Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

67-14,247

KEMME, Herbert Rudolph Conrad, 1941-RELATIONSHIPS BETWEEN SOME PROPERTIES OF PURE HOMOLOGOUS ORGANIC LIQUIDS.

Newark College of Engineering, D. Eng. Sc., 1967 Engineering, chemical

1

University Microfilms, Inc., Ann Arbor, Michigan

RELATIONSHIPS BETWEEN SOME PROPERTIES OF

PURE HOMOLOGOUS ORGANIC LIQUIDS

BY Ph HERBERT R. KEMME

A DISSERTATION

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

OF

DOCTOR OF SCIENCE IN CHEMICAL ENGINEERING

AT

NEWARK COLLEGE OF ENGINEERING

This dissertation is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

> Newark, New Jersey 1967

ABSTRACT

The vapor pressures of eleven primary straight chain alkyl chlorides and eleven primary straight chain alcohols between C_3 and C_{16} were determined within a range of 5 to 760 mm Hg. These data were obtained by determining the boiling points of the pure materials at various pressures by using differential thermal analysis. The boiling points were determined with a precision of \pm .1 degree Centigrade at a 95 per cent C.I. The Antoine equation was used to analytically describe the data. The constants for this equation were determined by a multiple linear regression technique for each individual compound. The heats of vaporization were generated for each compound from the experimental vapor pressure data by the Haggenmacher and Fishtine method.

A correlation was developed, based on a hole model for a liquid, which relates vapor pressures between 5 and 760 mm Hg with corresponding liquid densities and the number of carbon atoms in a molecular chain for an homologous series. The correlation constants were determined from a multiple linear regression analysis by the use of available literature density data. Any missing density

ii

data were then predicted from the knowledge of experimental vapor pressure data. The maximum error in correlating the available density data was 2.7 per cent.

A relationship was also developed which relates vapor pressures between 5 and 760 mm Hg, internal heats of vaporization and the number of carbon atoms in a molecular chain for an homologous series. The maximum error in correlating the internal heat of vaporization data was 8.2 per cent. This relationship was also used to determine energies of vaporization which can be ascribed to different functional groups independently of the remaining molecule.

Both of the above correlations were applied to the straight chain homologous series consisting of the n-alkanes, n-alkenes, n-alkyl chlorides, and the n-alkanols.

iii

APPROVAL OF DISSERTATION RELATIONSHIPS BETWEEN SOME PROPERTIES OF PURE HOMOLOGOUS ORGANIC LIQUIDS

BY

HERBERT R. KEMME

FOR

DEPARTMENT OF CHEMICAL ENGINEERING

NEWARK COLLEGE OF ENGINEERING

ΒY

FACULTY COMMITTEE

APPROVED:

_____ Chairman

NEWARK, NEW JERSEY

JUNE 1967

iv

ACKNOWLEDGEMENTS

I want to express my heartfelt gratitude to Dr. Saul I. Kreps for his continued guidance and encouragement. I especially want to thank Dr. Kreps for his deep interest and concern during the course of this investigation. Without him this work would never have been completed.

A three year grant from the United States Government through the National Defense and Education Act and additional support from the Newark College of Engineering Research Foundation is also gratefully acknowledged.

I also want to thank my wife Doris for her understanding and patience as this work was in progress and for typing the manuscripts.

H.R.K.

v

TABLE OF CONTENTS

- 1 1	Page
Introduction	1
Literature Survey	
Available Vapor Pressure Data	4
Vapor Pressure Equations	6
Density Correlations	9
Heat of Vaporization Correlations	12
An Introduction to Some Aspects of Liquid State Theory	17
The Correlation of Vapor Pressure Data	17
Liquid Models	21
A Hole Theory of Liquids	21
Free Energy of the System	22
The Configurational Entropy of Flory	23
The Kurata-Isida Vapor Pressure Equation	33
The Kurata-Isida Heat of Vaporization Equation	36
Experimental Work	38
Introduction	38
Instrumentation	40
Instrument Modifications	45
Boiling Conditions	56
Vacuum System	66

.

Preparation and Purification of Materials	73
Preparative Vapor Phase Chromatography	76
Spinning Band Distillation	79
Todd Column	81
Experimental Procedures	83
Experimental Results	92
Theoretical Derivations	102
Liquid Density as a Function of Vapor Pressure	102
A Modified Kurata-Isida Heat of Vapor- ization Equation	108
Analysis and Application of Correlations	114
Computational Methods of Data Correlation	114
Variation of Effective Chain Length Parameter	119
Data Sources	120
Results	122
Discussion of Results	134
Experimental	134
Density Correlation	146
Heat of Vaporization Correlation	151
A Corresponding State	157
Conclusions	159
Recommendations	162
Nomenclature	
Appendix A General Computations	166

.

Appendix	B	Thermocouple Calibration	171
Appendix	С	Original Experimental Data	175
Appendix	D	Computer Programs	184
Appendix	E	Literature Data	212
Appendix	F	Predicted Density Data	223
Reference	es		236
Vita			241

LIST OF FIGURES

			Page
Figure	1	DTA Schematic	44
Figure	2	Thermocouple Extension and Potentiometer Circuit	47
Figure	3	Thermocouple Modification	49
Figure	4	Cell Assembly	52
Figure	5	Heater Control Modifications	54
Figure	6	Boiling Endotherms	61
Figure	7	Purity Check Thermograms	65
Figure	8	Vacuum System Schematic	67
Figure	9	Chromatographic Collection Device	80
Figure	10	Thermocouple Calibration	86
Figure	11	Density - n-Alkanes	104
Figure	12	n-Alkanes, Density Intercept	106
Figure	13	n-Alkanes, Slope B	107
Figure	14	Heat of Vaporization - n-Alkanes	109
Figure	15	Heat of Vaporization, Slope B	110
Figure	16	Heat of Vaporization n-Alkyl Chlorides	111
Figure	17	Heats of Vaporization n-Alkanols	112
Figure	18	Linear Regression of Density Correlation - n-Alkanes C ₂ - C ₁₈	124
Figure	19	Linear Regression of Density Correlation – n-Alkanols	130

LIST OF TABLES

.

			Page
Table	1	New Components	55
Table	2	Heating Rate Effect	58
Table	3	Pressure of System as a Function of Time	69
Table	4	Source of Normal Alcohols	74
Table	5	Source of Alkyl Chlorides	7 5
Table	6	n-Alkyl Chlorides - Purification by Gas Chromatography	78
Table	7	Materials Purified on the Todd Column and Analyzed by Gas Chromatography	82
Table	8	Calibration Standards	84
Table	9	Experimental Data Range - The n-Alkyl Chlorides	93
Table	10	Experimental Data Range - The n-Alcohols	94
Table	11	Goodness of Fit to the Antoine Equation	95
Table	12	Antoine Constants - Pressure Range 5 - 760 mm Hg	96
Table	13	Vapor Pressures of the Normal Straight Chain Alcohols	97
Table	14	Vapor Pressures of the Normal Straight Chain Alkyl Chlorides	99
Table	15	Density Correlation - n-Alkanes	123
Table	16	Density Correlation - n-Alkenes	126
Table	17	Density Correlation - n-Alkyl Chlorides	128

х

Table	18	Density Correlation - n-Alcohols	129
Table	19	Predicting Densities at Low Vapor Pressure with Constants Obtained at High Vapor Pressure	132
Table	20	Results of Heat of Vaporization Correlation	133
Table	21	Alcohol and Alkyl Chlorides - Com- parison of Experimental and Literature Vapor Pressures	136
Table	22	Alkyl Chlorides - Comparison of Ex- perimental and Literature Vapor Pressures	141
Table	23	Alcohols - Comparison of Experi- mental and API Vapor Pressures	142
Table	24	Antoine Equation - Error Analysis of Fit	144
Table	25	Perturbation of y	148
Table	26	Estimated Error When Using a Mean y	149
Table	27	Significance of Terms	152
Table	28	Comparison Between Observed and Correlated Heats of Vaporization	156
Table	29	Boiling Points of Water	168
Table	30	Thermocouple Calibration	172
Table	31	Calibration Data	173
Table	32	Vapor Pressure Data for the Primary Alkyl Chlorides	176
Table	33	Vapor Pressure Data for the Primary Alkanols	180
Table	34	The Antoine Constants for the n-Alkanes (<u>57</u>)	213
Table	35	The Antoine Constants for the n-Alkenes (<u>57</u>)	214

•,

xi

Table 36	The Antoine Constants for the n-Alcohols (<u>57</u>)	215
Table 37	The Antoine Constants for the n-Alkyl Chlorides (<u>42</u>)	215
Table 38	Literature Density Data for the n-Alkanes (<u>57</u>)	216
Table 39	Literature Density Data for the n-Alkenes (<u>57</u>)	219
Table 40	Literature Density Data for the n-Alcohols	221
Table 41	Literature Density Data for the n-Alkyl Chlorides	222
Table 42	Density Predictions for the n-Alkanes	224
Table 43	Density Predictions for the n-Alkenes	227
Table 44	Density Predictions for the n-Alcohols	230
Table 45	Density Predictions for the n-Alkyl Chlorides	233

xii

INTRODUCTION

In order to describe the state of pure liquids, certain physical and thermodynamic properties must be defined. Such properties as density, vapor pressure, temperature, viscosity, heat of vaporization and the critical properties are among the more common of these. Each of these properties is dependent upon the same molecular parameters. Very simply, these parameters concern themselves with the molecular structure, the molecular energy, and the inter- and intramolecular potentials. Realizing this dependency, one might hope to find relationships between some of the defined properties. This would be of great utility in predicting unmeasured properties from a knowledge of others. These expressions might also find applicability in computer work since they could be easily stored and recalled whenever liquid properties are desired. The result would be a great saving in computer storage space over that required to store the individual bits of data.

In reviewing the properties of a liquid, it can be seen that vapor pressure is one of the more variable properties. For example, while the density of a pure organic liquid varies by about 25 per cent, the vapor pressure will vary over one hundred fold. Over this same range the absolute temperature and the heat of vaporization will vary by about 30 per cent and 50 per cent respectively. Thus it would be desirable to relate other properties to vapor pressure since reasonably accurate vapor pressure data could be used to predict these unknown properties with good precision and accuracy.

The purpose of this work is two-fold in nature, the first being to investigate some of the "inter-property" relationships. This objective, if it is not to be entirely trivial as merely an empirical correlation, should be based at least in part on an acceptable theory of liquid structure.

The second purpose is to improve and expand upon the existing vapor pressure data. This is here accomplished by a method known as differential thermal analysis. As this work was started, only imprecise vapor pressure data for toluene had been determined using this technique. Thus a good deal of development work was necessary so that vapor pressure data could be determined simply, rapidly, and accurately.

This study concentrates on the relationships which exist within several normal straight chain homologous

series. In this way the effect of structure can be more easily ascertained since such compounds present an orderly and consistent variation. The basic series considered is the normal alkanes. Subsequent to this series, consideration is given to the normal olefins, the normal alkyl chlorides, and the normal primary alcohols. The different functional end groups present a chance to study the effect of substituents characterized by varying amounts of polarity. This work is primarily concerned with the relationships between vapor pressure, temperature, liquid density, heat of vaporization and molecular structure.

LITERATURE SURVEY

Available Vapor Pressure Data

Vapor pressure-temperature data for four normal homologous series were obtained. These include the alkanes, the primary olefins, the primary alkyl chlorides and the primary alcohols containing straight chains of one to twenty carbon atoms. Winslow (<u>71</u>) has performed a survey of the available experimental data on many homologous series. His findings are among those reported below.

<u>Alkanes and primary olefins</u>. Winslow's search has shown that there has been a great deal of data collected for the alkanes and the primary olefins. The American Petroleum Institute (57) has compiled all of the worthwhile data and presented it analytically in terms of the Antoine equation between 10 and 1500 mm Hg. Great care was exercised by the API in analyzing the data so that accurate results would be obtained. It was felt that this information was of sufficient quality so that it could be applied with confidence in this work.

<u>Primary alkyl chlorides</u>. Li and Rossini (<u>42</u>) have surveyed the available data and have shown that only 170 pairs of vapor pressure-temperature points exist for this series. One hundred twenty-four of these points consist of data for the first four members of the series. Within these data one finds much variation. For example, the boiling point of 1-butyl chloride at 760 mm Hg is reported by Dreisbach and Martin (<u>14</u>) as 78.44 degrees Centigrade while Lenth (<u>40</u>) measures 77.5 degrees Centigrade. This discrepancy is equivalent to a variation in vapor pressure of about 25 mm Hg at this pressure. On this basis it was decided to use the estimates of Li and Rossini (<u>42</u>) only when first-hand experimental data were lacking.

Q

Normal primary alcohols. A fair amount of data exists for the first eight members of the series, expecially for the even numbered compounds. Above this point the data are very sparse and of unknown accuracy. The American Petroleum Institute (57) has published vapor pressure data on these alcohols, but no source is indicated. The boiling points at different pressures are given only to the closest degree above octanol. This might indicate that the data presented are only estimates based on the information available in the literature. Because of the uncertainty involved, the API data were used only when experimental data were not available.

