem ent. The p a ra m e te r  p lane technique is  applied to a  t r a n s 

form ed com plex p lane in which the c h a ra c te r is t ic  equation of the sy s 

tem  is  ren d e red  single valued.

Smith [ 103 ] suggests that h is lin e a r  p re d ic to r  con tro lle r devel

oped for sy s te m s w ith tra n sp o rt lag can be g enera lized  but did not p ro 

vide e ith er analy tic  ju stifica tion  or i l lu s tra tiv e  exam ples. In C hapter 6,



Sm ith’s p re d ic to r  con tro ller i s  extended to  feedback sy s te m s w ith 

d is trib u ted  p a ra m e te r  e lem ents. In addition, a  ra tio n a l polynom ial 

approxim ation  of the d istribu ted  p a ra m e te r  elem ent4 s u sed  in  the 

loca l feedback loop and the p a ra m e te r  p lane technique is  applied.

A spec ia l type of feedback sy stem , in which the d is trib u ted  

p a ra m e te r  e lem en t is  a  d is trib u ted  lag , i s  also analyzed in  C hapter 6, 

and the  p a ra m e te r  plane technique is  u sed  to determ ine a  polynom ial 

approxim ant w hich ren d e rs  the  system  absolutely stab le  w ith gain 

varia tion . A pplication of th is  type of system  would be in  a tom ic r e 

a c to r  con tro l w here safety is  a  p r im e  consideration.

The tra n s ie n t response  of feedback system s w ith d is trib u ted  

p a ra m e te r  e lem en ts, in g e n e ra l, i nvolves both evaluation of an i r r a 

tional in te g ra l and evaluation of re s id u e s  at roo ts of the  sy stem  ch arac 

te r i s t ic s  equation falling w ithin the contour of in tegration . When 

dealing w ith sy stem s containing d is tr ib u ted  lag, se v e ra l approxim ate  

m ethods of de term in ing  the tra n s ie n t resp o n se  a re  se t fo rth  and com 

p a re d  in  C hapter 7. Through u se  of th e se  methods a designer can 

rap id ly  d e te rm in e  the system  p a ra m e te rs  to use in o rd e r  to achieve 

a  d e s ire d  resp o n se .



1-3. O rganization of the  D isse rta tio n

The d isse rta tio n  p ro p e r  co n sis ts  of 8 c h ap te rs , w ith recom m en

dations in  Chapter 9 fo r  continued work in th is  field .

•  Chapter 2 co n sis ts  of a  review  of the l i te ra tu re  assoc ia ted  

with control sy s tem s th a t contain d is tr ib u te d  p a ra m e te r  

elem ents. T h is l i te ra tu re  is  concerned w ith a ll techniques 

except p a ra m e te r  p lan e , which w ill be tre a te d  separa te ly .

•  Chapter 3 i s  a  review  of the h isto ry  of p a ra m e te r  plane 

techniques s ta rtin g  fro m  the work of V ishneg radsk i, and 

includes the  contribu tions made by N iem ark , M itrovic, 

Siljak, T h a le r , and E isenberg .

® Chapter 4 co n sis ts  of an  extension of the  p a ra m e te r  plane * 

technique to feedback sy stem s containing d is trib u ted  p a ra 

m eter e lem en ts w ith tra n s fe r  functions of the  fo rm

F d (s ) = exp ( - d ^ /(L s  + R) (Cs + G) ) (1-1-4)

•  Chapter 5 co n sis ts  of the  developm ent of techn iques which 

w ill enable the  app lication  of p a ra m e te r  p lane techniques to 

feedback sy s tem s containing d is trib u ted  p a ra m e te rs  e le 

m ents w ith t ra n s fe r  functions of the fo rm



•  C hapter 6 c o n sis ts  of an extension  of the Smith p re d ic to r  

technique to sy stem s with d is tr ib u te d  lag. In p a r tic u la r , 

a  spec ific  sy stem  containing a  d is tr ib u te d  lag elem ent in  

i ts  p lan t is  analyzed.

9 C hapter 7 contains the de riva tion  of the unit step re sp o n se  

of a  feedback system  with both lum ped and d istribu ted  p a ra 

m e te r  e lem ents. In addition, approxim ations to the tra n s ie n t 

re sp o n se  a re  a lso  derived b ased  upon extension of the dom i

nant ro o t technique.

•  C hapter 8 p re s e n ts  a  sum m ary  of the m o re  im portant r e s u l ts  

of th is  d isse rta tio n .

9 C hapter 9 contains recom m endations fo r continued w ork 

which could lead  to future d is se r ta tio n s .



CHAPTER 2

REVIEW OF CONTROL SYSTEMS WITH LINEAR-TIM E

INVARIANT. DISTRIBUTED PARAMETER ELEM ENTS1

2 .1  Introduction

A d istribu ted  p a ra m e te r  e lem ent is  defined a s  an elem ent 

c h a ra c te r iz e d  by a d iffe ren tia l equation in two o r m o re  independent 

v a ria b le s  (usually, tim e and one o r  m o re  space v a ria b le s ) . A d is 

tr ib u ted  p a ra m e te r  sy s tem  is  defined a s  one having one o r m o re  

d is tr ib u ted  p a ra m e te r  e lem en ts . In general, th e re fo re , d is trib u ted  

p a ra m e te r  sy s tem s a re  c h a ra c te r iz e d  by p a rtia l d iffe ren tia l equa

tio n s in se v e ra l v a riab les  a s  opposed to lumped p a ra m e te r  sy s tem s, 

which a r e  c h arac te rized  by o rd in ary  d ifferen tia l equations involving 

a  s ing le  independent v a riab le .

In a  con tro l sy stem  w ith one o r m ore  d is trib u ted  p a ra m e te r  

e lem en ts , in te re s t is  usua lly  focused upon the re la tio n sh ip s  betw een 

va rio u s  quan tities such a s  output re sp o n se , e r ro r ,  e tc . F o r exam ple, 

in  a con tro l system  containing a  un ifo rm  tran sm iss io n  line , in te re s t 

m ay be on the  tim e re la tio n sh ip  betw een the input and the  output of 

the lin e . In th is  case , the  ac tu a l d is trib u ted  n a tu re  of the problem  

is  d isgu ised  in that tim e i s  the  only independent v a riab le  p re sen t, the 

sp ace  v a ria b le  appearing  a s  a  constan t.
* Often m any non-linear d is tr ib u ted  p a ra m e te r  sy s te m s m ay be lin 

e a r iz e d  fo r  sm all signal opera tion  about an equ ilib rium .
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If a  tra n sm iss io n  line  i s  d is to rtio n le s s , i ts  output is  a  scaled  

re p lic a  of i ts  input, delayed in  tim e . Such re sp o n se  behavior is  

c h a rac te rize d  a s  " tra n sp o r t l a g ." E quivalent te rm s  used  in the 

l i te ra tu re  a re  " tim e  de lay", "dead tim e"  [1 5 , 23, 64, 65 ] " tim e lag"

[ 1, 22, 53, 61] " tra n sp o r t  delay" [ 56, 100] "d istance  velocity  lag"

[ 75 ] and " re ta rd e d  v a ria b le "  [ 83, 96] .

T ran sp o rt lag  is  but one specia l c a se  of the d istribu ted  p a ra 

m e te r  elem ent. A nother w ell known form  of the d is trib u ted  p a ra m e te r  

e lem en t is  te rm ed  "d is trib u ted  la g ." A ssum ing z e ro  in itia l conditions, 

the  tra n s fe r  function of a  d istribu ted  lag e lem en t i s  ch a rac te rized  by an 

exponential ra ise d  to the half power of s . The d istinc tion  between t r a n s 

fe r  functions fo r sy s te m s containing " tra n sp o r t lag "  and those for 

"d istribu ted  lag"  is  that the s in g u la ritie s  of the fo rm e r  a re  po les a n d /o r  

an  e ssen tia l s in g u larity  a t infinity while those  of the la t te r  a re  b ranch  

po in ts .

Since m ost of the l i te ra tu re  on d is trib u ted  p a ra m e te r  e lem en ts in 

con tro l sy s tem s is  concerned  w ith the a n a ly s is  and syn thesis  of sy s te m s 

w ith tra n sp o rt  lag , th is  l i te ra tu re  review  w ill be divided into two p a r ts :

1 .)  W ork concern ing  the analy sis  of co n tro l sy s te m s with tra n s p o r t  

lag  i s  done in Section 2 .2
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2 .)  W ork concerning the a n a ly sis  a n d /o r  syn thesis  of con tro l 

sy s tem s w ith d istribu ted  p a ra m e te r  e lem en ts , o ther than tra n s p o r t  

lag is  done in  Section 2 .3 .

2 .2  T ra n sp o rt Lag

C ontro l sy s te m s with t r a n s p o r t  lag can  be c h a rac te rize d  by 

d ifference  d iffe ren tia l equations. M ethods of solving th e se  equations 

a re  d irec tly  applicable to the de te rm ina tion  of the tra n s ie n t re sp o n se  

of these  sy s te m s . Since d ifference  d ifferen tia l equations have been 

used to  c h a ra c te r iz e  various p ro b lem s fo r approxim ately  200 y e a r s ,  

a  la rg e  body of l i te ra tu re  has been  produced concerned w ith c la s s ic a l 

m ethods of solution of these  equations. S everal books [ 9, 82] 

devoted to  the theo ry  of d ifference  d iffe ren tia l equations contain  a 

d e sc rip tio n  of these  m ethods.

The u se  of operation  and tran s fo rm  m ethods in the an a ly sis  of 

sy s te m s w ith tra n s p o rt  lag is  of the sam e im portance and value a s  in 

the a n a ly sis  of lumped p a ra m e te r  con tro l sy s tem s. In 1934, Neufeld 

[ 73] fo rm alized  u se  of H eav iside’s  opera tional ca lcu lu s fo r 

the so lu tion  of m ixed difference d iffe ren tia l equations. In 1940,
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H eins [ 45 ] p resen ted  a  m ethod of solution of th e se  equations by 

L aplace tran sfo rm  techn iques.

In the s -p la n e  one comm only used technique fo r determ ining  

the  tran s ien t re sp o n se  of a  lin e a r  single loop sy stem  w ith tra n sp o rt 

lag  is  to expand the  denom inator of the a sso c ia ted  Brom w ich in teg ra l, 

u tiliz ing  the b inom ial expansion and then to  p e rfo rm  a  te rm  by te rm  

inversion  on the  re su ltin g  s e r ie s  of in te g ra ls . T hus, considering  a  

typ ical B rom w ich in te g ra l of a  single loop feedback sy stem  with t r a n s 

p o rt lag, expansion of the  exponential te rm  in  the denom inator y ie lds

[ 83 ] and by E lg e rd  [ 32 }, i s  cum bersom e if m any te rm s  of the s e r ie s  

m ust be inverted  to obtain  th e  tim e re sp o n se  acc u ra te ly . Also the 

u se  of th is technique to d e te rm in e  the tra n s ie n t re sp o n se  of sy stem s 

w ith m ore com plex t ra n s fe r  functions, becom es increasing ly  

d ifficult.

(2 .2 .1 )

w here |B (s)e_s | <  1. T h is  p rocedure , w hich w as u sed  by P ipes

The tra n s ie n t re sp o n se  of a  lin ear sy s tem  w ith tra n sp o rt lag  

can be obtained by inverting  the Laplace tra n s fo rm  of the response  

C (s). In lum ped p a ra m e te r  system  a n a ly sis , w ell-know n expansion
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th eo rem s, such a s  H eaviside’s ,  can be u sed  to sim plify in v ers io n  

since th e  req u ire d  values of the  fin ite  num ber of roo ts of the  a s so 

ciated  c h a ra c te r is t ic  equation can easily  be found through u se  of one 

of m any techn iques. But sy s tem s w ith t ra n s p o r t  lag  give r i s e  to 

c h a ra c te r is tic  equations having an in fin ite  num ber of ro o ts . Thus 

a  c lo sed -fo rm  expression , when it  e x is ts , is  m ore  laborious to find. 

T hese ro o ts  a r e  considered  po les s in ce  they  a re  p resen t on every 

sheet of the s-p la n e  ( i .e . they a r e  ro o ts  when 6 is  in c re ased  by 2t t ).  

T his is  in  c o n tra s t w ith roo ts of c h a ra c te r is t ic  equations w hich a re  

m ultivalued functions of s a s  w ell a s  tran scen d en ta l, s in ce  in  th is  

case  ro o ts  ex ist only on specific  sh e e ts  (e. g. every o ther sh ee t 

for sy s te m s  w ith d istribu ted  lag ) .

In  a  s tab le  sy stem  in te re s t  often can be  centered  ontthe 

dom inant ro o ts  and various sp ec ia l techniques for finding th e se  ro o ts  

have been  developed [ 37, 23, 37, 71 ] . Once these  ro o ts  a r e  known, 

the co rrespond ing  response  te rm s  a r e  easily  found. E isen b erg  [31] 

extended C hu 's  m ethod [ 24] to  feedback sy s tem s with t ra n s p o r t  lag . 

The re su lta n t geom etric  in te rp re ta tio n , u sed  in connection w ith p a ra 

m e te r  p lane techniques (also extended to sy s te m s with tra n s p o rt  lag  

by E isen b erg  [ 29] form ed a  foundation fo r  a  synthesis p ro ce d u re .
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Knowledge of the location of the  roots of th e  c h a ra c te r is tic  

equation of a  system  with t ra n s p o r t  lag  is , a s  fo r  lum ped p a ram ete r 

sy s tem s, the  im portant considera tion  with re s p e c t to determ ination  

of s tab ility . If one or m o re  ro o ts  a r e  in the r ig h t ha lf-p lane  of the 

s-p lan e  o r  one o r m ore  m ultip le  ro o ts  a re  on th e  im ag inary  ax is , 

the  sy stem  is  unstable; if a ll ro o ts  a re  in the le ft ha lf-p lane , the 

sy stem  is  stable; if a ll a r e  in the  le ft half-plane except poss ib le  for 

sing le  ro o ts  on the im ag inary  ax is , the system  is  lim ited ly  stab le . 

C orrespondingly, the n a tu re  of the  stab ility  as c h a ra c te r iz e d  by root 

location can be determ ined  by S a tch e 's  m odification of N yquist’s 

c r ite r io n  [ 92 ] . A m ethod developed by E isen b erg  [29], detailed  

in  Section 3 .4 , u tilizes  p a ra m e te r  plane techniques to de te rm ine  the 

stab ility  of feedback sy s te m s w ith tran sp o rt lag . T h is technique 

p e rm its  stab ility  analy sis  when two system  p a ra m e te rs  a r e  varied  

sim ultaneously  and is  exact b ecau se  the exponential te rm  is  used  in 

the  an a ly sis  thus taking into consideration  a ll th e  ro o ts  of F(s) = 0 . 

Many o th er techniques a r e  advanced in num erous p ap e rs  devoted to 

the topic of the stab ility  of sy s te m s with tra n sp o rt lag  [ am ong which 

a re  9, 10, 41 , 87,96, 97, 118 ].

M ost of the stan d ard  frequency  response  techn iques developed 

fo r lum ped p aram eter con tro l sy s te m s have been  extended to th is 

type of sy stem . A pplication of som e of these  techn iques is  not much
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m ore com plicated  than  those used fo r  contro l sy stem s c h a rac te r ize d  

by ra tiona l frac tio n  tra n s fe r  functions. Thus, Nyquist d iag ram s,

Bode p lo ts , dual s tab ility  plots such a s  Satche d iag ram s, and o ther 

associated  frequency  resp o n se  techniques a r e  easily  applied.

Analytic m ethods of obtaining tra n s ie n t re sp o n se  from  frequency 

response , such as the  w ork of Solodovnikov [ 109] a re  d irec tly  

applicable.

Sm ith [ 103] in troduces ce rta in  s -p la n e  tran sfo rm atio n s that

provide u sefu l a id s in the  analysis of tim e  delay  system s. A lso the

roo t-locus technique, a s  f i r s t  applied  to sing le-loop  system  by Chu

[ 23 ] is  u seab le  by appropria te ly  com bining the  phase-ang le  loci 

—s Tstem m ing fro m  e w ith those of th e  lum ped p a ra m ete r e lem en ts.

In 1951, O ldenbourg [ 76 ] noted tha t a  given continuous tim e 

delayed p rob lem  can be  approxim ately  solved a s  if it w ere  a s tep - 

control p rob lem . T hus, the solution avoided transcenden ta l equations. 

Boxer and T h a le r [ 13 ] and S chroeder [ 94 ] then developed th is  

idea by u se  of z -fo rm  and z -tra n sfo rm  sam pled  data theo ry . T ra n 

sien t re sp o n se  is  thereby  obtained fro m  the re su ltin g  approxim ations 

by u se  of w ell-know n techniques in sam pled  d a ta  theory which w ere  

orig inally  developed fo r  use  with lum ped p a ra m e te r  sy s tem s. P ie r r e  

[ 81 ] a lso  u tilized  sam ple  data  techniques to  obtain the tra n s ie n t 

response  of feedback sy s tem s with t ra n s p o r t  lag . This m ethod
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c o n sis ts  of f i r s t  converting  a  continuous sy s tem  to a  sam pled -data  

sy s tem  by m athem atically  p lac ing  sam pling and sam ple-and-ho ld  

c irc u its  a t various po in ts in th e  system  (usually b e fo re  and a fte r 

t ra n s p o r t  lag e lem en ts). A sam pling  ra te  1 /T  is  chosen consisten t 

with N yquist’s  sam pling  th eo rem , and by z - tra n s fo rm  techniques the 

d e s ire d  response  is  obtained a s  an infinite s e r ie s  of the  fo rm

oo

C M  a nz “n (2 .2 .2 )

n=0

The coefficients an a r e  th e re fo re  the values of the  tra n s ie n t response  

a t the  sam pling in stan t nT.

Another m ethod of an a ly sis  applicable to  sy s tem s w ith tra n s -
—sT

p o rt lag  depends on u se  of su itab le  ra tional approx im ations fo r e 

A r a th e r  sim ple approach  involves substitu ting  a  tru n ca ted  M aclaurin
_ gT* '

s e r ie s  expansion fo r e in the  c h a ra c te r is tic  equation: thus ob

tain ing  the  c h a ra c te r is tic  equation of an approxim ating  lum ped p a ra 

m e te r  sy stem . T h ere  is , how ever, no s im p le  c r ite r io n  which enables 

de te rm ina tion  of the  dom ain of valid ity  of the r e s u l ts  obtained by u se  

of th is  so generated approx im ating  system . In f a c t  Pinney [ 82 ] 

s ta te s :

" th is  method i s  invalid  (in the large) and should never be 
u sed , for how ever sm a ll th e ir  coefficien ts m ay be , higher 
derivative  te rm s  m ust not be  neglected in so lv ing  a  d iffer
en tia l eq u atio n ."



T his is  illu s tra te d  for exam ple by u se
-sTof an a lte rn a te  rep lacem ent fo r  e based  on the  definition

e“sT  = lim it 1 /  [ 1 + s  (T /n )] n (2. 2.3.)
n - ^ c o

-sTand thus rep lacem en t of e by

e " sT  = 1 / [1 + s(T /n ) ] n (2 .2 .4 )

F o r sm a ll values of n, however, the  approxim ation of (2 .2 .4 ) is  

crude and u se  of i t  y ields poor r e s u l ts  in  general.

-sTA m o re  a c c u ra te  ch arac te riza tio n  of e is  based  on u se  of 

Pade^approxim ations [ 61, 63, 111, 118, 125 ] . O ther ra tio n a l
Q* I * _

approxim ations of e have a lso  been given by [ 4, 108 ] .

T hese approx im ations a re  espec ially  u sefu l in analog sim ula tion  of 

a  sy s tem .

Sm ith [ 101, 105 ] proposed a  m ethod of contro lling  sy stem s 

with t ra n s p o r t  lag . His schem e re q u ire s  inclusion of a  m odel of the  

plant and of the  tim e  delay in th e  com pensato r of the sy s te m . If the  

m odel acc u ra te ly  d esc rib es  the sy s tem , loop gain can be  s e t  a t a  

value w hich y ie ld s specified steady  s ta te  e r r o r  and adequate system  

p e rfo rm an ce . Schliessm ann [ 93 ] obtains a  s im ila r  co n tro lle r 

through u se  of a  som ew hat m ore  d ire c t analy tic  technique. It is  of 

in te re s t  to  note th a t he shows, by illu s tra tiv e  exam ple, th a t a  sligh t 

d ifference  betw een the tim e delay  of the p lan t and that of the  model



m ay lead  in som e c a se s  to sy stem  instab ility . This sam e

re s u l t  was a lso  found by E isenber?  [ -31 7 . Buckley [ 1 5 ]  

com pares feed-fo rw ard  c o n tro lle rs , conventional c o n tro lle rs  and

Sm ith type (deadtime) c o n tro lle rs . H is study a lso  con tains data  

taken  on an experim en tal dye m ixing p ro cess  w ith tim e  db lay . Appli

cation of the  above m ethods has ralso been of u se  in the  con tro l of a 

chem ical re a c to r  [64, 65].

O ldenbourg [ 76 ] de te rm ined  the optim al location  of the roo ts 

of the  c h a ra c te r is tic  equation of a  system  contro lled  by a  "step -by - 

s tep "  co n tro lle r which is  designed by u se  of the c r ite r io n  of m inim i

zation  of the  in teg ra l of a  n o n o sd ila to ry  e r ro r .  A lim ita tio n  on use  

of the approach  is  th a t if the  e r r o r  is  to rem ain  n o nosc illa to ry , the 

length  of the  control in te rv a l should, in general, b e  g re a te r  than , o r 

equal to , the  tim e  delay  of the  sy s tem . Specific a n a ly sis  b ased  on 

u sing  a  contro l in te rv a l g re a te r  than the tim e delay  has been applied 

su ccessfu lly  in p ra c tic e

K alm an and B e r tra m  [ 50 ] point out that th e  " s ta te  v a riab le"  

approach  can be extended to  sy s tem s with tim e delay  if the control 

s ignal a t any instan t is  com puted in accordance w ith  the  an ticipated  

s ta te  of the plant T seconds la te r ,  T being equal to th e  tim e  delay 

constan t. T his approach  re q u ire s  som e m ethod of p red ic tin g  the 

s ta te  of the plant T seconds in advance: for exam ple, by u se  of an 

analog o r  a d ig ital m odel of the p lan t.
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K ram er [ 53 ] u tiliz e s  ■ dynamic p rogram m ing  techniques to 

obtain  ’’optim um ” contro l functions for con tro l sy s te m s w ith tran sp o rt 

lag . This - w ork co m p rises  continuation of the  w ork in itia ted  by 

B ellm an and K alaba on the  solution of contro l p rob lem s by use  of 

dynam ic program m ing . The b a s is  for th is  approach  is  B ellm an 's 

"P rin c ip le  of O ptim ality", nam ely, " re g a rd le s s  of th e  choice of the 

in itia l control function, th e  succeeding functions m ust be chosen 

optim ally  with re s p e c t  to th e  s ta te  resu lting  fro m  the application of 

th e  in itia l function".

O ther m eans of u tiliz in g  tim e  delay e lem en ts fo r sy stem  control 

a r e  given by Sm ith [ 104], So and T haler [ 107]and R esw ick [ 89 ].

Sm ith and So and T h a le r u tilized  "posicast"  contro l, i . e . , the control 

of a  system  having lightly  dam ped poles by a  s e r ie s  tim e  delay elem ent. 

R esw ick d e sc rib e s  a  co n tro lle r  of which the  only ad justab le  pa ram ete r 

is  a pure  tim e de lay . In th a t p ro ce ss  dynam ics a re  often tim e varying. 

He suggests the tim e  delay of the  con tro lle r be  so in strum ented  that 

v a ria tio n  to com pensate  fo r changes in p ro c e ss  dynam ics is  auto

m atica lly  effected.
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2 .3  M ethods of A nalysis and Synthesis fo r System s with D istribu ted

P a ra m e te r  E lem en ts O ther than T ra n sp o rt Lag

D istribu ted  p a ra m e te r  control sy s te m s  a r e  c h arac te rized  by 

p a rtia l d iffe ren tia l equations fo r which so lu tions can be obtained by 

c la ss ica l m ethods [ 36 ] . P a rtia l d iffe ren tia l equations can a lso  

be  solved by fin ite  d ifference  techniques, (see  Kunz [55] , F o rsy th e  

and Rosenbloom  [35] ) .  T hese m ethods of solution a re  applied 

to open loop d is tr ib u te d  p a ram ete r sy s te m s .

In feedback con tro l system  an a ly sis  and sy n th esis , the in te g ra l 

tran sfo rm  solu tion  of d istribu ted  p a ra m e te r  con tro l problem s often 

provides a  u seab le  approach . F o r such , the  L ap lace, M ellin, H ankel, 

F o u rie r , s in e , cosine and yet o ther tra n s fo rm s  a re  available (as 

-detailed in th eo ry  by, fo r exam ple, T ra n te r  [ 116] and Sneddon[ 106]). 

The m ost frequen tly  employed of th e se  is  the  L aplace tran sfo rm . 

Laplace tra n s fo rm a tio n  of a linear d iffe ren tia l equation with constan t 

coefficients y ie ld s  an  a lgeb ra ic  polynom ial equation. T h ere fo re , 

system s d e sc rib e d  by lin e a r  d iffe ren tia l equations can be re p re se n te d  

and m anipulated by b locks containing polynom ial functions in b lock  

d iag ram s. In  co n tra s t to lumped p a ra m e te r  sy s te m s , the re su ltin g
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a lg eb ra ic  equations obtained fo r  d is tr ib u ted  p a ram ete r sy s te m s a re  

not, in  general, polynomial equations. T herefo re , in v ers io n  of the 

a sso c ia ted  L ap lace  tran sfo rm s and the  n a tu re  of the co rrespond ing  

block d iag ram  s tru c tu re  so obtained a re  m ore  com plicated.

Instead  of dealing w ith non-rational c h a ra c te ris tic  equations, 

se v e ra l approxim ating techniques u tiliz ing  lumped p a ra m e te r  e lem ents 

a re  applicable:

1) The d istribu ted  p a ra m e te r  p ro c e ss  could be approx im ated  

by a  cascaded  s e r ie s  (or o ther arrangem ent) of lum ped p a ra m e te r  

p ro c e sse s , reducing  the sy stem  to  one which can be d e sc rib e d  by 

o rd in a ry  d iffe ren tia l equations.

2) In the  p ro cess  of so lv ing  the p a rtia l d ifferen tia l equations 

c h a ra c te riz in g  the d istribu ted  p a ra m e te r  p ro cesses , sim plify ing  

approxim ations could be in troduced  by u se  of the in teg ra l s e r ie s  

m ethod

3) The d istribu ted  p a ra m e te r  e lem en ts in the t r a n s fe r  function 

of the  sy s tem  could be ra tio n a lly  approxim ated.

T hese  approaches find co n sid erab le  use  in e le c tr ic  analog 

com puter study although c irc u itry  req u ire d  may be ex tensive  fo r  even 

re la tiv e ly  sim p le  d istribu ted  p a ra m e te r  prob lem s. F o r  exam ple, 

P ie r r e  [ 80 ] derived  a  s e r ie s  of ra tio n a l polynomial approx im ants
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to the  tra n s fe r  functions exp(-(sT)) and the  m o re  genera l form  

-J(s+a) • (s+b)1 ] . Through u se  of th e se  app rox im an ts, d is 

tr ib u ted  p a ram ete r e lem ents m ay be approxim ated  by lum ped p a ra 

m e te r  c irc u its .

y
C arlson  [ 18] deriv ed  analog c ircu its  for sim u la ting  s  2 and 

1 /s  . In study of va rious sy s tem s, he found tha t u se  of K /s

in th e  forw ardpath  of a  sim p le  contro l loop y ie ld s a  fa s t  in itia l r is e  

to a  s te p  function input. A fter th is  in itia l r i s e ,  how ever, the  output 

of the  system  might app roach  th e  steady s ta te  condition a t a  slow er 

r a te  than  in  a conventional sy s tem  using K /s .  He thus concluded 

tha t, a lterna tive ly , a  w eighted tra n s fe r  function which would afford

/ k  /the  advantages stem m ing  both fro m  K /s  and K /s  m ight b e tte r  be 

used .

T he natu re  of th e  s tab ility  of lumped p a ra m e te r  sy s te m s , and 

sy s tem s with tra n s p o rt  lag  can be  determ ined  by w ell known techni

ques. F o r  d istribu ted  p a ra m e te r  control sy s tem s in gen era l, how

ev er, th e re  is  no known a ll encom passing c r ite r io n  fo r determ ination  

of s tab ility  other than  th a t b ased  on d irec t u se  of the  tra n s ie n t tim e 

re sp o n se  of the sy s te m .
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Papoulis [77] p re s e n ts  certa in  th e o re m s concerning the  s tab ility  

of single loop con tro l sy s tem s. F o r  exam ple, if  the  open loop step  

response  i s  known and is  of p re sc r ib e d  m onotonic c h a rac te r , the  

closed loop sy s tem  is  s tab le  over a  known ran g e  of loop gain (the 

system  m ay a lso  be s tab le  for gains th a t lie  ou tside  of th is  ra n g e ) .

Kadymov [ 49 ]considers the s ta b ility  of sy s tem s that a r e  c h a r

ac te rized  by  equations of the  fo rm ( l- e -kY/W (s) = 0, w here V=

2 H(s c+sb+a) . In th is  case , Nyquist and re la te d  c r i te r ia  apply.

The ro o t locus m ethod is  u tilized  fo r d is trib u ted  p a ra m e te r

system s by C hu[ 23 ]and  by Radant [ 86 ] . C hu ' p resen ts  a  ro o t

locus p ro ced u re  fo r sy s tem s involving e ' th a t is  analogous

to h is p ro ced u re  fo r sy s tem s with t ra n s p o r t  lag  but fa ils  to tak e  into

account th e  double valued  na tu re  of th e  tra n s fe r  function. R adant

considers ro o t locus p lo ts  for sy s tem s containing fac to rs  of the  
1Z

form  (s+a) 2  . The la t t e r 's  p ro ced u re  leads to  two loci, only one 

of which, th e  p rin c ip a l locus, s a tis f ie s  th e  o rig in a l equation. Much 

of the advantage re su ltin g  from  the u s e  of roo t locus m ethods in  

ljimped p a ra m e te r  an a ly sis  is lo st when it i s  applied to d is trib u ted  

p a ra m ete r sy s te m s because  the ru le s  p e rm ittin g  a quick ske tch  of 

loci do not apply in  th e  extension although Ghausi and Kelly [ 40 ] 

have recen tly  im proved  th is  situation .
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B all and Rekoff [ 7 ] consider th e  extension of ro o t locus

techn iques to sy stem s with d is tr ib u ted  lag  and p ro p o se  the  t r a n s -  
o

fo rm ation  w = s . The w -p lane  thus p rov ides a  dom ain in  which the  

t r a n s fe r  function is  single valued and in  which th e re  a r e  no b ran ch  

po in ts .

Bode p lo ts and a sso c ia ted  frequency  resp o n se  techniques a r e  

u se fu l in  the  analy sis  of d is tr ib u ted  p a ra m e te r  sy s te m s . T h is 

app roach  i s  used  in the ana ly sis  and design  of th in  film  RC d is t r i 

bu ted  c irc u its , which a re  a tta in ing  considerab le  u se  in  the  fie ld  of 

m ic ro e le c tro n ic s  [ 20, 38 , 40, 44, 59 ].

The l i te ra tu re  concerning the  optim ization of con tro l sy s te m s 

d is tr ib u te d  p a ra m e te r  e lem ents o th er than  those c h a ra c te riz e d  by 

p u re  tim e  delay  is  lim ited . Sm ith [103]suggests th a t th e  co n tro lle r 

he advocates fo r system s w ith t r a n s p o r t  lag  can be genera lized  to  

co n tro l d is trib u ted  p a ra m e te r  sy s te m s of quite a rb i t r a ry  types, but 

ana ly tic  justification  and spec ific  illu s tra tiv e  exam ples a r e  not given.

D oetsch [27] notes th a t in  applying L aplace tra n s fo rm  techniques 

to  sy s te m s  w ith d is tribu ted  lag , th e  Brom w ich in te g ra l can be  evalua

ted  by considering  a  closed  path  of in teg ra tion  in  a  reg ion  of the 

s -p la n e  which is  sim ply connected and sing le  valued. P ie r r e  [79] 

p o in ts  out th a t only s in g u la ritie s  ( i .e .  ro o ts  of the c h a ra c te r is t ic
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equation) on the  p rin c ip a l sh ee t of the two sh ee ted  R iem ann su rface  

re p re se n ta tio n  of th e  s-p lan e  need be considered  in  determ in ing  the 

t ra n s ie n t response . P ie r r e  a lso  extends the  sam pled  data  approach 

fo r  determ in ing  tra n s ie n t re sp o n se  to sy s tem s with d istribu ted  

p a ra m e te r  e lem ents.
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CHAPTER 3

DEVELOPMENT OF THE PARAMETER PLANE TECHNIQUE

3.1 Introduction

The p a ra m e te r  plane technique o rig ina ted  in E aste rn  E urope 

and un til recen tly  l i t t le  inform ation about it  h as  been re p o rte d  in 

English language techn ical l i te ra tu re . T h is technique co n sid ers  

the c losed-loop  s tru c tu re  of a  con tro l sy s tem  and, in p a rtic u la r , 

is  an a n a ly sis  of the  ro o ts  of the c h a ra c te r is t ic  equation of th e  

closed-loop  sy stem  when one o r  m o re  (usually two) of the  sy stem  

p a ra m e te rs  a r e  v a ried . By co n tra s t, the  ro o t locus technique 

developed by Evans [ 34 ]is a  m ethod in w hich only one sy s tem  

p a ra m e te r  can be v a rie d  and w here  the open-loop system  is  the  

b asis  fo r  a n a ly sis  and syn thesis.

The w ork of V ishnegradski [ 120], N e im ark  [ 72 ] , M itrov ic  

[ 69 ] , Siljak [ 99 ] ,  and E isen b erg  [ 29 ] in  param eter p lane  is  

pertinen t to  th is  d isse rta tio n  and w ill be outlined in th is c h a p te r .

In addition, w ork perfo rm ed  by T h a le r [ 115 ], H ollister [ 47] ,

M oore [ 70] , B ite l[ 12 ] , a s  w ell a s  o ther w ork by E isen b e rg  

[ 30] and S iljak [ 100] also p rov ides insigh t into th is technique. 

P re sen tly , th e re  a r e  th ree  m ain c e n te rs  of re s e a rc h  in p a ra m e te r  

plane techn iques w ithin the United S ta tes. T h ese  a re  a t th e  U niversity
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of Santa C la ra  (Siljak), th e  U .S . Naval P o stg rad u a te  School (Thaler), 

and The U niversity of Pennsy lvan ia  ( E isenberg  ) .