In summary, it was found necessary to obtain vapor pressure data for the normal primary alkanols and alkyl

chloride homologous series by precise experimentation.

6

Vapor Pressure Equations

In order to apply the experimental vapor pressure data in an analytical fashion, it is advantageous to fit the results to an equation. It is desirable that such an equation be relatively easy to handle and yet describe the data as accurately as the experimental results warrant. Many vapor pressure equations have been proposed, some possessing a semitheoretical background, others purely empirical in nature. Many vapor pressure equations require the use of reduced parameters. These equations were not considered because many of the critical properties are not known, especially for the higher members of homologous series. Computational methods are available to estimate the critical properties, but even these are of doubtful accuracy (22).

Thompson (<u>62</u>) presents a review of the important equations which have been used. A set of vapor pressure equations was developed from the Clapeyron equation, each one based upon different simplifying assumptions. The Clapeyron equation may be written in the following form:

$$\frac{d(\ln P)}{d(1/T)} = -\left[\frac{1}{R}\right] \left[\frac{\triangle H_{v}}{\triangle Z}\right]$$
(1)

where: $\triangle Z = Z_g - Z_1$

$$Z_{g} = Pv'_{g}/RT$$

$$Z_{1} = Pv'_{1}/RT$$

$$P = Vapor pressure$$

$$T = Absolute temperature$$

$$\Delta H_{v} = Heat of vaporization$$

$$v'_{g} = Molecular volume of the gaseous phase$$

$$v'_{1} = Molecular volume of the liquid phase.$$

The simplest vapor pressure equation could be obtained by assuming v'_1 negligible compared to v'_g , $\triangle H$ a constant, and that the ideal gas law is obeyed. The resulting equation would be

$$\ln P = A - \frac{B}{T}$$
 (2)

where A and B are constants.

This equation is known as a "1/T" form. Nernst (<u>62</u>) presented one of the first of the more important equations in this class. In order to integrate the Clapeyron equation he assumed $\triangle H$ and $\triangle Z$ to be functions of temperature and pressure respectively. The resulting equation is

$$\log_{10} P = \frac{\Delta H_0}{2.3RT} + \frac{\beta}{2} \log_{10} T - \frac{\ell T}{2.3R} + C$$
(3)

where ΔH_0 , β , \hat{c} , and C are empirical constants. This equation has been used widely because the addition of two extra terms to the 1/T form improves the precision to a great extent. One of the latest representative equations in this group is the equation presented by Frost and Kalkwarf (<u>24</u>). This equation makes use of van der Waals' equation in expressing the change in volume from the liquid to the gaseous state and assumes ΔH to be linear in temperature. The resulting equation might be shown in the following form:

$$\log_{10} P = A + \frac{B}{T} + C \log_{10} T + D \frac{P}{T^2}$$
 (4)

where A, B, C, and D are empirical constants. It can be readily seen that a disadvantage exists in solving for P since a recursive method must be used.

The empirical school suggested many equations, some of which describe vapor pressure data very accurately over extended ranges. They offer very little, if any, theoretical basis and in many cases are quite complex. Because they are so numerous and offer no insight into the problem of expressing vapor pressure data in an analytical fashion, they will not be discussed in this work.

In considering the entire mass of available equations,

it becomes apparent that the more complex equations describe the data with greater accuracy but the required constants are difficult and tedious to determine. An example is the complex water equation of Osborne and Meyers (49) shown as

$$\log P = A - \frac{B}{T} + \frac{Cx}{T} \left[10^{Dx^2} - 1 \right] - E \left[10^{Fy^{5/4}} \right]$$
(5)

where: A, B, C, D, E, K, and F are constants $x = T^2 - K$ y = 374.11 - t $t = temperature, {}^{O}C$ $T = absolute temperature, {}^{O}K$

After considering the range of available equations it was decided to use the Antoine equation expressed as

$$\log_{10} P = A - \frac{B}{C+t}$$
 (6)

This equation provides the desired degree of accuracy, offers a direct and simple solution for either T or P and is well known in vapor pressure studies. It is the equation of choice in the API tables of physical properties.

Density Correlations

There are a wide variety of density correlations which are functions of the critical constants of substances.

These relations are not mentioned here because critical parameters were not utilized or considered in this work.

Schroeder (52) and Le Bas (54) present additive methods of estimating densities of hydrocarbons at the normal boiling point. They are additive methods in the sense that each atom or functional group in a molecule is represented by a volume increment. The summation of these increments results in the molal volume. Only the molecular structure is considered in utilizing these methods. Egloff and Kuder (<u>16</u>) relate molal volumes at the normal boiling point as a function of the number of carbon atoms and three constants. This purely empirical equation was used by them to correlate the data for fourteen different series of aliphatic hydrocarbons.

Kurtz and Sankin (<u>38</u>), using similar structural considerations, empirically related the density of liquid hydrocarbons of a molecular weight greater than 170. By the use of graphically presented multiplication factors the structural values are corrected for pressure and temperature. Thus density can be estimated between -100 and 200 degrees Centigrade and 1 to 10,000 psia.

Several purely empirical relations are presented which relate the density of liquid hydrocarbons at a single temperature to the number of carbon atoms and some structural

factors. Francis (<u>20</u>) correlates the density of several homologous series at 20 degrees Centigrade with the number of carbon atoms and two constants, one of which is fairly universal, and the other depends on the structural configuration of the series. A similar relationship is presented by Calingaert et al (<u>6</u>) in which the density of the normal and branched chain alkanes are empirically correlated as a function of the number of carbon atoms and four constants. A related approach is taken by Greenshields and Rossini (<u>27</u>) and Li et al (<u>43</u>) to obtain densities at 25 degrees Centigrade. Calingaert and Hladky (<u>7</u>) graphically correlate the densities of the alkanes at 20 degrees Centigrade. They claim that the graph can be used to predict unknown densities.

A four constant equation was proposed by Francis (<u>21</u>) to correlate the densities of saturated liquid hydrocarbons up to temperatures approaching the critical. The constants have to be evaluated for each individual compound.

Miller (47) found that the density was a linear function of the internal heat of vaporization for non-polar simple hydrocarbon liquids.

Pratap and Narsimhan (<u>53</u>) derived a relationship based on Eyring's theory of the liquid state. The equation relates viscosity, heat of vaporization, density, velocity of sound

in the liquid and temperature in the range of 0 to 50 degrees Centigrade.

Meissner and Paddison $(\underline{46})$ inter-relate density, normal boiling point, molar refraction based on the sodium D line, surface tension and vapor pressure. Their equation contains a constant which varies only with the class of compound.

Heat of Vaporization Correlations

Again it should be mentioned that correlations requiring critical parameters are not reviewed because they were not applied in this work.

The most common correlation is based upon the well known Clapeyron equation. Its major disadvantages are that it requires an accurate knowledge of the slope of the vapor pressure curve, and a knowledge of the difference in the saturated molal volumes of the liquid and vapor. The slope of the vapor pressure curve can be obtained by differentiating an analytical expression for vapor pressure in terms of temperature. Haggenmacher (29) suggested the use of the Antoine equation as the vapor pressure function. The volume difference can be expressed in terms of the ideal gas equation and a delta compressibility factor, ΔZ , which is equal to the difference between the compressibility factors for the liquid and vapor. Fishtine (18) relates this ΔZ to the

ratio $\frac{T}{T_b}$

where: $T = temperature, {}^{O}K$

 $T_b = normal boiling point, {}^{O}K.$

Dreisbach (<u>13</u>), starting with Haggenmacher's equations for $\triangle Z$ in terms of critical parameters, shows $\triangle Z$ to be a function of temperature and molecular weight.

Othmer (50) and Gorden (26) both apply a reference substance equation for the correlation of latent heats. This method is based upon the assumption that the ratio of the latent heats of any one known substance to another is a constant. Thus the ratio of the differential form of the Clausius-Clapeyron equation for one substance to that of another substance can be integrated. The result is a linear equation of the form

$$\log P = \left[\frac{L_v}{L_{vR}}\right]_T \log P + k$$
 (7)

where: P = vapor pressure L_v = latent heat of unknown substance L_{vR} = latent heat of reference substance k = constant.

By knowing the latent heat of the reference substance as a function of temperature and knowing two values of the vapor

pressure of the unknown substance, the latent heat may be determined.

Several methods have been proposed for the determination of the latent heat at the normal boiling point. Kistiakowsky (34) proposed a very simple relationship between the latent heat of vaporization and the normal boiling point for unassociated liquids. The equation requires only the knowledge of the boiling point itself. Chipman (9) proposed correction factors for the Kistiakowski equation to make it applicable to several series of polar liquids. Fishtine (18) improved upon Chipman's work by increasing the number of available Kistiakowsky factors for different classes of compounds. Chu et al (11) and Bowden and Jones (54) proposed equations based upon structure, including such terms as parachor, polarity number, and path These methods were reported to be good within 2 length. per cent for the paraffin hydrocarbons.

McCurdy and Laidler (45) correlate the heats of vaporization of several alcohols by assigning to various types of bonds different latent heat values. Thus by summing these values for any individual molecule the total latent heat value will be obtained. Errors of only a few tenths of a per cent are claimed for fourteen alcohols.

Some work has been done in deriving semi-empirical

equations based upon the free volume concept of Eyring, including his hole theory of liquids. Pratap and Narsimhan (53) show the latent heat to be a function of the velocity of sound in liquids, the viscosity of the liquid and the molal volume. The equation has only been applied between 0 and 50 degrees Centigrade. Marcus (44) relates the internal energy of vaporization with density, temperature and The equation is difficult to use since the vapor pressure. energy of vaporization must be obtained by iteration techniques. Errors of 20 to 30 per cent are not uncommon using this equation. Kurata and Isida (37) developed a model for the liquid structure of the normal paraffins based upon the hole theory of liquids. In their derivation it was assumed that the cell size was somewhat larger than a methane molecule and that a paraffin molecule occupied a multiple number of cells. Based upon this model, equation (8) was derived, relating internal heat of vaporization at constant pressure to the number of carbon atoms in a chain.

$$E_v = N^{2/3}(z \in /2)$$
 (8)

Nakanishi, Kurata and Tamura $(\underline{48})$ improved upon this work by developing a relationship, equation (9), which relates the heat of vaporization with the number of carbon atoms and the vapor pressure.

$$H_{v} = \frac{2128 \text{ N}^{2/3}}{1+0.00512 \text{ N}^{2/3}+(.0930)(\log P)}$$
(9)

where: P = vapor pressure H_u = heat of vaporization.

Kreglewski and Zwolinski (<u>36</u>) based their empirical equation (10) upon Kurata and Isida's determination that the effective chain length varied as the two-thirds power of the number of carbon atoms.

$$\log (H_{V_{\infty}} - H_{V}) = a - bN^{2/3}$$
 (10)

where: H_{..} = heat of vaporization

 $H_{V\infty}$ = heat of vaporization when $N^{2/3} = \infty$ and N = number of carbon atoms.

1.63

AN INTRODUCTION TO SOME ASPECTS OF LIQUID STATE THEORY

The Correlation of Vapor Pressure Data

<u>The Antoine equation</u>. As mentioned in the literature survey, the Antoine equation was chosen because of its simplicity, accuracy, and wide acceptance as an equation for the correlation of vapor pressure as a function of temperature.

The equation, when originally proposed by Antoine $(\underline{1})$, had no theoretical basis, thereby being completely empirical in nature. It would be desirable to be able to obtain this equation from theoretical considerations. One might then be able to judge the reliability of experimental data on the basis of how well it fits the Antoine equation.

It was shown by Gutmann and Simmons (28) that the equation is derivable from the van der Waals equation of state which can be written

$$(P + a/V^2)(V - b) = RT.$$
 (11)

RT may be considered to represent the thermal energy of a liquid. This term was expressed by Tetrode (<u>61</u>) in terms of χ , the frequency of a possible mode of molecular

vibration, \mathcal{X}_m , the highest value thereof, and Planck's constant h'. Thus, according to Tetrode,

$$\left[P + \frac{a}{v^2}\right](v - b) = \frac{3N_o}{\sqrt[3]{m^3}} \int_0^{\sqrt[3]{m}} \frac{h'\sqrt[3]{kT_{-1}}}{e^{h'\sqrt[3]{kT_{-1}}}} \sqrt[3]{d} \sqrt[3]{d}$$

Tetrode obtained this equation by assuming that the system could be considered as a set of molecules which could vibrate about stationary points. The vibrations per molecule were quantized as was proposed by Einstein, but a continuous range of frequencies for the total system was assumed as was done by Debye (12). The equation may be applied to a liquid if it is assumed to be quasi-crystalline in nature, a model that has been proposed by Steward (59), Frenkel (23) and others. This view is also consistent with the hole theory.

The integral of equation (12) cannot be solved in a closed form, but Debye (<u>12</u>) presents a series solution. Equating the energy of the highest possible frequency, $h'\delta'_m$ to $k\theta_o$, where θ_o is the Debye temperature, and solving the integration in equation (12) one obtains,

$$(P + a/V^2)(V - b) = RT - \frac{3}{8}R\Theta_0 + \frac{RT\Theta_0^2}{20T^2} - \frac{RT\Theta_0^4}{1680T^4} + \dots (13)$$

Wall (67) has shown that,

$$\ln f = \frac{b}{V-b} - \frac{2a}{V\emptyset(T)} + \ln \frac{\emptyset(T)}{V-b}$$
(14)

where $\emptyset(T)$ in this case is the right side of equation (13) and f is the fugacity.

If V could now be expressed in terms of temperature, and assuming that the fugacity is equal to the vapor pressure, one would have an expression for the vapor pressure in terms of temperature. Wall has shown that the volume of liquid may be approximated by solving for the linear V term in the van der Waals equation, assuming the quadratic and cubic terms negligible. Thus,

$$V = b + \left[\frac{bP + RT - PV}{a}\right] V^2 \approx b .$$
 (15)

If the value of V obtained is substituted back into the right-hand portion of the van der Waals equation (15) and again solved for V, a first approximation is obtained. This operation may be repeated for successively better approximations. The result of this method if applied to equation (13) is

$$V = b + \left[b^2 \phi(T)/a \right] + \left\{ \left[2b^3 \phi^2(T)/a^2 \right] - \left[b^4 \phi(T)P/a^2 \right] \right\} + \dots (16)$$

If only pressures below one atmosphere are considered, the effect of pressure upon the volume of a liquid can be neglected and only the first two terms in equation (16) are required. Also the fugacity may be assumed equal to the vapor pressure and substituting (16) into (14) the result is of the form,

$$\ln P = A - B/\mathcal{O}(T)$$
 (17)

By retaining the first two terms for $\emptyset(T)$ and substituting into (17) an equation is obtained which is identical in form to the Antoine equation

$$\ln P = A - \frac{B}{C+t}$$
(18)

where the constant C is identified with 273.16 - $\frac{3}{8} \theta_0$.

Thus one should be able to calculate C from the knowledge of θ_0 which is directly related to \bigvee_m . Gutmann and Simmons (28) have used the values of \bigvee_m calculated by Waring and Becker (68) to obtain C for a number of organic liquids. The values so calculated lie between 234 and 254.5. These values are of the proper magnitude, thereby giving increased credence to the previous development.

Liquid Models

In order to inter-relate the physical properties of a liquid by relations derivable from theoretical considerations, it is convenient to assume a model for the liquid state. Several lattice models are available (<u>31</u>) such as the cell, hole, and tunnel models. Because of the relative simplicity, the hole model of the liquid state seemed to be more amenable in describing a system of large regular molecules than any of the other models.

Kurata and Isida (<u>37</u>) applied this model to normal paraffin liquids in order to derive relationships which relate the number of carbon atoms in a molecular chain with the normal boiling point, the critical properties and the heat of vaporization at atmospheric pressure. It is their development which is used as a basis for an equation which relates liquid density with the vapor pressure and the number of carbon atoms in a chain. It also leads to another equation which relates the heat of vaporization with the vapor pressure and the number of carbon atoms.

A Hole Theory of Liquids

The present hole theory of liquids requires that a liquid system be divided into an array of cells, whose size is constant and is invariant with temperature and pressure. It is further assumed that the size of the cell is such that simultaneous entry of two molecules into one

. 21
cell can be entirely neglected because of the repulsive forces between molecules. The liquid state, therefore, consists of a system of cells, some of which are full, i.e. they contain a molecule, and others which are empty. As the temperature of such a liquid is raised, the number of empty cells increases, inducing an increase in volume and a corresponding decrease in density.

In considering a long chain molecule such as a normal paraffin, a cell volume, γ , may be chosen which is independent of the chain length and which occupies a volume somewhat larger than a methane molecule. A paraffin molecule containing n carbon atoms would thus occupy a certain number of consecutive cells, denoted by x.

Free Energy of the System

The liquid system proposed may be regarded as a type of "solution" containing hole "solvent" and the randomly distributed molecular "solute". The Helmholtz free energy of the system, F, can therefore be described in terms of the intramolecular free energy, F_I , the ideal free energy of mixing, $F_{\rm MIX}^{\rm IDEAL}$, and the excess free energy of mixing, $F_{\rm MIX}^{\rm E}$, so that,

$$F = F_{I} + F_{MIX}^{IDEAL} + F_{MIX}^{E} .$$
 (19)

The intramolecular free energy may be expressed as a function of the number of molecules in the system, N, and the free energy, f, related to the intramolecular degrees of freedom. Thus one may write,

$$F_{T} = Nf \qquad (20)$$

The ideal free energy of mixing might be described if the Flory approximation is adopted in calculating the configurational entropy of mixing. Flory (<u>19</u>) developed an expression for the configurational entropy of mixing for a solution of rod-like polymers and single-site solvent molecules. Kurata and Isida proposed that this expression was mathematically identical with a "solution" of long chain paraffin molecules and holes as described above. In order to more fully appreciate the development of this theory, Flory's derivation will be presented, keeping in mind that the polymer molecule is replaced by a paraffin molecule, and that the single-site solvent molecules are now holes.

The Configurational Entropy of Flory

Throughout the derivation it is understood that only molecules which consist of a single linear sequence of structural units are considered, and that a hole theory of liquids is assumed. The following assumptions are also made:

- 1. All molecules are assumed to be of the same size.
- 2. The average concentration of molecular segments in cells adjacent to empty cells, i.e. holes, is equal to the overall average concentration of molecular segments in the liquid.

Let n_0 equal the total number of cells in the lattice, and N_0 equal the total number of molecules, each composed of x segments, any one of which may move into a vacant site. Let z equal the coordination number, otherwise known as the number of nearest neighbor cells. In order to determine the total possible number of non-identical configurations, it is suggested that successive additions of molecules be made to the empty lattice containing n_0 cells.

After N_0 molecules have been added, there will be available $n_0 - xN_0$ cells which may be occupied by the terminal segment of the next molecule to enter the lattice. If the assumption of uniform distribution of holes is valid, then the number of unoccupied cells immediately adjacent to the terminal segment will be given by $z(n_0 - xN_0)/n_0$. Since this last segment eliminates one of the neighboring cells, the number of cells available for the next segment would be

 $\alpha = (z - 1)(n_0 - xN_0)/n_0$ (21)

This relationship is not completely rigorous since it

does not exclude impossible configurations in which two segments belonging to the same chain but separated by two or more segments, occupy the same cell. Equation (21) will lead to the computation of too many configurations, but will be used as an approximation.

The number of configurations that a chain containing x segments may have without shifting a terminal group may therefore be expressed as

$$\left[\frac{z(n_o-xN_o)}{n_o}\right]\left[\frac{(z-1)(n_o-xN_o)}{n_o}\right]^{x-2} \cdot (22)$$

If \propto is defined as

$$(z - 1)(n_0 - xN_0)/n_0$$
, (23)

then expression (22) becomes

$$\left[z/(z-1)\right] \propto^{x-1} \qquad (24)$$

Since the terminal group can enter any one of $(n_0 - xN_0)$ cells, the total number of configurations, γ^{\prime} , that the $N_0 + 1$ molecular chain may have in the entire lattice is written as

$$V_{N_{0}+1} = \frac{1}{2} (n_{0} - xN_{0}) \left[\frac{z}{z - 1} \right] \propto^{x-1} .$$
 (25)

The factor $\frac{1}{2}$ is introduced to avoid redundance of configurations resulting from the indistinguishability of the ends of a molecular chain.

Remembering the definition of \propto by expression (23) one may write equation (25) as,

$$V_{N_{0}+1} = \frac{1}{2} (n_{0} - xN_{0})^{x} \left[\frac{(z)(z-1)}{(z-1)} \right]^{x-1} \left[\frac{1}{n_{0}} \right]^{x-1}.$$
 (26)

If as an approximation z - 1 is considered equal to z, equation (26) becomes

$$V_{N_0+1} \approx \frac{1}{2} (n_0 - xN_0)^{x} (z - 1)^{x-1} (n_0)^{1-x} .$$
 (27)

Again, equation (27) may be rewritten as

$$\bigvee_{N_{o}+1}^{t} = \frac{1}{2} x^{x} \left[\frac{n_{o}}{x} - N_{o} \right]^{x} \left[\frac{z-1}{n_{o}} \right]^{x-1} .$$
 (28)

The total number of configurational combinations, W, for the system consisting of N_0 molecules can be expressed by

$$W = (1/N_{o}!) \prod_{N_{o}=1}^{N_{o}} \bigvee_{N_{o}}^{I},$$
 (29)

where the factor $1/N_0$! eliminates redundant configurations obtained only by an interchange of one or more pairs of molecules. The term

represents the products of the total possible number of configurations which each succeeding molecular chain may have as it enters the lattice.

The general equation (28) for the number of configurations which the N_0 +1 molecule may assume as it enters the lattice may now be substituted into equation (29) such that,

$$W = \left[\frac{z-1}{n_o}\right]^{(x-1)N_o} \left[\frac{x^{N_o}}{2^{N_o}N_o!}\right] \prod_{N_o=1}^{N_o} \left[\frac{n_o}{x} - N_o\right]^{X} .$$
(30)

It should be remembered that the term N_0 within the product bracket is equal to the number of molecules within the lattice just before an additional molecule is added. Thus N_0 will be equal to zero when the initial molecule is placed in the lattice. The product term within the bracket is therefore equal to the series shown in expression (31).

$$\left[\frac{n_{o}}{x} - 0\right]\left[\frac{n_{o}}{x} - 1\right]\left[\frac{n_{o}}{x} - 2\right] \dots \left[\frac{n_{o}}{x} - N_{o}^{+1}\right] \quad (31)$$

Series (31) may be written as the ratio of two series as shown below.

$$\begin{bmatrix}
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{n}_{o} \\
\underline{x}
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{n}_{o} \\
\underline{n}_{o} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{n}_{o} \\
\underline{n}_{o} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{n}_{o} \\
\underline{n}_{o} \\
\underline{n}_{o} \\
\underline{n}_{o} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{n}_{o} \\
\underline{n}_{o} \\
\end{bmatrix} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{n}_{o} \\
\underline{n}_{o} \\
\underline{n}_{o} \\
\underline{n}_{o} \\
\end{bmatrix} \\
\begin{bmatrix}
\underline{n}_{o} \\
\underline{n$$

By canceling terms on the right-hand side of equation (32) expression (31) is easily obtained. Equation (30) may then be written as

$$W = \left[\frac{z-1}{n_o}\right]^{(x-1)N_o} \left[\frac{x^{N_o}}{2^{N_oN_o!}}\right] \left[\frac{(n_o/x)!}{(n_o/x-N_o)!}\right]^x \quad (33)$$

Since N_o is a sufficiently large number, N_o! may be replaced by $(N_o/e)^N$ o using Stirling's approximation. The resultant equation is

$$W = \left[\frac{z-1}{e}\right]^{(x-1)N_{O}} {\binom{1}{2}}^{N_{O}} \frac{(h+xN_{O})}{h^{h}N_{O}}^{h+N_{O}}$$
(34)

where H, the number of holes, equals $n_0 - xN_0$.