The contributions of V ishnegradski and N eim ark  have been  sum 

m arized  in the book by M eerov [ 68 ], and in a  d is se r ta tio n  by 

E isen b e rg  [ 30 ] . P a ra g ra p h s  from  M eerov’s book and E isen b e rg 's  

d is se r ta tio n  will be quoted in th is  chapter with only som e m inor 

ed iting  fo r the 'pu rpose  of achieving  a consisten t m athem atica l 

sym bology. The w ork done by M itrovic was d e sc rib e d  m o st ade

quately  in  a  chapter of a  book by T haler [ 114 ] .  A sum m ary  of th is 

chap ter a lso  will be p re se n te d  h e re . S im ilarly , S iljak 's  w ork was 

d e sc rib e d  in detail by E isen b e rg  and will be quoted here in .

r

3 .2  V ishnegradsk i's  W ork*

I. A. V ishnegradski [ I20]considered the g en era l th ird  o rder

3 2c h a ra c te r is tic  equation of the fo rm  Z + a Z  + y9 Z + 1 = 0, and, 

in  the  co -o rd inate  sy s tem  of the  p a ra m ete rs  a  and yS, p lo tted  

c u rv es  which divide the  p lane into stab le and u nstab le  reg io n s . The 

p a ra m e te rs  a  and j3  a r e  functions of the coefficien ts of the  equation 

and a re  known a s  the V ishnegradsk i p a ra m e te rs  and the  cu rves m en

tioned  above a re  called  th e  V ishnegradski cu rv es . In genera l, a

* A bstrac ted  from  M eerov  [ 68 ], pp. 127-129
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cubic equation can be  reduced to  a  fo rm  in which it depends on th e  

p a ra m e te rs  a  and {3 . C onsider a  th ird  o rd e r  equation

3 2F(s) = a Qs  + a^s + a 2s + a g = 0. (3 .2 .1 )

Dividing by a^  and introducing th e  notation,

a 0 a i a o

b o » i  = 4  ’ ba (3- 2- 2)

gives,

F (s) = bQs 3 + b 1s 2 + b 2s  + l  = 0  (3 .2 .3 )

C arry ing  out the following substitu tion  of v a riab les ,

_Z_s = (3 .2 .4 )

gives,

F(Z) = Z 3 + — A—— Z 2 + ^ - ^ - Z  + 1 = 0. (3 .2 .5 )

V  V C

Defining

and substitu ting  (3 .2 .6 ) into (3 .2 . 5) gives the  V ishnegradski fo rm  

F(Z) = Z 3 + a Z 2 + £ Z  + 1. (3 .2 .7 )
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If a >• 0 and f i  >■ 0, the  Routh-H urw itz c r ite r io n  gives the 

s tab ility  conditions fo r equation (3 .2 .7) to be

a £  - 1 >  0 (3 .2 .8)

T he equation of the  s tab ility  boundary is  obtained if, in stead  of the 

inequality  sign in (3 .2 . 8), the  equality sign is  in troduced , whence

a  p  = 1. (3 .2 .9)

T h is is  the equation of a  hyperbola, w hich d ivides the  a /9 plane 

in to  the stab le  and u n stab le  reg ions, and w as the  s ta r tin g  point for 

th e  p a ra m e te r  p lane concept. The V ishnegradski cu rve  is  shown 

in  F ig u re  3 .2 .1 , w here  the  reg ions of s tab ility  and in stab ility  a re  

e as ily  determ ined fro m  th e  inequality of equation (3 .2 .8 ) .

3. 3 N e im ark 's  W ork
2

T he concept of D -p a rtitio n  boundaries w as fo rm ula ted  by 

N eim ark  [ 72 ]. It is  the b a s is  for m odern p a ra m e te r  plane tech 

n iques. Consider th e  genera l c h a ra c te r is tic  equation.

F(s) = s 11 + an jS n~* + . . . + a ^ s  + = 0. (3 .3 .1)

2
T he symbol D re p re s e n ts  th e  usual opera tiona l notation of 
d ifferen tia l equations, i . e . , d /d t o r s.
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T he values of the coefficient a^ , a^, ag , . . . , an_^ m ay be  in te r 

p re te d  geom etrically  a s  a  point in  an (n)-dim ensional sp ace . To 

each point of th is  space th e re  co rrespond  definite values of the 

coeffic ien ts and consequently defin ite  values of the  ro o ts  s^ , Sg, Sg,

. . . , s  of the  c h a ra c te r is tic  equation. Thus, if a  reg ion , R, 

e x is ts  in th is  space  such th a t a ll the  ro o ts  of (3 .3 .1 ) l ie  to  the le ft 

of the  im ag inary  ax is in the s -p lan e , then  the  h y p ersu rface  bounding 

R is  called  "boundary of the reg ion  of s tab ility " . When th e re  a r e  

only two independent coefficien ts, th is  reg ion  is  bounded by a plane; 

when th e re  a r e  th re e , by a  th ree -d im en sio n a l su rface , e tc .

Since the  coefficients, a^ , a re  functions of the sy stem  p a ra 

m e te rs , such a s  gains and tim e  constan ts, stab ility  reg io n s  can be 

p lo tted  in te rm s  of these  sy s tem  p a ra m e te rs . C onsider a  c h a ra c te r 

is t ic  equation in which all the  coeffic ien ts except two (for exam ple, 

a^ and a^) a r e  known. Suppose th a t fo r som e defin ite va lues of a^ 

and a^ the  c h a ra c te r is tic  equation has k  roo ts lying to the  left and 

n -k  ro o ts  ly ing  to the r ig h t of th e  im ag inary  axis in the  s-p la n e  (see 

F ig u re  3 .3 . la ) .  It follows th a t th e re  is  a  curve on the  a^-a^  plane 

th a t bounds a region  in which each point defines a polynom ial a lso  

having k ro o ts  lying to the le f t and n -k  ro o ts  to the rig h t of the 

im aginary  ax is  (see F igu re  3 .3 . lb ) . N eim ark  denoted th is  reg ion
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by D (k,n-k) w here , fo r  exam ple, if (3. 3 .1 ) is  of th ird  o rd er (n=3), 

then in general th e  reg io n s D (0 ,3), D (l, 2), D (2 ,1) and D (3 ,0) can 

be  found in the  a^ -a^  p lane . The reg ion  D(3,0) i s  the  region of 

stab ility  in the  a^ -a^  p lane . The p artitio n  of the  a^ -a^  plane of

(3 .3 .1) into reg ions corresponding  to th e  sam e num ber of roo ts 

lying to the le f t  of the im aginary  axis is  called  the  D -partition .

Thus the im ag inary  ax is  of the s -p la n e  is  the  reflection  of the  

boundary of th e  D -p artitio n , and the c ro ss in g  of the  la t te r  in the 

a^-a^  plane is  re p re se n te d  by the ro o ts  in  the s -p la n e  c rossing  the 

im aginary a x is . T his suggests the m ethod for de term in ing  the 

D -partition  boundary: i ts  equation is  found in p a ra m e tr ic  form  by 

rep lacing  s by j at in the  given polynomial (w here cu is  the v a ria b le ) . 

F rom  th is  equation the  boundary may b e  co nstruc ted  by varying to 

from  -oo to + 0 6  .

3 .3 .1  The construction  of stab ility  reg io n s in the  plane of one
3

p a ra m e te r- -N e im a rk 's  technique. D efine a to  be  a complex p a ra 

m eter whose value is  v a ried  in o rder to  in v estig a te  stab ility  and 

assum e that the  c h a ra c te r is tic  equation can be reduced  to the fo rm

Q(s) + a  R (s) = 0 o r  a  . (3. 3.2)

^A bstracted fro m  M eerov [68] , pp. 123-125
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T hus, fo r exam ple, in the c a se  of the  equation

2s + s + a 0 (3. 3. 3)

it follow s th a t

Q(s) = s 2 + s , R(s) = 1. (3 .3 .4 )

Only r e a l  va lues of a have any p ra c tic a l value. H ow ever, fo r now 

assu m e  th a t a i s  complex and tra n s fo rm  the im aginary  a x is  in the  

s-p la n e  into the  a -p lane. To do th is  s e t  s=j<u in (3. 3 .2) giving

By giving w values from  - oo to  + ©o a  cu rve  is  co nstruc ted  which 

is  th e  tran sfo rm a tio n  of the  im ag in ary  ax is  of the s -p la n e  on the  

a -p lan e , i .  e . , the  boundary of th e  D -p a rtitio n  in the a -p lane .

If <o v a r ie s  from  - oo to  +eo in th e  s-p lan e  (F igure  3. 3 .2a) then 

th e  reg ion  of s tab ility  w ill a lw ays be on the  left (the shaded  side  of 

F ig u re  3 .3 .2a). Since the m apping is  conform al, the reg io n  to the  

le ft in  th e  s -p la n e  m aps into th e  reg ion  in  the  a - p lane th a t is  to  the  

le ft of th e  D -p artitio n  when cu v a r ie s  from  - oo to + 0 0  . T hus, 

p roceed ing  along the boundary cu rve  of the  D -partition  fro m  the 

point co rrespond ing  to cu = -  oo to th e  point correspond ing  to cu = +oo,

(3 .3 . 5)

Separa ting  r e a l  and im aginary  p a r ts  gives

a  (jot) = u (w ) + jv(w ) (3 .3 .6 )
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th e  curve is  shaded on the  le f t (F igure 3 .3 . 2b). If a tak es  on a 

s e r ie s  of values such  th a t the  boundary of th e  D -p a rtitio n  in the 

a -plane is  c ro s se d  fro m  the  shaded to the  unshaded sid e , then in 

th e  s-p lane  one ro o t has c ro sse d  the im aginary  ax is , p a ss in g  from  

th e  left-hand p lane to the  righ t-hand  plane.

Thus, it is  su fficien t to know the d istribu tion  of the  ro o ts  r e la 

tiv e  to the im ag inary  ax is  fo r  any one a rb i t r a ry  value of a ( a is  

usually  se t to z e ro  fo r th is  determ ination) in  o rd e r  to  de te rm ine  the 

d istribu tion  fo r any o ther value of a  .

3 .3 .2  The construction  of s tab ility  reg io n s  in th e  p lane of two 

p a ra m e te rs - -N e im a rk ’s  Technique. N eim ark  extended h is  technique 

d iscussed  in th e  p rev ious sec tion  to account fo r the  v a ria tio n  of two 

sy stem  p a ra m e te rs  [ 72). Since th is  is  b a s ica lly  an extension of 

V ishnegradsk i's  m ethod, the  resu ltin g  cu rv es a re  ca lled  the gener

alized  V ishnegradsk i d iag ram s. A V ishnegradsk i d iag ram  is  a  plane 

of any two re a l  p a ra m e te rs  of a  system  in w hich the  lin e s  separa ting  

th e  region of s ta b ility  a r e  p lo tted . The V ishnegradsk i d iag ram  may 

thus be obtained by constructing  the D -partition  of the  p lane of two 

p a ra m e te rs .

Suppose th a t the  coefficien ts of the c h a ra c te r is tic  equation (3 .3 .1) 

of the  system  depend on two p a ra m e te rs , a  and /9 , and fu rther assu m e 

th a t the p a ra m e te rs  en te r into the  equation lin e a rly , so th a t th is
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equation can b e  reduced  to  the  form

a Q(s) + & P(s) + R(s) = 0. (3 .3 .7 )

Substituting s  = ja i  into (3 .3 .7 ) gives

a  Q (jw ) + /3 P (jw ) + R(jcu ) = 0 (3 .3 .8 )

Now denoting

Q (jw ) = Q1(w) '+ jQ2(a>)

P (jw ) = P 1(w) + jP 2(w)

R ( j« )  = RjTw) + jR 2( « )  (3 .3 .9)

equation (3 .3 .8 ) can be  w ritten  in the follow ing fo rm

a Q 1(w) +)9P1(w ) + R 1(w ) + j [ a Q2( w ) + £ P 2(w ) + R 2(»)] = 0

(3 .3 .10)

T his y ields two equations fo r the de te rm ina tion  of a and £  which 

sa tisfy  equation (3 .3 .8 ) , nam ely,

a Q 1(cu) + /} P j ( « )  + R 1(w ) = 0  

a  Q2( <u) +/9 P 2(w ) + R 2( m) = 0 (3 .3 .11)

Solving equations (3 .3 .11) fo r a and J9 , g ives,
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- R ^ ® ) P x( « ) - R ^ " )

- r 2(®) P2( " )
£  =

Q2 (w ) -Rat®)
Q1(o>) p ^cu ) Q1(w ) P j (® )

Q2( w) P2( « ) Q2 U ) p 2(®)

(3. 3.12)

E quations (3. 3 .11) a re  valid  only fo r those  values of w at 

which equations (3. 3 .11) rem ain  lin e a rly  independent and com patible. 

See M eerov [68] fo r a com plete d iscu ssio n  of th is point. The 

shading ru le  now involves the following p rocedu re . For a ll  w values, 

a t which:

Q1(«u) P 1(w )
A =

Q2 (w)
>  0 (3 .3 .1 3 )

the left-hand  side  of the boundary is  shaded; when A<0 the  righ t-hand  

side of the boundary is  shaded [ 68 ] . H ence, if a  o r ]8 tak es 

on a  s e r ie s  of va lues such that the  boundary of the D -partition  in the  

a  - )8 p lane is  c ro sse d  from  a shaded side  to  an unshaded s id e , then
4

in the s-p lan e  one roo t has c ro sse d  the im ag inary  axis fro m  the

In m ost p ra c tic a l sy stem s the a  ~/3 p lo t fo r negative values of u> w ill 
lie  d ire c tly  over the  p lo t for p o sitiv e  values of w . However, the sign  
of A w ill u sua lly  be such that the  shading of the plot w ill alw ays be on 
the sam e side. The re su lt  is  a  doubly shaded plot indicating that two 
ro o ts  leave the left-hand  s-p lane  when the  D -partition  is  c ro sse d  fro m  
a  shaded side  to  an  unshaded side. T h is  is  the case  when, fo r exam ple, 
a  p a ir  of com plex conjugate ro o ts  c ro s se s  the im aginary ax is  in  the 
s-p lane.
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left-hand  p lane  to the r ig h t-h an d  plane.

Having obtained reg io n s in the a - $  plane with an  equal num ber 

of ro o ts  to  the  left of the im ag inary  ax is , it is  then n e c e ssa ry  to 

e s tab lish  w hether a reg ion  of s tab ility  does o r does not ex ist. T h is 

is  accom plished  by choosing an a rb i t r a ry  point in a  reg io n  and
p

verifying the  stab ility  of the  o rig ina l equation in which the co -o rd ina tes 

of the chosen  points have been  substitu ted  for o and /9 . T his stab ility  

v e rifica tio n  can be p e rfo rm ed  by using  any one of the  s tan d ard  s ta 

b ility  te s ts .

3. 4 M itrov ic ’s  Method

M itrov ic  [ 69 ] u tilized  the g en era l concept of the  p a ra m e te r

p lane and the  basic  theo rem  of Cauchy. His contribution w as to

d ep art from  the j w ax is and move out into the en tire  s-p lane . The
5

m ethod is  explained as follow s. Consider the equation

■ni \ n n-1  2 nF (s) = ans + a n_jS + .  . . + agS + a^s + a^ = 0

(3. 4 .1 )

which m ay be considered the c h a ra c te r is tic  equation of a  closed-loop 

system . A ssum e that a ll the  ro o ts  a re  in the left-hand half of the 

s-p lane  so that equation (3. 4 .1 ) m ay be factored  to give

5
T his sec tio n  follows T h a le r ’s in te rp re ta tio n  of M itro v ic 's  w ork a s  
p re sen te d  in  Chapter 10 of R eference  114 .
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F (s) = an (s + i-j ) (s + r 2 ) (s + r g) . . . (s + r n ) = 0

(3 .4 .2 )

F ig u re  3. 4 .1  shows a few of th ese  ro o ts  plotted on the  s-p lan e  and 

ind ica tes the vecto rs which re p re se n t  the fac to rs  of equation (3. 4 .2). 

Note that in  equation (3. 4 .2 )  the angle associated  w ith F (s) is  the 

sum  of the angles of a ll  the fa c to rs  and is  th e re fo re  the a lg eb ra ic  

sum  of a ll  the angles a sso c ia ted  w ith the vecto rs in  F igu re  3. 4 .1 .

It is  apparent that if the point s  i s  allowed to move along any 

se lec ted  path , the angles of a ll the v ec to rs w ill change a s  s  m oves.

If any pa th  is  selected  which is  a  closed path enclosing a ll the ro o ts , 

then each  of the v ec to rs  m akes a  com plete revolution a s  s t r a v e r s e s  

th is  path. Assum e counterclockw ise movement of s  along such a  

closed path; then the v e c to rs  ro ta te  counterclockw ise and the angle 

of F (s) goes through a  to ta l p o sitiv e  angle of n(2 n ), w here n is  the 

num ber of roo ts encirc led . To check absolute s tab ility  the se lec ted  

contour of the s-p lane  m ust en c irc le  the en tire  left-hand  p lane. Since 

the o rd e r  of the equation is  known to be n, the num ber of ro o ts  i s  also 

known to be n and the F (s) curve on the  F (s) plane m ust en c irc le  the 

o rig in  n tim es if a ll the  ro o ts  a r e  enclosed by the contour. If th e re  

a re  few er than n en c irc lem en ts , som e ro o ts  lie  ou tside  the  contour, 

which m eans they a re  in  the  righ t-hand  half-p lane, and the system  

is  th e re fo re  absolutely unstable.
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In a  like m anner the contour on the s-p lane  m ay follow a locus of 

constant £ £ 0 (rad ia l lin es  on F igu re  3. 4 .1) and close with a  c ircu la r 

a rc  of v e ry  large  rad iu s  (often infinity). Note th a t when the contour 

is  the im aginary  ax is the  value of £ is  zero. A constant £ ^  0 

contour does not enclose the e n tire  left half of the s-p la n e , but may 

enclose  a ll the ro o ts , in  which case  the num ber of e n c irc lem en ts  by 

the F (s) curve is  once again the num ber n. In addition, if a ll the  roo ts 

a re  thus enclosed, it  g u a ran tees  th a t no roo ts have a  value of £ le ss  

than the value specified  by the mapping contour. If the se lec ted  con

tou r on the s-p lane p a s s e s  through a roo t, then fo r tha t p a rtic u la r  

value of s , F(s) = 0. T h is m eans that the po lar p lo t on the F (s) plane 

m ust p a s s  through the o rig in  fo r such values. It should be noted that 

the contour on the s-p la n e  fo r £ = 1. 0 is  the negative re a l  ax is  and 

m ust p a ss  through a ll the negative r e a l  roo ts of F(s).

The concept of m apping constant £ lines is  the basic  contribution

of M itrov ic 's  method and the a lg e b ra ic  m anipulations a ris in g  out of

th is  m ethod a re  as follow s. L et the  contours se lec ted  for mapping be

ra d ia l  s tra ig h t lines in  the left-hand  s-p lane  for any and a ll va lues of

0 ~  £ — 1. Since the  ra d ia l  d istance  from  the o rig in  to any point

on such a rad ia l line i s  w  , then  the values of s  which a re  to  be sub-n’

s titu ted  in  F(s) in  the  p ro c e s s  of mapping a re  given by
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(3. 4. 3)

w here  9 is  the angle of the  line C = constant (see F igure; 3 .4 .1 )  and 

the values of s  a re  in the  second quadrant. Substituting equation 

(3. 4. 3) in  equation (3. 4 .1 ) , F (s) can be w ritten  in the  following form .

F (s) = an a>nn(- £ + j j l  -  £^)n + an_1cun11" 1 (- £ + j ^ l  - £ Z)n_1

+ . . . + ag wn2 (- £ + j / l  - £  2 )2 + a 1o>n(-£ +  i j l  - £ 2 ) + a Q = 0

(3. 4. 4)

M itrovic designates tha t coefficien ts a^ and aQ be considered  v a riab le s  

w here  by definition a^ i s  the  a  and aQ is  the #  of Section 3.3, 2,

If, fo r exam ple, the  c h a ra c te r is tic  equation is  of s ix th -o rd e r , 

equation (3. 4. 4) can be w ritte n  a s  two sim ultaneous equations since 

the sum m ation of the r e a l s  and im ag in aries  m ust go to zero  independ

ently. Solving these  two equations fo r a a n d # g iv e s

°  = ^ " n ^ 2 ^  + ^ “ n ^ 1 “ 4 ^2 ) + ^ + 8 £3)

+ a 5 «n 4( - l  +12C 2 -  16C4) + a 6wn5(6£ - 3 2 £3 + 3 2£5)

(3. 4. 5)
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& = a2 Wn2 + + + 4^ 2 ) + a 5 Wn5(4 ^ “ 8 ^ 3)

+ a 6wn6(l - 12 C2 + 16 £4)

(3. 4. 6)

The functions which ap p ea r in the coefficients do not depend on the 

o rd e r  of the equation; i. e. , for a  fo u rth -o rd e r equation m ere ly  d is 

ca rd  a ll the te rm s  above the a^ te rm s , etc. T h is m eans tha t these  

coefficien ts may be com puted and tabulated for se lec ted  values o f '5 ; 

then the tab les a re  u sed  when applying th is  method. F u rth e rm o re , 

a g en era l form ula m ay be obtained fo r each coefficient so tha t the 

coefficien ts of h ig h -o rd er te rm s  a re  read ily  obtained a s  needed. To

obtain the form ula fo r the coefficien ts, it  is  f i r s t  d e s ira b le  to r e a r -
2

range  (3. 4. 6) by fac to ring  out -  w :

& = + a 3 wn*2 ?) + a4 wn2(1 ~

+ a5 wn3(-4C + 8C3) + a6 <«>n4( - l  + 12£2 - 16£4 ) ]

(3 .4 .7 )

C om parison of equation (3. 4 .7 ) w ith (3. 4. 5) show s tha t iden tical 

functions appear in  both. Thus i t  is  convenient to define

* 0 ®  = °» * 1 < S ) = - 1 ' * 2 S )  =

* s (£) = 1 -  4 § 2 , <#>4(S) = - 4 §  + 8 § 3

^ C § ) = - i  + 12S2 - le^ 4
(3. 4. 8)
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F ro m  equations (3. 4. 8) it  i s  read ily  seen  tha t each su ccess iv e  

m ay be obtained from  the two p reced ing  <f> (^> )'s , accord ing  to the 

g en e ra l form ula

<t>k & )  = +<*>k _2(& ]  f o r k  > 2

(3. 4. 9)

The equations fo r a  and £  fo r application to  any o rd e r  equation a re  

then:

“  = a2 " n * 2 ®  + a 3 <un2 * 3 ^ >  + a4 u‘n <k ^ )+ ' ' • + * n " n “" ^ n (S)

(3 .4 .10 )

0  = “ “Vi2 C“2 + as “ n * 2 (S ) + a4 " n 2 ^ 3 ^ > ) + -

+ 1

(3 .4 .11 )

Equations (3. 4 .10 ) and (3. 4 .11 ) a re  the fundam ental too ls  in 

M itrov ic’s method. The c h a ra c te r is tic  equation to be analyzed is  

u sed  only to re a d  off the  va lues of its  coefficien ts, which a re  then 

substitu ted  into equations (3. 4. 10) and (3. 4 .11). The value of £ is  

se lec ted  as d es ired ; va lues a re  re a d  fro m  a  p rev io u sly  tabu

la ted  table of * k <£> functions and substitu ted  into the  equations. Thus 

a ll  va lues in the equations a re  defined n um erica lly  except a  , jS and a>n , 

so i t  is  a  sim ple m a tte r  to in s e r t  a  sequence of va lues of <i>n and plot
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a  curve of a  v e rs u s  (3 . The points of the  a  - f t  curve define reg ions 

of absolute and re la tiv e  s tab ility  in the s-p lan e . F ig u re  3 .2 .1  shows 

a  typical reg ion  of abso lu te  stab ility  for a  given c h a ra c te r is tic  equa

tion.

3. 5 S iljak 's M ethods
g

In 1964, D. D. Siljak extended M itrov ic ’s m ethod so that the 

variab le  p a ra m e te rs  a  and f t  could appear a s  coefficien ts of any two 

te rm s  of the sy stem  c h a ra c te r is tic  equation [ 98]. 'T h u s , the lim ita 

tion  that only the coefficien ts a^ and a^ of the  c h a ra c te r is tic  equation 

be variab le  w as rem oved. T his work w as then  g enera lized  once again  

by Siljak [ 99 ] in  1964 by developing a  m ethod w hereby the two v a r i

ab le  p a ra m e te rs  a  and could appear l in e a r ly  in  a ll  the coefficients 

of the c h a ra c te r is tic  equation, i. e . , for exam ple in  the form ,

F (s) = (ab Q + £ c q + dQ) + (o b 1 + £ 1̂  + d ^ s  + . . . + (a b n +>^cn

+ d )sn = 0 n

(3. 5 .1 )

The f i r s t  g en era liza tio n  is  described  in  [98] . Of g re a te r  in te re s t  

i s  Siljaks second genera liza tion . C onsider the  c h a ra c te r is tic  equation

F(s) = Z  s V ' - O  <3- 5 - 2>
- k=0 ______________________

-g _
T his section  w as a b s tra c te d  from  E isenberg[ 30] pp. 22 ,23 ,26  and 
28. It R e feren ces [ 98 , 99 ].
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L et s in th e  above equation be ex p re ssed  a s

sk = u  k  [ T .( -£ )  + i V l  -t2 V  . ( - £ )  ] (3 .5 .3 )n L k k

w here

Tk  (-§) = ( - l ) kTk  ( S  and Uk (-£) = ( - l )k+1Uk (S) (3 .5 .4 )

The T ^(§) and U^CS) a re  Chebyshev functions of the f i r s t  and th e  second 

kind, re sp e c tiv e ly . The argum ent £ of th e se  functions is  o £ 1 5 M  i ,  

but for s ta b le  sy s te m s 0 ^  £ <  1. The functions Tk (§) and Uk (§) m ay 

be obtained by applying the re c u rre n c e  fo rm ulae  

Tk+1&  - 2 § T k ( 9 + Tk _ i® = 0
(3 .5 .5 )

u k+i &  - 2S u k ®  + u k _l(g )  = o

with Tq (£) = 1, T (£) = ?£, Uq(5) = and (£) = 1. Since the  functions

Tfc(^) and Uk C£) p lay  an im portant ro le  in fu tu re  developm ents, th e ir

num erica l va lues fo r pe rtinen t va lues of £ a r e  given in Table 3 .5 .1 . 

Substituting (3. 5 .3 ) into (3. 5.2), and then applying the condition tha t the  

sum m ation of the  r e a ls  and the sum m ation  of the  im ag inaries m ust go to 

zero  independently, gives

(3. 5. 6)

k=0 * n K
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Now, consider the coefficien ts to  be  lin ear functions of v a ria b le  

sy s tem  p a ra m e te rs  a and @ a£  follows

=ctbjc c^. + d^ (3 .5 .7 )

Then equations (3 .5 .6) m ay b e  re w ritte n  as

+ /9C 1(S ,w n) + <un) = 0
(3. 5. 8)

ctB2(£, o>n) +£ C  2 (g, <on) + D2(S, \ )  = 0 

w here  (om itting the  argum ents C, «•> )

B 1 - j l 0 <-!>k bk %  Uk - l S )  , B2 = J o ( - l )k bk u,kn u k i t )

C X = Z  ( - l ) k ck «.k Uk . l(S )  , C2 = 2  H k ck » k Uk S )  (3 .5 .9 )
k=0 k=0

D1 -  2  ( - l ) k dk « k , d 2 = 2  <-Dk dk  J  V k &
k=0 k=0

E quations (3. 5. 8) a re  sim ultaneous equation in two unknowns, a and /3, 

w hich m ay be  solved thus:

C 1 D2 - C2 D1 B2 D1 - B 1 D2
c£=-----------------------------   B = ----------------------------—— - (3 .5 .10)

B1 C2 - B2 C1 B1 2 - 2 1

The application of the  second genera lized  method is  iden tica l to  the  

o rig in a l M itro v ic 's  m ethod. T he second generalization , how ever, is  

th e  m ost usefu l since the v a ria b le  p a ra m e te rs , a and /3, can appear

/



in the  coefficients of the  c h a ra c te r is t ic  equation in the  le a s t  r e s tr ic tiv e  

m anner. R efer to equation (3. 5. 7).

3 .6 . E isen b e rg ’s W ork

P a ra m e te r  plane techn iques have been extended to feedback sy stem s 

w ith t ra n s p o r t  lag  [ 29, 30]. A b r ie f  sum m ary  of th is  w ork is  p resen ted  

below.

C onsider the feedback sy s tem  w ith tran sp o rt lag  of F ig u re  3 .6 .1 . 

The c h a ra c te r is tic  equation of the c losed  loop sy stem  is  given by

w here  a and j8 a r e  sy s te m  p a ra m e te rs  to be v a rie d  (i. e . , a  sy s tem

and T is  th e  m agnitude of th e  tra n s p o rt  lag . E isen b erg  then showed 

th a t sy stem  p a ra m e te rs  a  and /3 can be exp ressed  by (3 .5 . ID), w here

n

F (s) = N(s) exp( sT) + D(s)
k=0

(3 .6 .1 )

w here

II . XI

and w here  <j, w , C , w a re  defined and re la te d  in F ig u re  3 .6 .2 . 

The coefficients of (3 .6 .1 ) can be exp ressed  by

^  (s) = a bk  +a v  sT  + £ d k  + / § V ST + fk  + Sk eST (3 .6 .2)

gain, tim e  constant), b .̂, c^, d^, e^, f ^ a n d  g^ a re  known sy s tem  constants 



FIGURE 3 .6 .1  SYSTEM WITH TRANSPORT LAG - 

BLOCK DIAGRAM
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C 1 S  %  ( ZkO dk + e ^ ek Zk l * 
k=0

D1 = " n  ( ZkO fk + e ' \ Zk l >

B2 =2  “ n ( Zk2 bk  + e ^ k ^ B 1
k=0

J L  k
C2 = S  %  < Z-

k=0

n  K Z  f k  +  e  ^ g k  Z , - °  )
k=0

Jk2 *k  + e' \  Zk3 } 

D2 = 2  “ n ( Zk2 *k + 6 ’ gk *k3

(3 .6 .3 )

w here

z k0 = ( - 1 > t j %)

Zk l (-1 )k T k C§) COS e  - (~l)k+1J l  - S 2 Uk (^) s in  0

Zk2 = ™
k+i

k+l /  - , 2 . k  «
Z = (-1) Uk (^) / l c o s  0 + (-1 )  Tk (S) sin  0

and w here
<& = £ u> T ^  n

0 =  0) T y / l  - ^n x

(3 .6 .4 )
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and T, <£) , U, (%) a re  Chebyshev functions of the  f i r s t  and second kindK K
resp ec tiv e ly  sub ject to  the  re la tionsh ip s of equations (3 .5 .3 ), (3. 5.4) 

and (3 .5 . 5).

The abso lu te  and re la tiv e  stab ility  of feedback sy s tem s with tra n s p o rt  

lag  can be de te rm in ed  a s  a  function of th e  two sy s tem  p a ra m e te rs  a 

and £  through  u se  of (3 .5 .10) in conjunction w ith (3 .6 .3 ) and (3 .6 .4 ) . 

T h is m ethod u tiliz e s  the expression  fo r  th e  tra n s p o rt  lag  exponential 

exp(-sT) and th e re fo re  considers the e ffect upon stab ility  of a ll of the  

ro o ts  of th e  c h a ra c te r is t ic  equation. The shading ru le s , for the a  -  0  

cu rves, and techniques fo r the  determ ination  of re a l  roo ts of F (s) = 0  

w ere  a lso  developed by E isenberg  fo r th is  type of sy stem .
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CHAPTER 4

STABILITY AND SINGULARITIES O F LINEAR FEEDBACK 

SYSTEMS WITH DISTRIBUTED PARAM ETER ELEMENTS VIA

THE PARAMETER PLANE

4 .1  In troduction

L in e a r con tro l system s containing d istribu ted  p a ra m e te r  e lem en ts 

a re  d ifficu lt to analyze due to the p re se n c e  of a  transcenden tal func

tion in the sy stem  c h a ra c te r is tic  equation producing an in fin ite  

num ber of ro o ts . This chap ter t r e a ts  sy s tem s containing d is t r i 

buted p a ra m e te r  elem ents in the  form  of term ina ted  e le c tr ic a l t r a n s 

m ission  lin e s . T hese sy stem s a re  a ssum ed  to be in itia lly  a t r e s t  and 

have the following tran sfe r function. *

F d (s ) = exp |- d  [(Ls + R) (Cs + G)] ^ } (4 .1 .1 )

w here  the p a ra m e te rs  L , C, R  and G a r e  the  inductance, cap ac itan ce , 

re s is ta n c e , and conductance p e r  unit length; and w here d i s  the 

length  of the line  and s is  a com plex v a ria b le . This tra n s fe r  function 

is  a  double valued  function of the  com plex variab le  s  fo r a ll  c a se s  

except tra n s p o rt  lag (R = G = 0) and d is to rtio n le ss  tran sm iss io n  

(RC = LG) thereby  making in te rp re ta tio n  of s in g u la ritie s  on the s -p la n e  

d ifficu lt.

1
S ystem s w ith non-zero  in itia l conditions a r e  d iscussed  in  Appendix I.



55

M ost of the investigations into feedback sy s tem s w ith d istribu ted  

p a ra m e te r  elem ents have been re s tr ic te d  to tra n sp o rt and d istribu ted  

lag  netw orks. For exam ple, Y. Chu[23 Jp re se n te d  a  phase-ang le  

loci m ethod that can be applied to sy s tem s xwith one f re e  p a ra m e te r  

(usually the  system  gain) a s  in the  norm al root locus m ethod. How

e v e r , Chu only trea ted  the  c a se s  of tran sp o rt and d is trib u ted  lag  and 

one m u st construct se p a ra te  phase-ang le  loci for each of these  c a se s . 

In addition , the com plexity of Chu’s  m ethod in c re a se s  rap id ly  w ith the 

o rd e r  of the system , s ince  the ro o t-lo cu s  is  de te rm ined  by f i r s t  

determ in ing  the phase-ang le  loc i fo r a ll angles, not m ere ly  fo r the 

angle-180 deg rees.

A m ethod is  p resen ted  for analyzing system s w ith d is trib u ted  

p a ra m e te r  elem ents in te rm s  of two free  system  v a ria b le s  (such a s  a 

gain and a  tim e constant). F u rth e rm o re , h ig h -o rd e r sy s te m s can be 

handled a s  easily  as lo w -o rd e r sy s te m s . The basic  approach  i s  the 

p a ra m e te r  plane rep re sen ta tio n  of the  closed-loop tra n s fe r  function 

a s  in troduced by M itrov ic[ 69 J, genera lized  by S iljak £99 J and extended 

to sy s te m s with tra n sp o rt and d is trib u ted  lag by E isen b erg  [29 J .