The change in entropy when introducing holes into a perfectly arranged crystalline solid may be expressed by the Planck-Boltzmann equation given by Lewis and Randall (<u>41</u>) as,

$$S = k \ln W \quad . \tag{35}$$

Here W is known as the thermodynamic multiplicity. It may be expressed as

$$W = \frac{W_{\text{MIX}}}{W_{\text{H}}W_{\text{M}}}$$
(36)

where W_{MIX} is the number of configurations possible in the mixture and W_H and W_M are the number of configurations possible for the "pure" holes and the perfectly arranged crystalline solid respectively. W_H and W_M are both equal to one since only one configuration is possible. Therefore, $W = W_{MIX}$. Thus equation (34) may be substituted into equation (35) resulting in

$$\Delta S_{MIX} = -k \ln \left[\frac{h^{h} N_{o}^{N} o}{(h + x N_{o})^{h + N} o} \right]$$

+ k(x-1)(N_o) $\left[\ln (z-1) - 1 \right] - k N_{o} \ln 2$. (37)

Equation (37) may be rearranged to give,

$$\Delta S_{MIX} = -k \ln \left[\left(\frac{h}{h + xN_o} \right)^h \left(\frac{N_o}{h + xN_o} \right)^N \right]$$

+ k(x-1)(N_o) $\left[\ln (z-1) - 1 \right] - kN_o \ln 2$ (38)

Equation (38) can again be rearranged to give

$$\Delta S_{MIX} = -k \left[h \ln \left(\frac{h}{h + xN_0} \right) + N_0 \ln \left(\frac{N_0}{h + xN_0} \right) + k (x-1)N_0 \left[\ln (z-1) - 1 \right] - kN_0 \ln 2 .$$
(39)

When a perfectly arranged crystalline solid reverts to a disordered solid, the change in entropy may be found by setting h in equation (39) equal to zero. This is equivalent to assuming that no holes exist in a solid. Thus the entropy of disordering a perfectly arranged solid, ΔS^* , is

$$\Delta S^{*} = kN_{0} \ln (x/2) + kN_{0} (x - 1) \left[\ln (z - 1) - 1 \right].$$
(40)

Therefore, to find the change in entropy when holes are introduced into a randomly arranged solid one subtracts (40) from (39) resulting in

$$\Delta S'_{MIX} = -k \left[h \ln \left(\frac{h}{h + xN_o} \right) + \ln \left(\frac{xN_o}{h + xN_o} \right) \right].$$
(41)

Since no forces of attraction or repulsion between molecules were considered, $\triangle S'_{MIX}$ may be thought of as the ideal entropy of mixing. If the free energy reference state for this system is chosen as "pure" holes plus a random lattice of molecules at temperature T, then the ideal

free energy of mixing may be expressed as

$$F_{MIX}^{IDEAL} = -T \triangle S_{MIX} .$$
 (42)

If one considers a system of volume V, then,

$$h = (V/T) - xN_{o}$$
(43)

and F_{MIX}^{IDEAL} may be expressed as

$$F_{MIX}^{IDEAL} = kT \left[\left((V/\tau) - xN_o \right) ln \left(1 - (\tau xN_o/V) \right) + N_o ln (\tau xN_o/V) \right].$$
(44)

Since the actual system is not ideal, one must determine the increase of free energy during mixing resulting from intermolecular forces. The term Ψ may be defined as the increase in free energy occurring with the following rearrangement

where represents a full cell and the blanks represents the sent holes. Thus there is an interaction energy of $\frac{\psi}{2}$

5'

per cellular interaction. The excess free energy of mixing, $F^{\rm E}_{\rm MIX},$ can then be expressed as

$$F_{\text{MIX}}^{\text{E}} = \left[\frac{1}{2} \operatorname{zn}_{0} \right] \left[\frac{\Psi}{2} \right] \left[2 \right] \left[\frac{h}{n_{0}} \right] \left[\frac{x \operatorname{N}_{0}}{n_{0}} \right] \quad . \tag{45}$$

Here $\left[2\right]\left[\frac{h}{n_0}\right]\left[\frac{xN_0}{n_0}\right]$ represents the probability of finding a full cell — empty cell interaction, where the factor 2 arises because both hole-full and full-hole cell interactions are considered. Every such interaction requires a rearrangement, resulting in an increase of free energy, $\frac{\psi}{2}$, upon mixing holes with full cells. The factor $1/2zn_0$ is the total number of cellular interactions in the system. If V is the volume of the lattice then

$$\frac{V}{\gamma} - xN_0 = h , \text{ and}$$
 (46)

$$n_{o} = \frac{V}{T} \qquad (47)$$

Substituting these equations into equation (45) and rearranging, one obtains

$$\mathbf{F}_{\mathrm{MIX}}^{\mathbf{E}} = \frac{1}{2} \mathbf{z} \, \mathcal{V} \left[\left(\mathbf{V} - \mathcal{T} \mathbf{x} \mathbf{N}_{\mathbf{o}} \right) \left(\frac{\mathbf{x} \mathbf{N}_{\mathbf{o}}}{\mathbf{V}} \right) \right] \quad . \tag{48}$$

At this point the total free energy may be defined by combining equations (20), (44) and (48) resulting in

$$F = N_{o}f + kT \left\{ \left[V/\tau - xN_{o} \right] \ln \left[1 - (\tau xN_{o}/V) \right] + N_{o} \ln (\tau xN_{o}/V) \right\} + (z \psi/2)(V - \tau xN_{o})(xN_{o}/V) .$$
(49)

This is equivalent to equation (1) in the paper presented by Kurata and Isida (37). Their derivation continues below.

The Kurata-Isida Vapor Pressure Equation

The pressure P, and the chemical potential, μ , of a system may be described as,

$$P = -\left(\frac{\delta F}{\delta V}\right)_{T,N}$$
(50)

$$\mu = \left(\frac{\delta F}{\delta N_0}\right)_{T,V} \qquad (51)$$

Thus, by differentiating equation (49) as per equations (50) and (51) one obtains

$$P = -\left(\frac{\delta F}{\delta V}\right)_{T,N} = -\frac{kT}{\gamma} \left\{ \ln\left[1 - \frac{\gamma \times N_{o}}{V}\right] \right\} + \left[V - \kappa N_{o}\gamma\right] \left[\frac{\gamma \times N_{o}}{V^{2}}\right] \left[\frac{\gamma}{V - \gamma \times N_{o}}\right] + \left[\frac{-\gamma N_{o}}{V}\right] \left[\frac{\gamma}{2\gamma}\right] \left[\frac{\gamma \times N_{o}}{V}\right]^{2}$$
(52)

and,

$$\mathcal{M} = \left(\frac{\delta_{F}}{\delta_{N_{O}}}\right)_{T,V} = f + kT \left\{ \left[\frac{V}{T} - xN_{O}\right] \left[\frac{-\mathcal{T}x}{V - \mathcal{T}xN_{O}}\right] - x \ln\left[1 - \frac{\mathcal{T}xN_{O}}{V} + 1\right] + \ln\left[\mathcal{T}x\frac{N}{V}\right] \right\} + \frac{xz}{2} \frac{\mathcal{V}}{2} \left[1 - \frac{2\mathcal{T}xN_{O}}{V}\right] \quad . \tag{53}$$

Let v represent the volume per molecule, V/N_0 . By rearranging equations (52) and (53) and substituting v, the volume per molecule, for V/N_0 one arrives at,

$$P = -\frac{kT}{\gamma} \left\{ \ln \left[1 - \frac{x\gamma}{v} \right] + (x - 1)\frac{\gamma}{v} \right\} - \frac{z\psi}{2\gamma} \left[\frac{x\gamma}{v} \right]^2$$
(54)
$$\mathcal{M} = f + kT \left\{ \ln \left[\frac{x\gamma}{v} \right] - x \ln \left[1 - \frac{x\gamma}{v} \right] - (x - 1) \right\} + \frac{zx\psi}{2} \left[1 - \frac{2x\gamma}{v} \right] .$$
(55)

When considering a two phase system at equilibrium it is necessary that the pressures and the chemical potentials of the two phases be equal so that

$$P_g = P_1 \tag{56}$$

$$\mu_{g} = \mu_{1} \qquad (57)$$

Note that the subscripts g and 1 are adopted to represent

and

the gaseous and liquid phases respectively. Thus from equations (54) and (55) one may write

$$\ln\left[1 - \frac{\mathbf{x}\tau}{\mathbf{v}_{g}}\right] + (\mathbf{x} - 1)\frac{\tau}{\mathbf{v}_{g}} + \frac{\mathbf{z}\Psi}{2\mathbf{k}T}\left[\frac{\mathbf{x}\tau}{\mathbf{v}_{g}}\right]^{2} = \ln\left[1 - \frac{\mathbf{x}\tau}{\mathbf{v}_{1}}\right]$$
$$+ (\mathbf{x}-1)\frac{\tau}{\mathbf{v}_{1}} + \frac{\mathbf{z}\Psi}{2\mathbf{k}T}\left[\frac{\mathbf{x}\tau}{\mathbf{v}_{1}}\right]^{2}$$
(58)

and

$$\frac{1}{x} \ln\left[\frac{x\tau}{v_g}\right] - \ln\left[1 - \frac{x\tau}{v_g}\right] + \frac{z\Psi}{2kT}\left[1 - \frac{2x\tau}{v_g}\right] = \frac{1}{x} \ln\left[\frac{x\tau}{v_1}\right]$$
$$- \ln\left[1 - \frac{x\tau}{v_1}\right] + \frac{z\Psi}{2kT}\left[1 - \frac{2x\tau}{v_1}\right], \qquad (59)$$

assuming that $f_1 = f_g$.

Assume, for simplicity, that v_g is very large compared with v_1 or $x \mathcal{T}$ at temperatures below the boiling point. Equation (54) then reduces to the ideal gas equation,

$$P = kT/v_g (60)$$

If equations (58) and (59) are combined with equation (60), assuming v_g much greater than v_1 , one obtains the Kurata-Isida vapor pressure equation

$$\ln P = \ln \left[\frac{kT}{v_1} \right] + (x - 1) \left[\frac{xT}{v_1} \right] - \frac{xZ}{2kT} \left[\frac{xT}{v_1} \right] \left[2 - \frac{xT}{v_1} \right]. \quad (61)$$

The Kurata-Isida Heat of Vaporization Equation

Starting with equation (61) and assuming that $x \gamma = v_1$ and noting that $\Psi = \mathcal{E}$ - TS, Kurata and Isida (37) obtained

$$\ln P = \ln (kT/x\tau) + x \left[1 + (zS/2k)\right] - 1 - x(z\ell/2kT).$$
(62)

Here $\hat{\epsilon}$ and S are the internal energy and entropy terms respectively, which are associated with the Helmholtz free energy change, Ψ . It was assumed for simplicity that $\hat{\epsilon}$ and S are independent of temperature, so that equation (62) could be simply differentiated. Realizing that R = N_Ak the following result was obtained:

$$\frac{\mathrm{d}P}{\mathrm{d}T} = \frac{P}{T} + \frac{P}{T^2} \left[\frac{N_A xz}{2R} \right] = \frac{H_v}{T(v'g^{-v'}1)}$$
(63)

Making the usual simplifying assumptions that v'_1 is negligible compared to v_g at low pressures and that the ideal gas law holds, one may write with some rearrangement

$$RT + \frac{N_A xz \varepsilon}{2} = H_v = E_v + P \Delta V$$
 (64)

where E_v equals internal heat of vaporization.

Again, assuming the ideal gas law, equation (64) becomes

$$E_{v} = \frac{N_{A}xz\hat{\ell}}{2} \quad . \tag{65}$$

EXPERIMENTAL WORK

Introduction

The purpose of this work was to accurately measure the vapor pressures of several series of normal chain homologous compounds containing from three to twenty carbon atoms. The proposed measurement range was from 5 to 760 mm Hg or from -40 to 350 degrees Centigrade, whichever condition was limiting. A precision of $^+0.1$ degrees Centigrade was sought, this being equivalent to $^+0.1$ mm Hg at an approximate vapor pressure of 5 mm Hg for most organic substances.

The dynamic, static, and gas-saturation methods were the general means available for the accurate determination of vapor pressures. The most reliable static method is that of Smith-Menzies (<u>69</u>) using an isoteniscope. It is claimed that the average pressure deviation is $^+2$ mm Hg with maximum deviations as high as 6 mm Hg. The precision boiling point method of Willingham and co-workers (<u>70</u>) was the only applicable dynamic procedure, claiming an error of only 0.02 to 0.05 mm Hg. A precision of 0.05 to 3.5 mm Hg (<u>69</u>) was indicated for the gas-saturation method, but this method suffers from a heavy reliance on the assumption that there is no association in the vapor, a situation which is not always true and is difficult to correct for.

Accuracy, sample size, experimental time, and measurement range were the factors that had to be taken into consideration in choosing a method. The pressure range is satisfied by each of the above-mentioned methods but several major disadvantages exist for each. Low temperature determinations would be difficult to handle unless cumbersome refrigeration equipment were introduced, thus possibly hindering very low temperature work. A small sample size was desirable since the higher molecular weight homologues are very difficult and costly to purify owing to isomeric impurities which have physical properties very similar to those of the desired material. Sample sizes from ten to fifty milliliters are required in each case, although some semimicro boiling-point methods exist which utilize only forty to one hundred milligrams, but the accuracy of these is dubious. Each of the methods requires at least an hour to produce a single vapor pressure datum of sufficient accuracy, a factor which would be undesirable when many measurements have to be made and when the material is at such a temperature that it will easily suffer thermal decomposition. None of the common methods satisfied the requirements of a small sample size and a short experimental time. Only one, the precision boiling-point method of Willingham, provided the desired precision. It was thus obvious that a new method

had to be sought for the determination of vapor pressures.

Vassalo and Harden (<u>64</u>), Chiu (<u>10</u>), and Kemme (<u>33</u>) described a technique whereby boiling points were measured by differential thermal analysis, hereafter known as DTA. An obvious extension of these works was to measure boiling points at different pressures, thereby determining temperature vapor pressure functions. Krawitz and Tovrog (<u>35</u>) used the DTA method for determining the vapor pressure of toluene between 65 and 760 Torr but no precision was given. As this work was in progress, Barrall, Porter and Johnson (<u>2</u>) reported measuring vapor pressures between 30 and 760 Torr using differential thermal analysis. An accuracy of $\frac{+}{0.2}$ degrees Centigrade was claimed.