The com plexities in troduced by the double-valued n a tu re  of the t r a n s 

fe r  function of the d is trib u ted  p a ra m e te r  elem ent a r e  a llev ia ted  by 

use  of re s u lts  obtained by P ie r r e  and Higgins [79 ] . A two sheeted  

R iem ann su rface  is  in troduced  upon which the sy stem  equations can be 

re p re se n te d  a s  sing le-valued  functions. O ther r e s u l ts  of [ 79]  a re
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used  which focuses a tten tion  on one of the  two sh ee ts  of th is  Riem ann
2

su rfa ce  to d e te rm in e  sy stem  stab ility .

If  the closed loop tr a n s fe r  function, H(s), does not contain any 

s in g u la ritie s  in the  c losed  rig h t half plane and is  a lso  absolutely  in- 

teg ra b le  along th e  jw ax is of the  s-p lane , then  h(t) is  bounded. 

T h is can be shown by ex p re ss in g  h(t) a s  an in v e rse  F o u r ie r  tra n s 

fo rm  and taking i ts  abso lu te  value. Thus
jDo

.00

H (jo>) exp (jcot) dco Y W
-  OO

*  i  j l  H(jo>)l do) =A

(4 .1 . 2)
F o r  the  c la ss  of sy s te m s  under consideration

ti/„ \ _ N(s) exp (- / ( s )  d) /  D(s) IA 1 ^
H(s) -  1+N (bJ exp (- r (  s) d ) / t > ( s r  { ' lm }

w here  N(s) and D(s) a r e  polynom ials of d eg ree  n and m  respec tive ly ,

ri^m, and y (s )  is  given by (4 .1 .1 ) . The abso lu te  value of (4 .1 .3 ) on

th e  j co axis is

H(icu) = exP ( - R e f X ( ]^  )1 d ) /D ( j< o )  (4 .1 .4 )
1 + N(jco) exp(~ [ y ( ja > J d ) /  D(jco).

w here  Re [ Y  (jcu)] >  0* |to | < oo . Since th e re  a r e  no s in g u laritie s

of H(s) on the jco a x is , the  denom inator of (4 .1 .4 )  is  n ev er zero  and

H(jco) g A e x p (-R e  [ y ( j w )  ] d ) ; l « l < o o  (4 .1 .5 )

2 System  stab ility  is  defined in Section 1 .1 .
3

T his c la ss  of sy s te m  is  defined by F ig u re  4 .2 .1  and equation 4 .1 .1 .
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Equation (4 .1 .5 )  is  abso lu te ly  in teg rab le  along th e  j to axis and thus

h(t) is  asym pto tica lly  s ta b le . The fin a l value th eo rem  applied to

(4 .1 . 3) y ie ld s lim it h(t) = 0 
t —>O o

4 .2  D erivation  of P a ra m e te r  P lane E quations

C onsider th e  tim e  invarian t l in e a r  feedback contro l sy stem  con

taining a d is tr ib u ted  p a ra m e te r  netw ork in  the  fo rw ard  path a s  shown 

in  F igure  4 .2 .1 .  T he d istribu ted  p a ra m e te r  netw ork  is  assum ed  to  

be an e le c tr ic a l tra n sm iss io n  line  te rm in a ted  in i ts  c h a ra c te r is tic  

im pedance (although the  assum ption of e ith er i t s  m echanical, th e rm a l 

o r fluid equivalent i s  equally valid). T he t ra n s fe r  function of a  t e r 

m inated d is tr ib u ted  p a ra m e te r  netw ork i s  of the  fo rm

F D (B )= e "  y < s)d  (4 .2 .1 )

w here

r  (s) = + p L s i  + R) (Cs + Gf) 1//2 (4 .2 . la)

and w here d is  the  length  of the netw ork, L , C ; R and G a re  the  

inductance, capacitance , re s is ta n c e  and conductance p e r unit length 

and s is  th e  com plex v a riab le

s = < r  + jcu = -  £ t u n + j « n - y / l  -  £ (4 .2 .2 )

w here £ is  th e  d im ension less dam ping ra tio  and cun is  the  undam ped 

n a tu ra l frequency  (see  F ig u re  4 .2 .2 ) .  Substitu ting (4 .2 .2 ) into
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N (s)

G(S)= V ^ )

FIGURE 4 .2 .1  BLOCK DIAGRAM OF A SYSTEM WITH 

DISTRIBUTED PARAMETER ELEM ENT

t



S - P L A N E 5 9

1>'2'uj /

X> = -cos 6
S  =**£ W77 +-^ w-p \ / l  — £

IN UPPER HPiLF OF S-PLANE

0.)^ — o

5 = c o s  f - d )
S  =  ujr , \ ! \ - l 2

IN LOWER HALF OF S-PLI\WE

T>

FIGURE 4 .2 .2  s-P L A N E  CONTOURS
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(A. 2 .1 ) yields a  gener.al fo rm  fo r the t ra n s fe r  function

F d (s ) = e  “ X ( s ) d = e  w n , ^  V 3 8 ( w n , ^   ̂ (4 .2 .3 )

w here  e ^   ̂ Wn , £   ̂ i s  the am plitude function and e 3 8   ̂ wn , ^   ̂

i s  the phase function. The sy stem  tra n s fe r  function is  given by

C , v = ________ N l (s)_________
R D1(s)e y ŝ d̂ + N 1(s)

p  -fjfi
Substituting (4 .2 . 3) into ^  (s), noting e = cos 8 +j s in S  gives

C= ŝ j = ___________  N i (s)   = N l (s) (4 .2 .4 )

R D j (s)e" ^  (cos 8 + j s in  8 ) + N j (s)

The stab ility  of the system  is  determ ined  by the location  of the

ro o ts  of the c h a ra c te r is tic  equation F(s) = 0. Setting F (s) = 0 yields
d/ n 5

F (s) =D 1(s)e~ ( c o s 8 + j  s in B ) + N ^ s )  = ak (s)sk =0 (4 .2 .5 )

v(s )dSince the a^ (s) te rm s  w ill be a  function of e and w ill a lso  con

ta in  the system  p a ra m e te rs , the  a, (s) te rm s  a re  defined to include 
. 4

a ll possib le  lin e a r  com binations of p a ra m e te rs . T hat is

a k (s) = ab k + a c ke ^ d + /3dfc + /3eke + ffc + gke ^ d (4 .2 .6 )

w here  a  and /3 a re  the p a ra m e te r  plane v a ria b le s  which a re  to be r e 

la ted  to two of the system  p a ra m e te rs . This defin ition of a ^ s )  is  a 

fa iir ly  standard  one (see , fo r exam ple, re fe re n c e s  [29 ]and [99

4 O ther p o ssib ilities  include non-linear com binations in which 
a and Q  appear as a  product.

5 T he symbol n in the  sum m ation re p re se n ts  the  m axim um  
degree  of e ith e r N^(s) o r D^(s) and is th e re fo re  f in ite  ̂



If the com plex v a ria b le  is  a s  defined in equation (4 .2 .2 ) then

sk = w £ [T k (- 5  ) + j- y i  - 5 2 Uk ( - i  j ]  (4 .2 .7 )

w here T (- $> ) and U (- £  ) a re  Chebychev functions of the f i r s t  and 

second kind, resp ec tiv e ly  [§8] , (99"] • T hese  functions can be evaluated  

through use  of the  following identities and re c u rs io n  form ulas

Tk(- $  )=  ( - l ) k  \ ( j ) ,  )=  ( - l ) k+1 Uk( i  ) (4 .2 .8 )

Tk+1 > -2 5  Tk( 5  ) +Tk l ( i  )= 0
. (4 .2 .9 )

UM  . ( i  + u k J i  ( > ) = °

w here

T0( ^  ) = 1 ,  T x6  ) = i  , U0( ^  ) = 0 ,  U j ( ^ )  = l  (4 .2 .1 0 )

Substituting equations (4 .2 .6 ) and (4 .2 .7 )  into (4 .2 .5 )  and noting equation 

(4 .2 .8 ) y ie lds

F ( % , ^  ) = ( a B 1 + /3Ct + D X) + j ( a B 2 + ^ C2 + D2) = 0 (4 .2 .1 1 )

w here

k , „  u x
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° 2  = 2  " n  ( Zk2 dk + 8 6k Zk3 )
k=0
n

°2  = Z " „  ( Z k2 fk + 6 V Zk3>
k=0

w here

z kO ■ (-1?  Tk< i  >

Zk l  = <-l)k  Tk ( ^  ) Cos 8  - ( - l ) k  + 1 J l  -  52 u k  ( £ )  s in  S

z k2 = ( - 1>k + 1 ° ^ )

z k 3 = (-1) k + 1 Uk ( f  ) v / 1- £ 2 Cos 8  + ( - l )k Tk ( j  ) Sin 8

E quations (4 .2 .12 ) a re  of the  sam e fo rm  as  equations derived  by

E isen b e rg [2 9 ]fo r  the case  of tra n sp o rt  lag . However, the v a ria b le s

^  and 8 in th is  c ase  a re  g en era lized  exp ressions for a  d is trib u ted

p a ra m e te r  e lem en t. E xp ress ions for ^  and 8 as a function of s -p la n e

v a ria b le s  <u and £ will be d e riv ed  in the next section,n
Since F (s) = 0, both the r e a l  and im ag inary  p a r ts  of (4 .2 .1 1 ) m ust 

be equal to z e ro . That is  

aB .^ + + D j = 0, a B 2 + j9C 2 + D2 = 0

giving
_ C i D2 " C2D1 a  D1B2 '  D2B 1

° --------- A  P=  A (4 .2 .1 3 )

A = BjC2 - Ci b2
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4 .3  D erivation  of Equations fo r f t and 8

Given the tra n s fe r  function FD(s) of equation (4 .2 .1 )  it is  n e ce ssa ry  

to find exp ress ions for v a ria b le s  - \|/and 8 as a  function of both the com 

p lex  p lane p a ra m e te rs  ( t  cû ) and the d istribu ted  p a ra m e te r  e lem ent 

v a ria b le s  d, L , C, R , and G. It w ill a lso  be n e ce ssa ry  to specify  the 

a p p ro p ria te  signs of the functions and 8  in reg ions of the s-p la n e  

since  (4 .2 .1 )  is  a  double-valued function of s . To accom plish  th is  con

s id e r  the  function

y  d = d V  (L s + R) (Cs + G) (4 .3 .1 )

Substituting (4 .2 .2 ) into (4 .3 .1 )  and separa ting  re a l and im aginary  

te rm s  g ives

7  d = d ^ R e  + jlm  (4 .3 .2 )

w here

Re = (o-L  + R ) (o-C + G) - u»2LC
(4 .3 .3 )

I m = ( < r L + R )  u>C + ( c r C + G ) a ) L

N ext, consider the function (Re + jlm ). This function has an argum ent 

v given by

v = tan"*  (Im /Re) (4. 3 .4)

Equation (4 .3 .2 ) can be e x p re ssed  in p o la r form  a s  

r  d =  |A | e iv/2>= d (Re2 + t o 2) 1 /4  eiv /2

-  IAI cos v /2  + j IA | s in  v /2  (4 .3 .5 )

w here  the  angles v and v /2  a r e  shown in  F igure  4 .3 .1 .  Note tha t the 

angle v co n s is ts  of the sum  of two ang les v^ and Vg w hich a re  a s s o c i

a ted  w ith the functions (Ls + R) and (Cs + G). Thus
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\
V f t  ( L s + R )0 C s ¥ 6 ) A *

' I T r ' l T  + V  
1  t

FIGURE 4 .3 .1  REPRESENTATION OF Y  t  g ) d
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|a | = d (Re^ + Im ^) (4. 3 .6 )

and

v / 2 = 1/2 tan ” 1 ( ^ )  (4 .3 .7 )

Using the rec tan g u la r coordinate  form  of (4. 3 .5 ), the  tra n s fe r  func

tion (4 . 2.1) can be w ritten  a s

e - y  d = e - lA l cos v /2 0 -j >Ai sin  v /2  = g V' -j 8  3

w here

\ff = -d  (Re^ + Im ^ )* ^  cos v /2  = - J a |  c o s  v / 2  (4 .3 .9 )

and

8 = d(Re* + Im ^) sin  v /2  = | a | s in  v /2  (4 .3 .1 0 )

Note that the  angle v m ust trav e l through 4 ir rad ia n s  for the angle of 

the fu n c tio n / d ( i . e . , v /2 ) to trav e l through 2 tt ra d ia n s . T h ere fo re  

X d is  a double valued function of the angle v . Applying the half 

angle fo rm u las to (4. 3. 8)

- J 1cos (v/2) = + /1  + cos v (4 .3 .1 1 )
2

sin  (v/2) = + I i  -  cos v
“  V 2

and noting th a t by v irtu e  of (4 .3 .4 ) 

R ecos v =
2 2 1/2(Re + Im  )

equation (4 .3 . 8) can be rew ritten  a s



£  'A
- T ,d -d //2 (± F R e l r c ? ) ^ \  ReJ+j []Re^+Im^)','//^- ReJ )

e = e  '  (4 .3 .1 2 )

Each of the two te rm s  in  the exponent of (4 .3 .12 ) can take on two 

values, depending on i ts  sign, resu ltin g  in a  function with four 

d ifferent va lues. The value of th is function in va rious portions of 

the s-p lan e  w ill now be found. However, befo re  doing th is , r e c a ll  

that the function can be rep resen ted  a s  a  sing le  valued function of the 

com plex v a ria b le  s  over a  tw o-sheeted  R iem ann su rface . The p r in 

cipal sh ee t of th is  su rface  is  defined a s  covering argum ents of the 

v a riab le  s  in the range  -irsQ <irand the  secondary  sheet is  defined a s  

covering a rg u m en ts  in the range ir& Qz  37r .  The procedure  w ill be 

to c o rre la te  the s igns of each of the  two te rm s  (4. 3.12) with ang les 

v and v /2  and a lso  w ith reg ions of the s -p la n e . Equations (4 .3 .1 1 ) 

can be u sed  to  c o rre la te  the signs of I a I  cos v /2  and s in  v /2  

with the phase  angle v .

Next a  re la tio n sh ip  m ust be estab lish ed  betw een the com plex 

s-p lane  phase  angle © and angle v /2  s ince  the study of s-p lane  reg ions 

is  e sse n tia l to the determ ination  of s ta b ility . T his rela tionsh ip  can 

be estab lish ed  w ith the  aid ©^Figure 4 . 3 . 2a. T his figure shows the 

two b ranch  po in ts a  and b and the b ran ch  cut a sso c ia ted  with the  d is 

tribu ted  p a ra m e te r  e lem ent. T hese b ranch  po in ts a re  found by noting 

in equation (4 .3 .1 )  th a tY  = 0 when
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REG ION AREGION B

BRANCH CUT
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c
j

a , b

BRANCH CUT 
~  777777777777777771“%

b = «*=>

TRANSPORT LAG DISTRIBUTED LAG

FIGURE 4 . 3 .  2PAR T I T I  ONING OF THE S-PLANE FOR VARIOUS CASES.
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T hese two poin ts a re  i llu s tra te d  in  F igu re  4 .3 .2a a s  po in ts a t cr = -a  

and <r = -b  rep resen ting  the  g re a te r  (less  negative) and le s s e r  (m ore 

negative)1 of these  two values re sp ec tiv e ly . Boundary lin e  Q b ise c ts  

the  b ran ch  cut and is  e x p re ssed  by the equation

<r = - 1 /2  (5 + 5) = (4. 3.13)

L ine Q and the rea l ax is  divide each  sheet of the s-p la n e  into four 

reg io n s . A ll points in reg io n  A of the principal sheet fo r exam ple 

p roduce  values of v betw een 0 and 7r rad ia n s . By v ir tu e  of (4 .3 .1 1 ), 

the s igns of sin  v /2  and cos v /2  a re  positive , th e re fo re  the s igns 

a sso c ia ted  w ith and 8 a r e  a lso  positive . The ran g e  of the angles 

v , v /2 , and 0  as well a s  the signs assoc ia ted  with - ^  and 8  in each 

of the four reg ions of each of the two shee ts  of the R iem ann su rfa ce  

a re  su m m arized  in Table 4 .3 .1 .

In p ra c tic a l applications involving double valued functions of 

s  only the p rincipal sh ee t of the R iem ann surface need  be considered . 

T his is  because  i t  has been shown in  ̂[ 79 ] th a t the  ro o ts  of the 

c h a ra c te r is tic  equation of a  sy s te m  containing double valued 

functions can  exist in the r ig h t ha lf portion  of the second sheet of 

the  R iem ann surface  and the  system  w ill be s tab le . H ow ever, in 

s tab ility  w ill re su lt if th ese  ro o ts  ex is t in the rig h t h a lf portion  of 

the p rin c ip a l sheet. T h e re fo re , u n le ss  specified to  the  c o n tra ry , a ll
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fu rth er re fe re n c e s  to the s-p lane  w ill r e fe r  to i ts  p rincipal sh e e t. 

The data p re se n te d  in Table 4 .3 .1  fo r  the p rin c ip a l sheet lead s to 

the following conclusions:

1. T he £ = 0 contour is  e ith e r  en tire ly  within Region A o r 

fo rm s i ts  boundary with R egion B fo r 0. As a

consequence

- $  = + [ a |  c o s  |  , 8 = + Ja) s in  ^

2. The £ = £ j  contour for 0 s  t  s i  s ta r t s  in Region A a t 

w = 0  and c ro s se s  into Region B a tn

+p = H f  ( 4 - 3 ' 1 4 )

F u rth e r , th is  £ = £  ̂ contour re m a in s  in  Region B for values of

<o from  oj=o)  to  o> = e o , so  tha t in g en era l n n^ n ’ °

- ^  = + |a )  c o s  J  , 8 = + I a I  s in  H fo r 0= w i  a» 

and

-  V' = -  Ia I c o s  ^  , 8  = + |A | s in  k  fo r u  < u n <  6 Qa a n n

The partition ing  of the s-p lane  for the  sp ec ia l c a se s  of tra n sp o rt

and d is trib u ted  lag  a re  shown in E ig u res  4 . 3 . 2b and 4 .3 .2c re sp e c tiv e ly .

Notice th a t fo r d is trib u ted  lag , the £ = 0  and £=  £  ̂ rad ia ls  a re

en tirely  w ith in  reg ion  A when wn>* 0. H ow ever, for tra n sp o rt lag , 

when «  >  0, the £ = £  ̂ rad ia l i s  en tire ly  w ithin region B and the 

£ = 0 ra d ia l is  on the boundary betw een reg ions A and B.
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Now th a t the  signs of |a |  c o s  v / 2  and I a I  sin  v /2  have been 

e s tab lish ed , the exp ressions fo r - ^ a n d  8  in  te rm s  of s -p la n e  v a r i 

a b le s  can be derived . R ecall th a t fo r reg ion  A

<A» COS I  ■ y ^ 2> V 2 - R e  -  ( 4 .3 - 1.5)

8 =  lA) sin  |  = +d y  .ffie 2 ^ V /2 - H e

in se rtin g  (4 .3 .3 )  into (4. 3 .15) g ives

d / y j t J  F 1//2 + M (4 .3 .16 )

8 = d /^ 2  y  F 1 /2 - M

w here

F = [](<JL + R )2 + oj2l Q  £(<7C + G )2 + u>2C23  (4. 3 . 16a)

\ 2
M = (G L  + R ) «TC + G ) -  w LC

An a lte rn a te  fo rm  of (4 .3 .16 ) is  obtained by substitu ting (4 .2 .2 )  into 

( 4 .3 .16a) y ield ing

- ^ =  d / f i  v/ h 1 / 2 + J  (4 .3 .17 )

8 = d / j 2 y Hw

w here

H = (u? L 2 - 2S w  RL + R2 ) (w2 C2 - 2Scu G C - G 2 ) n n n n
2  2  ( 4 . 3 . 1 7 a )

J  = r L C (  z £  - 1 )  + RG - £  w ( RC + LG )
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E x p ress io n s fo r -  and 8 fo r o ther reg ions on the p r im a ry  sheet 

and reg io n s on the secondary  sh ee t can be obtained by using  the p o la r i

tie s  fo r -ifr and 8 specified  in T able  4 .3 .1 . This Table ind ica tes that 

- and 8 on the secondary  sheet a re  both opposite in  sign to the values 

of - ^  and 8  given by (4 .3 .1 7 ) fo r the p rincipal sh ee t of the s-p lan e . 

Upon u tiliz ing  the new va lues of -\f/ and 8 for the second s heet,

1 T k  \  +  e ^ c k  Z k l  1 

) k x k dk + e * e k Zk l

m f j 17

equations (4.

B i J
n 

= 2 ktol s k=0 n

n k
C ls -Jo Uin

n k
Dls = 2

k=0
wn

B 2  s

11 k
(on

C 2 s

n

-Jo
k

(!)n

D 2  s

n k
-klo (!)n

(4 .3 .18)

5k2 bk + e^ ck Zk3 ^

Zk2 \  + 6 ek Zk3  ̂

"k2 fk + 6 gk Zk3 ^

w here

z m = ( - l ) k Tk  cos 8 + < -l)k+1

Zk2 = (-D k+1 u k J l - 5 2

Zk3 = ( - i ) k + 1 u kX/ i  - ^  cos 8

Uk s in  8

( - l)k Tk s in  8

and Tj and re p re s e n t  Chebychev functions a s  defined in [98].
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By applying these  new exp ress ions fo r the  p a ra m e te r p lane

coefficients B l s ’ ^ l s ,1Jl s ,D /'1 and D9 of equations (4 .3 .18 ) to

(4 .2 .13 ), a  new se t of a equations a re  obtained . These equations 

rep re se n t m apping of contours from  the  secondary  sheet of the  s-p lan e  

onto the a -  p lane.

4 .4  D iscussion  of Method

The a  -  f t  cu rv es  specified by (4 .2 .1 3 ) a re  m appings of cu rv e s  

from  the coihplex s -p lan e  to the a lg eb ra ic  a - f t  p lane. For exam ple 

the a cu rv e  corresponding  to the  rad ia l line  C = C p  shown in 

F ig u re 4 .2 .2 , is  found by setting Cj = -co s *0^ (in the upper half 

of the s-p lane) and varying  &>n from  z e ro  to infin ity . The contour 

is  f ir s t  evaluated  betw een <t) = 0  and <u = w w here oj is

computed by (4. 3 .14). The signs of the ex p ress io n s  for - '/ 'a n d  8

in region A of sh ee t 1 a re  determ ined  by re fe r r in g  to Table 4 .3 .1 .

The e x p re ss io n s  obtained from  (4. 3 .17) a re  then used in (4 .2 .1 2 )

which in tu rn  a re  u sed  to form  (4 .2 .1 3 ), the  exp ressions for a  and

B  in th is  reg io n . The contour betw een = co and <u =00 isn n^ n
evaluated in  a m anner s im ila r  to tha t d e sc rib ed  above except the signs 

of the e x p re ss io n s  fo r - ^  and 8 in reg ion  B , sh ee t 1 a re  u sed .

In addition to obtaining o - c u rv e s , c a re  m ust be taken to 

determ ine w hich reg io n s  of the s-p lan e  m ap into corresponding reg ions 

of the of - £  p lane . T his determ ination  is  m ade by noting the  sign

n n
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of A in  (4 .2 .1 3 ) and the side of the shading of the curve in  the s -p la n e .

If a  contour in  the  s-p lane is  shaded a s  shown in F ig u re  4 .2 .2  and 

A  0, then the  curve in the a - £  p lane i s  shaded on the  le ft facing  the 

d irec tio n  of increasing  . If A ^.0  then the curve i s  shaded on the 

rig h t in  the d irec tio n  of in c reas in g  (un> It is  a lso  im portan t to  note that 

when the contour e ither sy m m etrica lly  encloses the e n tire  left-hand  

s-p la n e  o r a  reg ion  th e re in , i t  i s  not n e ce ssa ry  to com pute values of 

a  and $  for 0. T his i s  because  a - f i  curves genera ted  for

w n ^  ^ wiH re tra c e  the c u rv e s  for ^  0. (see Appendix n). T h ere 

fo re  these  a  -  cu rves w ill be doubly shaded indicating that a  point 

c ro ss in g  one of these  cu rves co rre sp o n d s  to a  p a ir  of com plex conjugate 

ro o ts  c ro ss in g  the appropria te  boundary in  the s-p lan e .

4. 5 P a ra m e te r  P lane C ontours When Z e ta  Equals P lu s  O r Minus One 

When the value of ze ta  app roaches e ith e r plus o r  m inus one, th is  

re p re s e n ts  the mapping of s -p la n e  con tou rs which re sp ec tiv e ly  co n sis t 

of the negative o r  positive p o rtio n s  of the re a l ax is . In sy s te m s which 

contain d is trib u ted  p a ra m ete r e lem en ts each of these  ax es m ust be 

exam ined in  o rd e r  to de te rm ine  w hether the function, A  , of (4 .2 .1 3 ) is  

a  n o n -ze ro  quantity . If th is  function is  z e ro , then the equations fo r the 

p a ra m e te r  p lane  coefficients (4 .2 .1 2 ) m ust be exam ined to  de te rm in e  

w hether the s ingu larity  can be rem oved .
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4 .5 .1  Zeta e q u a ls  one ( C = + 1). C are  m u st be taken in applying

equations (4 .2 .1 2 ) when f  =* + 1 because th is  contour involves the
4

branch  cut in a lm o st a ll c a s e s . Exam ining the g e n e ra l case  of a  

d istribu ted  p a ra m e te r  tran sm iss io n  line in  which L , R , C and G a re

not equal to z e ro , and RC ^ LG; defining

R G
1 " L ’ r 2 C

a = the sm a lle r  of the two ro o ts  r  ̂  and r 2 

b = the la rg e r  of the two ro o ts  r  ̂  and r 2 

T = (LC) 1//2d

the exponent of the tra n s fe r  function of (4 .2 .1 )  becom es

X(s)d = (LC)1//2d [ (s+ r j)  (s+ r2)] =T [ ( s + r^  (s+ r2)] ^ 2
(4 .5 .1 )

The branch cut is  a s  shown in F igure 4 .5 .1 .  T his figure  shows the 

£ = + 1 contour ( i . e . ,  the negative re a l ax is) consisting  of th ree  line 

seg m en ts .

segm ent 1 - a  <  wn <  0

segm ent 2 to <  -b
n

segm ent 3 - b ^ u> = - a
n

4 The exceptions a r e  the c a se s  of tra n sp o rt lag  (R = G = 0) and d is 

to rtio n less  tra n sm iss io n  (RC = LG). In these  c a se s  the branch cut 

degenerates in to  a  point located  a t the o rig in  of the s-p lane  o r a  

point at s  = - resp ec tiv e ly .
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/  ft.-I
i  - b ■i

FIGURE 4 .5 .1  DEFINITION OF SEGMENTS OF THE REAL 

AXIS OF THE s - PLANE
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The various specia l fo rm s of a  term inated  d is trib u ted  p a ra m e te r  

netw ork  can be ca tego rized  by the size  of th ese  th ree  lin e  segm ents. 

Some exam ples a r e  tabulated  below

Type of Network r( s)
Length oi Segment 

1 2  3

T ran sp o rt Lag (L C s2) 2 0 0 «-h O 1 8 0

D isto rtio n less  Line (s+a) 0 to -a -a  to - 00 0

D istribu ted  Lag (RCs) 1/2 0 0 Oto -00

D istribu ted  Lag (LGs) 1/2 0 0 0 to -00

G = 0 Line sC(sL+R) 1//2 0 -b  to  -00 0 to -b

L = 0 Line R(s C4G) ^ 2 0 to  -a 0 -a  to  -  00

Applying equations (4 .3 .17 ) to each of these  th re e  line  segm ents and 

noting that for a pa th  along the negative re a l a x is , C = +1 and

s  = - «  y ields the follow ing:

Segm ent 1 -a  <  s  ^ 0

- ^  = d J(R - cuL ) (G- «nC), 8^ = 0 (4 .5 .2 )

Segm ent 2 -60 ^ s  <  -b

- t 2 = -d  x/(R- wnL) (G- o>nC), 8 2 = 0 (4 .5 .3 )

Segm ent 3

- * 3 = 0, 83 = d , / b - « i nL ) ( G - u n C) (4 .5 .4 )
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- ^  i s  the negative of - because  segm ent 1 fo rm s a  p o rtio n  of the 

boundary betw een Regions A and D of F ig u re  4 .5 .1 , w hile segm ent 2 

fo rm s a  p o rtion  of the boundary betw een Region B and C . T able 4. 3 .1  

in d ica tes  that the po larity  of - ^  in  R egions A and D is  opposite to  the 

p o la rity  of -  ^  in  Regions B and C.

The form  of the p a ra m e te r  p lane equations along each  of these  

segm en ts w ill be exam ined u tiliz ing  the values of -  ^  and 8  given 

above. Applying the re la tio n sh ip s of (4 .5 .2 )  to (4 .2 .12 ) and noting 

that £ = +1 y ie ld s  fo r segm ent 1

k=0
(- % )k  (bk  + exp (- ck)

(- % )k  (dk  + exp(- ^ ) e k )
k=0 (4 .5 .5 )

D
1 ,1 "  *

n (- wn)k  (fk + exp(-

k=0

Defining new v a ria b le s
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Substitution of (4.2.12) into (4.5.6) and noting that % = +1,

Uk(l) = K, Tk(l) = 1 yields

* 2 ,1  = 2  (- - i / [  -k ly e s p (-  » 1-)ck (-^ + - ^ | T / 2 )]
k=0 _

r : 2.1 J 0 [ - l= V eX!)(- *  + ( 7 3 ^ 1 7 2  )] (4-5-7)

n , sin 8
^  ! = 2  "n> t - Mk +exP(- *  l>Sk(-k+ (1. g y A M

* k=0

Defining F., ( S = l )  = Limit sin 8 IA K
1 S » + l  (1_ £ 2 } 1 /2  <4' 5 - 8)

and using the expression for 8 given by (4.3.17) yields after some

manipulation (see Appendix HI)
. ft\fRC + LG - 2 ft) LC]

F ,  ( S = l )  = F , ( l )  = |  - ------------------------s _ _  (4 .5 .9 )
1 1 2 [ (« L -R  ) ( <-nC-G)]V 2

Thus the singularity has* been removed fo r segment 1 and (4. 5. 7)becomes

®~2,1 = 2  " n ^  t "kbk+exP(- ^  1)ck(-k+F1(l))]
k=0

C 2 i  = 2  ( - ft) n )k [ -kdk+exp(- 1)ek (-k+ F 1(l)) ] (4 .5 .10 )
k=0

n

D~ = 2  (- w n )k [ -kfk+ e x p ( - 1)gk (-k+ F 1(l))]
2’ 1 k=0
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and the param eter plane contour mapping segment 1 is computed 

using (4.5.10) and (4.5.5) in the following equations

C1 ,1 D2,1 '  Dl ,  1^2,1  _ D1,1B2,1 " D2,1B1 ,Ia ----------------------------------   m

" B l ,  1C2 , 1 “ B2 ,1C1 , 1

(4.5.11)

E quations (4 .5 .10 ) and (4 .5 .5 )  can a lso  be used to d e te rm in e  

the p a ra m e te r  p lane coefficients fo r the £ = 1 contour along line 

segm ent 2. T his is  accom plished by rep lac ing  the ex p ress io n  fo r 

- ^ ^  given by (4 .5 .2 ) with the  ex p ress io n  for - ^ 2  &iven by (4 .5 .3 ) 

and rep lac in g  the expression  fo r  F ^ (l)  given by (4 .5 .9 ) w ith the ex 

p re s s io n  fo r F g (l) given by (HI. 9) in Appendix III. Note that 

“ ^ 2  = ^ 1  anci = "F l ^ ^  so that th s  substitution i s  not unwieldy.

Exam ining lin e  segm ent 3, w hich extends along the b ranch  cu t, su b 

stitu tion  of £ = +1 and (4 .5 .4 ) in to  (4 .2 .1 2 ) y ields

n k
B! ,3  = 2  (“ *% ) (bk +C/k  C0S S ^

k=0

C l ,  3 = ^  ( - « . / ( d k  + ek cos 8 )
k=0

n
Dl , 3  = S  (-  u  /  (fk+fik  co s  8  )

k=0
n (4 .5 .12 )

B9 q = (- w )k ck s in  &2 ,3  k=0 n k



w here 8  is  defined by (4. 5 .4 ). The expressions fo r otg, f3 g and the 

de te rm inan t Ag a re  given by

CX,3 D2 ,3  '  C2 ,3 D1,3  „  D1 ,3 B2 , 3 '  D2 .3 B1 ,3
3 ~ A ■ p 3= A

3 3

A 3 = B 1 , 3 C2 , 3 - B2 ,3 C1 ,3  = sin  » V  \  (4- 5’ 13)

C onsidering the exp ress io n  fo r  A g  in equation (4 .5 .13 ) indicates 

that an a  -  f t  contour w ill ex is t and each point in the s -p la n e  will map 

into a  point in the a  - p lane when both s in 8 and Jg( ut n) a re  

n o n -zero  quantities.
* >

However, th is one to  one correspondence does not ex is t when 

e ith e r sin  8  =0 or J  =0 . C onsider the case  when sin  8 = 0 . Thus
u

8  = ± m ir , m=0, 1, 2 , ..................

Substituting into (4 .5 .4 )  gives
2 2

( <u L -R ) ( G - i C )  =-S2—J   (4. 5.14)
n n d

Equation (4 .5 .14) can be used  to determ ine values of wn= w* along
•jj XU

segm ent 3 at which s in  8  =0 . At these values of wn, cos 8  =(-1)

and (4. 5.12) can be re w ritte n  as 
^ The function J j  co ) is  defined asO XI

n i, n
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k=0

k=0 (4.5.15)

k=0

* * *
B2 ,3 C2 , 3 D2 , 3 = 0

The singu larity  cannot be rem oved h e re  since  8  is  defined by (4. 5 4 ). 

Equations (4 .5 .1 5 ) s ta te  tha t a t a  point on the b ranch  cut w here 

sin  8  = 0, equation (4 .2 .1 1 ) degenera tes into an equation with r e a l  

te rm s  only. That is :

This equation th e re fo re  m aps each of th e se  spec ia l points into a  s tra ig h t 

line in the a  - £  p lane. It should be noted tha t (4.5.16) also  app lies 

to the b ranch  poin ts a t s = -a  and s = -b . In th ese  c a se s  the a p p ro p r i

a te  value of the b ranch  point is  substitu ted  into (4. 5.15) and the value of

m is  se t equal to unity .
- \

4.5.2 Z eta equals m inus one ( S= -1). I t  is  easy ' to show that 

(4.5. 5) and (4.5.10) can be used to d e te rm in e  the  £  = —1 contour if

(4.5.16)
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- ^  = d [ ( o»nL + R) ( o>n C + G) ] 1//2 (4. 5.17)

, a) (2 w LC+RG+LC)
F 4(-D  =~y  [ (R+ wn L) (G+ (I) c ) ]1//2

L n n

Note th a t th ese  equations a re  sim ply  (4. 5. 2) and (4. 5.9) w ith the

po larity  of cd rev e rse d .