Instrumentation

The method whereby temperature changes in a sample are measured in contrast with the temperature changes of an inert reference material is known as differential thermal analysis. Both the reference substance and the sample are in the same thermal environment which is being changed at a controlled rate. Thermocouples are usually employed to measure directly the temperature of the sample and the temperature of the inert reference substance as both undergo a linear temperature rise. The thermocouple in the sample is wired in opposition to the one in the inert reference substance in a potentiometric circuit so that at a given temperature the

net voltage output between the two thermocouples will register the difference in temperature between the sample and the inert. This voltage output is plotted against the voltage output of the sample thermocouple, producing a thermogram. In essence this thermogram shows the temperature difference between the sample and inert at any instant. A phase transition, such as boiling, which will absorb or release energy in the sample will render the sample temperature different from that of the inert reference substance so that a temperature difference is recorded. This plot is known as an endotherm if energy is absorbed by the sample or an exotherm if energy is released. In the case of boiling, the endotherm will start at the bubble point and will continue to increase until all the material is vaporized. Then the sample thermocouple will more or less slowly approach the temperature of the inert substance and the signal will return to zero. The magnitude of this difference in temperature will depend on the heat capacity, thermal conductivity, weight, amount of energy gained, and the heating rate of the sample. During this transition, the sample temperature should ideally remain constant and will be recorded as the boiling point.

Description of differential thermal analyzer (60). A modified DuPont 900 Differential Thermal Analyzer was employed to obtain all the experimental vapor pressure data.

The basic specifications and description of the system as supplied by E. I. DuPont de Nemours and Co. are presented in this section. A discussion and description of the modifications will follow:

General Specifications

Temperature Range:	-100 to 500°C with gen- eral purpose cell, higher and lower temperatures accessible with accessory cells.
<u>Sensitivity, ΔT:</u>	0.025° C or 10^{-3} cal
<u>Precision, T</u> :	0.2 [°] C
Scale, ΔT :	0.004, 0.008, 0.02, 0.04, 0.08, 0.2, 0.4 mv/in 0.1, 0.2, 0.5, 1.0, 2, 5, 10°C/in
<u>Scale, T</u> :	0.4, 0.8, 2, 4, 8 mv/in 10, 20, 50, 100, 200°C/in
Presentation:	8-1/2" x 11" preprinted paper, millivolt or temper- ature scale
<u>Heating/Cooling Rates</u> :	0 to 30 ⁰ C/minute, contin- uously variable
Operating Modes:	Heat, Cool, Hold, Cycle be- tween preset limits
Program Starting Temperature:	Continuously variable
Sample Size:	0.1 to 50 mg with general purpose cells
Sample Atmosphere:	Vacuum, inert, or controlled composition
<u>Size:</u>	22-1/4" wide x 20-3/4" deep x 10-3/8" high, not including bell jar

115 v., 60 cycle; 220 v., 50 or 60 cycle - available on special order. 200 watts

Bench weight:

40 lbs

System description. (60) The heart of any apparatus for performing differential thermal analysis is the thermocouple system. In Figure 1, S and R represent the thermoelectric junctions of the system immersed in sample and reference respectively. The common sides of both thermocouples are joined at B. The difference in temperature between sample and reference, ΔT , is indicated by the electrical potential across the points A-C, while the temperature, T of the sample is indicated by the potential across points A-B. Accessory equipment necessary for practical experimental work is also shown schematically. This includes a block to distribute heat evenly to sample and reference materials, a programming device and heater to change the temperature of the block at a uniform and predetermined rate, a high gain, low noise amplifier to increase the sensitivity of ΔT measurement, and a variable sensitivity recorder to plot $\triangle T$ as a function of T.

Specimen and reference materials are placed either into 4 mm glass tubes, sealed at one end, or 2 mm thin-wall glass capillaries. These are symmetrically inserted into a cylinderical aluminum block, 7/8"D. x 1-1/2". The block is heated by a cartridge heater which is inserted vertically into the center of the block. The cell is designed and constructed in this way in order to insure perfectly matched thermal environments for both sample and inert.

Analytical chromel-alumel thermocouples with controlledenergy weld junctions are used to insure uniformity of

Figure 1: DTA SCHEMATIC

measurements. The thermocouples and heater and provided with plugs so that they may be removed with ease.

The entire cell assembly is hermetically isolated by a glass dome cover with an "O" ring seal. Five tubing connections pass into the assembly. A flow meter and a needle valve are provided with one of these for use as an inert gas purge. Another is provided with a vacuum gauge and valve for vacuum operation.

Instrument Modifications

In order to insure the most accurate and reliable results certain modifications and additions were made to the DuPont 900 Differential Thermal Analyzer.

Thermocouple circuit. Any reliable thermocouple measuring circuit must be designed in such a manner that only the reference and measuring junctions produce an EMF. This precludes the incorporation of any other dissimilar metal junctions which would produce an EMF dependent upon ambient temperatures. The DuPont 900 DTA incorporated the use of gold coated plugs to connect the individual thermocouples to the thermocouple circuit. The thermocouple scheme at these points was Chromel-gold-Chromel and Alumel-gold-Alumel which resulted in two sets of junctions, whose EMF's should cancel each other out if they were at the same temperature. Unfortunately this

was not the case especially if the cell was cooled or heated. By means of a standard Chromel-Alumel plug supplied by the Thermo-Electric Company of Saddle Brook, N. J., and a separate extension line to the ice reference junction, these plugs were by-passed. This spurious EMF which had a magnitude of $\stackrel{+}{-}.04$ mv was thereby avoided. A schematic of this change is shown in Figure 2.

Two ice point reference thermocouples are employed in the DuPont DTA. One serves as a reference for the furnace control circuit and the other for the sample thermocouple circuit. It was found that these must be placed in separate ice baths in order to avoid EMF interaction which produce erroneous results on the order of $\frac{1}{2}$.02 mv.

Potentiometer and recording system. The DuPont DTA employs a Mosely X-Y recorder to indicate the difference in temperature between the reference material and the sample as a function of sample temperature. The highest sample temperature recorder sensitivity is .4 millivolts per inch using Chromel-Alumel thermocouples. This is approximately equivalent to ten degrees Centigrade per inch or 0.01 inch per tenth of a degree. It can therefore be seen that the recorder was not sensitive enough to produce tracings which could be read with a precision

THERMOCOUPLE EXTENSION AND POTENTIOMETER CIRCUIT Figure 2:

of 0.1 degree Centigrade.

The recorder system also required daily calibration adjustments. These adjustments were tedious and time consuming. To avoid these difficulties, a Leeds and Northrop K-3 potentiometer with a 2430-D DC galvanometer was connected in parallel with the recorder circuit as shown in Figure 2. The recorder was then used only as a visual indicator to show when boiling took place and if the boiling point was constant. As the boiling point was approached the potentiometer was connected to the system and was approximately balanced. When boiling took place, at a constant temperature, the potentiometer was accurately balanced, resulting in an EMF reading of $\frac{+}{-0.001}$ mv, or $\frac{+}{-.025^{\circ}}$ Centigrade well within the desired precision, between -40 and 320° Centigrade.

<u>Vacuum input</u>. In order to obtain an accurate boiling point, a constant pressure at the point where boiling takes place is necessary. Shown in Figure 3 is an enlarged drawing of the 4 mm thin-wall glass capillary tube which was used to obtain boiling point data. The sample, a mixture of glass beads and liquid, lies in the bottom portion of the capillary with the thermocouple imbedded completely in the sample. Figure 3A shows the thermocouple-capillary arrangement before modification. The

Figure 3: THERMOCOUPLE MODIFICATION

ceramic spacer served two purposes: it insulated the thermocouple lead wires from each other and also centered the thermocouple in the sample. As a result of this design the annulus between the spacer and the capillary was only on the order of .025 mm for a distance of 2.5 cm. At pressures greater than 50 mm Hg the annulus presents a negligible barrier to the escaping vapors, but below this pressure the mean free path of the escaping molecules approaches the annulus size. The calculations for the mean free path at low pressures are found in Appendix A. Thus a barrier is presented to the escape of the vapor which results in an increase of pressure and in turn produces an erroneous boiling point reading.

In order to avoid this difficulty the design was modified as in Figure 3B. The ceramic lead insulator has been decreased to 1 mm. In order to center the thermocouple a short piece of glass tubing, 3 mm O.D. x 4 mm x 1 mm I.D., was placed over the bare lead wires close to the thermocouple. This resulted in two vapor escape routes, one through the center of the glass spacer, the other through the annulus between spacer and capillary tube. Although the annulus space did not increase in size the length of the annulus decreased from 3 cm to 4 mm thus offering less resistance. This route plus the addition of one extra comparatively large escape route

resulted in a system of negligible pressure drop.

As the vapors escape from the capillary they emerge in the glass dome covering the cell system. In order that there would be a negligible pressure increase at this time, especially at low pressure conditions, the volume of the dome was doubled over that of the original design. In conjunction with these modifications the vacuum inlet line was increased to 6 mm I.D. so that any pressure increase could be more rapidly dissipated.

<u>Cell cooling</u>. In order to determine boiling points below room temperature it is necessary to be able to cool the cell as rapidly as possible so that the time per run is short. Several alternatives are suggested by DuPont using their specially designed cooling jacket. Coolant, such as nitrogen vapor obtained from liquid nitrogen, or cold CO_2 gas is recommended. Liquid nitrogen proved to be very difficult to handle and would flash violently in the cooling jacket. Even under these conditions the cooling rate was only about $5^{\circ}C/min$. Cold CO_2 gas, obtained by expanding compressed CO_2 , was more convenient but still provided a very slow cooling rate because of the small overall heat transfer coefficient between the gas and the aluminum cell.

The best cooling method was obtained by permanently

Figure 4: <u>CELL ASSEMBLY</u>

52

•

removing the cooling jacket cover as shown in Figure 4 and introducing finely powdered solid carbon dioxide into the annulus between cooling jacket and cell block. Cooling rates of from ten to fifteen degrees Centigrade per minute were easily achieved down to -40 to -50 degrees Centigrade. As soon as the desired temperature was obtained, the powdered CO_2 was blown out by means of dry compressed nitrogen expelled from a fine nozzle.

Heating rate control. The heating rate controller was designed to produce a rapid response to error in order to insure a linear temperature increase as a function The design was acceptable as long as there was of time. a relatively high heat loss from the heating block, thereby requiring a sufficiently high current demand by the heater. At low cell pressures and temperatures there was very little heat loss and in turn very little current was required. This resulted in an under-damped control situation where current was first excessively and then insufficiently supplied. In order to overcome this situation Mr. Parkell of DuPont Instruments (51) suggested the modification to the heater control circuit shown in the schematic in Figure 5. The new components are listed in Table 1.

As can be seen, if compared to the original schematic

Figure 5: <u>HEATER CONTROL MODIFICATIONS</u>

Fable l: New	Components
--------------	------------

Part No.	Description	Rating
D 100	DIODE IN538	
D 101	DIODE IN538	
R 50	RESISTOR	100 КЛ
C 100	CAPACITOR	22 MFD, 200 v

diagram supplied by DuPont, capacitor C4 is removed, transistors D100 and 101, resistor R50, and capacitor C100 are added. This results in a circuit in which the necessary current demand for a linear temperature rate is gradually approached. This system proved to be effective down to 3 mm Hg, and still contained sufficient response at higher pressures and temperatures. At low temperatures, where very little heat input was required, the control system proved especially effective. A linear rise in temperature was achieved even at -40 degrees Centigrade.

Boiling Conditions

The sample was placed in a 2 mm capillary tube which in turn was inserted in an aluminum heating block as shown in Figure 4. Placed directly into the sample was a calibrated 28 gauge Chromel-Alumel thermocouple. It was here at the thermocouple junction that the boiling temperature was to be measured. Environmental conditions at this point had to insure that superheating was avoided, that there was a negligible pressure change, that the proper amount of heat was supplied, and that the sample quantity was sufficient to achieve a dynamic equilibrium between liquid and vapor. In an earlier section it was shown how a constant pressure over the sample was insured and will not bear repeating here.

<u>Heating rate</u>. Several experiments were performed to determine the effect of different heating rates. A 10 micro-liter sample of water on 50 mg of 100 micron glass beads was consistently employed, and the cell pressure was held constant at one atmosphere. Heating rates between .5 and 20 degrees Centigrade were tried. The data are shown in Table 2.

Considering that .004 milli-volts is equal to approximately .1 degrees Centigrade it can be seen that the boiling point is constant at heating rates between 2 and 20 degrees Centigrade per minute. At lower heating rates consistently low values are obtained. It was concluded that at heating rates lower than 1 degree Centigrade per minute not enough heat was supplied to promote boiling, rather only rapid vaporization. The endotherms at these low heating rates do show that an equilibrium has been achieved by virtue of a constant temperature during vaporization. This equilibrium is not that of the vapor pressure of the sample being equal to the vapor pressure of the surroundings, but rather an equilibrium between the heat input equal to the heat dissipation.

It can therefore be concluded that the heating rate should be at least 2 degrees Centigrade per minute in order to promote boiling. A median value of 5 to 10 degrees
	· · · · · · · · · · · · · · · · · · ·	
Heating Rate C/min.	Thermocouple EMF	Temperature ^O C
.5	4.0536	101.34
1.0	4.0698	101.75
2.0	4.0773	101.93
5.0	4.0806	102.02
10.0	4.0819	102.05
15.0	4.0780	101.95
20.0	4.0776	101.94

Table 2: <u>Heating Rate Effect</u>

Centigrade per minute was used in obtaining the vapor pressure data in this work.

A heating rate higher than 20 degrees Centigrade per minute was not attempted, but superheating would result at a heating rate where the system could not dissipate all the heat energy it received.

Liquid placement. In every experiment which measures vapor pressure by a dynamic method, superheating is a problem which must be overcome. This is usually accomplished by employing rough surfaces which supply active sites where boiling might be initiated. In this case 100 micron glass beads were employed to alleviate any noticeable superheat. From 4 to 10 micro-liters of sample was mixed with about 40 mg of glass beads. This produced a dry mixture when intimately mixed. Each bead was thus surrounded by a thin film of liquid. This resulted in a negligible increase in pressure due to liquid head and supplied the liquid with many active boiling sites. Within this liquid film a boiling equilibrium was set up between the liquid and its vapor.

Several sizes of glass beads were used to try to determine which size would be most effective. Since the amount of liquid sample that could be utilized is directly proportional to the surface area, smaller beads would be

able to handle more material, thus extending the boiling period. On the other hand, the smaller the beads the smaller were the voids from which the vapors could escape, thus more probably producing non-equilibrium conditions and bumping. Large beads would overcome this problem but a smaller sample size was required. One hundred micron glass beads are a compromise which produce very good results.

The effect of a curved surface upon the boiling point might be questioned. Calculations performed, as shown in Appendix A, showed this effect to be negligible.

Sample size. As mentioned in the last section, the sample is mixed with glass beads so that each bead is covered with a thin film of liquid sample. It is important that the amount of liquid surrounding each bead be of the proper magnitude. From 4 to 6×10^{-5} moles of total sample (4-12 micro-liters) is approximately correct for 40 mg of 100 micron glass beads. If not enough sample is supplied, a thermogram such as that shown in Figure 6A is obtained. The curve usually proceeds in a comparatively gentle downgrade slope which continues until re-Sometimes it even slopes slightly backwards as covery. is seen when a sample superheats, although, in this case, the maximum endothermic temperature might be several

Figure 6: BOILING ENDOTHERMS

61

 Δ_{T}

degrees below the true boiling point. A comparatively small $\triangle T$ is also characteristic of this phenomenon showing that a small amount of heat was required to vaporize the sample, and that the sample temperature was increasing. It can therefore be concluded that too small a sample size will produce a condition which is not conducive to true equilibrium. The required sample size also seems to depend upon the amount of energy required to vaporize the sample. The greater the amount of energy required per unit volume, the smaller the sample required. Therefore, at low pressures where the heat of vaporization is greater than at higher pressures, less sample is required. As the pressure is increased, it is preferable that the sample size also be increased. It should be stressed at this point that the sample size is important but not overly critical. A good deal of latitude in sample quantity exists. For most materials a ratio of 5 - 10 micro-liters per 40 mg of glass beads will almost always suffice. Conditions exist, however, where either a smaller or larger sample is required but these conditions are immediately evident as discussed herein. Too large a sample results in superheating; this is brought about because each bead does not have its own film of liquid but rather that the liquid is now filling all the voids between the beads. In these voids, super-

heating takes place since there are no active boiling sites available. A thermogram as shown in Figure 6B is obtained. The maximum endothermic temperature shown is above the boiling point, sometimes by as much as 10 degrees Centigrade. It is felt that when the liquid in the voids has boiled away the system attempts to return to a true boiling equilibrium and the curve slants back, but equilibrium is rarely achieved.

A true boiling point endotherm is shown in Figure 6C. Note that the curve breaks quite rapidly and is perfectly vertical from that point until recovery. This is a perfect indication that all conditions are correct and that the material's purity is of such quality that no boiling point range can be detected.

Sample purity. An extremely pure sample is of utmost importance when performing vapor pressure determinations. As was pointed out previously, DTA is an inherently strong tool in determining whether a sample is sufficiently pure to obtain accurate data. In general, it was found that a sample had to have a purity level greater than 99.5 mole per cent to show a constant boiling point by DTA. Usually the remaining .5 per cent impurity consisted of a close boiling isomer, thus showing the sensitivity of DTA.

By observing the DTA curve several things could be ascertained about the sample purity. Figure 7A shows a typical thermogram of a sample which contains a volatile impurity. What takes place in the sample tube might be Finally all the volatile considered a simple distillation. impurity is vaporized and a constant boiling endotherm ensues. A slight variation of this thermogram is shown in Figure 7B. In this case the sample contains not only a more volatile but also a less volatile impurity demonstrated by the increase in boiling temperature toward the bottom of the endotherm. In some cases, as shown in Figure 7C the amount of impurity is so great that there is a continual boiling point increase as the sample is In some cases where there are many different vaporized. impurities several vertical portions on the endotherm are observed which indicate that either several pure components are vaporizing at different times or that an azeotrope has been achieved in the last vertical portion. A thermogram of a pure sample is shown in Figure 7D.

The DTA vapor pressure system has proved to be a very valuable tool in determining purity. It should be understood that DTA does not indicate the amount of impurity but rather it can indicate if a sample is of such purity that it has a boiling point range less than .1 degree Centigrade. If a sample passes this test it will not

Figure 7: PURITY CHECK THERMOGRAMS

65

٢.

 $\mathbf{\Delta}^{\mathrm{T}}$

limit the accuracy of the instrumentation.

This property of DTA was used extensively in determining the relative purity of several cuts obtained from a spinning band distillation column. Each cut was sampled on the DTA to see which produced a constant boiling endo-The sample which did was then tested under therm. pressures from 5 mm to 760 mm Hg to determine whether any azeotrope existed. This was the only means available for determining the purity of several high boiling alcohols. Even gas chromatography could not be utilized in these cases because the alcohols were so polar and had such high boiling points that they would not pass through the column very readily without decomposition. Separation of the lower alcohols into their components by gas chromatography also proved very difficult.

Vacuum System

In general, the vacuum system which was connected to the furnace of the DTA consisted of a high capacity vacuum pump with a 30 liter ballast. Control was achieved by use of a mercury-filled Cartesian manostat. A vacuum manifold was placed in the system so that several takeoffs from the system were available. The following section presents a more detailed description of the system. A schematic diagram is shown in Figure 8.

Figure 8: VACUUM SYSTEM SCHEMATIC

<u>Vacuum pump</u>. A Welch Model #1397 Duo-Seal vacuum pump was employed as the major pump in the system. This pump was supplied with vented exhaust valves which prevented the condensation of vapors in the pump. A #1417B exhaust filter was added to the pump so that it could handle high gas flow rates without throwing oil. This pump was chosen because of its relatively high pumping capacity of 420 liters per minute at atmospheric pressure.

Ballast. A 30-liter 3-neck round bottom glass vessel was used as the ballast tank. All connections to the flask were O-Ring-sealed Ball joints (Scientific Glass HVS joints) so that a good vacuum seal was assured. The ballast was incorporated in order to supply the system with sufficient reserve volume. In this way the effect of any small changes in the system pressure would be kept to a minimum. The ballast also acted as a calming chamber to damp out any disturbances caused by the pump. This tank was found to be very important at low pressures where a very small imbalance in the system can cause poor results in vapor pressure measurements. The ballast also made pressure regulation easier for the Cartesian manostat since the larger system required longer on and off cycle periods. This proved to be particularly advantageous as shown from Table 3.

Table .	3:	Pressure	of	System	as a	Function	of Time
	-				and the second s		

Time Hrs:Min.	Pressure mm Hg
0:00	3.6
0:07	3.6
0:13	3.4
0:17	3.2
0:35	3.2
1:00	3.4
1:07	3.2
1:35	3.3
1:38	3.4

It can be seen that there is a slight pressure variation as a function of time. If a ballast were not used the total range of variation would be the same but the frequency of change would be greater. The result is that there is less of a pressure change during the short duration of boiling with the ballast than without it. Considering that at 5 mm Hg a tenth of a millimeter pressure change is equivalent to a boiling point change of onetenth degree Centigrade, the incorporation of a ballast is very important.

<u>Manostat</u>. A model #8 Cartesian manostat was purchased from the Manostat Corporation. This is a maximum sensitivity instrument which claims a precision of .05% or 0.1 mm Hg, whichever is greater. It was fitted with a 4 mm orifice which allowed a flow rate of 130 liters per minute at atmospheric pressure. Flexible connections were attached to the manostat so that the seal under the float could be broken at low pressures by shaking the instrument, conveniently producing a different set point when desired. A precautionary mercury trap was placed after the manostat.

3

<u>Pressure measuring gauges</u>. Two basic measuring devices were employed: a Wallace and Tiernan Precision Mercurial Manometer and a Scientific Glass Precision

Model Zimmerli gauge. The Wallace and Tiernan gauge was used from 100 to 760 mm Hg with an accuracy of \div .033% of full scale range and a sensitivity of $\div.004\%$ of the same. The Zimmerli gauge was employed from 5 to 100 mm Hg with an accuracy of -.05 mm Hg. The Precision Zimmerli gauge was connected directly under the DTA dome to avoid any error in measurement. It was found that there was a pressure difference of about .15 mm Hg between the dome and the manifold at low pressures; this error disappeared above 50 mm Hg. The absolute accuracy of the Zimmerli gauge was checked by first exposing it to .001 mm Hg vacuum and then adjusting for zero pressure. The Zimmerli gauge then checked within the prescribed accuracy at 85 mm Hg with the Wallace and Tiernan gauge, which was considered a primary standard.

<u>Miscellaneous equipment</u>. A large capacity dry iceacetone vapor trap was employed to trap condensables in order to avoid contamination of the pump oil and pressure increase due to condensables entering the system during boiling.

A l_2^1 -inch diameter by 2-foot vacuum manifold with six inlet connections, each equipped with a 6 mm Scientific Glass HVS stopcock was used. One inlet went directly to the DTA via a vapor trap while the others were used for

pressure measurements and vents to the atmosphere. High vacuum Dow Corning Silicone grease was used as the lubri-

A small capacity vacuum pump was connected into the system in such a way as to bring the work chamber to a predetermined pressure before opening the DTA to the rest of the system which was maintained at a preset pressure. This was done so that the set point of the manostat would not be disturbed and thereby avoided constant readjustment. This method also significantly reduced the time a sample was exposed to near boiling conditions, a factor very important when considering heat degradable materials.

Two Lunkenheimer 3/4" top entry ball valves were placed just past the major vacuum pump. The first valve was used as a shut off between the system and the pump. The other valve served as a means to by-pass the manostat controller. This was necessary if the system was to be taken down to a low pressure in a short time since the line to the manostat was comparatively small.

A needle value in the line just before the manostat served as a bleed if further control was sought. Usually it was used to upset the system very slightly to insure that the manostat functioned in bringing the system back

to the set point pressure. In order to keep any dust from entering the system through this bleed valve, a drying tube packed with glass wool was connected to the valve outlet to atmosphere.

<u>Piping</u>. Three-quarter inch galvanized iron pipe was used to connect the vacuum pump with the ballast tank. Tygon tubing of the same inside diameter served as the glass to metal connector at this point. The ballast tank and the manifold were also connected by three-quarter inch I.D. Tygon tubing. The by-pass line leading to and from the manostat consisted of one-half inch galvanized iron pipe with Tygon tubing of the same inside dimension serving as a flexible connector. Five-eights inch Tygon tubing served as the connection between the manifold, trap and DTA. All pipe to tubing connections were secured with metal band clamps to insure a tight fit. A low vapor pressure silicone based pipe dope was liberally applied to all threaded connections to insure leak free operation.

Preparation and Purification of Materials

Two straight chain homologous series were studied, the primary alkyl chlorides and the primary alcohols between C_3 and C_{16} , although not all members of the series could be obtained. All of the materials were obtained from sources shown in Tables 4 and 5, pages 74 and 75.

Compound	Supplier	Purity Level Before Purification
n-propanol	Union Carbide	
n-pentanol	Union Carbide	
n-hexanol ¹ .	Poly Science Corp. K & K Laboratories	98%
n-octanol ¹ .	Poly Science Corp.	99+%
n-nonanol	K & K Laboratories	99-95%
n-decanol ^{1.}	Poly Science Corp.	99+%
n-dodecanol 1.	Poly Science Corp.	99+%
n-tetradecanol	Conoco Corp.	97%
n-hexadecanol	Conoco Corp.	95%

Table 4: Source of Normal Alcohols

1. Did not require further purification.

Compound	Supplier	Purity Level Before Purif.
1-chloropropane	Matheson, Coleman & Bell	
1-chlorobutane	Matheson, Coleman & Bell	
1-chlorohexane	Matheson, Coleman & Bell	
l-chloroheptane	Matheson, Coleman & Bell	
1-chloro-octane	Matheson, Coleman & Bell	
1-chlorononane	K & K Laboratories	95-99%
1-chlorodecane	K & K Laboratories	95-99%
1-chloroundecane	K & K Laboratories	95-99%
1-chlorododecane	K & K Laboratories	95-99%
1-chlorotetradecane	Matheson, Coleman & Bell	
l-chlorohexadecane	Matheson, Coleman & Bell	

Table 5: Source of Alkyl Chlorides

The following section will discuss the preparation and purification of each compound under the heading of the required purification method.