4. 5 .3  Sum m ary . The r e a l  ax is is  com posed of four d ifferen t

line segm en ts, segm ents 1 ,2 , and 3 along the negative re a l  ax is and

segm ent 4 along the positive r e a l  ax is .

F o r segm ent 1 the p a ram ete r p lane equations a  and a re

determ ined  by (4. 5 .11), (4. 5 .10), and (4. 5 .15) in which F ^ (l)  is

defined by (4. 5. 9) and w here - ^  is  defined by (4. 5.2) . F o r segm ent

2, the p a ra m e te r  p lane equations a r e  a lso  determ ined  by (4. 5 .11),

(4 .5 .10 ), and (4. 5 .15) . However, the function Fg(l) m ust be used

in p lace  of F i (1) in (4. 5.10) and the  function - m ust be u sed  in 
1

place of -  ^  in (4. 5.10) and (4. 5 .1 5 )  . T h is substitution is sim ple  

since F 2(l)  = - F ^ l )  and - ^  = •

F o r segm ent 3 ( L  e., the b ranch  cu t and branch poin ts ), the  

a  - £  c u rv e  corresponding  to poin ts in which the determ inant is 

not equal to  z e ro  (Ag^O) is given by (4. 5 .13) w here the coefficien ts a re  

defined by (4. 5 .12) and - \fr  ̂ is defined by (4. 5 .4 ). The sp e c ia l points on 

segm ent 3 , which produce a d e te rm in an t of value equal to ze ro  

map into s tra ig h t lines in
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the  o - / 9  plane in  acco rdance  with (4 .5 .16 ) w here  the coefficients 

a r e  defined by (4. 5 .15 ). The b ranch  points s  = -a  and s = - b a r e  

included as specia l p o in ts .

The mapping of poin ts along segm ent 4, ( i . e . , po in ts  along the 

p ositive  re a l axis) is  accom plished  by application of (4 .5 .5 )  and

(4 .5 .1 0 ) in which v a ria b le s  - ^   ̂ and F ^ (- l)  a r e  defined by (4. 5.17).

4 .6  Exam ple of A bsolute and R elative Stability  of a  Feedback 

System with D istribu ted  P a ra m e te r  E lem ents

An example is  now considered  in o rd e r to dem onstra te  the use of 

the equations developed in  sec tions 4 .2  and 4 .3  as w ell a s  to form  a 

b a s is  fo r the fu rth e r developm ent of the th e o ry .

C onsider the feedback sy stem  of F igure  4 .2 .1  w here

1) G j(s) c o n s is ts  of a  p ro p o rtio n a l-in teg ra l c o n tro lle r  with t r a n s 

fe r function K(s+W )/s and a plant w ith t ra n s fe r  function 1 /s

2) The d is trib u ted  p a ra m e te r  elem ent i s  a  d is trib u ted  lag . That 

i s ,  e -  y (s )d  = e~d V r c T = V S t -

This exam ple w as a lso  p resen ted  by Chu [23] so th a t com parisons 

can be m ade. The s-p lan e  rep re sen ta tio n  of the d is trib u ted  p a ra m e te r  

e lem en t is  shown in  F ig u re  4 .3 .2c. This fig u re  in d ica te s  that reg ion  

A extends oyer the  e n tire  u p p er-h a lf of the s -p la n e . T h is can be v e r i 

fied  by evaluating (4 .3 .1 3 ) w hich shows that <r = -oo when for 

G = L = 0. Next, T able 4 .3 .1  ind icates that the  signs a r e  positive and
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- ^  and B a re  in sh ee t 1 ,region  A. T h ere fo re  equations (4 .3 .1 7 ) give

n T d - t > ,  8 . K T ( U l )  ( 4 . 6 - 1 )

V  2 V  2

F or a  stab ility  investigation of th is  sy s tem , form  the c h a ra c 

te r is tic  equation (4 .2 . 5)

F(s) = s 2 exp ( / s T )  + Ks + KW = 0 

Defining the ad justab le  p a ra m e te rs  a s  a  = K, )8 = KW, F(s) becom es 

F(s) = s 2 exp( VsT) + a  s  + jS = 0 (4 .6 .2 )

U tilizing (4 .6 .2 ) , (4 .2 .2 ) , (4 .2 .6 ) and (4 .2 .1 3 ) gives

Wn e ^ 2  £ cos 8 + {̂ j ~ . 2X ^ ' sin  s j  

s  w 2e ”^ r c o s 8  - —a.

A = - « n V 1 " 5

a  =

„ V < T  cos 8 - ij -  sin  8 ^  (4 .6 .3 )

The v a ria b le s  <r and £  a re  p lo tted  w here  ^  is  fixed and tun 

is  the running p a ra m e te r . The reg ion  of the s-p lan e  to be m apped in 

p rd e r to d e te rm in e  absolu te  stab ility  is  shown in  F igure 4 .6 . l a .  F o r 

absolute s tab ility , the a  -f3  p lane contour is  obtained by se tting  

£ = 0 and vary ing  a>n from  zero  to infin ity . B ecause values for 

wn <  0 m ap into the sam e values fo r ^  0, the contour obtained 

for positive  values of re p re se n ts  the  e n tire  range of -CO s  QO 

(see Appendix n)': Then, from  (4 .6 .1 ) , (4 .6 . 3) and setting £ = 0 

gives



KWS-PLANE

-1 0

20

316
L, = 0

OJix

w v  r  \
r rr/7T/r/ y-/7/v v vtt

• J
MJL ' n/! r /  /  /  /  /  /

177'NOTE: CIRCLED NUMBERS 
ARE VALUES OF & 
AT AXIS CROSSINGS.

FIGURE 4 .6 .1  ZETA =0 CONTOUR FOR DISTRIBUTED
LAG PROBLEM



87

a  = w exp ( v /g T t/2  ) sm  (*/a> T /2  ) n n v n
(4 .6 .4 )

0  = to* exp ( ^ <unT /2  ) cos <>/ w^T/2 )

A graph of (4. 6 .4 ) is  shown in F igure  4. 6. lb  w here T is se t equal 

to unity as in re fe re n c e  [23 ] . Notice that th is  cu rve  s p ira ls  outward 

fro m  the origin as eun in c re a s e s . This is  to be expected s ince  both 

a  and 0  in (4 .6 .4 ) contain exp (+ y « nT /2) te rm s  which cause  an 

in c re a se  in the a  -  0  locus w ith increasing  ft»n . The a  ~ 0  curve 

fo r  §  = 0 is a m apping of the  j w axis and the  left half p lane has 

been mapped within the ind icated  doubly shaded reg ion . The 

shading is on the rig h t of th is  cu rve  in the d irec tio n  of increasing  

(u s ince  A  =- and w >  0. The singly shaded line  0 = 0  

re p re se n ts  the m apping of the o rig in  of the s -  p lane and is found by 

evaluating F(s) = 0 a t s = 0. T his singly shaded  line  is a  re a l 

roo t boundary and w ill be d iscu ssed  fu rth er in a  subsequent section.

Thus the  a - 0  p lane is divided into an in fin ite  num ber of regions

R l ’ R 2’ R3  ^  w here  R x=5  * ^ Ro o  * 0nly

values of a  and 0  chQsen fro m  region w ill p roduce a  stab le

sy stem  . This is because  c ro ss in g  from  a shaded  to an unshaded

reg ion  in the s -  p lane has the  sam e meaning in the cl -  0  plane and

vice  v e rs a . Thus m oving an operating point fro m  reg ion  to Rg im plies

that a  p a ir  of com plex  ro o ts  have m igrated  fro m  the le ft-h a lf  into the
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rig h t-h a lf of the p rin c ip a l sheet. T h ere fo re  only R j can contain a ll  

the roo ts s ince  i t  is  com pletely closed and contains no subregions.

Now if W is  s e t  equal to  0. 3, then )3= KW = 0. 3K = 0.3 a  which 

is  the equation of a  s tra ig h t line a s  shown in F igure  4 .6 . lb . This 

line in te rse c ts  the C= 0 curve at a= a. a a  a „Aj Dj • • • j du • 4

. a  . I t  follow s tha t th ese  vlaues of a  a r e  the  gains at which p a ir s  

of complex ro o ts  c ro s s  the im aginary a x is . T here  w ill be an infinite 

num ber of such po in ts since  the c h a ra c te r is tic  equation is  tra n sc e n - 

dental.giving r i s e  to an infinite num ber of ro o ts . The line /3 = 0 .3  a  

in te rse c ts  the  portion  of the C = 0 curve  along the  boundary of reg ion  

R j at a  gain of 20 .3  and a  value of = 4. 52 ra d /s e c  (see F igure  

4 .6 . lc ) . T h is i s  the m axim um  allow able gain for absolute s tab ility .

If W is  v a rie d , a  new line  /3=  W a  r e s u l ts  and i ts  in te rsec tion  

with the boundary of reg ion  R j gives new values of c r it ic a l  gain K and 

undamped n a tu ra l frequency <u of th e  dom inant mode.

To investiga te  the re la tiv e  stab ility  of the sy s tem , a  value of 

5= £  ̂ is  substitu ted  into equations (4 .5 .1 )  and 4 .6 .3 )  and a new 

a — /3 con tour is  fo rm ed . The g en era l form  of th is  contour is  shown 

in F igure 4 . 6 . 2b fo r C = 0 .35 . T his cu rve  which co rresponds to the 

s-p lane  contour shown in F igure  4 .6 .2b a lso  s p ira ls  out from  the 

o rig in . T his is  because both a  and J3 contain exponential te rm s  of 

the form  exp (y 07325~cÛ ) which in c re a s e  the m agnitude of both a and 

J3 with in c re as in g  tun - In addition, the  f i r s t  t r a v e rs a l  of th is cu rve
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is  com pletely  within the boundary of the £ =0 cu rve  (see  F ig u re  4. 6.1)

4. 6. lc ) . The detailed  plot of the  f i r s t  t ra v e rs a l  of the  £=0.35 cu rve

is  shown in F igu re  4 .6 .2 c . One in te rsec tio n  of ths cu rve  and the  13- 0 .3 a
5

line  occurs a t a  point M( a^= 3 .3 , /9j=0. 99), which co rre sp o n d s to  a 

gain of 3 .3  and an wn=l* 54 . T his in tu rn  indicates tha t a  p a ir  of 

com plex conjugate roo ts ex is t at

S1 2 = “ ^1 Wn l ± j " n l ^ ^ l  ' = 539± j l .4 4  (4 .6 .5 )

T h is com plex roo t p a ir  is  in ag reem en t with the re s u lts  of [23].

The £ = 0 .3 5  curve s p ira ls  outw ard continously fro m  the o rig in  .

T h is m eans th a t all o ther com plex ro o ts  on the p rin c ip a l sheet of the 

s-p lan e  m u st lie  below the ra d ia ls  £ =0. 35. T his can be verified  by 

noting that as the system  gain is  reduced  from  infinity, the  operating  

point m oves tow ard the o rig in  of the  a - @  plane along the  / 3 = 0 .3 a  

line  and p a ir s  of roo ts thus move fro m  the unshaded to the shaded side 

of the  ra d ia l  contour of F ig u re  4. 6. 2a. When the gain is  reduced  to

3 .3  a ll com plex root p a irs  except one, the fundam ental com plex 

conjugate ro o ts  (which lie  on the rad ia l)  have moved below th is  rad ia l.
s '

T he cu rves fo r  all values of £ in th is  exam ple m ust a lso  sp ira l  out from  

the  o rig in . T h is is because they co rresp o n d  to operation  in reg ion  A of 

F ig u re  4 .3 . 2c w here the p o la rity  of the exponent - is positive . Once 

a  w orking point, say M (3.3, 0. 99), has been se t, the in te rsec tio n  of 

a  -  (3 con tours corresponding to o th er values of £ and the w orking

poin t w ill y ie ld  the locations of the h igher o rder com plex roo t p a ir s .

5 A second in te rsec tion  o ccu rs  at a  low er value of gain. T his 
ind icates that th e re  a re  two in te rse c tio n s  of the £ =0.35 ra d ia l 
and the f i r s t  branch of the  ro o t locus cu rve  in the s -p la n e . See[23 ].
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It is  of in te re s t to com pare th is  re su lt of m apping the p rin c ip a l 

sh ee t of the s-p lane  w ith the re s u l ts  obtained if  the  d is trib u ted  lag is  

rep laced  by tra n sp o rt lag . In th is  la t te r  case  th e re  only one sheet to 

be m apped and E isenberg[29] showed that the a  - con tours for a ll 

v a lues of £ > “ 0 eventually  sp ira l  inward tow ard the o rig in  a s  w n 

approaches in fin ity . A contour tha t sp ira ls  inw ard  tow ard the orig in  

m eans that com plex ro o ts  a t successively  higher values of m ust 

lie  above the rad ia l being m apped.

As observed by B all [6] and P ie r r e  [79] , com plex roo t p a ir s  can 

be located  on the secondary  sh e e ts  of the R iem ann su rface  equivalent 

of the s -p la n e . T hese ro o ts  can be located by f i r s t  substitu ting  the 

va lues of -  ^  and 8  in  reg ion  A of the second sheet

then setting  T = 1 and p lo tting  the  q  ^.--curves fo r v a rious values of

<o . The re su lt of plo tting values of £ betw een 0.996 and O'. 999

a re  shown in F igu re  4 .6 .3  w here  i t  can be seen  tha t the cu rve  for

£ = 0. 998 is  c lose  to the opera ting  point M(3-. 30, 0 .99) a t orn = 0 .326.

T h is ind icates that a  p a ir  of com plex conjugate ro o ts  a re  located  on the

second sheet ve ry  c lo se  to the negative re a l a x is  a t
1

The rem aining ro o ts  on the secondary sh ee t can be found by plotting 

a  - /3 contours co rrespond ing  to . o ther : va lues of £ w ith con a s  the

(4 .6 .6 )

(4.6.7)
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running p a ra m e te r . F igure 4 .6 .4  shows that the a  - contour fo r 

C = 0 .6 8  , <un = 35.6  is  coincident w ith the point a  = 3. 30 , £  = 0. 99 

indicating that, a  p a ir  of com plex conjugate ro o ts  a re  located  on the 

second sh ee t at

S 2B B = " 24- 25 ± S (4 .6 .8 )

4 .7  R eal Roots

The question  of determ ining the re a l ro o ts  of the c h a ra c te r is tic

equation (4 .2 . 5) w ill now be considered . The technique to be u tilized

is  the one developed in sections 4 .2  and 4 .3  since th is technique is

applicable to any poin t in the s -p la n e .

In th is  c a se , only the re a l a x is  of the s-p lan e  need to be considered

substitu ting  s = <r+ jO (where ar can  take on positive o r negative values)

into the c h a ra c te r is tic  equation (4 .2 .5 )  g ives

F( <r) = I  ak (cr) o*k  = 0 (4 .7 .1 )
k=0

Then substitu ting  (4 .2 .6 ) into (4 .7 .1 )  y ie ld s

a  2  crk (h^ + cfee  X d) + /3 S  °-k (dk+eke **) + 2  °-k (fk+gke ^  = 0
k=0 k=0 k=0

(4 .7 .2 )

w here

exp ( Xd) = exp ( ^ (  crL+R) (cr C-tO)' .d ) (4 .7 .2 -a )
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F or values of <r w hich re su lt in r e a l  va lues of Y equation 

(4 .7 .2 ) contains only re a l  te rm s  and th e re fo re  a  given value of 

re p re se n ts  a  s tra ig h t line in the a  - /B p lane . F o r exam ple, Y w ill be 

p o s i t i v e  a n d - r e a lfo r  a ll  positive  values of cr . The function Y w ill a lso  

be positive and re a l fo r values of <r betw een z e ro  and -a , negative and 

re a l  for va lues of & betw een -b and m inus in fin ity , and im aginary  

fo r values of <r betw een the branch po in ts ( i . e . , -b  g & ^ -a ) .

Refocusing a tten tion  upon values of a  w hich produce re a l values of 

Y every value of <r tha t sa tis fie s  (4 .7 .2 )  is  a  r e a l  roo t of (4 .2 .5 ) .

These re a l ro o ts  m ay be determ ined by graphing  (4 .7 .2 ) for d ifferen t 

values of a  producing s tra ig h t lines w hich in te rse c t the working 

point M ( The  values of <r th a t p roduce these  in te rsec tio n s  

a re  the re a l ro o ts  of (4 .2 .5 ) . Since (4 .7 .2 )  is  the  equation of a  

s tra igh t line  when Y is  r e a l ,  the graphing  is  not tedious and in te r 

polation betw een c u rv e s  i s  possib le .

If a  value of a  is  se lec ted  which m ak es Y im aginary^then the 

c h a ra c te r is tic  equation is  complex and can  be sep a ra ted  into i ts  r e a l

and im aginary  p a r t s . T hat is  F ( <r) becom es

n , n k  n k
a  2  <7 (bk+ckc o s y )  + j3  Z  <r (d^+e^cos y)  + £  a  (fk+gkcos y) = 0

k=0 k=0 k=0

(4 .7 .3 )

and
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T  n  ksin yl<j 2  cr c
L k=0

n , n k
sin  y | ce 2  $  2  cr ek  + 2  <r gfe

k=0 k=0

= 0

(4 .7 .4 )
/  - V

w here

y = ( r 2 ) 1/2 d

A s m entioned prev iously , va lues of cr which m ake y  im aginary  

o ccu r for negative values of <r which lie  between the b ranch  po in ts 

r ^  = -R /L  and rg  = -G /C . One solution of (4 .7 .4 )  i s  when

sin ( t I *^2 d) = 0 or when

| y 21 d2 = m 2 ir 2 m  = (0, ±1, ±2, . . .)

Thus
2 2

} y 2 | = |  (R - cr L) ' (G - <r C) | = ——^ --  (4 .7 .5 )
d

Solving (4 .7 .5 ) for <r as m  takes on successive integer values

yields the absolute values of the rea l roots or cr <r
Kl» 2 ' ' * m ‘

These roots, when they a re  substituted into equation (4.7.3)

(and noting that at these values of cr , cos y = (-l)m ) yield the follow

ing family of straight lines for integer values of m

0 2  (- crR )k (bk+( - l ) m ck ) + /3 2  ( - <r R )k (dk+( - l ) m ek)

k=0 k=0
(4 .7 .6 )

+ I  (-o -R)k (fk+ (- l)m gk ) -  0, m = 0. 1, 2 . . .
k=0
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The second g en era l solution to (4 .7 .3 ) and (4. 7.4) can occur

when sin  y ^ 0 and these  equations a re  independent. Under these

conditions, each point - on segm ent 3 of the negative re a l ax is

of the s-p lane  m aps into a  point ( <*. &  .). T h ere fo re  only a working

poin t located a t ( a  . )8 ) w ill produce r e a l  ro o ts  fo r values of cr
1 , 1  i

betw een the b ranch  po in ts (with the exception of po in ts w here sin  y = 0). 

If (4 .7 .3 )  and (4 .7 .4 )  a r e not independent, the m apping is  inde term ina te .

The system  under consideration  in sec tion  4.6 w ill now be exam ined

for re a l  ro o ts . Since L = G  = 0, r  ̂  = -00 , = 0, r - ^ 7

and equations (4 .7 .3 )  and (4 .7 .4 ) a re  applicable over the en tire  negative 

r e a l  ax is . That is

a-2 cos(d ^ R C  ) + a e r  + j9 = 0

(4 .7 .7 )

s in  (d ^ R C  |<r| ) ’ <r 2 = 0

C onsidering va lues of cr which make s in  y = 0 gives from  (4 .7 .5 )

2 2 2 21 _  j m  7T _ m i r
R ” R e d 2 T 0, ±1, ±2 . . .

(4 .7 .8 )

T here fo re  values of cr = ~ cr for v a rio u s  in teg er values of m  p ro -ti
duce a  family of s tra ig h t lin es through u se  of (4 .7 .6 ) . These lin es  a re

2 _  2 , ixm +l 4 4 n 1 oa  _ m t t  a  (-1) m ir m = 0, ±1, ±2, . . .
P  T + T2 >

1 (4 .7 .9 )
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The c h a ra c te r is tic s  of se v e ra l l in e s  from  th is  fam ily a r e  su m 

m arize d  fo r T = 1 in Table 4 .7 .1 .  None of the lin e s  in  th is  fam ily 

en te r R ^, which is  the reg ion  of stab ility  of F igu re  4 .6 . lb .  T herefore  

th is  system  when stab le  cannot have any negative r e a l  ro o ts . This 

re s u l t  i s  co n tra ry  to the one p resen ted  in [ 23 ] . The an g le -lo c i 

m ethod [&3ij produced the following ro o ts  for opera tion  a t £ =0. 35,

T = 1 , W=j 0 .3 , and K**3.1

S1A,A = 0 *5 3 ± j x- 41»

= -0 .3 3 , or = -3 .2 0

As m entioned p rev iously , the conjugate p a ir  s ^  and s ^  a re  in 

c lo se  ag reem en t with the ro o t p a ir  obtained from  the £ = 0. 35 

contour in F igure  4 .6 .2 c  (see equation (4 .6 .5 )). H ow ever, the negative 

re a l  ro o t is  obviously an  e r r o r  because substitu tion  of th is  root 

into the open loop tra n s fe r  function

G( - c r) = K(- < r + 0 . 3 ) e - y (~‘r  >_  = Ie±j(2 n + l)ir

-  (- <r r

does not sa tisfy  the above roo t loci conditions. The negative  rea l 

roo t <r j  = -0 .3 3  is in a ll p robability  the . p a ir  of com plex

conjugate ro o ts  on the second sheet of the Riem ann su rfa ce  very  close 

to the negative re a l ax is  a t

S 2A A = ^
which w ere  obtained in Section 4 .6 .
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m CT EQUATION OF LINE G ain a t /9 = 0

0 0 /3= 0 —

1 - I T 2 (3= 7T2a  + -IT4 2-7r

2 -4  i f  2 * 2 4 £  = 4 ir a  -16 ir +4 i r 2

3 -9  ir 2 £  = 9 ir 2 a  +81 ir 4 -9  7T ^

4 -1 6  IT2 £  = 16 ir 2 a  -256 ir 4 +16 ir 2

Table 4. 7 .1 . Equations of lines in  a  - j8 plane rep resen tin g  

negative rea l ro o ts  along the b ranch  cut.
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4. 8 A lterna te  P ro c e d u re  fo r D eterm ining R eal Roots

An a lte rn a te  p ro ced u re  can often be em ployed as an a id  in d e te r 

m ining re a l  ro o ts . T his p ro ced u re  can not only be used  in  determ ining 

how m any re a l roo ts ex is t but a lso  the approxim ate  va lues of these  

ro o ts . C onsider the negative r e a l  ax is of the s-p la n e  fo r a  feedback 

system  containing a  d is trib u ted  p a ra m e te r  netw ork  w ith a  tra n s fe r  

function given by (4 .2 .1 ) . T his half line can be divided into th ree  

segm en ts a s  shown in F ig u re  4. 5 .1 . R eferring  to th is  figure  it was 

shown in  section 4 .7  that

•  Segment 1 c o n s is ts  of values of cr such that the value of

y (s )  evaluated a t s  = - cr is  positive , due to both the (R- cr L) 

and (G- cr C) te rm s  of (4 .3 .1 ) being re a l and positive .

•  Segment 2 c o n s is ts  of values of <r such  tha t Y  (s) is  

negative due to both the  (R- crL) and (G- crC) te rm s  of

(4 .3 .1 ) being re a l  and negative ( i . e . ,  v ec to r w ith an argum ent 

of ir )

•  Segment 3 w hich is  the branch cut of the function of equation

(4 .2 .1 ) c o n s is ts  of va lues of <r such that one of the te rm s  

(either (R- cr L) o r  (G- cr C)) is  r e a l  and negative and the 

other is  r e a l  and p o sitiv e .

•  Segment 4 (the p o sitiv e  re a l ax is of th e  s-p lan e) consists  of 

positive va lues of s igm a.
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The p roo f given in  Appendix IV is applicable to sy s tem s in  which 

the d is trib u ted  p a ra m e te r  tra n s fe r  function is  of the form  of (4 .2 .1 ) .

Thus the num ber of negative re a l ro o ts  of F (s) = 0 is  equal to the 

num ber of s tra ig h t lin es  drawn through a  w orking point M( a  ̂

in the a - £  plane that a re  tangent to the C = + 1 cu rves fo r segm ents 

1 and 2. F u r th e rm o re , the values of th ese  ro o ts  a re  equal to the 

negative of the frequencies o>n ^ w n2 ’ ' ’ no*ec* on the £ + * 

curves co rrespond ing  to these  se g m e n ts . P ositive  re a l r o o ts , if any , 

can be found by determ ining  the num ber of tangent lines than can be 

drawn from  the w orking point M( a  ̂ f t  to the C = -1 contour 

in the a - /9 plane . If any of th ese  tangent lin e s  ex is t, the  system  

is  unstab le  a t  that working point.

4 .9  A Second Exam ple

4 .9 .1  Stability  and roo t lo ca tio n s . Given the feedback sy stem  of 

F igure 4. 9 .1  i t  would be in s tru c tiv e  to investigate  both i ts  s tab ility  

and the location  of ro o ts  of i ts  c h a ra c te r is t ic  equation. The d is t r i 

buted p a ra m e te r  e lem ent in th is  c a se  can be ch a rac te rized  by the 

following constan ts  d = L = C = G = 1; R  = 2 or the t r a n s fe r  function is

F d (s ) = exp( - ^ ( s + l )  (s+2) ) (4 .9 .1 )

The open loop t ra n s fe r  function of the  sy s tem  of F igure 4 .9 .1  is

G(s ) = K(s+W) exP( -V  (s+1) (s+2) ) (4 . 9 . 2)
2s
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K(s + W)

FIGURE 4 .9 .1  SYSTEM DIAGRAM-SECOND EXAMPLE

t
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and the c lo sed  loop tra n s fe r  function i s  given by

K(s+W) (4 .9 .3 )
s 2exp( -^/(s+1) (s+2) ) + Ks + KW

Consider the  c h a ra c te r is tic  equation in  which a  = K and /9 = KW. 

That is

B efore proceed ing  with the m apping in  the p a ra m e te r  p lan e , the 

re la tionsh ip s fo r the functions -  and 8 m u st be estab lished . The 

s-p lane d iag ram  fo r the d istribu ted  p a ra m e te r  elem ent is  shown in 

F igure 4 .9 .2 .  The boundary line betw een the various reg ions is  

determ ined by equation 4 .3 .1 3  to be  the  line cr= - 3/2 and the  va lues 

for - i/r and 8 in reg ion  A of the p rin c ip a l sheet a re  given by (4 .2 .1 7 ) 

a s

F(s) = s 2exp(*\/(s+l) (s+2) ) + a  s  + /3 =0 (4 .9 .4 )

(4 .9 .5 )

where

J a  = (2 C 2 -1) wn 2 - 3 U n + 2
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CT=

REGION AREGION B

REGION DREGION C

FIGURE 4 ;.9 ,2  s-PLANE DIAGRAM -  SECOND EXAMPLE
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The value of <o given by (4 .3 .14) a t which a  ra d ia l line C = C 
n l

c ro s se s  from  reg ion  A to region B is

“ “ i  ■ - i r - i y  < 4 - 9 - 6 )

In region B, the p o la rity  of the function fo r - \f/ changes while the 

po larity  of the function 8 rem ains the sam e. Thus in region B

'  * B  = * A

8 B " 8 A

With the exception of a  different function fo r / ( s ) ,  the c h a ra c 

te r is tic  equation (4 .9 .4 )  is  of the sam e form  a s  the c h a ra c te r is tic  

equation in the  p rob lem  fo r d istribu ted  lag  d iscu ssed  in C hapter 4 

Section 6. T h ere fo re  the equations fo r a  , /3 and A  a re  iden tica l to

(4 .6 .3 ) and a re  rep ea ted  below

„  t  » (1~2 £ ^) sin .8 *1
a  = % e [ 2  c  COS 8 + ' 2) 1/2 ~ J

f i  -  (cosS - t  ------) (4-9 8)

A  = - » n  (1- s 2)1/2

w here - ^  and 8 a r e  defined by (4 .9 .5 )  fo r reg ion  A of the p rin c ip a l 

sheet of the s -p la n e .
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In o rd e r  to investigate  abso lu te  s tab ility , £ is  se t equal to

ze ro  and <o is  varied  from  z e ro  to infinity. F ro m  F ig u re  4 .9 .2  n
i t  can be seen  that only Region A need by considered  when £ = 0. 

The p a ra m e te r  plane equations fo r £ = 0 a re

a  = - fw e sin 8n

/3 =
2 - fte> en cos 8 (4 .9 .9 )

A  = - tel n

w here

- *  = J [ (  * V 2 + 1 ) < " n 2  +  4 ) ]  1 / 2  '  “ n 2  +  2

(4 .9 .10)

|  , 2 , 2 . v . 1 /2
/  f wn + w n + -I + wn

2
T his £ = 0 contour is  p lo tted  in  F igu re  4 .9 .3 .  Note that a s  qj

is  in c re a se d  the contour s p ira ls  outw ard from  the o rig in . The £ = 0 .3  

contour i s  plotted in F ig u re  4 .9 .4 .  Note in  th is  c ase  tha t a s  a> n

in c re a s e s , the contour f i r s t  s p ira ls  outward from  the o rig in  and then 

inw ard tow ard the o rig in  a s  the s-p lan e  path m oves into reg ion  B.

T his tra n s itio n  from  reg ion  A to reg ion  B o ccu rs  a t a>n = 10.0.

T his m eans that a s  a> in c re a s e s  tow ard infinity  the ro o ts  of F(s) = 0 

m ust eventually lie  above the £ = 0 .3  ra d ia l. The f i r s t  t ra v e rs a l  of 

the £ = 0 contour is  a lso  shown in F igure  4 .9 .4 .



i m s-Fkna.
1 0 7

Note: C irc led  
num bers re p re se n t 
values of cu atn
axis c ro ss in g s .

FIGURE 4 .9 .3  ZETA =0 CONTOUR -  SECOND EXAMPLE
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cr

~=io

FIGURE 4 .9 .4  ZETA= 0 .3  CONTOUR- SECOND EXAMPLE
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The f i r s t  t ra v e rsa l  of the a  = /S contours co rrespond ing  to  

v a rio u s  va lues of £ betw een ze ro  and 0 .9  a re  shown in F igu re  4 .9 .5 .

A lso shown in th is figure i s  the line  (3 = 0 .3  a  co rrespond ing  to a

contour ind ica tes that when W = 0 .3  the maximum gain for s tab le  

opera tion  i s  5 .40  and the frequency of oscillation  a t th is  gain i s  1. 30 

ra d ia n s /s e c . When W is  s e t  equal to z e ro , the m axim um  allow able 

sy stem  gain fo r stability  i s  6 . 55.

4. 9. 2 £ =+_l Contours. The £ =+ 1 contour m ust be considered  for

each  of th ree  line segm ents shown in F igure 4 .9 .2 .  On segm ent 1,

which co v ers  values of w betw een z e ro  and one, F - ( S  =1) ofn ’ 1
(4 .5 .9 )  is  given by

and the p a ra m e te r  plane equations a and f3  a re  obtained by app lica 

tion of (4. 5 .11) utilizing (4. 5 .10), and (4. 5 .5). T hat is

value of W equal to 0 .3 . The in te rse c tio n  of th is line  and the £ = 0

F x( £ =1) = F j ( l )  =
a; (3-2 a> ) n n

In addition , the  functions - and 8  a r e  given by (4. 5 .2) a s

a = (o en (2 -F x(l) )

£ = < u V ^  ( 1 - F j U )  )
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T his contour is  plotted in F igu re  4. 9 .6  for values of a>n between 

z e ro  and one.

S im ilarly  along line  segm ent 2, which co v ers  va lues of tun b e 

tween 2 and infinity, the following equations a re  obtained
<o (2 cu -3 )

F , ( S = 1 )  = F , ( l )  =  n . ” = -F j ( l )
1 2 V( « n-2) ( « n-i)

-  * 2  = - 7  ( « n - 2) ( « n -D

82  =  0

- ^ 2
a  = « ne (2-F2(l) )

_\^2
0  = a>‘ e (1 -F 2(1) )

T his contour is  a lso  p lo tted  in F igu re  4. 9 .6  for va lues of cun g re a te r  

than tw o.

nTo exam ine the £  =1 cu rve  along segm ent 3 ( i .e .  va lues of cu

betw een 1 and 2), f i r s t  va lues of cu for which s in  8  = 0  m ust be"  n
found and then the rem a in d e r of the segm ent (if de te rm ina te ) is  mapped.

V alues of cu^ along segm ent3 of the.negative r e a l  ax is  which make

sin  8 = 0  can be found by solving (4 .5 .14 ) for va lues of the in teger m.

Since R /L  is  g re a te r  than G /C  and d = Inequation (4 .5 .1 4 ) becom es

(2- cu ) ( cu - 1) = ± m ^ ir  ^ 
n ' '  n '

fo r values of cu^ along segm ent 3. When m = 0
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2
cu -  3 CD + 2  = 0 n n

Thus <D = 2  and cu = 1 .  F o r values of m o th er than z e ro  the n n
values of a)n fall outside of segm ent 3 and th e re fo re  do not apply. 

Applying equation (4. 5 .6 ) and (4. 5 .15) to the two ro o ts  found when 

m = 0 produces two s tra ig h t lines

£ =  a  - 1 

/3 = 2 a  -4

O perating  points chosen along one of these  lines w ill y ield  a  re a l 

ro o t a t the indicated value of s ig m a. For the rem a in d e r of segm ent 

3, equation (4 .5 .13) is  applied and re su lts  in

A3 = Sin 8 j(- cun) • 0 - (1) • <f] =0

and the ]>=1 curve is  th e re fo re  indeterm inate  betw een the b ranch  

p o in ts .

4 .10  Constant Sigma C ontours

C ontours which co n s is t of constan t sigm a lin e s  (instead  of con

stan t d im ension less dam ping lin e s) w ill now be d iscu ssed . A typical

constan t sigm a line is  shown in  F ig u re  4 .3 .2a. A lso shown in the
/

figure  a re  the b ranch  po in ts and b ranch  cut a sso c ia ted  w ith the d is t r i 

buted p a ra m e te r  e lem ent a s  w ell a s  line Q, the b ranch  cu t b ise c to r .

In the upper half of the p rin c ip a l sh ee t of the s -p la n e , the constant 

s igm a line can be e ith e r  reg ion  A , reg ion  B o r  co incident w ith line 

Q, the boundary betw een the two reg io n s . When in e ith e r  reg io n s A
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o r  B , the po larity  of the function - $  should conform  with the 

po larity  specified  in  Table 4. 3 .1 . When the  constan t settling  tim e 

line  is  on the boundary, the  value of is  z e ro .

The m apping of constan t sigm a lines can be accom plished by e ith e r  

deriving the a  -  /3 equations in te rm s  of a  and <o 

o r by modifying the p a ra m e te r  plane coefficien ts of equations (4 .2 .1 2 ). 

In th is  c a se , the s-p lan e  path  co n sis ts  of a  contour of constant 

a  = -  £  and i t  th e re fo re  becom es n e c e ssa ry  to e lim inate e ith e r 

o r cun in o rd e r  to effect the m apping. A gain, i t  should be noted 

tha t when sym m etrica lly  enclosing the le ft half, of the  s-p lane  o r a  

reg ion  th e re in , i t  i s  only n ecessa ry  to com pute va lues of a  and (3 

fo r w n >- 0 (see Appendix n). A constant sigm a line  can be m apped 

by e ither

1. Setting a  equal to a  constant and vary ing  cu from  the absolu te■ n

value of or to infinity or

2. Setting or equal to a  constant and vary ing  1^ from  +1 to z e ro . 

The generalized  a  - /3 equations for sy s te m s  containing a  d is trib u ted  

p a ra m e te r  e lem ent w ill be derived  for both c a se s .

4 .1 0 .1  C ase 1 - P a ra m e te r  plane equations which a re  functions of CT 

and <un . The equations fo r the p a ra m e te r  p lane coeffic ien ts, (4 .2 .1 2 ) 

and the d istribu ted  p a ra m e te r  functions (4 .3 .1 7 ) m u st be rea rran g e d  

so  that the v a riab le  n ev er ap p ea rs  a lone , but only in the product 

<r = - ^  oi^. T his i s  accom plished by m ultip lying the num era to r and



115

denom inator of a ll te rm s  containing unconverted  C te rm s  by u*n 

thereby  p e rm ittin g  the C te rm  to be converted  into a  <r t e r m . Thus 

for reg ion  A, sh ee t 1 (4 .3 .17) becom es

_____________  (4 .1 0 .1 )

V 2

w here

B 1 = ( co2 L 2 + 2 <r RL+R2) * ( wn2C2 + 2 <r GC+G2)

(4 .1 0 .2 )
J j  = LC(2 cr -1) + RG + <r (RC+LG)

V alues of - ^  and 8  for reg ion  B , sh ee t 1 a re  obtained by re v e rs in g  

the p o la rity  of the expression  fo r - ^  above and using the above 

value of 8  d irec tly .

F u rth e rm o re  the following ex p re ss io n  can be exp ressed  a s

(1- £ 2)X/ 2 =   (4 .10 .3 )

%
Since the Chebychev polynom inals a re  a lso  functions of £ they can be 

rew ritten  as

V  " n >  * ^  >
k  k_

^  )
(4 .10 . 4)

- 2 > “ <-X>k+1 “ n ' X & l
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The P , and Q functions can be obtained from  the following r e c u r -
K K

sion fo rm ulas

P k  ( a ’ " a ' " 2 ® 'P k ( ( r ’ “ n)+ <"n :pk - l ( "  ' *  n> = 0

(4 .10 .5)

Qk  ( *  ’ w n ^-2  a  Qk ( a ’ + % Qk - l ( a  "  n* = 0

w here
2 2

P  = 1 p  = <r P  = 2 <r - <uA» *1  ’ 2 n

Q0 = °> Q j = 1, Q2 = 2 <r

T hus, under the condition that ai^ > Jar f , equations (4 .2 .12)

can be rew ritten  as 

n
B x = 2  

k=0

n
c 2 = 2

k=0 

n
Dx -  2

k=0 

n
B2 = .5

k=0

Z 0s bk + e ~ *  c k  Z l s

zo A + e ’ *  ek  Z ls

-  \f/
Z f ,  + e Y g. Z 
Os k k is (4 .10.6)

Z 2 s bk + e  c k Z 3s

C 2 S  Z 2s ^  + 6 \  Z 3s
k=0
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D2 = S  
k=0

n
Z 0 f. + e g, Z Q 2s k - ®k 3s

w here

Zn = P  Z„ = Q ( o> '2 - t r 2)1/ 2Os k, 2s n r  n '

z l s  = P k Cos 8  -( wn2 - c r2)1/2 Qk S in 8

Z3s = Qk ( wn ~ a  2)1/2 Cos 8 + P k  S in 8

w here - ^  and 8 a re  defined by (4. iO. 1) fo r reg ion  of sh ee t 1.

F o r m apping constan t sigm a contours in  o th er reg ions in sheet 1, the 

po larity  of the v a ria b le s  and 8  a re  de term ined  by Table 4 .3 .1 .  

Through u se  of (4 .10 .6 ) p- can be se t  equal to a  constant and <un 

varied  from  the absolu te  value of or to infinity w ith the p a ra m e te r  l 

plane coeffic ien ts, a  , and /3 being com puted fo r each value of u»n<

4 .1 0 .2  C ase 2 - P a ra m e te r  plane equations which a re  functions of 

<r and C . By elim inating the v a riab le  « n from  ( 4 . 3 . 17) th rough  use  

of the re la tionsh ip  <r = -  £ a) the following is  obtained for reg io n  A 

of sheet 1 of th e  s -p lan e

(4 .10 .7 )

8

w here
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2 2 2 2 - "

H0 = ( a 0— + 2 o-R L + R 2) X - Z - S - +  2 o - G C + G 2)

T _ <r2 LC ( 2 £ 2- l )  + RG + <r (RC + LG)

“ 7 s

(4 .10 . 8)

E x p ress io n s  fo r  -  iff and 8 in  o th er reg ions of the s -p lan e  can  be 

de te rm ined  through use  of T able 4 .3 .1  and (4 .10 .7 ). The p a ra m e te r  

p lane coefficien ts of (4 .2 .12 ) upoii e lim ination o f  the v a riab le  cu 

becom e
n

B 1 ~ 2  Z0d bk  + 6 c k  Z ld
k=0

n _w,
C- = y  Zrt, cL + e e. Z 1 , 1 *  0d k k Id

k=0

n-

D1 = 2  Z0d fk  + e gk Z ld
k=0

B2 2  Z2d bk  + e c k  Z 3d
k=0

C2 2  Z2d dk + 6 ek  Z 3d 
k=0

D2 2  Z2d fk + e gk  Z 3d
k=0

(4 .10 .9)

w here
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Z = T Z -  <r̂ TI M -Od g k  k  ’ 2 d "  ' J k  V  5  '

7  _ 0- k( T ,C o s  8 + (1- S 2)1 /2U, Sin 8  )
Id ~ £ k  K

7  _ o- (̂-U (1- £ 2)1/2 Cos 8 + T S j j n .  8)
3d £ k  k  k

M athem atica lly , it m akes little  d ifference  w hether constant 

sigm a lines (i. e . o  = - or a re  m apped w ith e ith e r w o r  

a s  the running p a ra m e te r . In m ost app lica tions , how ever, o>n is  

chosen a s  the running p a ra m e te r  because  of i ts  range ( i .e . |  <r|= <o = oo 

as opposed to 1 > £  > 0) and its  physical in te rp re ta tio n .



120

CHAPTER 5

ANALYSIS OF FEEDBACK SYSTEMS CONTAINING DISTRIBUTED

PARAM ETER ELEMENTS WITH TRANSFER FUNCTIONS O F THE FORM
ftxp[-f.sT)^-*l

5 .1  INTRODUCTION

A c la s s  of tra n s fe r  functions which contain both tra n sp o rt and d is t r i 

buted lag a s  specia l c a se s  w ill now be investigated . T h is c la s s  of t r a n s 

fe r  functions is  ex p ressed  by

F D(s) = [ - ( s T )P /q | (5 .1 .1 )

w here

T is  a  constant 

s  is  the com plex v a riab le  

p and q a re  in tegers  w ith p s  q

When the in teg e rs  p and q a re  equal, (5 .1 .1 )  is  the fam ilia r  e x p re s 

sion fo r tra n sp o rt lag . When 2p = q , (5 .1 .1 ) becom es the tra n s fe r  

function fo r d istribu ted  lag . When an elem ent w ith tra n s fe r  function de- 

sc rib ab le  by (5 .1 .1 ) is  p re se n t in a  feedback sy s te m , the  absolute and 

re la tiv e  stab ility  a s  w ell a s  ro o ts  of the c h a ra c te r is tic  equation can be 

determ ined  by applying the m ethods of Chapter 4. However these m ethods 

would have to be applied to  ©ach case  individually.
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A new m ethod of analysis of feedback sy s tem s containing d is trib u ted  

p a ra m e te r  e lem en ts i s  p resen ted  in  th is  ch ap te r. This m ethod m akes use  

of a  com plex v a ria b le  tran sfo rm ation  which, in  essence , m aps a  q -sh ee ted  

Riem ann su rfa ce  onto a  single sh ee t. P a ra m e te r  plane techniques a re  then 

applied in the  tran sfo rm ed  domain in  o rd e r  to determ ine s tab ility  and ro o ts  

of the c h a ra c te r is tic  equation. The roo t va lues can be converted  back to 

th e ir o rig ina l Ms M p lane values by an in v erse  com plex v a riab le  tran sfo rm ation .

5.2 T ran sfo rm atio n  of S ingularities in The s -P la n e  into the w -P lan e

It is  known[ 6 ]that a  sim ple pole in  the s-p lane  tran sfo rm ed  into a

complex conjugate p a ir  of poles on the  im aginary  axis of the w -p lane under
2

the tran sfo rm atio n  s = w . In addition , under th is  tran sfo rm atio n , a  com 

plex conjugate p a ir  of s-p lane  po les tran sfo rm ed  into a  q u a rte t of r e a l -  

complex conjugate po les in w (see F igure  5 .2 .1 ) . In generaliz ing  th is  con

cept consider a  s im p le  pole a t s  = -a .  That is

F <s > = i n h r  <5- 2 - 1)

Under the tran sfo rm a tio n  wq = s ,  (5 .2 .1 ) becom es

F (w  ) = ----- ^ ------  (5 .2 .2 )
( w q + a)

The tran sfo rm ed  function now p o s s e s se s  po les a t points de term ined  by the 

roo ts of the denom inator of (5 .2 .2 )

wq = a ex p (j(7r +2 irn )  ), n = (0 , 1, . . . , q - 1)

or
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Zni Sheet

FIGURE 5 .2 .1  s-P L A N E  AND w-PLANE DIAGRAMS FOR 

w2 = s AND w4 = s  TRANSFORMATIONS
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w = a 1/ /q exp(j V  ^ 2n)— ) (5 .2 .3 )
T .

S im ila rly , i t  can be shown that po les appearing  in  complex conjugate 

p a irs  at s  = r  exp(±j 9  ) in the s-p lan e  t ra n s fo rm , under the tra n s fo rm a 

tion w q = s , into po les at

w = r 1^  exp(j * -0 +. — 7r..P ) } n = (0 , 1, 2 , . . . ,  q - 1)
q

(5 .2 .4 )

The re s u l t  is  that a  sim ple pole in  the s -p lan e  tran sfo rm s into q 

sim ple p o les  in  the w -plane under a  w q = s tran sfo rm atio n . Each 

of these q po les  in w appears in  a  se c to r  of w which re p re se n ts  the 

image of one of the sh ee ts  of the ”q "  sheeted  Riem ann su rface  in " s " .

An exam ple of th is transfo rm ation  of po les  i s  illu s tra ted  in F ig u re  5 .2 .1 .  

This figure  dep icts a  sim ple pole a t s  = -16 m apped into w under a
4

w = s  tran sfo rm a tio n . In addition, the figure  shows the se c to r  of the 

w -plane occupied by each of the fou r sh ee ts  com prizing the R iem ann 

su rface .

q
O ther p ro p e r tie s  of the tran sfo rm a tio n  w = s a re

1. A c irc le  of rad iu s a>n  ̂ in  the  s-p lan e  maps into a  c irc le  

of rad iu s  ( wn i ) ^ ^  in the w -p lane .

2. A constan t z e ta  rad ia l in the s-p lan e  m aps into a  constan t z e ta

ra d ia l in the w -plane. T h is is  illu s tra te d  in F ig u re  5 .2 .2  w here

an s-p lan e  rad ia l a t an angle 6  = 6  - m aps into a  w -plane
d lra d ia l  a t an angle <f> = — ----- .
q
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5 .3  A pplication of the Conform al - P a ra m e te r  P lan e  Mapping Technique 

to System s Containing D istributed  P a ra m e te r  E lem ents w ith T ra n s 

fe r Functions of the F orm  exp(-^5T}P //q)

Consider the lin e a r  unity feedback contro l sy s tem  with a  hypothetical 

d istribu ted  p a ra m e te r  elem ent in the forw ard  path  shown in F igu re  5 .3 .1 .  

The ra tio  of C(s) to R (s) is

- tsT )p /q
C M  = KN(s)e = KN(s) /t- „ -v
R . /  T)p/q (sT)P/q v • • )

D(s) + KN(s)e D(s)e +KN(s)

w here N(s) and D(s) a re  ra tiona l polynom inals in  s ,  T is  a  constan t of

the d istribu ted  p a ra m e te r  elem ent, p and q a re  in te g e rs  w ith_p^ l q and s
v

i s  the com plex v a r ia b le .
%

s  = a  + j <o = -  ^ o>n + j a>n (1- £ V ^ 2  ̂ (5 .3 .2 )

Since the ra tio  of p to q is  le s s  than unity the c h a ra c te r is tic  equation 

w ill be m ultivalued a s  w ell a s  tran scenden ta l. The c h a ra c te r is tic  equation 

F(s) is  given by

F(s) = D(s) exp (sT)P//q + KN(s) = 0 (5 .3 .3 )

is  a  "q” valued function of " s " . If F(s) is  m apped onto a com plex p lane 

"w " w here w is  defined a s  wq = s ,  the c h a ra c te r is tic  equation can be 

rep re sen ted  a s  a  single valued function of w • T herefo re

F(w  ) = D( wq ) exp( w PTPy//q) + KN( w q ) = 0 (5 .3 .4 )



1 2 6

N(s)
exp[-(sT )p /q ]

D(s)

C u >

FIGURE 5 .3 .1  DIAGRAM OF SYSTEM CONTAINING 

HYPOTHETICAL WITH TRANSFER FUNCTION 

exp[-(sT)P//q]
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The above tran sfo rm atio n  has m apped a "q” sheeted  R iem ann s u r 

face in  s  onto a  single sh ee t in w . The p rin c ip a l sheet of the Riem ann 

su rface  in  s  has been reduced  to a  se c to r  w ith angle <f> = ± 'w /q. The 

equivalent of the left half and rig h t half p lanes of the p rin c ip a l sheet ”s ” 

a re  a lso  shown in F ig u re  5 .2 .2  .

5 .3 .1  System s in which p is  equal to un ity . C onsider equation (5. 3 .4) 

when p = 1. Under th is  re s tr ic tio n

F( w ) = D( w q ) exp( w T*^q ) + KN( wq ) = 0 (5. 3.5)

and the  c h a ra c te r is tic  equation ap p ea rs  s im ila r  in  form  to one which 

would re s u lt  if the d is trib u ted  p a ra m e te r  e lem ent w ere  tra n sp o rt  lag . 

T h ere fo re  application of E isen b e rg ’s  technique[29] is  poss ib le  for this 

c a s e . The p rocedure  fo r th is  c la s s  of sy s tem s is  to f i r s t

de term ine  ro o ts  of F( w ) = 0 by p a ra m e te r  p lane techniques. 

Applying the technique in C hapter 3 Section 6 , of sep ara tin g  re a l and 

im aginary  te rm s  and noting tha t in the w -plane

£ = -cos( 8  / q), w = ( w  )*^q , £ = -cos 8  , (5 .3 .6 )
w w n

- ^ = -  C to T1//q, 8 = 0 )  (1- £ 2)1/2 T l /q
W W W  w w w

(5 .3 .7 )

the c h a ra c te r is tic  equation (5 .3 .5 )  can be w ritten  a s
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w here upon re fe r r in g  to (4 .2 .12 ) and taking note of (5 .3 .6 ) and (5 .3 .7 )

Blw = B., ( £1 w , CU w, r  W, «w>

Clw 1 J  w, cu w, ^  w,

Dlw ■ D 1 « 4 w .
cu w, ^  w, 8 W)

B2w = B 2( £ W, to W, V' w, >w>

C2w = C2( ^ w , w w, V w , 8 W)

D2w = D2<£-w, CO w, ^  w, 8 w)

(5 .3 .9 )

Setting F( w ) = 0 by setting  both the  re a l  and im aginary p a r ts  of 

(5 .3 . 8) equal to ze ro  g ives

V ’lw + Z S w C l w = - Dlw  <5 ' 3 ' 10>

a v ^ 2w + A v ^ 2w -  ^ 2w 

Solving (5 .3 .1 0 ) for a  a n d g i v e s

a ^ lw B 2w B l w ^ 2w 0  _ ^ lw B2w B2wB lw
w A  w A

w w (5 .3 .1 1 )

^ w  Blw ^ 2w ^ l w ^ 2w

The above p ro ced u re  provides the a - £  equations via a  doubleW W
mapping opera tion . The f i r s t  m apping opera tion  s  = w ^ is  conform al 

( i .e . ang les re la tio n sh ip s  a re  p re se rv e d ). The second mapping which
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involves m apping from  the com plex w p lane onto the a lg eb ra ic  <*w 

plane is  not conform al. It should be noted that constant z e ta  ra d ia ls  

in the s -p lan e  m ap into constant z e ta  ra d ia ls  in the w -p lane in acco rd 

ance w ith the rela tionsh ip

£ = -cos( 9 /q )  w here  £ = -cos 9
■P w -Pfor the Jb = 0 ra d ia l 9 = ir / 2 ,  and = -cos( i r / 2q). F u rth e rm o re

constan t cu contours on the s-p lan e  m ap onto constant <*>w con tours
1 /n

on the w -plane according to the re la tionsh ip  u>w = ( w ) . T h e re 

fore  a  c irc le  of rad iu s  in  " s "  m aps into a  c irc le  of rad iu s

r  = ( in w (see F igu re  5.2 .2 ). A lso, while the deg ree  of the

c h a ra c te r is tic  equation is  in c re a sed  by a  fac to r of "q” in  the tra n s fo rm a 

tion from  s  to w , the num ber of te rm s  rem ain  constant. That i s  the 

tran sfo rm ed  c h a ra c te r is tic  equation w ill contain only te rm s  in wq n , 

wq (n_1), wq n̂ "2 .̂ . . .  w ° .  Thus the num ber of te rm s  of F( w )

involved in the  derivation  of the  a  -  Q equations is  the sam e a sw ^  w
the num ber of te rm s  in F (s), u sed  in the derivation  of a - j3  equations.

The re s u lts  p resen ted  above a re  now illu s tra ted  by m eans of the 

following exam ple. Consider the exam ple of the contro l system  of 

F ig u re  4 .6 .1  in C hapter 4. F ro m  F ig u re  4 .6 .1

G(S) „  g j g f f l  .  K feW L  (5 .3 .12 )

and



130

n  K( s + W )
§  (b) =----  J72-----------------  (5.SL3)
K s  exp[ (sT) 7 ] +Ks+K W

F or stab ility  investigation  of th is  sy tem , form  the c h a ra c te r is tic  

equation

F(s) = s 2 exp [ (sT )1//2] + Ks + KW = 0 (5 .3 .14)

2
Introducing the tran sfo rm a tio n  w = s into (5. 5 .14) y ie ld s

F ( w ) = w 4 exp( w T 1^ 2) + K w 2 + KW = 0 (5 .3 .15)

Defining = K, £  = KW, F(w) becom es

F( w ) = w^ exp( w T ^ 2) + a w w 2 + /9w = 0 (5 .5 .16)

The contours co rrespond ing  to = 0 and = 0. 35 in the s-p lane  a re

= - 0 .707 and 1L = - 0.570 re sp ec tiv e ly  in*the w plane, 
w w

T hese contours a re  shown in F igu re  5 .3 .2  fo r T = l.

5 .3 .2  System s in w hich p i s  g re a te r  than u n ity . When the value of p in 

equation (5 .1 .1 ) is  g re a te r  than unity , the tran sfo rm e d  c h a rac te ris tic  

equation, F( w ) = 0 ,  of (5 .3 .1 ) becom es

F(w) = D( wq ) exp( + KN( w q) = 0  <5.3.17)

w here p is  an in te g e r. Now consider the exponential te rm  of (5 .3 .17)

FD( w ) = exp( w5^ )  5 .3 .18)

w here T^^q is  a  constan t and w is  a  complex v a riab le  defined as

£ 2.1/2  tu + ] (a (1- >  )w w w w
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1.1

1.0

124O

0.570
W L1.0

O
w

FIGURE 5 .3 .2  a  - £  CONTOURS CORRESPONDING TO

£ = 0  AND £ = 0 .3 5  IN s-P L A N E  (w2=s )
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F rom  equations (4 .2 .7 ) and (4 .2 .8 )  in  chap ter 4, 

w p = < u P [(-i> p y : £ w ) + j ( - l ) P +1( l - ^ 2)1/ 2Up ( ^  )1 (5 .3 .19 )

w here  T ( ) and Up( ) a re  resp ec tiv e ly  Chebychev functions of

the f i r s t  and second kind. E x p ress in g  (5 .3 .18 ) in p o lar vecto r notation

by m aking u se  of (5 .3 .19) p roduces 

exp( w pTP//'q ) = exp(- ^  +3-8_, )
^  w L—  W  \

= exp | T p /q  o>p [ ( - i f  Tp ( S j  + j ( - l ) P+1( l -  ? w2)1/ 2Dp ( £ w ) ]j(5 .3 .20)

Thus

-  * w “ <-l>P T P /q < (5 W> (5- 3 ’ 21)

s w .  < - i r 1/ * ! < - w >p ( i  - t h 1/ 2 Dp(§ w)

These equations for - ^  and 8 w coupled w ith (5 .3 .6 ) , the

equations fo r a  and B  allow  application  of the technique of C hapter 4 
w w

in o rd e r  to m ap from  the com plex w -p lan e  to the a lg eb ra ic  a  - B  p lane.w w

Specifically , (5 .3 .21 ) and ( 5 .3 .6) a r e  u sed  to obtain the  p a ra m e te r  plane

coeffic ien ts (5 .3 .9 )  which a r e  in  tu rn  used  in (5 .3 .11) to obtain a  , 0  v ' v ' w w
and A  . Thus the p a ra m e te r  p lane technique can now be applied to feed- 

w
back  sy s te m s containing tr a n s fe r  functions of the form  exp (sp T) w here p

is  an in teger g re a te r  than un ity . Polynom inals for - ^  and 8 correspond-  2  w w

ing to v a rio u s values of the in teg er p a r e  sum m arized  in  Table 5 .3 .1 .

/
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T hese  re s u l ts  a re  now il lu s tra te d  by m eans of th e  following exam ple. 

C onsider again  th e  control sy s tem  of F ig u re  4 .6.1  and re p re se n t th e  d is 

tr ib u ted  lag  t ra n s fe r  function a s

F p  (s) = exp ( - ( T s )2 /4) (5. 3.22)
4

In troducing  th e  tran sfo rm atio n  w = s  gives

F ( w ) = w 8 exp ( w 2T 2/"4 ) + K w .4 + KW = 0 (5. 3.23)

D efining a  w = K, $ w = KW, and se ttin g  T = 1 gives

F  (s) = w 8 exp ( w 2 ) + a w w 4 + £ w = 0 (5. 3.24)

T he con tours co rrespond ing  to  ^  = 0 and S  = 0 .3 5  th e  s -p la n e

a re  5  = - 0 .9239 and £  = - 0 . 8860 resp ec tiv e ly  in  th e  w -p lane .w w
The f i r s t  t r a v e r s a l  of th ese  con tours a r e  shown in F ig u re  5 .3 .3 .  A 

m o re  com plete plot of the  %  = -  0 .9239 contour contained in  F ig u reW
5 .3 .4 .

5 .4  w -p lane  Equivalent of C onstant Sigm a L ines in  th e  s -p lan e

The p a ra m e te r  plane con tou rs fo r constant s ig m a lin e s  in  th e  s -  

p lane can be  found by u tiliz in g  th e  p a ra m e te r  plane equations developed 

in  C hapter 4, section  10. H ow ever, when the  c h a ra c te r is tic  equation 

F  (s) = 0  i s  tran sfo rm ed  by a  tran sfo rm a tio n  of the  type
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w q = s ,  (q being an in teg e r) , i t  is  of in te re s t to  d e te rm in e  f irs t  the 

equivalent contour in the  w -p lane  and then how th is  w -p lane contour 

m ay be mapped d irec tly  into the  a ^  -  $ w plane.

The p a ra m ete r p lane equation corresponding to a  w -p lane contour 

equivalent of a constant sigm a line  in the s-p lan e  can be found by u tiliz ing

(5 .3 .1 1 ) and (5. 3.9) in  which £^ and wwa re  ap p ro p ria te ly  defined. In 

o rd e r  to define these v a ria b le s  consider the s -p la n e  and w -plane d iag ram s 

of F ig u re  5.2 .2 . R e fe rrin g  to th is  figure, and assum ing  w^ = s the 

following rela tionsh ips hold

wnX = ( a - * * *  2) 1 /2  (5 .4 .1 )

6 - = Tan 1 ( ) (5 .4 .2 )1 <r1

w  =  u t = ( <r 2 + OJ 2 ) 1 //2 q  ( 5 .4 .3 )
w n 1

, Q i i _i at
<#> = -- - = —  Tan ( — ) (5 .4 .4

1 q q 1

£ = -co s  d>. (5 .4 .5 )
w 1

Equations (5 .4 .3 ) and (5 .4 . 5) a re  the tra n s itio n a l re la tionsh ip s which

enable the a  - &  con tou rs to be obtained. F o r  a  given value of 
w w

cr = crp  and a  given value of q each value of w p ro v id es a  p a ir of

values ut and £ through  u se  of (5 .4 .3 ) and (5 .4 .5 )  respec tive ly . T hese 
w w

values of ut and £ coupled w ith values of -  iff and 8 (defined e ith e r  
w w w w
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by (5 .3 .7 )  o r ( 5 .3 .21))are used to  p roduce  values fo r the functions of 

(5 .3 .9 ) which in  tu rn  a re  used to give va lues of ow and through

(5 .3 .11 ). -

The application  of th is m ethod can be dem onstra ted  by considering  

the p rob lem  of Section 5 .3  in which the c h a ra c te r is tic  equation is

F(s) = s 2 exp (V s) + a  s + £  = 0 (5 .4 .6 )

2
When the  tran sfo rm a tio n  w = s  i s  applied

F (w  ) = w 4 exp ( w ) + a  w 2 + /B = 0 (5 .4 .7 )

w here

cu^=( o^2 + w 2) 1//4 (5 .4 .8 )

£ = -cos (1/2 Tan * ( - *** ) )

by equation (5 .3 .7 )

tff = - £ u> (5 .4 .9 )Tw w w v ’

8W = 01 (l- Z  ‘ )
W w w

2v 1 /2

If the im ag inary  a x is  ( <r  ̂ = 0 ) is  to be m apped = cu and

CD = w 1/ 2 , £ , , = -  0 .707 (5 .4 .1 0 )w n ’ w

^w ~  " ^ 2  ’ Sw V  2

and (5.3.9) become
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B l w = 0 ’ Cl w = 1 ’

Dlw (1) 2 COS ( V ¥  ) exp ( - j /- ? p )  (5 .4 .11)

B 2 w  "  "  • C 2 w  “  0

D 2 w  =  “  "  2  S i n  e X P2w

f

Substitution into (5. 3 .11) g ives

a w = oj exp s in  -  ) (5 .4 .12)

£ w = w 2 exp (- /“ f - )  co s( / - f - " )

Aw =- w

E quations (5 .4 .12 ) a r e  iden tica l in form  to equations (4.06.4) of 

C hapter 4. This is  to  be expected since they both re p re se n t mapping 

of the  sam e contour in  the  sam e sy s te m .

In g e n era l, the value of sigm a is  not z e ro  and the value of ^  in 

(5 .4 .5 ) is  a  function of cu . The m apping of the equivalent contour in 

the w -p lane  is  then easily  p e rfo rm ed  with the a id  of a  d ig ita l com puter.
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CHAPTER 6

ANALYSIS OF SMITH LINEAR PREDICTOR CONTROL SYSTEMS 

WITH PLANTS CONTAINING DISTRIBUTED LAG

601 Introduction

The technique of lin ea r p red ic to r con tro l fo r feedback system s 

containing tra n s p o r t  lag w as f i r s t  suggested by Sm ith[105j. This 

technique u tiliz e s  a system  con tro lle r, see  F ig u re  6. 1 .1 , that con tains 

a m odel of the  sy stem  p lan t and tra n sp o rt lag. The m anner in which th is  

co n tro lle r com pensates fo r the tra n sp o rt lag  contained in the sy stem  

p lan t can be explained a s  follows. When a step  function u (t ) is  in tro 

duced a t the  input th e re  is  no output c ( t  ) fo r T seconds due to the 

- s Ttra n sp o rt lag  e in the  plan t. However th is  step  change appears  a s  

an  input to  the  m inor feedback loop a t point A and a r r iv e s  im m ediate ly  

a t point B. Since the p lan t dynam ics a r e  sim u la ted  in  the  m inor feed 

back loop, the  co n tro lle r  is  energized fo r th e  f i r s t  T seconds. When T 

seconds has e lapsed  the  m inor feedback loop opens and the input signal 

i s  tra n s fe r re d  through the  outer loop which includes th e  system  tra n s p o r t  

lag. Thus th e  m inor loop p red ic ts  what th e  sy stem  output w ill eventually 

be and in troduces th is  in  feedback un til th e  ac tu a l output appears . T he 

philosophy of th is  type of contro l is  to  s e p a ra te  out th e  tra n sp o rt lag, 

which is  a p a r t  of the  sy stem  for which i t  i s  im possib le  to  com pensate. 

A fter the  design  fo r  the  con tro l of the  rem a in d e r of th e  system  is
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com pleted, the tra n sp o rt  lag  is  re in troduced . If s im ila r  reason ing  is

applied  to  a contro l sy s tem  in which the  plant con ta ins a d is trib u ted  lag

(instead  of a tra n sp o rt lag), then a m inor feedback loop can a lso  be

designed which p re d ic ts  th e  sy s tem  output. The block d iag ram  of the

p red ic to r  configuration applied  to  p lan ts  containing d is trib u ted  lag is

shown in F igu re  6. 1. 2. F ro m  the  configuration of F ig u re  6. 1. 2 if N / d
P P

is  se t equal to exp(- tfr j, th e  sy stem  tra n s fe r  function is  given by

The n u m era to r of equation (6 .1 . 1) contains a tran scen d en ta l te rm

not contain a tran scenden ta l te rm , so that reasonab ly  la rg e  values of 

c o n tro lle r  gain can be se lec ted  a s  in  the case  of sy s tem s without 

d is trib u ted  lag.

T his technique re q u ire s , how ever, that an exact m odel of the  system  

p lan t and d istribu ted  lag  be inco rpo ra ted  in the  c o n tro lle r . T heoretically , 

th is  i s  possib le  but p ra c tic a l im plem entation con ta ins m any d ifficu lties. 

T hese difficu lties a r is e  because  i t  i s  difficult to  p e rfe c tly  syn thesize  the 

d is trib u ted  lag te rm , exp [ - (sT )1/2] , in the c o n tro lle r . One m ethod of 

syn thesis  is  to  u se  a polynom ial approxim ation to  th e  tran scenden ta l 

function. However, th e re  a r e  m any c la sse s  of polynom ial functions 

both ra tio n a l and ir ra tio n a l. One c la s s  of approx im ations to  the

C(s) _ _______ (6. 1 .1)R(s) 1 + Ga(s)Gc(s)

The denom inator of equation (6. 1 .1), how ever, does
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1/2tran scen d en ta l function, exp [ -(sT ) ' ] w as given by P ie rre [8 0 ]. T his 

c la ss  of approx im an ts for a d is trib u ted  lag a r e  ra tio s  of ra tio n a l 

polynom ials which have negative r e a l  ro o ts . T here  a re  v a rio u s  o rd e rs  

of approxim ants w ith the  higher o rd e r  approxim ant being c lo s e r  app rox i

m ations to  th e  tran scenden ta l function than th e  lower o rder app rox im an ts. 

However, the  b est choice of the approxim ation  to  the d is trib u ted  lag in 

any given sy stem  should take into considera tion  the o rder of th e  system  

plant a s  w ell a s  p lan t tim e constan ts. Thus, choice of a low er o rd e r 

approxim ant m ay be, in addition to  being e a s ie r  to synthesize, a b e tte r 

choice fro m  the viewpoint of p e rfo rm an ce  than  one of the h igher o rd e r  

approxim ants. It is  proposed to  p re s e n t a m ethod by which v a rio u s 

approxim ations to  th e  d istribu ted  lag  appearing  in the co n tro lle r  can be 

exam ined. T his trea tm en t w ill em ploy p a ra m e te r  plane techniques and 

p roceed  in  a m anner s im ila r to th e  one u sed  by E isen b e r^ 3 0 ]in  tre a tin g  

sy stem s containing tra n sp o rt lag. However, the  general s -p la n e  v a ria b le  

s = cr + jco (instead  of s = jw ) w ill be u sed  in th e  derivation  so  tha t both 

absolu te  and re la tiv e  stab ility  can be investigated .

It w as a lso  observed , (in applying ra tio n a l polynom ial approx im ants 

to sy s te m s with d istribu ted  lag), th a t c e r ta in  types of sy s tem s ^  w ere  

ren d e red  s tab le  fo r a ll  positive va lues of co n tro lle r  gain. How ever, th is

(1) T hese types of sy s tem s a re  ones in  which the  denom inator te rm  of

(6. 1. 1) is  a t m ost a second o rd e r  polynom ial in the com plex v a ria b le  s.
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unconditional stab ility  with gain v a ria tio n  could be accom panied by 

ex trem ely  sluggish  tra n s ie n t re sp o n se  un less the  p a ra m e te rs  asso c ia ted  

w ith the polynom ial approxim ant w ere  optim ized. Thus it is  a lso  

p roposed  to  investigate  a m ethod in  which a ra tio n a l polynom ial 

approxim ant is  used to achieve abso lu te  stab ility  fo r a sy stem  along with 

a  m inim um  of d e te rio ra tion  in i ts  tra n s ie n t resp o n se  c h a ra c te r is t ic s .

T h is m ethod a lso  involves th e  u se  of p a ra m e te r  p lane  techniques and 

polynom ial approxim ants [80]in a co n tro l system  a rra n g ed  in the  p red ic to r 

configuration . -

6. 2 D erivation  of P a ra m e te r  P lane  Equations for th e  P re d ic to r  

Configuration Applied to  System s with D istribu ted  P a ra m e te r  

E lem en ts.