It should be pointed out that the final criterion of satisfactory purity was a straight vertical boiling point endotherm, indicating that there was no detectable boiling point range. Gas chromatography was employed as a tool for purification and also as a purity indicator.

It is possible to detect very small impurity levels by use of gas chromatography but it is very difficult to obtain quantitative data. At best, gas chromatographic results are good to $\frac{+}{2}$ per cent and only after the instrument and column have been calibrated. In this instance, of course, calibration was impossible so that only a rough estimate of sample purity would be given by gas chromatography by assuming internal normalization. Where only one peak could be observed, the material was said to be 99+ per cent pure.

Preparative Vapor Phase Chromatography

The alkyl chlorides were purified by the use of preparative gas chromatography, though much care had to be exercised with the higher members of the series in order to avoid decomposition of the chloride. A Wilkens

Model 700A Preparative Gas Chromatograph was employed. This instrument was set up so that it would automatically inject material into the chromatographic column, collect the specified eluted fractions and reinitiate the cycle.

Table 6 lists the chromatographic conditions under which the alkyl chlorides were purified. In all cases aluminum chromatographic columns were used with helium as the carrier gas and thermal conductivity as the means of detection.

The only alcohol purified by chromatography was heptanol. A Carbowax 20M on Chromosorb P, 20' x 3/8" aluminum column was used. The following conditions were employed:

Detector temperature	190 degrees Centigrade
Injector temperature	180 degrees Centigrade
Column temperature	170 degrees Centigrade
Helium flow rate	100 cc/min.

A purity of 99+ per cent was obtained with this method.

<u>Material collection using gas chromatography</u>. Generally a cooled collection bottle as supplied by Wilkens Instrument was sufficient to capture upwards of 70 per

Table 6:

<u>n-Alkyl Chlorides</u> <u>Purification by Gas Chromatography</u>

Purity ² Check %	+66 +66 +66 +66 +66 +66
Helium Flow cc/min.	70 150 70 70 55 300 300 300 300
Col. Temp. oC	65 95 140 155 195 185 227 227 220 210 240 240
Inj. Temp. o _C	115 1160 160 200 273 310 310 240 240 240 240
Det. Temp. OC	90 195 140 200 295 280 280 280 280 280 280 240 240
Inj. Volume	50 250 150 100 80 80 80 50 150 150 100
Column ¹ Length	20' 15' 15' 15' 15' 20' 20' 20' 20'
king ubstrate	M B B B B B B B B B B B B B B B B B B B
Column Pac ^l Liquid Phase St	QF-1 Apiezon L Apiezon L Apiezon L Apiezon L Apiezon L Apiezon L Carbowax 20M Carbowax 20M Carbowax 20M
Compound No.	0 4 4 3 4 7 6 4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 Chromosorb W 4 Chromosorb P

1 Aluminum Column - 3/8" I.D. 2 See page 76.

cent of the eluted material at flow rates under 150 milliliters per minute. Above these flow rates, the vapor was dispersed as a fog, making capture most difficult. This was especially true of the high molecular weight alkyl chlorides where the column temperature had to be low in order to avoid decomposition and the flow rate high enough to achieve elution in a reasonable amount of time. The problem was overcome by the use of an apparatus which is shown in Figure 9. The collection device was filled with 25 micron glass beads so that the dispersed fog would impinge upon the beads and coalesce. After about two collection cycles the beads became wet and the collection efficiency increased to about 80 per cent. A total of .5 milliliters could be collected in this fashion at which time the receiver had to be emptied into a sample bottle. The product was vacuum distilled in order to separate the liquid from the beads with as little loss as possible. The distillation receiver is shown in Figure 9. The liquid sample was heated with a heat gun under high vacuum so that no decomposition would take place. Gentle heating would prevent beads from bumping out. The vapor was condensed using a bath of dry ice and acetone.

Spinning Band Distillation

A Nester-Faust teflon spinning band column was used

Figure 9: CHROMATOGRAPHIC COLLECTION DEVICE

to purify the higher alcohols because of the difficulty in making chromatographic separations. These difficulties were mainly due to the low vapor pressure and high polarity of the alcohols. Long retention times, high column temperatures, excessive peak tailing, and poor resolution were the results of decomposition of the compounds on the column.

The spinning band column proved to be very effective in purifying these higher alcohols. One hundred milliliter batches were distilled, taking four equal cuts at 50:1 reflux ratios. Again, because of the alcohol properties, purity tests could not be performed by gas chromatography. The DTA was employed to test the boiling point range of each cut at a constant pressure. Those cuts which showed no detectable boiling point range were then tested between 5 mm and atmospheric pressure to make certain that no azeotrope existed. Purity was thus determined by virtue of a constant boiling point, that which is of primary concern when making vapor pressure studies. Nonanol, tetradecanol, and hexadecanol were purified in this fashion.

Todd Column

Table 7 lists the materials that were purified using a Todd distillation column at atmospheric pressure. A 15 mm I.D. x 80 cm glass column packed with 1/8" glass

Table 7:Materials Purified on the Todd Columnand Analyzed by Gas Chromatography

	l Column Packing quid Phase Subst	rate	Det. Temp. oC	Col. Temp. oC	Inj. Temp. oC	Helium Flow cc/min.	Purity Level %
.0% Carbowax 4000 F	luoropa	k + TPA	190	130	180	120	+66
.0% Carbowax 4000 F	luoropa	k + TPA	190	130	180	120	+66
0% Carbowax 4000 F	luoropa	k + TPA	190	130	180	120	+66

1 10' x ½" column

helices was employed at a reflux ratio of 20:1. During the distillation the low boiling fraction was discarded. When a constant head temperature was achieved several equal volume cuts were taken and analyzed on a gas chromatograph under the conditions shown in Table 7. In this way the pure cuts could be identified and used for vapor pressure determinations.

Experimental Procedures

<u>Thermocouple calibration</u>. The temperature sensing device incorporated in the DTA was a 28 gauge analytical Chromel-Alumel thermocouple. In order to obtain accurate data it was imperative to know the thermo-electric characteristics of the thermocouple in comparison with the ice point reference couple.

The procedure for calibrating the thermocouple was simply to determine the boiling point EMF's of pure materials whose vapor pressure data was accurately known, thus determining the EMF corresponding to a definite temperature. A calibration was made every 10 to 20 degrees Centigrade from -40 degrees Centigrade up to 305 degrees Centigrade with a variety of materials. Wherever possible the materials were used in overlapping temperature ranges to insure that the results were independent of the material. Table 8 lists the materials used, their useful temperature ranges, the reference from which the

Table 8: Calibration Standards

Material	Data Accuracy oC	Calibration Temp. Range oC	Data Ref.	Purity ¹ Mole %	Source
n-pentane	••1	-40 to 35	(<u>57</u>)	66	Phillips Petroleum Co.
n-hexane	ہے • • +	2 to 63	(<u>57</u>)	66	Matheson, Coleman & Bell
water	ہے • • +	60 to 90	(<u>30</u>)	6.96	
m-xylene	+ .01	110 to 132	(<u>7</u>	66	Matheson, Coleman & Bell
n-octanol	01	140 to 195	(<u>49</u>)	66	Poly Science Corp.
benzophenone	01	200 to 305	(<u>76</u>)	66	Matheson, Coleman & Bell

1 All materials except water were of chromatographic purity.

2

primary data were obtained, and the data accuracy. All materials were spectroscopically and chromatographically pure, and showed no visible boiling point range on the DTA.

Water, which could not be tested on the gas chromatograph because of its extreme polarity, was purified as follows: To one liter of tap water was added .2 gm potassium permanganate and .5 gm sodium hydroxide. This solution was slowly distilled through a distilling column. The middle third was redistilled and the center cut was taken for the sample.

Duplicate or triplicate determinations were made at each calibration point in order to reduce random error. The mean was then chosen as the calibration value.

A very interesting result was noted when the absolute calibration temperature was plotted against the difference between the observed EMF and the EMF calculated by assuming a .04 millivolt per degree Centigrade linear thermocouple response. This is shown in Figure 10. There was not a continuous positive or negative deviation but rather an extremely non-linear, irregular difference function. Many works in which temperature is measured by the use of thermocouples do not seem to be aware of this since calibrations are performed usually at 100 to

Figure 10: THERMOCOUPLE CALIBRATION

VEWE m·v.

200 degrees Centigrade intervals. Errors of several degrees would not be uncommon in such cases.

The EMF-temperature function was assumed to be linear between calibration points. As can be seen from Figure 10, this approximation is good within .004 millivolts or .1 degree Centigrade since the curvature between points is no greater than that value. The calibration temperatures and the thermo-electric response values are listed in Appendix B.

<u>Vapor pressure measuring procedure</u>. The following stepwise procedure is the one typically followed in measuring vapor pressures by DTA:

1. Adjust to the desired pressure in the major system. In determining a complete vapor pressure curve between 5 mm and atmospheric pressure, it is advisable to start at the lowest pressure and work up, thereby beginning at a low heating block temperature and increasing for successive runs. This saves a good deal of time otherwise spent in cooling the block before proceeding to the next run.

In order to adjust the pressure, open both ball valves shown in Figure 8, page 67 and allow the system to reach a pressure slightly higher than the desired pressure, at

which time both values are closed. Tip the manostat and shake it well so that the mercury seal is broken and a new set point is achieved, after which the manostat is set upright again. Open the ball value to the pump, whereupon the pressure will decrease slightly. Minor adjustments may be made using the adjusting knob on the manostat. In order to test the set point, open the bleed needle value slightly to upset the system and close it again. The pressure should return to the original set point.

2. Prepare the sample by placing 40 mg of 100 micron glass beads in a 4 mm glass capillary. Using a ten microliter syringe, inject 4 to 10 micro-liters onto the beads, the amount depending upon the factors discussed under the heading of "Boiling Conditions", page 56. Using a fine wire, mix the beads and the liquid intimately. If the sample is a solid, heat the beads and the capillary, then inject the molten sample.

3. Raise or lower the temperature of the block until it is about 20 to 30 degrees Centigrade below the expected boiling point. The temperature may be lowered by spooning powdered dry ice into the annulus around the block. In order to obtain rapid cooling the dry ice must be kept in contact with the block by lightly tapping the cooling jacket so that the ice will pack. Excess ice is then

easily removed by blowing it out with nitrogen expelled through a fine nozzle. The temperature is rapidly raised by manually controlling the voltage to the heater.

4. When the cell block is below ambient temperature, insert the thermocouple into the capillary first, as shown in Figure 3B, page 49, then insert the entire assembly into the sample block making sure that the thermocouple junction is completely immersed in the sample. The thermocouple wire can be bent in such a way as to force the junction downward under tension. The capillary is inserted last so that as little condensation as possible will form near the sample.

If the cell block is above room temperature, the capillary may be placed into the block first if desired. This is necessary if the sample is a solid so that it will melt and allow the thermocouple to be inserted.

5. Place the glass dome over the cell and start the auxiliary vacuum pump. Open the valve to the cell until the desired pressure is obtained, then close the valve. At this time the cell is opened to the main vacuum system. See Figure 8, page 67.

6. Set the heating rate controller at 10 degrees Centigrade per minute and set the starting temperature so that the heater voltage is about 5 to 20 volts. At low starting temperatures, lower the starting voltage to insure a gradual approach to the proper heating rate.

7. Adjust the recorder to the proper temperature range and set the mode switch on record.

8. Stir the reference temperature ice bath to insure equilibrium.

9. Observe the thermogram until a vertical endotherm appears, at which time the K-3 Potentiometer is placed in the circuit and balanced.

10. Measure the system pressure.

11. Using the thermocouple calibration table, convert the recorded EMF to degrees Centigrade using linear interpolation.

The result is a vapor pressure-temperature point which can be obtained in about fifteen minutes. In case the material is heat sensitive, one can place the sample into the heating block at a temperature a few degrees below the boiling point, rapidly obtaining the desired pressure while starting to heat to the boiling point. This procedure, although somewhat difficult to control, will insure the least time of exposure to high temperature.

This procedure was used successfully in determining the vapor pressures of the high molecular weight alkyl chlorides.

EXPERIMENTAL RESULTS

About thirteen experimental vapor pressure determinations were made for each compound. These points were evenly spaced about five to fifteen degrees Centigrade apart. This was necessary in order that each point should carry equal weight in the subsequent regression analysis. The original data can be found in Appendix C.