The derivation  w ill be p re se n te d  of the  a  -)9 equations fo r a contro l

sy s tem  with a d istribu ted  lag  elem ent and a PI c o n tro lle r  a rra n g e d  in  the

p re d ic to r  configuration. A pplication of either th ese  equations o r the

m o re  g e n era l equations of C hapter 4 Section 2 enables a designer to
(2)

d e te rm in e  the  Mb e st"v ' cho ice  of polynom ial approxim ant to  u se  in the 

p re d ic to r  loop.

C onsider the linear p re d ic to r  con tro l system  shown in F ig u re  6 .2 .1  

w here  R(s) is  the Laplace tra n s fo rm  of the  input, C (s) is  the  Laplace 

tra n s fo rm  of the  output re sp o n se  and w here

(2) B est cho ice  is  based on som e c r ite r io n  such as p e rm its  the 
la rg e s t sy s tem  gain v a ria tio n  without becoming unstab le .
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s = <r + j w

N (s)
G (s) = jy- ;s v the  sy stem  co n tro lle r  

c '

NA(s)Ga (s) = p  th e  system  plant 
A

exp (- Y (s)d) = the  tra n s fe r  function of the  d is trib u ted  p a ra m e te r  

elem ent 

y(s) = - / l s + R )  (C s+G )

= the  polynom ial approxim ation to  exp(- Y (s)d) appearing  

in the Sm ith p red ic to r co n tro lle r  

The system  tra n s fe r  function i s  given by

c ( s ) NA(s)Nc (s)Dp (s) exp (-X (s)d )

R(s) = DA(s)Dc(s)Dp (s)+NA(s)Nc (s)[ Dp (s)-N p (s)+Dp (s)ex p (-y  (s)d)]

(6 . 2 . 1)

If G (s) is  a co n tro lle r  of the  p ro p o rtio n a l- in teg ra l (PI) type then  c

Gc(s) = C ^ i )  = K(1 +i ^ - ) = k (SF >  (6 ' 2 ' 2)

w here K is  the  co n tro lle r  gain and W is  the  re c ip ro c a l of the  r e s e t  tim e. 

Substituting (6 .2 .2 )  in to  (6 .2 .1 ) and defining

a  = K, j3=  K W  = W o (6 .2 .3 )

gives ^
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C(s) NA(S)Dp( s ) ( a s +^ )  e x p (-y (s )d )
R(s) F (i) ( 0 . 4 . * )

w here F(s) = 0, the  system  c h a ra c te r is tic  equation, is

F (s) = s J d a (s)Dp (s ) + o Na (b) | d p (s ) -  Np (s) + Dp exp(- r ( s ) d | j

+ (8 Na (s) [ p p (s) -  Np(s) + Dp exp(- y  (s)d)J= 0 (6 .2 .5 )

In o rd e r  to investiga te  the s tab ility  of the system  define

2 V 2s  = - J  c n + « n ( l -  O  (6 .2 .6 )

and a lso  define

Na (s ) = Na r  + jNAI , Da (s ) = Da r  + jDAI

Np <s ) = Np R + iNp I '  Dp<S> '  Dp R  + SDp I 

exp(- Y  (s)d) = exp( ^  -j 8 )  = e cos 8  - je  sin  8  (6 .2 .7 )

w here -  iff and 8  >are defined in Region A of the p rin c ip a l sheet of the  

s-p lan e  by equations (4 .3 .17) fo r the g e n era l case  of th e  e le c tr ic a l 

tra n sm iss io n  line . Note tha t fo r the  c a se  of d istribu ted  lag  (i. e . , L = G = 0) 

equations (4 .3 .1 7 ) become

/ "  T ( l - C )  /<■> T (l+ C )
f  = y - S - j  , 8 -  -------  (6 .2 .8 )

Substituting (6 .2 . 7) and (6 .2 . 6) into (6. 2. 5), separa ting  r e a l  and 

im ag inary  p a r ts ,  and equating each p a r t  to  zero  gives 

a p j  + P  C j  = -D x

a B2 + $ C2 = -D2 (6 .2 .9 )

w here
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Bx = - ^  <un Re3 - wn (1- g,2) 1/2 Im;

C 1 " Re3

D, = Re, - co ( 1 - S ^ ) ^  Im,1 n 1 n '  '  1

B2 = - ^ « n t o 3 + “"n * 1' 2  2)1/2 Re3

C2 = Im3

E>2 = - £ w  In ij + «  (1 -S 2)1/ 2 R e, (6.2.10)

and

R ei  = d a r dp r  '  DA iDp i

1 = DARDpI '  DAIDp R

Re3 -  NAR('Dp I ,- Np R +Dp R eXP(',' )C 0 S 8  +Dp I exP ( f ') s i I l 8 ‘>

" NAi(Dp r Np i+Dp i exp  ̂^ sin 8 ”Dp r  exp^ cos ^

Im3 = NAI(Dp R -N p R +r>pR  exp< * > 008 8  +DpI exp( * > Sin 8  )
+NAR(Dp I -N p I+Dp I exp( f ) sin  8 -Dp R  exp( $ )  cos 8 ) (6 .2 . 11)

Equations (6 .2 .9 ) can be solved for the c o n tro lle r  p a ra m e te rs  a  = K c

an<3 /9 = K g i v i n g  (4.2.13) repeated below 

C1P2 ~ P 1C2 q  _ D1B2 " D2B1
A ’ P  ~ A

A  = B1C2 - B2C 1 (6.2.12)



This m ethod of re p re se n tin g  the v a ria b le  sy s tem  p aram eter i s  a spec ia l

case  of th e  g en era l p a ram ete r p lane approach to  system s with d is tr ib u ted

p a ra m ete r e lem en ts  developed in sec tion  4 .2  of chapter 4. Through

application of (6 .2 . 12) in conjunction with (6 .2 . 11), (6 .2 .10) and (4 .3 .1 7 ),

the abso lu te  a s  w ell a s  re la tiv e  s tab ility  can be determ ined. T his

N (s)
determ ination  can be m ade a s  a function of ff -njx , the polynom ial

P

approxim ation chosen in addition to  v a ria tio n  of the  two fre e  sy stem  

p a ra m e te rs  a  and £ .

Since th e  choice of the polynom ial approxim ation is  of im portance , 

some of th e se  polynom ials should be exam ined. A fam ily of ra tio n a l 

polynom ial approx im ants w ere developed by P ierre[80]and  th e se  w ill 

be considered  h e re . The developm ent of th e se  polynom ials fo r  the  ca se  

of a d is trib u ted  lag  a s  w ell a s  the m o re  g en e ra l case  of a tra n sm iss io n  

line with n o n -ze ro  values of R, L, G, and C is  se t forth in Appendix VI.

6.3 Exam ple of th e  P red ic to r C onfiguration w ith a D istribu ted  Lag 

E lem ent in  the  P lan t

The p a ra m e te r  p lane  technique and the r e s u l ts  of Appendix VI w ill now 

be applied to  a feedback control sy s te m  containing a d is trib u ted  lag.

The sy stem  configuration is  shown in F ig u re  6 .1 .2 .  The t ra n s fe r  

function of th e  p lan t i s
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The c o n tro lle r  is  of the p ro p o rtio n a l in te g ra l type with t r a n s fe r  function 

given by (6 .2 .2 )  repeated  below:

<6-3 - 2 )c '

The polynom ial approxim ations to  the  co n tro lle r d is trib u ted  lag which 

w ill be u sed  in  the local feedback loop around the co n tro lle r  a re  given 

below:

1) No P red iction  

N (s)
= 1, D j(s) -  N (s) = 0 (6 .3 .3 )

pV )

2) E xact P red iction  ^

tH s j  = e" ^ ’ Dp (s) '  Np(s) = 1 ' e" ^  (6 -3- 4)

3) Polynom ial A pproxim ants

N (s) /
Gi  ̂ = 1 V™  ; D (s) - N (s) = shT  (6 .3 .5 )1, 1 Dp(s ) 1+shT ’ p w  p w  v '

-  NP ^  _ 1 + shT
1,2  Dp (s) i +s(2h+l)T+s2hT 2 ’

D (s)-N  (s) = s(h+ l)T  + s2hT2 (6. 3. 6)

G,
N (s) 

P
2 ,2  Dp(s) l +s(2h+l)T+s2h2T 2’

4 16
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s(2h+l)T  sh2T 2 
4 16 (6 .3 .7 )

l+s(3h+3)T+s2(4h+l)T2+s3hT'

l+s(2h+ l)T +s2hT2
,2 3, m3 ’

Dp (s)-N p(s) = s(h+2)T+s2(3h+l)T2 +s3hT',2 3, _3

(6 .3 .8 )

W here T  i s  th e  d istribu ted  lag constan t and h is  the  loading constan t of 

Appendix VI. The p a ra m ete r h i s  a  p o sitiv e  re a l  constan t which r e la te s  

th e  load adm ittance, YL, of the  fin ite  netw ork approxim ation fo r the 

d is tr ib u te d  lag  to  the netw ork load adm ittance  Y, that is , r e fe r r in g  to  

F ig u re  VI. 1 in Appendix VI

YLh Y (6 .3 .9 )

F o r the  sy stem  of F ig u re  6 .1 .2  , th e  tran sfo rm atio n  is

K(s+W)D e

s  D +K(s+W)(D -N  )+K(s +W)D e
(6 .3 . 10)

and the  c h a ra c te r is tic  equation is

F (s) = s D + K(s+W)(D -N ) + K(s+W)D e (6 .3 . 11)

C onsidering  now, the a  -  con tours when 5 = 0  fo r each of the
1/2approx im ations to  exp(-(sT) ' ) given by (6 .3 .3 ) to  (6 .3 .8  ) inclusive  

p roduces th e  following re su lts .
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N / v
6 .3 .1  No p red ic tion . When = 1, (6 .3 .11 ) becom es

P

F (s) = s2 +K(s+W) e " ^ ® ^  0 (6 .3 .1 2 )

When T = 1, the  system  red u ces  to  th e  one d iscu ssed  in  chap ter 4, 

section  6. The a  - contour when ^  = 0 fo r th is  sy s tem  is  shown 

in F ig u re  4. 6. 2 w here

a  = K, /9 = KW (6 .3 .13 )

T his cu rve  is  repeated  in F ig u re  6. 3.1 .

6 .3 .2  Exact p red ic tion . If th e  ra t io  N (s)/D  (s) is  defined by
P

(6 .3 .4 ) , the  c h a ra c te r is tic  equation (6 .3 .11 ) becom es

F (s) = s2 + Ks + KW = 0 (6 .3 .1 4 )

When a  and £  a re  defined by (6. 3 .13)

F (s) = s2 + a  s  + /3 = 0 

Applying . p a ram ete r p lane techniques ( C hapter 3 section  5) gives

2
#  = co (6 .3 .15 )

, n

F or 5 s  0 , (6 .3 .15) re d u c e s  to

a = 0, £ = %  (6 .3 .16 )

and fo r  = 1

a = 2co , B  = to2 (6 .3 .17 )n* ^  n .

Both c u rv e s  a r e  p lo tted  in  F ig u re  6 .3 .1  along with th e  ^> = 0 cu rve  

co rrespond ing  to  the no p red ic tio n  sy stem  of equation (6 .3 .1 2 )
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6 .3 .3  Polynom ial approxim antsa  If th e  r a t io  N (s)/D  (s) is
. Jb' r

defined by (6 .3 .5 ) , the  c h a ra c te r is tic  equation (6 .3 .1 1 ) becom es

F(s) = s 3hT +s2( l + a  hT+ a  hT e"^/® ^)+s( /3hT+ a e - ^

+ /S th T e " '^ '* ’) + j 9 e " ^ =  0 (6 .3 .1 8 )

N otice that in addition to a  and /9 the c h a ra c te r is tic  equation is  

a lso  a  function of p a ra m e te rs  h and T . The absolu te  stab ility  of the 

system  with c h a ra c te r is tic  equation (6 .3 .1 8 ) w ill be exam ined w ith T 

se t equal to unity when h takes on v a rio u s v a lues. The a - (B equations 

fo r th is system  a re  obtained through use  of e ith e r  the  method of Section 6 .2  

o r  the m ethod of C hapter 4. The a  - £  equations fo r the £ = 0 rad ia l 

corresponding to v a rio u s  values of h a re  shown in F igu re  6.3.2 . F rom  

th is  figure , i t  can be seen  that the contour fo r h = 0 co rresponds to the 

c ase  of no p red ic tion  w here  when h = 1, the £ = 0 contours approach

the positive portion  of the /3 ax is . F ig u re  6 .3 .2  a lso  shows the when h 

i s  le s s  than 0 .03  the a  ~/3 contour c ro s s e s  the a  ax is f irs t  on i ts  

in itia l t ra v e rs a l  w hereas when h is  equal to o r g re a te r  than 0 .03  the 

contour c ro s s e s  the positive  portion of the /3 ax is  f i r s t  and never c ro s s e s  

the positive po rtion  of the a  ax is . Thus fo r va lues of h g re a te r  than 

0 .03  th e re  is  no in te rse c tio n  with |9 = 0 .3  a  line in  the f ir s t  quad ran t. 

T his m eans th a t when W= 0 .3  and h i .  0 .03  no positive  value of system  

gain can cause  the system  to becom e unstab le . The a  - /3 con tours 

corresponding to va lues of h between 0 .029  and 0 .030  a re  plotted in
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F ig u re  6 .3 .3 .  T his figure  ind ica tes that when h i s  g re a te r  than 0.0298 

va lues o f  W ranging from  0 to 1 .7  can be used  and s ti ll  p roduce an 

unconditionally stab le  sy stem  w ith resp ec t to gain .

The mapping of a  - jS con tou rs corresponding  to h igher o rder 

approxim ants a re  p re sen te d  in F ig u res 6 .3 .4  , 6 .3 .5 ,  and 6. 3.6 . These 

con tours a re  to be expected since  by re fe rr in g  to Table V I.2 Appendix VI 

i t  can be seen that

lim  G (m ,n) = lim  G (m ,n-1) 

h — 0 h—̂ 1

Thus the poly nom inal G ( l ^ a t  h = 0, T = 1 is  equivalent to 

G ( l , l )  a t h = 1, T = 1. T hese contours co rrespond ing  to the higher 

o rd e r  approxim ations of the d istribu ted  lag a ll c ro s s  the positive  portion 

of the /3 axis f i r s t .  Use of th ese  approxim ants a lso  re s u l t  in system s 

in which a re  stab le fo r positive  values of gain.

Since, in th is c a s e , the u se  of a lm ost any approxim ant re su lts  in 

an unconditionally s ta b le  system  the question to be considered  is  which 

approxim ant w ilLalso  produce the fa s te s t resp o n se  for a  given working 

point M (0^ /8p in the  a - f t  p lane. Thus the  d  - contour for 

£ = 0 .35  will be de te rm in ed  fo r various va lues of h when approxim ant 

G (l, 1) is  used. T hese  con tours a re  shown in F ig u re  6 .3 .7  . This figure 

shows tha t point M on the h = 0 contour co rre sp o n d s to opera tion  a t K = 3 .3 0 , 

W = 0. 3 in the system  with no p red ic tion  (see sec tion  4 .6 ) . The h = 0 .03
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1 6 3

curve in F ig u re  6 .3 . 7 is  slightly d isp laced  fro m  the h= 0 cu rve . 

This cu rve  thus p rov ides a  system  which is unconditionally s ta b le

with re sp ec t to sy s tem  gain and also in d ica te s;th a t th ere  is only a

slight damping of the tran s ien t re sp o n se  com pared  with the

uncom pensated sy stem  at a  given operating  point. Thus

the system  of (6 .3 .1 0 ) can be made unconditionally stable with

gain varia tions (when T= 1 ) through u se  of a netw ork with

tra n s fe r  function

Np (s)

Dp (s) 1 + 0. 03 s

as an approxim ation fo r the d istribu ted  lag. T his polynomial 

approxim ation w ill produce the lea s t am ount of damping of the 

uncom pensated re sp o n se  at the specified  value of gain and re s e t  

tim e c o n sis ten t with th is unconditional s tab ility .
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CHAPTER 7

TRANSIENT RESPONSE O F LINEAR FEEDBACK SYSTEMS WITH 

DISTRIBUTED LAG USING DOMINANT ROOT 

AND GEOMETRIC TECHNIQUES

7-1. Introduction

F o r  a  given feedback sy stem  containing lum ped p a ra m e te r

elem ents M ulligan [ 71 ] showed th a t p ro p e rtie s  of i ts  tra n s ie n t

re sp o n se  such a s  tim e to peak, f i r s t  peak overshoot and se ttlin g

tim e  can be easily  dete rm ined  fro m  the s-p lane  location  of a  pa ir

of com plex conjugate ro o ts  of the  c h a ra c te r is tic  equation. T his
*

p a ir  of ro o ts , however, m ust be  dom inant in n a tu re . T he effect
'H

of the non-dom inant ro o ts  a s  w ell a s  ze ro s of the  closed  loop tra n s 

f e r  function upon tim e to peak, f i r s t  peak overshoot and se ttlin g  

tim e  w ere  considered by Chu [ 24 ] . He p resen ted  a  geom etric  

in te rp re ta tio n  of tim e  to peak a s  a  function of ang les  betw een other 

'ro o ts  and the  dominant ro o t of the c h a ra c te r is tic  equation a s  well 

a s  ang les between sy s tem  z e ro s  and the  dom inant ro o t. S im ilarly , 

he showed that the peak overshoo t can be de te rm ined  by considering  

the  ra tio  of the length of lin es  in  th e  S-plane betw een a ll o th e r roo ts 

and one of the dom inant ro o ts  to  th e  length of lin e s  betw een a ll  o ther 

ro o ts  and the  orig in . E isen b e rg  [ 30 ] extended the  technique to 

feedback system s with t ra n s p o r t  lag . He showed tha t th e  dom inant
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roo t and geom etric  approaches rem ained  valid if one referenced  

the  tim e m easu rem en ts  fro m  the value of the  tra n s p o rt lag  instead  

of from  tim e z e ro .

The pu rpose  of th is  chapter is  to extend the  dom inant roo t and 

geom etric  m ethods to feedback sy stem s w ith  d is trib u ted  lag. T h is 

extension is  com plicated  by the fact tha t th e  c h a ra c te r is tic  equation 

fo r the  system  w ith d is trib u ted  lag  is m u lti-va lued  a s  well as t r a n s -  

/ cendental. T h ese  p ro p e rtie s  give r i s e  to  ir ra tio n a l in teg ra ls  when 

determ in ing  th e  tra n s ie n t response  by th e  in v e rse  L aplace tra n s fo rm  

technique.

7 .2  D erivation of the  T ran sien t R esponse Equations

C onsider the  lin e a r  feedback sy stem  of F ig u re  7 .2 .1 . The 

system  shown co n sis ts  of a  combination of lum ped p a ra m ete r e le 

m ents with t r a n s fe r  function, G(s), and a  d is tr ib u ted  pa ram ete r 

netw ork with t r a n s fe r  function F j-j(s) in  cascad e . The tra n s fe r  

function of the  d is tr ib u ted  p a ram ete r netw ork  i s  defined a s

F j-j(s) = exp (- r(s )d ) (7 .2 .1 )

w here

y(s) = 7 (Ls +R) (Cs +G) (7 .2 .2 )

and w here d i s  th e  length of the netw ork, L , C, R, and G a re  re s p e c 

tive ly  the inductance, capacitance, re s is ta n c e  and conductance p e r  

un it length. A lso , s i s  the  complex v a ria b le
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s  = a +j u) = -C  con + j cj n y l -  £ ^ (7 .2 .3 )

w here  is  the d im ension less ra tio  and u>n is  the  undam ped na tu ra l

frequency . The sy stem  tra n s fe r  function is  given by

C / \ G(s)exp(- y(s)d) & KN(s)iexp(- ^  (s)d)
R 'S' 1+G(s)exp(- r  (s)d) ” D(s)+KN(s)exp(- y(s)d)

(7 .2 .4 )

w here  K is  the  gain and G(s) is  defined in  F ig u re  7. 2 .1  a s  .

T he c h a ra c te r is tic  equation is  th e re fo re

F(s) = D(s) + KN(s) exp (- 7  (s)d) = 0  (7 .2 . 5)

It is  assum ed in  equation (7. 2.4) that the  o rd e r  of N(s) is  

equal to  o r sm a lle r  than the  o rd e r  of D(s) and th a t no m ultip le  roo ts  

of F(s) ex is t. The f i r s t  assum ption  is  tru e  in m ost app lica tions. 

A lso, the  second assum ption  can be rea liz ed  s in ce  th e  d esigner 

u tiliz in g  e ither p a ra m e te r  p lane [ 122 ] o r ro o t locus techniques 

[ 40 ] can contro l s -p la n e  roo t locations and th e re fo re  p reven t the  

ex is tence  of m ultip le  ro o ts .

In th is  d iscussion , a  un it s te p  function is  se lec ted  as the  

s tan d ard  te s t  input s ig n a l. T h is type of te s t  s igna l has been  chosen 

b ecau se  many o ther types of input signa ls can be  approxim ated  by 

com binations of s tep  functions. A ssum ing a  un it s te p  input signal 

applied  to the system  of (7 .2 .4 ) , the  L aplace tra n s fo rm  of the  out

put signal c(t) is
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KN(s)exp(- y(s)d) 
C (s) SFlSj (7.2.6)

The output re sp o n se  function c(t) is  found by tak ing  th e  inverse  

L aplace tra n s fo rm  of (7 .2 .6 ) u tiliz ing  th e  Brom w ich-W agner in te 

g ra l. That is

T he tra n s ie n t re sp o n se  is  evaluated by p e rfo rm in g  a  contour in te 

gration  around th e  path shown in F ig u re  7 .2 .2 .  N ote th a t if the 

general fo rm  of equation (7. 2.2) is  assum ed  (i. e . , L ,R ,C  and G 

not equal to z e ro ) , two b ranch  points ex is t in  th e  s -p lan e . T hese  

poin ts a re  loca ted  on th e  negative re a l ax is  a t s^  = -R /L  and Sg =

-G /C  with the  v a ria b le  - a  re p re se n tin g  th e  la rg e r  ( le ss  negative) 

and v a riab le  -b  re p re se n tin g  the  sm a lle r  (m ore negative) of th ese  

twq b ranch  po in ts . In addition, s in g u la ritie s  ex is t which a re  p ro 

duced by the  ro o ts  of th e  c h a ra c te r is tic  equation a s  w ell as the 

sin g u larity  a t th e  o rig in  due to  the  unit s tep  function. A typical 

s-p la n e  configuration  dep ic ting  b ranch  po in ts, s in g u la ritie s  of F (s), 

and a  s in g u larity  a t the  o rig in  due to a -u n it s tep  input is  shown in 

F ig u re  7 .2 .2 .  Since th e  path  of in teg ra tion  chosen is  closed and 

sim ply  connected, the  contour in teg ra l is  equal to  the  sum  of the 

re s id u e s  a t th e  enclosed  s in g u la r it ie s . F u r th e rm o re  the  in teg ra l 

of (7 .2 . 7) r e p re s e n ts  th e  in teg ra l along path  A 'A  of F ig u re  7 .2 .2 .

C (s)exp(st)ds (7 .2 .7 )
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OF INTEGRATION FOR SYSTEM WITH DISTRIBUTED 
PARAMETER ELEM ENT
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T h ere fo re

c(t) = “ 12 7T j
I I I 
AB+ BC+ CD+

I I I I I 1
' E E T+ E 'D t+ D’C ,+ C ’B ’+ B 'A ’ J

s t, n R esidues of C (s) e
R esidue of C ‘(s)es V  of roo ts of F(s) = 0

+ a t s  = 0 + 2-t falling within contour
i=1 evaluated a t s  = s.*■ i

(7 .2 .8 )

w here

*XY =1 C (s)es tds

X

stand the re s id u e  of C(s)e a t a  roo t s - s .  is  given by,

KN(s.)exp(- y(s.)d)exp(s.t)
R esidue = -------    p -/s" r ------------—  (7. 2. 9)

i v i ;

It should  a lso  be noted th a t "n” , th e  upper lim it of sum m ation  

of re s id u e s  evaluated a t ro o ts  of F(s)=0 in  (7. 2. 8) w ill be  fin ite  in  

m any c a se s  although the  c h a ra c te r is t ic  equation is  tran scen d en ta l. 

T h is  is  b ecau se  the rem ain ing  in fin ite  num ber of ro o ts  w ill be in 

th e  secondary  sheet of the s -p la n e  w hich need not be consid ered  

b ecau se  th e  contour of in teg ra tion  avoids the  s-p lane  b ran ch  cut [ 27 ]
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XBR = J2K
a

Focusing a tten tion  upon the  in tegral po rtion  of (8), a ll  in teg ra ls  

except I  and I™,™ can be shown to be equal to  z e ro . *Dili Hi U

Defining s = re x p  (j i r ) in  IDE and s = r  exp (- j ir  ) in  IE »Df and 

com bining the sum  of th e se  two in teg ra ls  into one ex p ress io n  I g g  

p roduces

fb  (7 .2 .10)

N (-r)D (-r)exp(-rt)S in(Y d)dr 

[ D 2(-r)  + K ZN2(-r) + 2KD(-r)Cos(Yd)] r

w here  Y = ^ | ( - L r  + R) (-C r + G)|

Evaluating the re s id u e  of C(s)exp(st) a t s  = 0 y ie ld s

R e s . .  K N W e*p(: d (R G )_ _ y ^  .  c (flo , (7. 2 . n )

Substitu ting (7 .2 .11 ) and (7. 2.10) into (7 .2 . 8) g ives

R esidues of C(s)exp(st) 
n a t  ro o ts  of F(s) = 0 j
~  w ithin contour of BR /n 9

c(t) = c(«o ) + 2  in teg ra tion  ( i . e . , a t '  W J  (1' 2 ' 12)
s  = s.) 

i= l  1

*When a  = 0 the s in g u la rity  due to the input s te p  function ex is ts  a t the 

b ran ch  point. In th is  c a se  IE tE » has a  non z e ro  value equal to

and th e  re s id u e  of C(s)e s t a t s  -  0 i s  no longer

req u ire d .



172

This fo rm  of th e  solution obtained fro m  the  complex in v ers io n  

in teg ra l p rov ides som e insight into th e  behavior of c(t). The f i r s t  

two te rm s  appear to  be s im ila r to th o se  obtained when sy s tem s w ith 

e ither lum ped p a ra m e te r  elem ents, t r a n s p o r t  lag  o r com binations 

of both a re  considered . The in teg ra l te rm , which re su lts  from  in 

teg ra tion  a long  the  b ran ch  cut, ^ a rise s  when tre a tin g  sy stem s w ith 

c h a ra c te r is tic  equations tha t a re  m ultivalued  functions of s . F o r  

example, in  sy s tem s w ith tran sp o rt la g  the  in te g ra l te rm  is  equal to 

z e ro . T his in te g ra l is* of the L aplace type w ith fin ite  lim its  (if one 

considers the  v a riab le  t  to re p re se n t s  and r  to re p re se n t t) and its  

value tends to  ze ro  a s  t  approaches infinity , rep re se n tin g  a com 

ponent of th e  tra n s ie n t response  w hich d im in ishes with tim e. A l

though th is  in te g ra l te rm  w ill be ignored  in itia lly , methods of 

evaluating i ts  con tribu tion ,a t specific  values of tim e  w ill be out

lined in a  subsequent section . The f i r s t  two te rm s  a re  the m o re  

im portant te rm s  in (7. 2 .12). In p a rtic u la r  th e  f i r s t  te rm  r e p r e 

sen ts the  fina l value of c(t) while th e  second te rm  re p re se n ts  the  

re su lts  of evaluation of the  re s id u es  of C(s)exp(st) a t the ro o ts  of 

F(s) = 0 w ithin the  contour of in teg ra tion .

The tim e  to peak , T , is  found by d ifferen tia ting  (7 .2 .12) with
P

resp ec t to  tim e , se ttin g  the  deriva tive  equal to z e ro , and so lv ing  

the  re su ltin g  equation fo r the sm a lle s t value of t .

/
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T hus

n
de(t ) t  KN(s.)esp(s.t)e3q?(- Y  (s.)d) 1 d IBR
dt i=i F 7̂ )  2 ir  j dt

(7. 2 .13)

re p re s e n ts  th e  equation from  which Tp can be determ ined . A 

good approxim ation  to  th is  equation of computing T is  obtained by
r

d I BRneglecting  the  deriva tive  te rm  -----^ ----- . Once Tp has been d e te r 

m ined  the frac tio n a l amount of the  f i r s t  overshoot, M, is  found by 

evaluating

M _ c(Tp) - c (oo)
M  ^CO) (7. 2 .14)

o r  upon substitu ting  (7. 2.12) into (7. 2 .14) and noting th e  re s id u e  

evaluation  fo rm u la  (7. 2 .9 ) g iv es
(7. 2.15)

N t e ^ e ^ -  Y (si )ejqp(siTp )F(0) F ^°)IBR 

N W ejq^-dC R G ^/fsjF 'C s.) K  2 v  jN (0)e^)(-d(R G )1//2)

T h e re  a re  d ifferen t c r i te r ia  fo r se ttlin g  tim e . Using th e  defin ition 

of th e  tim e  a t which the  re sp o n se  fa l ls  to  w ithin two p e rc en t of i ts  

f in a l va lue , th e  settling  tim e  is  found to  be

T s = |  ^  |----------  seconds (7. 2.16)
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w here  a  d is  the  r e a l  p a r t  of e ith e r the  dom inant pole o r  dom inant 

com plex conjugate pole p a ir . Note that w hile (7. 2.13) and (7 .2 .14) 

w ere  developed w ithout re g a rd  to dom inance of ro o ts  (7 .2 .16 ) assum es 

th e  ex istence of a  dom inant ro o t o r roo t p a ir .

7. 3 T ran s ie n t R esponse  A ssum ing Dominant Roots

In th e  design of lum ped p a ra m e te r  feedback sy s te m s , the 

d e te rm ina tion  of co n tro lle r  p a ra m e te rs  is  often guided by the  con

cept of p lacing the  po les  and z e ro s  of the  t r a n s fe r  function in  s-p lane  

loca tions so a s  to ach ieve  the  d e s ire d  tra n s ie n t re sp o n se . F u r th e r

m o re , i t  is  d e s irab le  to  p lace  th e  rem ain ing  ro o ts  and z e ro s  of the 

t r a n s fe r  function in  s -p la n e  locations which w ill m ain tain  th is  

dom inance. T his dom inant ro o t philosophy is  m ain tained  in  th is  

w ork  on feedback sy s te m s  w ith d istribu ted  p a ra m e te r  e lem ents 

b ecau se  of the follow ing re a so n s :

1. System  p a ra m e te rs  which p e rm it roo t p lacem en t in  the  de

s ire d  locations can be easily  determ ined .

2. Although the  c h a ra c te r is t ic  equation fo r th is  type  of system  

is ,  in general, both m ulti-valued  and tran sce n d en ta l, th e re  

is  a  subc lass of d is tr ib u ted  p a ra m ete r ne tw orks in  which only 

a  fin ite  num ber of ro o ts  of F(s)=0 ex ist w ithin th e  contour of 

in tegration . T h e re fo re  re s id u es  need only be evalued a t a
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fin ite  num ber of points in  the  s -p la n e  in  determ in ing  the  tranc- 

sien t re sp o n se . F u rth e rm o re , fo r sy s te m s in  which an in fin ite  

num ber of ro o ts  ex is t within th e  contour of in tegration , th e  

dom inant ro o t philosophy can s t i l l  b e  u sed  in  determ ining  

tra n s ie n t  re sp o n se .

3. T he in te g ra l te rm  of equation (7 .2 .12 ) can in m ost c ase s  be  

neg lected  when considering  the  re sp o n se  a t  values of tim e  

equal to  o r g re a te r  than the  tim e  to  peak T . Thus in a 

design  p ro ced u re  i ts  contribution can be  neglected  in itia lly  

and i ts  ac tu a l contribution evaluated la te r .

T h ere fo re  assum ing

1) T he p lacem ent of dom inant ro o ts  a t  s^  = a ^ + j  and

S j = a 1 - j  Wj

2) T he in te g ra l IBR of (7 .2 .12 ) can be neglected in itia lly .

3) F D (s)=exp(- y(s)d) = exp (<}» - j  5 ) (7 .3 .:(7 .3 .1 )

w here  ip and 8 a re  defined on the  upper half of the 

p rin c ip a l sh ee t

(7 .3 .2 )

(7.3.3)
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and w here

2 2 2 2 2 2 
H = (wn L - 2RL Ccun + H ) ( cun C - 2 GC 5u>n + G ) (7 .3 .4 )

2 2
J =  u>n L C (2 £  -1) +RG - C wn (RC + LG) (7 .3 .5 )

Equation (7 .2 .1 2 ) is  approxim ated by

c(t) KN(0)exp(d /R G )  
FlO) +

2KN(Sj) e
tp (S j )

S j F  (Sj)

1 C os ( c o ^ + ^ N t s ^ - ^ s ^ F  ( s ^ - 8  (Sj))

(7 .3 .6 )

A lso the  tim e  to peak, T , and the  frac tio n a l amount of f i r s t  o v e r

shoot, M, a r e  given by

v V [-r - A<si> + Ajfii+ 8 <7-3-7)
and

M =
2 u)1 N (s1)F(0)exp(i|) (Sj))

2 N(0)F’(s 1)exp(-d(RG )i/  “ )
exp( a jT p) (7 .3 .8 )

E quations (7. 3.7) and (7. 3. 8) can be in te rp re ted  geom etrica lly  

when the  d is tr ib u ted  p a ra m e te r  e lem ent is  a  d istribu ted  la g  netw ork. 

B efore  showing th is  i t  is  noted that^for lum ped p a ra m e te r  sy s tem s,
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C hu[ 24] p resen ted  an s -p la n e  in te rp re ta tio n  for T and M. T he
r

b a s is  fo r th is  in te rp re ta tio n  is  tha t one p a ir  of s-p lan e  ro o ts  

(s = Oj + j co ^  of F(s) = 0 a r e  dom inant. Thus he e x p re ssed  Tp 

and M as

T = —  p co
77

Sum of ang les from  
th e  z e ro s  to th e  dominant
roo t s 1 = ct1 +j co1

( Sum of ang les from  the 
o th e r ro o ts  of F(s) = 0  
to  the  dom inant root

s l  =

CT1 +  ] CO.

(7 .3 .9 )

2 co
M = x

CO
n „

Product of d is tan ces  
from  zero s to the  
dom inant ro o t s^  = 
cr j  + j coj
Product of d is tan ces  
from  zero s to  th e  
orig in

Product of d is tan ces  
from  the ro o ts  of 
F(s) = 0  to the  
orig in

Product of d is tan ces 
from  the o th e r ro o ts  
of F(s) = 0  to the  
dom inant ro o t s^  =

1 +  ]  co 1

a  .T

(7 .3 .10)

Eisenbelbg [ 30] extended C h u 's  in te rp re ta tio n  to sy s tem s with t r a n s 

p o rt lag , showing that T and M can s t i l l  be in te rp re ted  from  s-p lan e
P

ro o t locations if T is  m easu red  re la tiv e  to t = T (the am ount of
P

tra n s p o rt  la g ) .
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F o r  sy stem s with d is tr ib u ted  lag , equations (7. 3. 7) and (7. 3. 8) 

can be in te rp re ted  geom etrica lly  in the  following m anner. T his
i

double-valued function can be  re p re se n te d  as a  s in g le  valued function 

on a two sheeted Riem ann su rfa ce  w ith the p rin c ip a l sh ee t defined 

th e  angu lar range - n < Q < + ir and the secondary  sh ee t defined 

by 71 =  0 = 3 n . H ow ever, the  ro o t locations re p re se n tin g  solu- 

tions of the c h a ra c te r is tic  equation can exist on e ith e r  sh ee t of th is 

R iem ann su rface . Thus a  p rob lem  ex is ts  when a ttem pting  to m eas

u re  a  d istance  and angle betw een a  roo t or the second sh ee t and the 

dom inant roo t on the f i r s t  sheet of the  s-p lane . T h is  d ifficulty  can 

b e  re so lv ed  by perfo rm ing  m easu rem en ts  of d is tan ces  and angles in 

a  plane which ren d ers  the  c h a ra c te r is tic  equation s ing le  valued.

T his p lane is defined a s  the  com plex w -plane (see F ig u re  7 .3 .1 ) 

w here  fo r d istribu ted  la g  the  com plex variab le  w i s  re la te d  to the  

com plex v ariab le  s by th e  tran sfo rm a tio n

w = s  (7 .3 .11)

U nder th is  tran sfo rm ation , a  dom inant roo ts  of F(s) = 0 loca ted  at

(7.3.12)

i s  tran sfo rm ed  to a  w -p lane  location

(7.3.13)
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F u rth e rm o re  as i llu s tra te d  in F ig u re  7. 3 .1 , ro o ts  located on the  

second sh e e t of th e  s-p lan e  tran sfo rm  into ro o ts  located  in the  le ft 

hand po rtion  of th e  w -p lane. A lso, a  s im p le  z e ro  located a t s  =

- a g tra n s fo rm s  in to  a  complex conjugate p a ir  of roo ts located a t 

w = ±j y  d g.

R etu rn ing  to the  question of in te rp re tin g  (7 .3 .7 ) and (7. 3. 8) fo r 

system s w ith  d is tr ib u ted  lag , the w -p lane  equivalent to the v a rio u s 

te rm s  com pris ing  th e se  equations w ill now be exam ined. C onsider 

the tran sfo rm e d  c h a ra c te r is tic  equation F(w) =0 given by

OO
F(w) = "| f  (w"wm) (w -  wm) (7. 3.14)

m=d

The function F(s)=0 is  rep resen ted  in  th e  w -p lane  a s  F(w)=0 the  

m agnitude of which is  equal to the p roduct of the  d istances from  a ll 

w -plane ro o ts  to th e  o rig in . The d e riv a tiv e  of F(s) with re sp e c t to  

s is  given by

F '(s) = F ’(w) ^  (7. 3.15)

and F '(s) evaluated  a t s=Sj is  found by evaluating  F ’(w) and dw /ds a t 

w=Wp th e  im age of s^  in the w -plane.

Taking th e  d e riv a tiv e  of (7 .3 .14) a t w=w^ and noting that ~  fo r 

d istribu ted  lag  is  , (7. 3.15) becom es



T h e  m agnitude of (7 .3 .16) is  equal to the  product of th e  d is tan ces 

fro m  a ll o th e r w -plane ro o ts  to the  dom inant roo t w^=^u^ + jv^ 

divided by tw ice the d istance  from  the  o rig in  to the dom inant ro o t.

T he phase  of (7. 3.16) is  equal to  th e  sum  of the w -p lane  ang les from  

th e  o ther ro o ts  of F(w)=0 to the  dom inant roo t m inus th e  angle of th e  

dom inant ro o t.

T he n u m era to r function, N(s), of G(s) in  F ig u re  7. 2 .1  is  a  

s in g le  valued function of s and i t  can be shown that th e  sum  of the  

s -p la n e  ang les from  ze ro s  (i. e . , ro o ts  of N(s) =0) to  th e  dom inant 

ro o t s^  = CTj +j Wj is  equal to the sum  of the w -p lane ang les fro m  

th e  im ages of the  ze ro s  to th e  im age of the  dom inant ro o t. A lso, 

th e  ra tio  of th e  product of s -p la n e  d is tan ces  betw een z e ro s  and the  

o rig in  re m a in s  unchanged upon tran sfo rm a tio n  from  th e  s -p la n e  to 

th e  w -p lane .

T he functions - 8 (s^) and exp ( t? (s^)) a re  re sp ec tiv e ly  the 

p h ase  and m agnitude of the  d is tr ib u te d  p a ra m e te r  t r a n s fe r  function. 

F o r  d is tr ib u ted  lag, L = G = 0  and T = RCd^. Thus F ^ (s )  =exp (- j f s T) 

and fo r ro o ts  on the upper half of the  p rinc ipal sheet
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s ( S j )  = y/'d>n  T~Sin (Oj/2) = yTW j Sin 0 1 (7 .3 .17)

exp ( qj ( s 1))=exp £ -  "T Cos ( - ^ - J ]  = e I cos ^1 

w here

= 6 ^ 2  and Wj = V wn

Substitu ting the above tran sfo rm a tio n  for F (s), F T(s), N(s) and 

F ^ (s )  w here  ap p ro p ria te  into (7 .3 . 7) and (7. 3. 8) and noting that

fo r d is trib u ted  lag

1 /2  2 2 
<»>j = 2ujV j, exp (-d(RG) ' ) = 1, a  ̂ , (7 .3 .18)

"n, = (U1 + Tf>
equation (7 .3 .7 ) becom es

T p 3u

' Sum of ang les 
from  z e ro s  to 
the  dom inant 
ro o t Wj =Uj  +jVj

t in  the w -p lane

+
► <

f Sum of ang les 
from  a ll o ther 
ro o ts  to the 
dom inant roo t

W1 = U1 +;*v l  in 
the w -p lane

+ (t ) 1/ 2 Wj Sin 0 X -
(7. 3.19)

w here  w^ = y  and 0^ = Q^/2 a r e  the m agnitude and phase  of the 

w -p lane  vecto r from  th e  o rig in  to the  dom inant ro o t w^ = u^ + jv^.
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C onsidering equation (7 .3 .16 ) for the frac tio n a l overshoot M and 

noting

1) The d is tan ce  fro m  each of the two dom inant roo ts to the
1/2orig in  in  the  w -p lane  is  ( co ) '

n l

2) The d is tan ce  betw een dom inant ro o ts  in  the  w -plane is

2 (w  ) 1 /2  Sin ( 0 -/2 )
n l  1

3) The in te rp re ta tio n  fo r F(s)=0 and F T(s^) in th e  w -plane is  

obtained from  (7. 3.14) and (7. 3.16) resp ec tiv e ly .

Sin CL
4) The id en titie s  Sin (6^/2) = 2 ^ o s  (6 /2)~ anc* wi  = ^1 

The expression  fo r frac tio n  overshoot (7. 3.16) can be  rew ritten  a s

Product of the  d is tan ces P roduct of th e  d istances
from  the z e ro s  to the  dom i fro m  a ll ro o ts  except the
nant roo t w i =u +jv- dom inant p a ir  to the orig in

1 i
X

of the  w -p lane
PrQduct of the  d is tan ces  . P roduc t of d istances from
from  the z e ro s  to the  orig in a ll  ro o ts  except the o ther
of the w -p lane. dom inant ro o t to the dom i

nant ro o t Wj = Uj +jVj

x  exp (- y£on T cos (0^/2)) exp((u^ -v j)  T p) x  4 Cos (Oj/2)

(7. 3. 20)

w here  Taj and 0 1/2  a re  the  m agnitude and phase of the vecto r
V I l j  1

from  the o rig in  to  the dom inant roo t u^ + jv^.

V



184

7 .4  A pproxim ation for T and M in System s with D istr ib u ted  L ag
- u  ■ ■ P

C onsidering  Only Dominant Roots

A pproxim ate values for and M can be obtained fo r  feedback

sy s tem s w ith d istribu ted  lag  fro m  a  s e t  of u n iv ersa l cu rv es  under 

the  follow ing conditions:

1) A dom inant pa ir of ro o ts  of F(s) = 0 ex ists .

2) E ith e r  ro o ts  of F(w) = 0 o r system  ze ro s  (i. e . , ro o ts  of 

N(w) = 0) lie  sufficiently  fa r  to the left of the dom inant p a ir  

in  the  w -plane so that th e ir  contributions to the output t r a n 

s ien t resp o n se  a re  neglig ib le .

3) The location  of system  z e ro s  e ith e r close to the  o rig in  o r  

n e a r  the  dom inant roo t in  the w -p lane, and th e ir  re su lta n t 

effect on system  tra n s ie n t re sp o n se , a re  cancelled  by ro o ts  

of the sy stem  c h a ra c te r is tic  equation located n earby .

If a  sy stem  is  assum ed which m ee ts  th e  above m entioned conditions, 

the app rox im ate  equation fo r becom es

(7-4 .1)

2 Td
defining = con sin  0, x  = wn T and Y =~y

stitu tion  into (7 .4 .1 ) and so lv ing  fo r x  gives

y ields upon sub-

4 ( 7 7  - 0/2) 
+ y Sin 0 (7 .4 .2)

I
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Since only the second quadran t of th e  s-p lane  is  of in te re s t  and y is  

positive , one of the so lu tions of (7 .4 .2 ) is  positive  and one is  nega

tiv e . C onsidering  only the  positive  solution y ie lds upon sq u arin g

(7 .4 .2 ) ,

2 _  Sin 2(0/2)
X = CO I  = — 5------- 5—

n 4y2 Sin G Sin (0/2)

\

(7 .4 .3 )

Equation (7 .4 .3 ) re p re s e n ts  th e  m agnitude of a  vecto r in  the

sT -p lan e  a s  a function of th e  sT -p lan e  angle 0 and a  d im ension less
2

constan t y. A fam ily  of cu rv es  can be obtained in  which x  i s  plotted 

as a  function of 0 w ith y a s  a  p a ra m e te r . T hese  cu rves a r e  shown 

in  F ig u re  7 .4 .1 . Given a  point in  th e  sT -p lane  and the  value of the 

d is trib u ted  lag  constant T , th e  ro o t location a  ̂  + j co  ̂ and th e  

tim e  to  peak can be de te rm ined  by m eans of F ig u re  7 .4 .1 .  Thus 

th is  fig u re  re la te s  dom inant ro o t locations in th e  s-p lan e  to  tim e  to 

peak fo r feedback sy s te m s  w ith d is trib u ted  lag .

T he approxim ation fo r se ttlin g  tim e  (2% c rite r io n ) assum ing
4 4Tthe  p re sen c e  of a  dom inant ro o t p a ir  if T = —=—j— = —, „ -r o rS | or | | Or T |

^ - I F F T  ( 7 - 4 ’ 4 )
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T T . TT
S S >  PThus given a value of ffT , ^ — is  de te rm ined  and s in ce  ^

th is  value d e te rm in es  a  boundary lim it fo r th e  cu rv es  as a  

function of orT. T h is boundary is  a lso  shown in F ig u re  7 .4 .1 .

F o r  roo ts located  below  th is  boundary, the  se ttlin g  tim e  constant 

dom inates and th e re  is  p rac tic a lly  no peaking of th e  tra n s ie n t 

resp o n se .

The frac tio n a l overshoo t M for a  dom inant ro o t sy s tem  with 

d is trib u ted  lag  is  given by (7. 3.20) as

M = 4 Cos (01/2 )ex p  |"V w n T Cos (°j/ 2 j exP ( a  i  T p)

(7 .4 .5 )

Substituting th e  value of T from  (7 .4 .1 ) into (7 .4 . 5) and noting that
P

T an  = tOj/ a^  y ie ld s

7r+v^ n T S in (0 1/ 2 ) - O 1/ 2  -

-  Cos ( 0 /2 )  + ------------ L _ g - ---------------

Taking the n a tu ra l lo g arith m  of (7 .4 . 6) and re -a r ra n g in g  te rm s  gives

M _
4 C o sO O ^ ) " 6X9

M ( n - 0 / 2)
-l n ( 4 Cos (©1/ 2 ) “ Tan Oj ^ n ^

2
Setting x = wn T and noting that

Sin ( 0 / 2 )
^ ---------C o s(0 1/2)Tan

(7 .4 .7)

- Cos 0/2) -  - 2-c-dwZ> (7' 4' 8)
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upon solving fo r x  gives

x 2 = w T = 4 Cos 2 ( 0 /2 )  
n l  1

(7T- 0 / 2 )l /2 )  /

4111 (
4 Cos ( 0 /2 )

)Tan 0 j  \  M

(7 .4 .9 )

Equation (7 .4 .9 ) re p re se n ts  the m agnitude of a  v ec to r in the  sT -p lan e  

a s  a  function of th e  sT -p lan e  angle 0, and th e  frac tio n a l peak o v e r

shoot M. A fam ily  of cu rves can be  obtained fro m  (7 .4 .9 ) in which 
o

x is  p lotted  a s  a  function of w ith M as  a  p a ra m e te r . Some cu rv es 

from  th is  fam ily  a r e  a lso  shown in F ig u re  7 .4 .1 .  T hese a re  cu rv es

of constant frac tio n a l overshoot a s  ©  ̂ is  v a ried  fro m  V-2 to v .

7 .5  I l lu s tra tiv e  E xam ple

The u se  of equations (7 .3 .19) and (7. 3.20) a s  w ell as F ig u re  

7 .4 .1  w ill be  d em onstra ted  by an exam ple. C onsider the  feedback 

system  w ith d is tr ib u te d  lag  shown in  F ig u re  7. 5 .1 . T his sy s tem  

has been tre a te d  p rev iously  by a  num ber of a u th o rs  [ 32 ] and [ 81] . 

When the gain is  unity  E lgerd  [ 32 ] showed th a t the  c h a ra c te r is tic  

equation

F(s) = s  + e " = 0 (7. 5.1)

is  sa tis fied  by an in fin ite  num ber of p a irs  of ro o ts  and that the  two 

roo t p a irs  a r e

s 1 T = - 0 .5108  ± j 0.5105 = 0 .7 2  /±  135°

= - 11.91 ± j  36.72 = 38 .4  /  469°
(7 .5 .2)
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N otice that the f i r s t  p a ir  of ro o ts  appear on the p rin c ip a l sh ee t of

th e  R iem ann su rface  w hile  the  second p a ir  of ro o ts  a r e  on the

second  sh ee t. The w -p lane  locations of these  ro o ts  under the

tran sfo rm a tio n  w^ = s  a r e

w , t  = 0.325 ± j 0 .785  = .849 ^ 6 7 -5 °
1»1 (7 .5 .3 )

w2 ^  = 3.595 ± j 5 .04  + 6 .2  /±234. 5°

T h ese  ro o ts  a re  shown in  the  w -p lane  rep re sen ta tio n  of F ig u re  7 .5 .2  

Apply (7. 3.19) to F ig u re  7. 5. 2 y ie ld s.

T  =p "  0.5105
7T 77 1 / 4 .255\ _  “ 1 / 5 .825 \

T ~  + T “ '  T an  V T an  ( "3. 925 ) +

. 849 Sin (67. 5°) - 6 7 ,j?8* -■ j = = 5. 65 seconds

S im ila rly , applying th e  data  fro m  F igu re  7. 5. 2 to  (7. 3.20) gives 

^  (R ?\{R 9\ -,849ccos (67.5°) -  0 .51  (5.65)
M = 4 C o s ( 6 7 . 5 % ™ ^ x e

M = 0.0632

T he tra n s ie n t re sp o n se  fo r  th is netw ork was calcu lated  by P ie r r e

[ 81] and i s  shown in F ig u re  7. 5. 3. R e ferrin g  to  F ig u re  7. 5. 3,

the  tim e  to  peak T is  5 .1  seconds and the frac tio n a l overshoot is
P

0 .1 1 . Thus application of equations (7. 3.19) and (7. 3.20) p ro 

duces approxim ate e r r o r s  of 11% in T^ and an abso lu te  e r r o r  of

0 .05  in M.
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The re s u lts  obtained from  (7. 3.19) and (7. 3.20) w ill be com 

pared  to those  obtained through application of (7. 3.6) which a lso  

neg lects the in te g ra l te rm . F o r the sy s te m  of F ig u re  7 .5 .1

N(s) = 1, F(s) = s  + K e " ^  = 0 ,L  = G = 0 

and the ro o ts  in  the  p rin c ip a l sheet co rrespond ing  to  K = 1 a re  

located at

s x j  = - 0 .5108 ± j 0.5105 = 0 .72  /±  135° (7 .5 .4 )

Substituting th e  p reced ing  inform ation in to  (7. 3.6) and noting that 

F T(s) can be  w ritte n  as

F ’(s) = 1 -  — -----—  o l + ^ 5  0 (7 .5 .5 )
2 J T

yields

c(t) = 1 + 1.775 e " 0 ,5 1 t cos (0 .51 t -  113.1°) (7 .5 .6 )

T his equation is  a lso  p lo tted  as a  function of tim e  in  F igu re  7 .5 . 3. 

Notice that th e  d iffe rence  betw een th ese  two cu rv es is  a  m axim um  

a t t  = 0 and d e c re a se s  w ith tim e . The am plitude  e r r o r  in the 

vicinity of T  (i. e . , t  ~  5 seconds) is  app rox im ate ly  0 .04 .
r

Equation (7 .3 .6 )  tak es  into account the  am plitude and phase con

tribu tions of a ll  ro o ts  of F (s) = 0  through th e  evaluation of F(s) 

a t each of th e  ro o ts  of F (s) = 0  on the  p rin c ip a l sh e e t. A th ird

method of e s tim atin g  T and M is  through  u se  of F ig u re  7 .4 .1 .
P
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F o r  th e  dom inant roo t s  = -0 .5 1 1  + j 0 .511 , F ig u re  7 .4 .1  ind ica tes

T = 5 .4  seconds and M = 0. 07. The re s u l ts  of the  four m ethods 
P

of obtaining and M a re  su m m arized  in  the  tab le  below.

F (s)= s + e~ ^ = 0
Exact.

Method

G eom etric  
In te rp re ta tio n  
2 p r s .o f  ro o ts

Approx.
Method

Equation
(7 .3 .6 )

Dom inant 
Root Method 
F ig u re  7.4.1

T in  seconds 
P

5.10 5.65 5.20 5 .40

M 0.110 0.063 0 .08 0 .0 7

\
C alcu la tions fo r th e  sy s tem  of F ig u re  7 .5 .1  a re  rep ea ted  fo r

sy s tem  gains of 2 and 4 re sp ec tiv e ly . T he values of T and M by
r

th e  exact m ethod, the  geom etric  in te rp re ta tio n  m ethod u sin g  two 

p a ir s  of ro o ts , th e  approxim ate  m ethod of equation (7. 3 .6) and

th e  dom inant ro o t method of F ig u re  7 .4 .1  a r e  p resen ted  below.

K=2 ,—  
F(s)=s+2e ^ = 0

Exact
Method

G eom etric  
In te rp re ta tio n  
2 p r s . of ro o ts

Approx.
Method

Equation
(7 .3 .6 )

Dom inant 
Root Method 
F ig u re  7.4.1

T in  seconds 
P

2 .9 3 .23 3.1 3.05

M 0.21 0 .1 2 0 .17 0.15

K=4

F (s)= s+ 4 e~ ^C o
T in  se c .

P
1.80 2 .01 1.85 1 .90

M 0.34 0 .21 0.31 0 .25
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7 .6  Methods of E valuating  th e  I r ra tio n a l In teg ra l T e rm

T he tra n s ie n t re sp o n se  equation (7 .2 .12) co n s is ts  of th e  sum  of 

th e  ra tio n a l com ponent and th e  ir ra tio n a l in te g ra l com ponent given by

c(t)=’inrr (7'6'1)
w h ere  Ig R is  defined by (7 .2 .1 0 ). The in te g ra l defined by th is  

equation is  with re s p e c t to  the  function r  (the d istance  along the 

negative  re a l ax is of th e  s -p la n e  is  a  pa ram eter) and t  (the tim e  

v a r ia b le ) . The value of th is  in te g ra l d e c re a se s  a t t  in c re a s e s  

b ecau se  of the  exponential te rm  exp ( - r t ) . T he con tribu tion  of 

(7 .6 .1 ) to  the tra n s ie n t re sp o n se  w as neglected in  developing the 

v a rio u s  approxim ations because  of the  assum ption  th a t c (t)jr r  

can  be  neglected fo r va lues of t  equal to o r  g re a te r  than  th e  tim e  

to  peak  T . T his assum ption  should be v erified .

The irra tio n a l in te g ra l te rm  of equation (7 .6 .1 )  can be evaluated 

in  any one of the follow ing w ays:

1. D irec t nu m erica l in teg ra tio n  of equation (7 .2 .10) - th a t is  se t 

t= T ,, se lec t a  value fo r d r  and in teg ra te .

2. N um erical In teg ra tion  u sin g  Gauss Q uad ra tu re  T echniques - 

th is  involves su b stitu tin g  a  fin ite  sum m ation  fo r the  in te g ra 

tion  operation . T h is technique is  d e sc rib ed  in d e ta il by 

Bellm an [ 111 . H ow ever, c a re  should be  taken  in  applying 

th ese  techniques s in ce  they a r e  designed fo r ra tio n a l polynom ials.
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3. A sym ptotic Expansion - th is m ethod c o n s is ts  of:

a) Substituting the  s e r ie s  expansions of s in  (Yd) and cos (Yd) 

in equation (7. 2 .10).

b) P e rfo rm in g  the  d ivision operation .

c) In teg ra ting  te rm  by te rm .

If the lim its  of in teg ra tions of (7 .2 .10) a re  z e ro  and infinity, 

the in teg ra tion  is  equivalent to a tra n s fo rm  operation .

T he asym ptotic  expansion m ethod will be i llu s tra te d  fo r the sam ple  

p roblem . F o r the  system  of F igu re  7. 5 .1 ,

and upon evaluating IBR u tiliz ing  (7 .2 .10 ), (7. 6 .1) becom es

Expanding sin  ( V"r) and cos ( V r) and dividing the  re su lta n t poly

nom ial frac tion  y ie lds

. ^  _ K rT (3 /2 )  . r  (5/2) (12-K) . T (7/2) (K2 -160K + 360) .
’ T r r  = i t  [ ^ 3 7 2  6K3 ,5 /2  K4 120

(7 .6 .4)

N (-r )= l, D (-r)=  - r ,  Y = (RCr) 1/ 2

(K -160K+360)r

Taking the  L ap lace  tra n s fo rm  of each te rm  y ields
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w here T(n) = (n -1) P (n - l)  and R l / 2) = 1.722 

thus for K = l, and t=Tp = 5 .2 , (7 .6 .4 ) becom es

e(5. 2; 1)I r r  = 4  °̂* 073 + ° ‘ 040 + ° ‘ ° 17) = + °* 041 (7< 6*

The value of c(t)j in (7. 6 . 5) accounts fo r m ost of the e r ro r  in 

evaluating M in Section 7 .5 . Thus c o rre c tin g  the  values of M com 

puted in tab le  for K=1 y ields values of M of 0 .104 , 0.121 and 0. I l l  

for the th re e  d ifferen t approxim ate m ethods com pared  to the exact 

value of 0 .110  thereby  reducing the e r r o r  in M substan tia lly .

7 .7  C onclusions and D iscussion

The tra n s ie n t resp o n se  for a feedback sy s tem  with a  d is trib u ted  

p a ra m ete r elem ent can be thought of co n sis tin g  of the  sum of two 

types of te rm s ;  a  ra tio n a l function and an ir ra tio n a l in teg ra l func

tion. T his re sp o n se  can be approxim ated for va lues of tim e equal 

to o r g re a te r  than the  tim e  to peak, T , by neglecting  the ir ra tio n a l 

in teg ral te rm . The tra n s ie n t re sp o n se  fo r th ese  types of sy s tem s 

can th e re fo re  co n sis t of evaluation of re s id u e s  in m uch the sam e 

m anner a s  lum ped constant sy stem s.

The geom etric  m ethod developed by Chu [24] fo r lumped con

stant sy s tem s has been extended to sy s te m s w ith d istribu ted  lag  

through the  u s e  of a  tran sfo rm ation  in  which the  com plex s-p lan e
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is  m apped into a  complex w -p lan e . T he extension of the  geom etric  

m ethod can be  u sed  to d e te rm in e  tra n s ie n t response  p a ra m e te rs  T
r

and M although re su lts  obtained a r e  not a s  accu ra te  as th o se  obtained 

through  the additional evaluation of the  ra tio n a l portion of th e  t r a n 

s ien t re sp o n se  equation.

T he cu rv es  of F igure  7 .4 .1  in which the  location of the  dom i

nant ro o t in  th e  s-p lane  is  re la te d  to tra n s ie n t response  p a ra m e te rs

T , M, and T , can be used to  y ie ld  an a c c u ra te  approxim ation  of 
P s

T . H ow ever, la rg e r  e r r o r s  r e s u l t  in determ in ing  the overshoo t 
P

p a ra m e te r , M. T here  is  how ever a la rg e  system atic  com ponent in

th is  e r ro r  b ecau se  the approxim ation fo r M is  based upon the  u se  of

the  approx im ate  value of T^. Since approxim ate  values T ^  tend to

be h igher than th e  actual va lues, approx im ate  values of M in  F ig u re

7 .4 .1  tend to  be lower than a c tu a l va lues. M ore acc u ra te  va lues of

M can be obtained through evaluation of th e  irra tio n a l in te g ra l te rm

at t=T .
P
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CHAPTER 8 

CONCLUSIONS

A m ethod has been p resen te d  fo r the determ ination  of absolu te 

and re la tiv e  s tab ility  as w ell a s  s -p lan e  ro o t locations of lin ea r tim e  

in v arian t feedback system s containing d istribu ted  p a ra m e te r  e lem en ts. 

T h is m ethod re p re se n ts  an extension of p a r  am eter p lane techniques 

a s developed by V ishnegradski [ 120], N eim ark  [72], M itrovic [69 ], 

S iljak  [99 ], and E isenberg [29 ]. R esu lts  a re  p resen ted  in te rm s  of 

two v ariab le  system  p a ra m e te rs  as opposed to conventional techniques 

(such as roo t locus, Nyquist , and Bode d iagram s ) which can t r e a t  

s tab ility  w ith re sp ec t to at m o st only one variab le  sy stem  p a ra m e te r . 

Although developm ent of the m ethod is  accom plished u tiliz ing  the 

uniform  tran sm iss io n  line m odel, the  m ethod is g en era l and can be 

applied  to  o ther types of d is tr ib u ted  p a ra m e te r  e lem en ts. The 

investigation  of stab ility  is not any m o re  complex fo r m ulti-loop  

feedback sy s tem s than fo r sin g le  loop sy s tem s because the  c losed  loop 

sy s tem  tra n s fe r  function is u tilized  in p a ra m e te r  p lane. "^F urtherm ore, 

the  technique is  well su ited  fo r  solution utilizing a d ig ita l com puter 

and higher o rd e r  system s can  be tre a te d  with p rac tic a lly  the sam e 

e ase  as low -o rd e r  sy s te m s. The m ethod includes tre a tm e n t of m u lti

valued functions of the com plex v a riab le  s  , branch po in ts , and branch 

cu ts as w ell a s  Riemann su rfa c e s . In addition, a  th eo rem  is  derived



by which the  num ber of r e a l  ro o ts  (and th e ir  values) can be d e te r

m ined fo r a  system  with specified  p a ra m e te rs  ( °  /3 in  the

p a ra m e te r  plane.

The p a ra m e te r  p lane  is  applied to  a  hypothetical c la ss  of 

t ra n s fe r  functions of the  fo rm

w here  p  and q a re  in te g e rs  and p is  le s s  than  q. T h is m ethod u ses 

a  com plex tran sfo rm a tio n  which m aps a  function from  the  s-p lane 

to  a  w -plane in  w hich the  function is  single valued. P a ra m e te r  

p lane  techniques a r e  then  in troduced in o rd e r  to  d e te rm in e  abso

lu te  and re la tiv e  stab ility .

The p a ra m e te r  p lane  is  then  applied to  contro l sy s tem s in 

which an aux ilia ry  p re d ic to r  loop is  added around th e  conventional 

co n tro lle r. T his p re d ic to r  loop is  designed to  cancel th e  effects 

of the  d istribu ted  p a ra m e te r  elem ent in the  p lant. The problem  of 

a  system  with d is trib u ted  lag is  considered  and since  a  d istribu ted  

lag  elem ent is  d ifficu lt to  syn thesize , the p re d ic to r  loop u tilizes  a 

ra tio n a l polynom ial approxim ation  for th is  elem ent. The application 

of th e  p a ra m e te r  p lane  h e re  p re se n ts  the d esig n er w ith a  method
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of determ in ing  the optim um  polynom ial approxim ant to  u se  in o rd e r  to 

achieve a sy s tem  which w ill rem ain  s ta b le  with varia tions of two 

system  p a ra m e te rs  (such as system  gain and r e s e t  tim e) and re ta in  

p rac tica lly  the  sam e tran s ie n t resp o n se  as the uncom pensated sy s tem .

The p a ra m e te r  p lane is a lso  applied  in o rd e r  to place ro o ts  of the 

system  c h a ra c te r is t ic  equation in s -p la n e  locations so that a  d e s ire d  

tran s ie n t re sp o n se  can be achieved . T ran s ie n t resp o n se  c h a ra c te r 

is tic s  such a s  tim e  to  f i r s t  peak, T , f i r s t  peak  overshoot, M ,
P

and se ttling  tim e , T , a re  re la te d  to s-p la n e  locations of "dom inants
ro o ts"  fo r sy s te m s  w ith d istribu ted  lag . S ev era l d ifferen t techniques

a re  developed and com pared . A se t of cu rv es  is  p resen ted  which

re la te  T , M, and T to s-p lane  locations of the dominant roo t 
P s

in system s w ith d is tr ib u ted  lag. T hese  cu rv es  can then ser'ee as a 

tool in the design of sy stem s with d is tr ib u te d  lag when tran s ie n t 

response  is specified .
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CHAPTER 9 

SUGGESTIONS FOR FUTURE INVESTIGATION

The theory  and techniques developed in th is d isse rta tio n  can be 

applied  in a  num ber of a re a s . Specifically , application of the p a ra 

m ete r plane theo ry  to sy s tem s in which the  d istribu ted  p a ra m e te r  

e lem ent has a  tra n s fe r  function o ther than the uniform  tra n sm iss io n  

line  would p rov ide  insight into th e ir  behavior. T hese types of sy s tem s 

a re  often fo rm u la ted  as m odels of b iological elem ents and p ro c e sse s  

and the re sp o n se  of these  sy s te m s when two or m ore p a ra m e te rs  

a re  v aried  sim ultaneously  would be of value. The approach h e re  

would be to f i r s t  develop the ex p ress io n s  fo r - ^  and 8  , then 

de te rm ine  the  m anner in which branch points of the function effect 

the partition ing  of the s -  p lane , and fina lly  map s -  p lane contours 

into the a -  plane.

T h ere  a re  many in stances in; the design of sy s tem s w here

the sensitiv ity  of the system  to  p a ra m e te r  varia tions is  of concern .

The g en era lized  M itrovic m ethod was applied to the sen sitiv ity

p rob lem  by Kokotovic [52] and re a l  and complex roo t se n s itiv itie s

w ere  defined. T hese  defin itions can be applied to sy s te m s with

d is tr ib u ted  p a ra m e te rs . K fo r  exam ple:

n

F (s )=  X  a. s k = 0 
k=0

and
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® k = a (b k +ck e r d )  + ^ (dk + ek e r d > ^ k ^ k 6 ”
w here

y  = ~yj ( Ls + R) (Cs + G) ; d is a unit of length 

The coefficients a re  th e re fo re  a  function of line p a ra m e te rs  

L , C, R, G, and d and the various se n s itiv itie s  of ro o ts  of F (s)=  0 

w ith re sp e c t to v aria tions in th ese  p a ra m e te rs  can be found.

O ther extensions of the p a ra m e te r  plane technique to system s 

w ith d istribu ted  p a ra m e te r  e lem ents include :

® System s in which p a ra m e te rs  a and /3 occur non-linearly  

as p roducts in the exp ression  fo r the coefficient ak * That 

is , the coefficien ts a re  expressed  by :

\  = ° bk + “ Ck 6 /(S>d + *  ^  ^ ek ® y(SW + fk + e  X(S)d

•  To sy stem s in which the d istribu ted  p a ra m e te r  elem ent is 

te rm ina ted  in an a rb i tra ry  load im pedance.

•  To sy stem s which contain m ore than one type of d istribu ted  

p a ra m e te r  e lem ent . An example of such  a sy s tem  is one 

which contains both tra n sp o rt and d is trib u ted  lag.

Another a re a  of in te re s t  is the determ ination  of the  tran s ien t 

re sp o n se  of feedback sy s tem s containing an e lem ent belonging 

to the hypothetical c la s s  of functions d iscussed  in C hapter 5. The 

author has begun fu r th e r  w ork in th is a re a . F o r exam ple, curves
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of constant T  /  T and M in the sT -p lan e  have been derived  fo r  
P

various ra tio s  of p /q  assum ing the effect of a  dom inant root p a ir  only, 

(see C hapter 7, Section 4 for a  descrip tion  of the method). Som e of 

these  cu rves a re  shbwn in F igures 9 .1  and 9. 2 . However, the 

resu ltan t e r r o r  in d e te rm in in g  tra n s ie n t re sp o n se  c h a ra c te r is tic s  

com pared w ith the exact method has to  be determ ined .

The concept of approxim ating the c losed  loop response  of an unknown 

system  by choosing a m odel in which the  open loop response  of the 

system  is approx im ated  by a specific of the c la ss  of functions 

d iscussed  in C hapter 5 is  one w orthy of investigation . The equations 

fo r the open loop re sp o n se  of th is c la s s  of functions can be developed 

and specific  re sp o n se s  obtained by n u m erica l in tegration  using a 

com puter. The question of how e r r o r s  between the m easured  open loop 

response  and the open loop response  of the m odel chosen effect the 

closed loop re sp o n se  of the system  is of interest, h ere .

F in a lly , in the determ ination  of the  tra n s ie n t response  of sy s tem s 

containing a tra n sm iss io n  line type of d is trib u ted  p a ra m ete r e lem en t 

fu rth e r w ork should be done in :

#  a ttem pting  to  identify and iso la te  sy s tem atic  e r ro r s .

& developing ite ra tiv e  techniques fo r  obtaining the tra n s ie n t 

re sp o n se  p a ra m e te rs  from  the location of the dom inant roo ts 

6  developing techniques fo r de te rm in ing  the bounds of the

ir ra tio n a l in teg ra l te rm  in the tra n s ie n t response  equation.
I
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APPENDIX I 

CONSIDERATION OF INITIAL CONDITIONS IN 

DISTRIBUTED PARAMETER SYSTEMS

Given a  un iform  RLGC tram sm iss io n  line , the  voltage along

the  line , v(x, t), is  ex p re ss ib le  in a  p a rtia l d iffe ren tia l equation of

the  fo rm

2 9 
^  v (x ,t) LC v (x ,t)  (RC + L G )^ v (x ,t)  + RG v(x ,t) (1 .1)

^ x 2 ^ t 2 Jfc

If the  in itia l conditions on the line a re  defined a s  v(x, 0+) and v(x, 0+)

resp ec tiv e ly , the  L aplace tran sfo rm  of the  tim e  v a ria b le  of (I. 1)

isg iv en  by the o rd in ary  d ifferen tia l equation

_! 2V(x,.s ) = g2 LCV(X> s ) _ sLC  V(X) 0+) _ L C d v (x t 0±) 
dx2 dt

+s(RC+LG) V( x, s) -  (RG+LG)v (x, 0+) + RG V(x, s) (1.2)

Upon combining te rm s  (1.2) can be ex p ressed  a s

,2 , .
d. - W (s) V(x, s) = -U (s) v(x, 0+) -  LC dv(x, 0+) (1. 3)
dx dt

w here

W (s) = s 2 LC + s( RC + LG) + RG 

and

U(s) = s LC + (RC + LG)

Since (1.3) is  a  second o rd e r  lin ear d iffe ren tia l equation in x, its  

so lu tion  can be w ritten  a s  the  sum  of the com plem entary  and p a rtic u la r
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solutions. T hat is

V(x, s) = V (x ,s) + V (x ,s) (1.4)
 ̂ P

w here the com plem en tary  solution is  obtained by considering  (1.3) 

with the r ig h t half po rtion  se t equal to  z e ro . Thus

V (x, s  ) = A exp (- \jfW(sj x ) + B exp ( + Jw (s) x ) (1.5)

and the p a rtic u la r  solution is

V(x, s) = Fp ( x ,s )  (1.6)

that is , som e function of x and s defined by the  in itial conditions

on the line a t t=0 and consideration  of the  rig h t hand portion of

equation (1.3). If the  line  is assum ed to be te rm in a ted  in its

c h a ra c te r is tic  im pedance, B=0 and (1.4) becom es

V (x,s) = A exp( -> /W (s) x )  + F (x, s) (1.7)P
If the so u rce  voltage is  defined, the boundary condition V(0, s) is  

specified  and evaluation of (1. 7) at x=0 y ields

V(0, s) = A + F (0, s) (1.8)
P

Thus

A = V(0, s) -  F  (0, s) (1.9)
P

and (1. 7) can be re w ritte n  as

V (x,s) = [ V(0, s) -  F p (0, s) ] exp(- x) + Fp(x, s) (1 .10)

w here the functional dependence of W on s  is  understood and has

been om itted. The output voltage at the  te rm in a tio n  (i. e. x=d) is

V(d, s) = [ V(0, s) -  F  (0, s) ] exp ( -  \ / w  d )  + F (d, s) (1 .11)
xr r
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Equation (1 .11) can be re p re s e n te d  a t t=0 by the tra n s fe r  function

d iag ram  of F ig u re  1 .1  . Once in itia l conditions v(x, 0+) and

dv (x, 0+) a re  specified , F (x, s) can be evaluated by one of a  num ber of
P

dt

of m ethods ( i„ e„ undeterm ined coeffic ien ts , variation  of p a ra m e te rs ) .

C onsider the system  d iag ram  of F igu re  1.2 in which the

d is trib u ted  p a ra m e te r  is  com bined w ith lum ped constant e lem en ts.

A ssum ing the  in itia l conditions of th e  lum ped elem ents a re  z e ro ,

the tra n s fo rm  of the closed -loop  re sp o n se  a t t=0 is

F (d, s) -  F (0, s) exp(- 'f'd) + R(s)H(s) exp(- 'I'd)
C(s) = -     (1.12)

( 1 + H(s) exp ( -  Y d) )

Equation (1 .12) consists  of th re e  te rm s ; the  f i r s t  two te rm s  a re  due

to  in itia l conditions asso c ia ted  w ith the  d is tribu ted  p a ra m e te r  e lem ent

and the  th ird  te rm  is duo to  the sy stem  when a ll in itia l conditions a re

z e ro . Equation (1.12) is  not n e c e ssa r ily  stab le  if the ttran sfo rm

C(s) = R (s) H(s) exp( - y  d)  (1. 13)
°  1 + H(s) exp( - Y d )

does not contain any s in g u la ritie s  in the  r ig h t portion of the  p rin c ip a l

b ranch  of the  s-p lan e  because  the  functions due to in itia l conditions

appear to  be a rb i tra ry . How ever, if the  following is assum m ed;

1. The im pulse re sp o n se  of (1 .13 ) is  bounded 

(l. e . «:l im it  c(t) r=0 $ v
t —>  OQ

2. The only m eans of producing_ functions F  (d, s) and
P
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F (0 , s) is  through excitation applied to  the input te rm in a ls  
P

of the  d is trib u ted  p a ra m e te r  e lem ent a t som e tim e p rev io u s 

to  t=0„

3. T his excitation function v (0 ,t) is  bounded

(i. e. v(0 ,t)  =0  as t approaches z e ro  with -<*> ^ t ^ 0).

then the in itia l condition functions F (d, s) and F  (0, s) a re  co nstra ined
P P

such that a  s ta b le  sy s tem  re su lts . T h is is  because an o b se rv e r

at tim e t=d: £0 cannot distinguish  w hether the  s ta te  of the sy s tem

is due to a  sy s tem  w ith in itial conditions v(x, 0+) and dv(x, 0+)
dt

coupled w ith an input c^(t) or a  sy s tem  w ith z e ro  in itia l conditions 

and an input c (t)  = Cg(t) + c^(t) w here  Cg(t) alone would 

produce th e  aforem entioned  in itia l conditions at t=0.

I

J
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APPENDIX n

CONSTRUCTION OF a -  B  CONTOURS FOR w <  0___________________________ _ ________________________n______

The objective is  to p rove th a t i t  is  only n e ce ssa ry  to com pute 

va lues oi  a ,  p  for o> 0 when considering  an s -p la n e  contour 

w hich is  sy m m etrica l w ith re sp e c t to  the  re a l ax is .

T his dan be proven by r e fe r r in g  to  equations (4. 2.12) and noting 

th a t the  equations fo r B^, C j ,  and rem ain  unchanged and equations 

B^, Cg, and Dg change sign when th e  signs of v a riab le s  o»n , £ and 

8 a re  re v e rse d .

Now F ig u re  4 .3 . 2a i llu s tra te s  the  s-p lan e  a s  consisting  of th re e  

p a ir s  of sy m m etrica l reg ions se p a ra ted  by the re a l  a x is . T hese  p a irs  

a r e  B and C, AL and DL, A ^  and DR . The signs of v a ria b le s  

£ , 8  and - $  assoc ia ted  w ith each of these  reg ions a re  sum m arized  

below . The signs of and £ a re  obtained from  F ig u re  4. 2. 2 and the 

s igns of 8  and - a re  obtained fro m  Table 4. 3 .1 .

V ariab le

Sym m etrical 
P a ir  

B C

Sym m etrical
P a ir

a l  d l

Sym m etrica l
P a ir

* R  DR

(4 + +n

t + + - +

8 + + - + “

* - + t + +
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Since the  sig n s of a> , £ and 8 change and the  sign of -  iff rem a in s

unchanged fo r  sy m m etrica l points in  th e  low er half plane

B„ (- to ) = B 1 ( to ) n  I n7
- w ) = C- ( to ) n7 1 n

D<

B,

D,

to ) = D- ( «  )n7 I n7

- <"„) = - b 2 <

- C 2 < «„> 

- " n) = - D 2 ( " n '

T herefo re  fo r to <  0 substitu tion  into (4. 2.13) gives n

. a ■(- a ( « ) , Q { -  wn) = £  ( « n) , A(- <*>n) = - A(

Thus, when tra v e rs in g  contours in the  s -p la n e  fo r values of 40 0,

the  sign of A changes but the values of a  and $  .are  th e  sam e. It 

follows that th e  a - curve fo r to 4. 0, £ >v 0 fa lls  d irec tly  

over the cu rv e  obtained fo r to > 0, £ >  0 and is  shaded on the  sam e

side. The re s u l t  is  a  doubly shaded curve .
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APPENDIX m  

DERIVATION OF THE LIMIT FUNCTION F j  (5=1)

It is  req u ired  th a t the  lim it be  found for the  function

F 1 ( 5 =1) = F 1 (1) = lim  sin  8 (m . 1)
1 S *1  (1 - t 2)l/2

w here  8 is  defined by (4. 3 .17).

Since 8  = 0 and C = 1 along segm ent 1 of F ig u re  4. 7 .1 , equation 

(III. 1) is  indeterm inate  when taken  to the  lim it. Applying L 'H osp ita l’s  

ru le  to (III. 1) gives

F. (1) = -limit d 8  ( 1 - £ 2 } 1/2 on. 2)
1 S - M  d S

The d eriva tive  function of (III. 2) can be found by d ifferen tia ting  the 

function 8 in (4. 3.17) w ith re sp e c t to the v a ria b le  . T his gives

d 8  A ( t  ) (m . 3)
= 8

w here  fo r  segm ent 1

d2 w 2 T 2 to L C - ( RC + LG) f
n  L n

Ax(i) = - ________________“______________________  (m . 4)
4 ( to L ~ R  ) ( to C -  G)

' n n

Thus (III. 2) can be re w ritte n  as

F (1) = - A-id  ) lim it ( 1 - S 21 1//2 = - A (1) N1 (1) 
1 8

(m.5)
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Equation (III. 5) is  a lso  indeterm inate  when taken to the lim it. Thus 

applying L 'H o sp ita ls  ru le  again gives

F 1(1 )= A  (1) lim it 1 (IH. 6)

( 1  - £ 2) 1 / 2 d S  
■d5~

which by v irtu e  of (in. 3) is

F 1 (1) = lim it 8  = 1 (m . 7)

(1 -§ V /2 N j ( l )

Substituting (III. 7) into (III. 5) and noting th a t (RC + LG) is  g re a te r  

than 2-cu^LC on segm ent 1 gives

. /0 d to (RC+LG -2  a) LC)
F l (1) = ( - a / / 2 = ------5-----------------------2---------  , (m . 8)

1 1 2 [ (  - R) ( wn C - G)]

Equation (in. 8) is  valid  fo r segm ent 1 of the  negative r e a l  ax is .

Along segm ent 2, the  lim it function can be shown to be

d cd ( 2 ( u  LC - ( RC + LG ))
F„(l) = ------- 2------ 2----------------- 172 (m. 9)

2 [ ( w L - R ) ( w C  -  G ) ] '  
n n

since 2 <*>nLC is  g re a te r  than . (RC + LG) along th is  segm ent. 

However, a long segm ent 3, 8 is  not, in general, equal to zero  and 

thus the  lim it of (m . 1) does not apply.
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When £  = -1 (i. e . , along the positive r e a l  axis) a  s im ila r developm ent 

to the one used above w ill show

- d w . ( 2 co LC + RC + LG )
F  (i = -1 ) = F 4 (-1) = ------- 5--------n----------------------------  ( m . 10)

2 [ ( w n L + R ) ( u > n C + G )
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APPENDIX IV

PROOF OF THEOREM FOR DETERMINING REAL ROOTS

A th eo rem  will be p roven  which s ta te s  that th e  num ber of negative 

r e a l  ro o ts  of the c h a ra c te r is tic  equation F(s) =0 fo r  a  sy s tem  with a 

d is tr ib u ted  p a ra m ete r e lem en t with tra n s fe r  function 

Fd (s) = exp ( -  7  (s) d )

is  equal to  the  num ber of s tra ig h t lines drawn through a w orking point 

M( d j ,  f3 ) that a re  tangent to c e r ta in  portions of the  =1 curve.

A lso, the  walues of th ese  ro o ts  a re  equal to the negative  of the 

freq u en c ies  wn j> wn2» “ nk noted on th is cu rv e .

The validity of th is th eo rem  w ill be exam ined fo r  va lues of the 

negative r e a l  roo ts on each  of the th re e  line segm en ts of F ig u re  4 .7 .1 . 

Along segm ent 1, the r e a l ,  roo t equation is

F (or) = 2  \ (< T )  <£Tk = 0 (IV. 1)
k =0

w here< T takes on negative values in the range - a <  <3" g 0. Substituting 

equation ( 4 .2 .6) , Chapter 4 into (IV. 1) above gives (4 .7 .2 )  repeated  

below

r d > y d > =° <IV- 2)

w here

y(<r) = [ (l<t + r)  ( ccr+  g ) ]^2 (iv.3)



2 1 9

The value of Y ( c )  w ill be re a l  and positive  along segm ent 1 and thus 

equation (IV. 2) w ill only contain r e a l  (terras . Thus fo r a given value of 

0* on seg:n®ent 1 (IVo2) re p re se n ts  a  s tra ig h t line in the a  - /9 p lane.

For a  given working point M( a i n  the a  plane, every  value 

of 0 ~that s a tis f ie s  (IV. 2) is  a  r e a l  ro o t of the  c h a ra c te ris tic  equation. 

T herefo re , if the slope of the ^  =1 cu rve  is  the  sam e as th e  slope of 

(IV. 2) , the  value of the  slope of the  % =1 curve  w here it is  tangent to 

(IV.2) is a lso  a r e a l  roo t of F (s) = 0 at the  operating point M( a B  -\}m

To prove th is  consider the slope  of (IV. 2) at the p o in t a  = a  (3 = fi«l j  1

d /3  I n  ^ k ( bk + c k e x p (y (< r )d )
*  = .  M ------------------------------------------- (IV. 4)

<4 a  n k
2  3* ( ^  + et  exP( Y( t f )d)

k=0 K K

Now consider equation (4 .5 .11) C hap ter 4 and determ ine d /9  when
d a

S  =+1. Note that when S = + l

s = - a )  = <T (IV. 5)n

or the r e a l  roo t value of CT equals th e  negative of the frequency . T h e re 

fo re , the theorem  w ill be proven fo r  segm ent 1 if the tangent at any point

on the a -  B  cu rve  fo r  ^ = + 1  betw een 0^ a; i  a  is identical to  the M n
stra igh t line  obtained when mapping th is  segm ent of the negative  re a l

axis. T he ex p ress io n  fo r  th is tangent to  the a  -  /8 curve fo r  % =+1 is

found by determ ining  the deriva tive  d B  of equations (4 .2 .1 3 ).
d a
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P erfo rm ing  th is  op era tio n  g ives

a f i  d *> / d **„ n ’2 j  -  V
Ho da /d (o Kf'J - NjJ'

w here

(IV. 6)

3
DO

II D1 V D2 B1

Nl = C1 V C2 D1

J = B1

1ea
O

B2 C1

The p rim e  denotes d ifferen tiation  w ith  re sp e c t to  w n and 

th e  functions B p  C p  D p  Bg, Cg, and Dg a re  defined by equa

tio n s  (4. 2.12).

P erfo rm ing  th e  ind icated  opera tions of (IV. 6) p roduces a 

six teen  te rm  ex p re ss io n  w ith  each te rm  consisting  of the  product 

of four functions in  both th e  num era to r and denom inator.

However, considering  (IV. 6) when % = 1 and assum ing 

in itia lly  that va lues of cun  w ill be r e s t r ic te d  to  segm ent 1 p roduces

d#l _ N2,1J1 ' N2,lJ 'l (IV. 7)
d«l " N’l , l J l  -Nl , l J’l
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w here

N2 , 1 = Dl ,  1 B 2 , 1 “D2, l B l , l

Nl , l  = C 1,1 D2 , 1 “C2, l

J 1 =B 1,1 C 2 , 1 “B2, l C l , l

the  p rim e  denotes d ifferen tiation  with re sp ec t to and the  functions

B 1 V  C1 1’ D1 1,_B2 1’ ^ 2  V  and ^ 2  i  a re  defined by e(luations

(4 .5 .5 ) and (4 .5 .10 ).

C onsider th e  function B j  ̂ of (4 .5 .5 ) . D ifferen tia ting  w ith re sp e c t

to a; gives n
# n k_1 k

B1 x = S  "k(- % ) ' l bk +ck e x p ( - ^ 1)] - ( -  « n) ckexp(- ^
k=0 (iv. 8)

w h ere  ^  fo r a  uniform  tra n s m iss io n  lin e  is  obtained by d ifferen tia ting

(4. 5. 2) and is  given by

d«/f1 d[LG+RC-2 wnLC]

, ^ 1 d w n 2 [(R- cu L)(G- u) C)]1//2 (-IV ' 9)L n n

A lso c o n s id e r in g !^  ^ fro m  ( 4 .5 .10)

1 = k* o "k “̂wn ^ bk+ck exp^ " ^ l^  +(“ wn)kckexp^"^l^ F l^1)

(IV. 10)
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whereby (4 .5 .9 )

w d[LG+RC-2 w LC ]
f , ( 1) «  - s --------------------- »-------- J75—  = »  d *  /d o ,  dv.il)

1 2 [( R - <u L )(3 - w  C) 1L n n J

Thus if the  re la tio n sh ip  of (IV .ll)ho lds, upon com paring  (IV. 8) and

(IV. 10) it can be  shown th a t

- cu B ' = , (IV. 12)
n 1,1 2,1

S im ilarly  fo r segm ent 1 i t  can a lso  be  shown tha t

- CD C , i — Cq . n 1 , 1  2 , 1
(IV .13)

-  CD D  1 =  D o 1n 1 ,1  2 ,1

R eturning to  (IV .7) , perfo rm ing  the  ind icated  operations and su b 

stitu tin g  the  id en titie s  (IV.12) and (IV.,13) y ie ld s a f te r  considerab le  

m anipulation

j j ^ l .  ( S = l )  = (IV. 14)
d o l  Cl , l

A s im ila r  a rgum en t can be used to  show th a t (IV.14)also holds fo r

segm ent 2 a s  w ell a s  fo r  the  positive r e a l  ax is  ( =  -1 ). T hat is

d /9  ( £ = 1) -B. ,  d/B (% = -!)  ~ B1 (̂ - 1>
. 2 =  , and d o “  C, (IV .15)



Substituting equations (4. 5. 5) into (IV. 14) yields

L  (' “ n)k(V Ck eX p(" * l ) )+  k=n js k  x
(tu  ,5 = 1 )  = - ^ -------------------------------------- —  (IV. 16)d /9

d a '  " n   n

k=0

w here  -  ^  by (4. 5.2) is

2  (- w „) (dk + ek exp(- i/^ )  )

-  ^  = d [ ( R -  « n L)( G -  w C )  ]1/2  (IV. 17)

By v irtu e  of(IV. 5) substitu ting  into (IV. 16) and into (IV. 17) g ives

- i f  < • „ - * . « - «
1

and

- ^  (% = -< *>  = T(<T) (IV. 19).

Thus the slope at any point a>nj( w here 0  ̂ wnj= a ) on the  a - £  plane 

cu rv e  fo r  $=+• 1 is  equal to  the  slope  obtained when m apping segm ent 1 

of the  negative re a l  axis at the  p o in t • A s im ila r  argum ent

can be used  to  show that the  th eo rem  a lso  holds along segm ent 2 of the 

negative  r e a l  ax is .

V alues of sigm a along segm en t 3 produce im aginary  values of 

the  d is trib u ted  p a ra m ete r v a riab le  gam m a. Thus equation (IV. 2) is 

no longer p u re ly  re a l and is  e x p re sse d  by
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w here

Y(<r) = d [ I (Lcr+R)(C<T+G) 1 ]1/2  (iv.21)
and -b^CT^-a . The equations fo r 5  =+1 along segm ent 3 a re  found by 

by substituting equation(4„ 5.12) into (4 .2 .1 1 ). Equation (4 .2 .11 ) is 

given by

F( w ,+1) =a 2  (- tv )k [b ,+c cos 8 ] + 0  2  (- «  )k [d,+e, cos 8 ] n n k  k

+ 2  (- tuJ k[fk+gk cos ^  + tf sin  8  ^  ^  k(5kK-<3 K=o
+ 0  2  (- a/n )k ek + 2  (" % ) k gk ) ] * 0  (IV. 22)

K-O Ic'rO
w here 8 is  defined by (4 .5 .4 ) . Since &  = -  u> ^ along the negative

r e a l  axis

8 ( - « n) = Y(<T) (rv.28;

and thus com paring (IV. 20) with (IV. 22) y ields 

F < * U t f  = F < V S  = 1!re a l

F(<T). = F ( ( , , ,& = 1 ) .  (IV. 24)
im ag n’ im ag

Thus for segm ent 3, th e  a - 0  equations fo r the  £ = 1  and the F  (<0“) 

cu rv e  a re  iden tica l and the  theorenn does not apply . Reasoning 

s im ila r  to tha t em ployed in proving the th eo rem  fo r  segm ents 1 and 2 

can be used to show that the  num ber of positive  r e a l ,  roo ts ,af th e  

c h a ra c te ris tic  equation at working point M( ctj, 0  ^) can be estab lished  

by determ ining the  num ber of tangents th a t can be drawn from  M( a  f t  ^) 

to  the  S = - l  c u rv e . F u rth e rm o re , the  values of th ese  roo ts a r e  equal 

to  the value of <u n on the  S  -  -1 curve a t the  p o in t of tangency . if
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th e  c h a ra c te r is tic  equation has any positive  re a l  ro o ts  on the  p rincipal 

sh ee t of the  s-p lane  , th is  would ind icate  in stab ility .

In sum m ary , the num ber of r e a l  roo ts of the  c h a ra c te r is tic  

equation when the sy stem  p a ra m e te rs  a re  specified  by w orking po in t 

M( d j ,  0  j)  can be found by f i r s t  determ ining the num ber of tangents 

th a t can be drawn to segm ents 1 and 2 of th e 'S = + l cu rve  in the  a  -/B 

plane . If th e  working poin t M( a  is  located  on segm ent 3 of

the  S  =+1 curve then an additional negative roo t e x is ts  and is equal 

to  the  negative of the value of on the £  =+1 cu rv e . If the 

w orking point is  not located  on segm ent 3 of the §=+1 c u rv e , the 

c h a ra c te r is t ic  equation does not have any negative r e a l  ro o ts  between 

- b i  - a  . P ositive  r e a l  ro o ts , if any, can be found by determ ining 

the  num ber of tangent lin e s  that can be drawn fro m  the working point 

to  the  §  =-1 curve,
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APPENDIX V' .

TRANSIENT RESPONSE OF CHIP S SYSTEM W ITH 

DISTRIBUTED LAG

C
Given th e  c lo sed  loop tra n s fe r  function ^  ( s ) ,  th e  tra n s ie n t

Q
response  can be  obtained by f i r s t  m ultiplying s) by R ( s ) , by the  

Laplace tra n s fo rm  of the input signal r ( t ) ,  and then obtaining the  

in v erse  L ap lace  tran sfo rm  of th e  re su ltin g  function. T h ere fo re , f o r a  

unit step input, the  tran sfo rm  of the  output functions fo r C hu 's p rob lem  

of sec t ion 4. 6, Chapt er 4 is  given by

n t  \ = K (s+W ) >c (s) , 2 ' IZir (v: . l)s(s  e v +Ks +KW) v

Finding the  in v e rse  Laplace tra n s fo rm  of (V . 1) in ta b le s  is  not likely 

since th e  denom inator equation i s  transcenden ta l. T herefo re , t r a n s 

form ation  of th is  function m ust be accom plished  fo rm ally  by m eans of

the Brom w ich-W agner In tegral. Thus - 
sai-i £

c  ( t )
K(s+W)efds  (y . _ 2)
s(s  e * +Ks+KW)

This in te g ra l can be evaluated by considering  the contour shown in

F igu re  V .. I . F ro m  the fig u re  and th e  fac t that the c lo sed  contour

does not contain any s in g u laritie s .

=IAA = 2 ir j  ̂ IAB+ *BC + t c  + t ' B '  + ^ ’A’  ̂ *3^

/
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FIGURE V . l  CONTOUR OF INTEGRATION



w here L_„ = I C(s) exp( s t )  ds (V. 4)
XY 'x

In teg ra ls  I ^ R and 1 ^ ,^ , a r e  z e ro  by Jo rd a n s  lem m a and in teg ra 

tion around the b ranch  poin t a t the  origin g ives

t c ’ = ";*ir V̂*5^
Setting s = r  exp( j irfc ) fo r  path  BC and s  = r  exp (-j tr/2)  

fo r  path C ’B ’ , in teg rating  C(s) exp(st) along each of these  paths, 

and combining ex p ress io n s  y ie lds a fte r som e m anipulation

rB R = I B C + 1 C ’B ’
/W

I „ „  = 2 jK /rr^ e Xcos(rt-x )+ W r2eXsin(rt-x )-K (W 2+ r2)sin(rt)l dr /TJ.
B K  . I  A  9 9 9 VV.bJ

^ [ r  e -2K r e (rs in x  +Wcosx) + K (W +r ) ] r

w here

x =[ r /2  ] 1//2 , r  = 2x2 (V. 7)

Com bining the re s u lts  of (V. 6) and (V. 5) in to  (V. 3) gives

c(t) = 1/2 - IBR / 2 i r j  (V. 8)

Equation (V. 8) was evaluated  fo r  W =0.3 and K =3.30 using an 

IBM 1650 com puter. The resp o n se  is shown in F ig u re  V. 2.
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raiionaf

g ' f {
2 3 4 6 6 7

FIGURE V .2  TRANSIENT RESPONSE CURVE
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APPENDIX VI 

RATIONAL FRACTIONAL APPROXIMATIONS FOR 

DISTRIBUTED PARAMETER ELEMENTS

A m ethod of approx im ating  an  exponential t r a n s fe r  function of the  

fo rm

w as developed by P ie r r e  [80] . This developm ent w as accom plished 

by f i r s t  considering  ra tio n a l frac tiona l approx im ations fo r a  d is tribu ted  

lag

and then  extending th e  m ethod to  obtain approxim ations to  (VI. 1). 

C onsider the p rob lem  of try in g  to approxim ate  the  p rincipal sheet

m o re  values on the p rin c ip a l sheet the m agnitude of g(s) (since it  is  not 

a  constant) d iffe rs  fro m  th a t of (VI. 2) by an in fin ite  am ount. F u r th e r 

m o re , suppose that values of the  complex v a ria b le  s  which produce an 

in fin ite  d ifference a r e  located  on the negative re a l  ax is .

W ith th is  co n stra in t in  m ind, consider th e  c irc u it of F ig u re  VI. 1 and 

le t  Z(s) and Y(s) re p re s e n t  th e  s e r ie s  im pedance and shunt adm ittance

p e r  s tage  resp ec tiv e ly . A lso le t q = Z(s) • Y(s) and q = Z(s) • Y (s).
6 6

(VI. 1)

(VI. 2)

of exp(- (sTJ/  ) by a  sing le  valued ra tional function g (s). F o r one o r
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F o r a single section  lin e  (n=l) the ra tio  G (l, 0; 1) of V^(s) to V q(s)

is

G (l, 0; 1) =
Vt (s)

= i  -

n= l

F o r  n=2 the ra tio  of V^(s) to Vq(s) is

1
Vx(s)

V0(S) n=2

= G (l, 0;2) = 1 -
1+

q + ■1
1 +

(VI. 3)

(VI. 4)

G ( 1, 0;n ) =
q + 2 - G (l, 0;1 )

For n s tag es  the ra tio  V^Cs) to V g (s ) can be shown to be

V jW

v o(s)

or

G (l, 0;n ) =

= G (l,0 ;n  ) =

P n l (q) n-1

q + 2 - G (1, 0 ;n - l  )

B (q) n ^

p J- q)

p (q) EbJ___
(q+2) Pn.j(q ) - Bn_1(q) (q+2) P ^ jfo )-  P ^ W

P n - l M

P n(Q)

(VI. 5)

w here  P n(q ) is a  polynom ial in q.

The ra tio  of Vm (s) to Vq(s ) [ i. e. G(m, 0; n)] is also of in te re s t  

In o rd e r to obtain th is  ra tio  consider two identically  s tru c tu red  t r a n s 

m ission  lines, one having n sections and the  o ther having n-j sec tio n s .
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A lso co n sid er a  point on each of th ese  lines such that the  num ber of 

sec tions to the  r ig h t of section  k -j of the n-j section line  is equal to the 

num ber of sec tio n s to the r ig h t of sec tion  k of the n sec tion  line . Thus

Vk (s) v , .(s)k -i

Vk - l (s) 1 f—t
. 1

n

(VI. 6)

n-J
or

G(k, k -1  ; n ) = G ( k - j ,  k - j-1 ; n-j ) 

w here  0^ j <  k £  n

(VI. 7)

T he ra tio

G( m , 0; n ) =

V (s) m
V 0(s)

V (s)m

can be determ ined . It is

n s tag es

V i )

V V V~ V. V

hr> hr> (-J?)0 1 2  3 Vm -1 n -stages
or

G(m, 0; n ) = G (l, 0; n ) G(2, l;n ) G (3 ,2 ;n )  G(m, m -l;n )
(VI. 8)

Substituting ( VI. 7) fo r each te rm  of .(VI. 8) gives

G (m ,0;n j = G (l,0jn-)» G(lA0-J.'n-ir*G '(l,0 ;n-2)...........
m -1

G (m ,0 ;n )=  II G ( l ,0 ;n -k )  

k=0

Substituting (VI. 5) into (V I. 9 ) p roduces

G (l, 0 ;n -m + l)

(VI. 9)

G(m, 0; n) = P (q) /  P  (q) 
n -m  n

(VI. 10)

w here the  polynom ial P n(q) is  re la te d  to  P  ^(q) and p n_2 ^
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by the rec u rs io n  re la tio n sh ip  of (VI. 5)

P ( q )  =(2+q ) P J q )  - P  9 (q) (VI. 11)n n - l  n-z
Polynom ial P^(q) to P^(q) a re  lis ted  in T able VI. 1 . Evaluation

of the roo ts of th e se  polynom ials shows that they a re  re a l and negative

when q = h q w here  h is any positive  r e a l  num ber, 
e

Consider now the problem  of approxim ating the d istribu ted  lag 

1/2elem ent exp( -  (sT) ) on the p rin c ip a l sh ee t by a  ra tional function.

F o r d istribu ted  lag Z(s) = R and Y (s) = sC in F ig u re  VI. 1. If th e re

a re  m stages betw een input and output mR and mC a re  resp ec tiv e ly

the in terposed re s is ta n c e  and capacitance. F o r a fixed line length d
2

as m in c reases  R and C decrease  such  that the product m RC=T

rem ain s  constant. Thus

q = Z(s) Y(s) = s R C = g t /  m (VI. 12)
and 9

P ( s T /  rn )
G ( m , 0 ; n ) =  ---- ------------- s--------------------- (VI. 13)

P (sT /m  ) 
n

As m in c re a se s  tow ard  infinity, n in c re a se s  proportional to
2

m and the po les and z e ro s  of (VI. 13) c lu s te r  on the negative r e a l  axis

2 1/2  of the s -  p lane. The function G( m, 0;  m ) thus approaches ex p (-(sT ) )

on the p rincipal sh ee t of the  s-p lane  except fo r points lying on the

branch  cut. V arious ra tio n a l frac tio n a l approx im ations for d is tribu ted

lag  a re  su m m arized  in T able VI. 2. T hese  approxim ations a r e  the

ones to be used in the p red ic to r problem  in C hapter 6.
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G ( l , l )  

G (l, 2)

G(2,2) 

Gf l , 3)  

G (2 ,3) 

G (3 ,3) 

G (l, 4) 

G (2,4) 

G(3, 4) 

G(4, 4)

TABLE VI. 2 POLYNOMIAL APPROXIMATION FOR exp(-(sT )1//2 1

_ 1 
1 + sTh

1 + sTh

1 + sT(2h+l) + s 2hT 2

 1 ■

1 + sT (2h+ l)/4  + s 2hT2/ i 6

= 1 + sT(2h +1) + s 2hT 2____________

1 + sT(3h+3) + s 2T 2(4h+l) + s 3hT3

=  1 + shT /4 ________________________

1 + sT(3h+3)/4 + s 2T 2 (4h+l)/16 + s 3hT3 /6 4

 1 ________________________

1 + sT(3h+3)/9 + s 2T2(4h+l)/81 + s 3hT3/729

= 1 + sT(3h+3) + s 2 T|S (4h+l) + s 3hT3__________ ___

1 + sT(4h+6) + s 2T 2(10h+5) + s 3T 3(6h+l) + s 4h T 4?

= 1+ sT (2h+ l)/4  + s 2hT2/16  _______________________

1 + sT(4h+6)/4 + s 2T 2(10h+5)/l6 + s 3T3(6h+l)/64  + s 4hT4/256

= _________1 + sT h /9 __________________________________________

l+sT(4h+6)/9 +s2T 2(10h+5)/81 +s3T3(6h+l)/729 +s4A / 6 5 6 1

=  1___________________________________________
1 + sT(4h+6) + s 2T '2 (10h+5) + s 3T3(6h+l) + s 4T4 h 

16 256 4096 65,536
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C osider the g en era l function W(s) of (VI. 1) . If (VI. 1) is  a

l / 2ra tio n a l function, exp(-W (s) / ) can be ra tio n a lly  approxim ated

by a function derived  by substitu ting  W (s) fo r  sT  in equation (VI. 13 X 

Thus
P n_ iiW(s ) /  m2>

Gw (m,0;n)  = (VI. 14)
W P (W (s)/ in )n

The region over which th is  approxim ation is valid  is  determ ined  by

the ze ro s of the  approxim ation . To il lu s tra te  the  u se  of (VI. 14),

1/2consider the ra tio n a l approxim ation fo r exp(-[ (s+a)(s+b) ] )

over the half p lane s = — fejfo) on the  p rin c ip a l sheet of the 

s-p lan e . Since W = (s+a)(s+b) , equation (VI. 14) becom es

p n r j  (s+a)(s+b)/m 2 ]
Gw (m ,0 ;n) = —^ ------------------ s---------  (VI. 15)

p n [ (s+a) (s+b)/m  ]

The zeros of the  polynom ials in equation (VI. 15) a re  on the negative 

r e a l  axis betw een s= - a  and s = -b  and on the  line p a ra lle l to 

the  im aginary ax is  which p a sse s  through the  point s = -(a+b)/2 .
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