Tables 9 and 10, pages 93 and 94, list the range of vapor pressure measurement, the total number of data points and the maximum boiling point variation for each compound. The maximum boiling point variation was obtained from the recorded boiling endotherm by measuring the amount of variation from a vertical axis.

Table 11, page 95, shows the goodness of fit of the experimental data to the Antoine equation via some statistical parameters and absolute deviations from the actual data. A theoretical discussion of the Antoine equation can be found in the "Theory" section of this work. Table 12, page 96, lists the Antoine constants and the C.I. (95%) associated with them. Tables 13 and 14, Experimental Data Range - The n-Alkyl Chlorides Table 9:

Maximum Boiling^{1,2} Point Range o_C N.D., -.2 200 mm 120 mm -.2 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D., 297.0 78.5 135.6 204.8 245.4 263.6 47.1 225.6 326.8 184.1 160.1 Temp. Range oC 1 ł 1 . I 1 I I I I 15.0 34.4 116.0 -16.7 86.2 101.4 165.6 -25.1 54.1 69.1 141.7 **Pressure Range** 776.0 758.8 774.0 753.4 752.8 763.0 764.0 773.2 764.2 754.7 766.5 mm Hg ł 1 I t I 1 ŧ 1 ł I 10.1 5.0 5.1 28.8 5.6 5.5 5.5 5.2 5.1 5.1 5.5 No. of Data Points 51 σ 12 13 13 13 14 13 14 14 13 Carbon Number 10 c δ 12 14 16 4 ŝ ø 11

-.05°C is the smallest detectable boiling point range.

These data represent the maximum boiling point range for every pressure except where indicated. ო 2

N.D. - no boiling point range detected.
Table 10: Experimental Data Range - The n-Alcohols

Maximum Boiling¹,² Point Range 120 mm 80 mm 4. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. ပ ၀ N.D., N.D. 295.9 213.6 231.0 265.3 325.1 97.3 157.3 176.4 195.3 117.8 125.8 Temp. Range o_C 1 ł ı 1 22.6 33.9 105.0 63.6 78.9 151.6 126.5 19.8 52.2 91.7 172.1 **Pressure** Range 766.0 760.8 760.0 763.9 757.6 766.0 755.2 757.3 758.5 502.1 759.2 mm Hg ı I 1 1 ı ı i I 14.9 5.5 5.6 5.6 5.9 4.3 5.3 5.3 5.7 4.7 5.7 No. of Data Points 14 5 EJ ГЗ 2 2 5 ГЗ 14 12 13 Carbon Number 10 14 16 3 4 Q ~ ∞ σ 12

+.05°C is the smallest detectable boiling point range. + -

These data represent the maximum boiling point range for every pressure except where indicated. 2 ო

N.D. - no boiling point range detected.

Table 11: Goodness of Fit to the Antoine Equation

 $\sqrt{t} [z]$

~`

Pressure Estimate Avg.Abs. Max.Abs. % % 1.251 1.230 1.646 .983 1.161 1.194 .820 .544 .889 .889 1.466 $\begin{array}{c} 1.525\\ 2.243\\ 1.307\\ 1.334\\ 1.334\\ 1.334\\ 2.189\\ 2.189\\ 1.973\\ 1.973\\ 3.569\end{array}$ 880 Error Analysis 793 5447 5447 5447 5447 5447 714 714 714 7338 5355 793 793 667 .418 .677 .738 .738 .548 .548 .361 .212 .212 .212 .270 .638 .638 .638 397 Estimate x 10⁴ Variance 4,233 2,908 2,908 2,995 2,995 1,129 1,129 1,132 17.955 3.716 3.716 .901 .923 .923 .923 .923 .923 .536 .095 .256 .331 .227 ы О 17 4 n-Alkyl Chlorides n-Alcohols Correlation Coefficient .99960 .99991 .999993 .99993 999989. 99996 99729 999944 .99974 Squares of Regression 4.0562 5.4274 5.3620 5.3246 6.5356 6.0781 5.3562 5.6086 5.2915 5.4169 5.1125 5.2734 5.2734 5.27335 5.2036 5.2433 .3766 4233 7743 9840 Sum of 4.1789 . **NNNON00**N0 Points No. of Data **85493633335** Carbon Number 04500870543 04010087043

Table 12: Antoine Constants - Pressure Range 5 - 760 mm Hg

	<u>+</u> C.I. (95%)		13.968	9.808	9.656	7.715	7.754	8.445	3.915	11.779	7.295	11.275	25.198		17.001	19.425	7.282	5.529	7.572	6.061	4.145	3.707	6.295	11.633	9.106
	U		221.346	179.810	181.529	165.444	139.663	124.107	133.968	104.321	117.235	95.368	127.123		229.370	218.265	200.058	195.639	187.157	185.505	182.017	173.366	165.632	146.180	140.341
Antoine Constants	± C.I. (95%)	cohols	325.533	396.336	119.999	88.077	80.417	84.438	41.593	113.401	70.995	108.373	273.437	<u>Chlorides</u>	1617.020	1738.518	109.018	138.333	81.119	63.468	44.963	37.097	64.095	120.120	67.799
	В	<u>n-Alcc</u> 1690_864	1690.864	1351.555	1492.549	1422.031	1256.783	1196.639	1373.417	1180.306	1454.635	1412.907	1880.126	n-Alkyl	1126.383	1182.903	1304.968	1410.064	1469.829	1586.937	1676.793	1713.225	1754.079	1776.491	1924.969
	<u>+</u> C.I. (95%)		.86293	.34030	.24240	.17268	.16624	.16908	.07376	.21350	.11792	.17456	.36732		5.93060	6.65052	.28820	.13028	.14358	.10906	.06904	.05863	.09977	.17188	.13187
	A		8.18894	7.42117	7.55787	7.28781	6.85450	6.62354	6.83667	6.39379	6.68662	6.48407	7.04183		6.96655	6.87098	6.76886	6.83820	6.84310	6.94063	6.99172	6.97249	6.96976	6.88717	7.00109
Carbon	Number		ന	4	. 1 0	9	-	00	σ	10	12	14	16		რ	4	9	7	œ	6	10	11	12	14	16

Table 13: Vapor Pressures of the Normal Straight Chain Alcohols

Propanol Bu	1tanol 21.2	Pentanol Temperatu 36.1	Hexanol re oC 50.4	Heptanol 64.5 75.0	Octanol 77.9
30./ 19.8 36.6		4 6.1 52.4	60.7 67.2	81.7	88.7 95.6
24.1 41.0		57.0	72.1	86.6	100.7
30.6 47.6		63.9	79.3	94.1	108.4
35.4 52.5		69.1	84.7	9.6	114.2
40.9 58.1		75.0	90.9	106.1	121.0
47.7 65.1		82.4	98.6	114.2	129.4
55.4 73.2		6.09	107.6	123.5	139.2
65.8 84.2		102.4	119.7	136.3	152.7
74.7 93.6		112.2	130.2	147.4	164.5
86.6 106.4		125.7	144.4	162.8	180.8
97.2 117.9		137.6	157.2	176.6	195.6
8.18894 7.42117		7.55787	7.28781	6.85450	6.62354
1690.864 1351.555 14	ĥ	492.549	1422.031	1256.783	1196.639
221.346 179.810		181.529	165.444	139.663	124.107
sbove are calculated fro	Ö	m the viven	Antoine	Constants and	the equat

97

Ine values above $\log P = A - \frac{B}{C+t}$ Table 13: Continued

Hexadecanol 7.04183 1880.126 127.123 184.0 210.6 238.6 251.6 169.2 193.3 200.3 227.4 269.4 218.4 305.7 324.6 284.7 Tetradecanol 1412.907 6.48407 186.8 170.8 194.0 202.5 277.9 296.8 148.9 162.3 177.2 225.4 242.4 213.1 257.2 95.368 Temperature ^oC **Dodecanol** 1454.635 117.235 6.68662 138.6 265.0 152.9 162.0 168.9 176.9 186.9 247.6 125.7 146.7 198.5 214.5 228.3 1180.306 6.39379 Decanol 104.321 102.9 114.5 197.0 121.9 127.4 142.0 149.3 158.5 135.7 169.2 215.1 231.7 184.1 133.968 1373.417 Nonano1 6.83667 135.5 198.0 89.8 101.3 122.3 128.4 144.4 154.7 168.8 213.2 108.7 181.1 114.1 Pressure mm Hg 15 20 Ś 10 30 40 55 80 120 200 300 500 760 4 മ υ

The values above are calculated from the given Antoine Constants and the CH B - 4 equation log P =

Vapor Pressures of the Normal Straight Chain Alkyl Chlorides Table 14:

6.94063 185.505 Chloro-1586.937 nonane 68.7 81.6 89.8 95.9 105.0 111.8 129.5 140.9 156.5 170.0 188.6 205.4 119.7 Chlorooctane 1469.828 6.84310 187.157 100.9 183.8 86.8 110.4 121.4 136.4 149.5 167.5 64.4 72.2 78.1 93.3 52.1 heptane Chloro-6.83820 195.639 1410.064 145.0 160.7 34.0 45.9 53.4 59.0 67.4 81.0 73.7 90.1 100.7 127.7 115.1 Temperature ^oC 1304.968 200.058 Chloro-6.76886 104.0 135.6 hexane 38.6 46.6 120.6 14.9 26.2 33.3 52.5 59.5 92.0 68.1 78.2 6.87098 1182.903 218.265 Chloro--16.8 -10.6 - 5.9 butane -26.6 1.0 6.2 12.3 19.8 28.6 40.6 51.0 65.3 78.2 propane 1126.383 229.370 Chloro-6.96655 -49.7 -40.6 -34.9 -30.6 -24.2 -19.4 -13.8 - 6.9 21.5 34.6 46.3 1.1 12.1 Pressure mm Hg 15 20 S 10 30 0 7 55 120 200 300 500 80 760 ф C 4

The values above are calculated from the given Antoine Constants and the equa-CHR CHR L 4 ł tion log P

.,

Table 14: Continued

hexadecane 1924.969 7.00109 140.341 326.9 165.1 180.4 190.1 197.4 208.1 216.2 225.6 237.3 250.8 269.2 285.2 307.1 Chlorotetradecane 146.180 1776.491 6.88717 155.6 164.9 171.8 182.2 190.0 199.0 223.3 256.6 278.0 297.2 241.2 140.9 210.3 Chloro-00 Temperature dodecane 6.96976 1754.079 165.632 193.0 128.2 143.8 169.8 180.6 224.8 245.1 263.4 114.1 137.1 153.7 161.1 210.1 Chloro-1713.225 undecane 6.97249 173.366 113.5 138.4 145.6 164.6 176.8 193.4 227.5 245.3 122.2 207.7 128.7 154.1 99.7 Chloro-182.017 Chloro-6.99172 1676.793 decane 84.5 97.8 106.3 112.6 137.3 147.5 159.3 175.5 189.4 208.6 225.9 122.1 129.1 Pressure mm Hg 20 30 40 55 80 Ś 10 15 120 200 300 500 760 4 В \circ

The values above are calculated from the given Antoine Constants and the equa-C+t C+t - A 11 tion log P

pages 97 and 99 present vapor pressure-temperature data at set conditions for the n-alcohols and the n-alky1 chlorides.

THEORETICAL DERIVATIONS

Liquid Density as a Function of Vapor Pressure

The following derivation is based upon Kurata and Isida's equation (61) and will present a newly developed relationship between liquid density, vapor pressure and the number of carbon atoms in a straight chain molecule.

It may be recalled that the liquid volume is equal to the sum of the volume of full cells plus holes. At low temperatures, i.e., below the normal boiling point, one may assume that the number of empty cells in a liquid is negligible compared to the number of full cells. Thus one may write that the liquid volume per molecule, v_1 , is equal to $x \tau$, the volume of a molecule. The molal liquid density, f_1 , may then be described as

$$f_1 = 1/N_A v_1 \tag{66}$$

where N_A is Avagadro's number. Substituting (66) into (61) and realizing that $R = N_A k$ one obtains

$$\ln P = \ln (RT_{1}) + x - 1 - \frac{N_{A} z x \psi}{2 T R}.$$
 (67)

Equation (67) may be rewritten into the following more useful form

$$\ln (T f_1) = \left[\ln \frac{P}{R} + 1 \right] + \left[\frac{N_A z \gamma}{2RT} - 1 \right] \times .$$
 (68)

It is of interest to consider equation (68) at constant pressure. It can be seen that the term $\begin{bmatrix} \ln \frac{P}{R} + 1 \end{bmatrix}$ would be a constant and for simplicity the term $\begin{bmatrix} N_A z \ V \\ -2RT \end{bmatrix}$ as also arbitrarily considered constant. The resultant equation shows ln (T f_1) linear in x. Thus a plot of ln (f_1 T) vs. x should produce a straight line for each pressure considered. By definition, x is a function of the effective chain length of a molecule, which in turn should be related to the number of carbon atoms in a chain. It has been shown (<u>37</u>) that the function is sufficiently well represented by

$$x = N^{2/3}$$
 (69)

where N equals the number of carbon atoms in a chain. Thus a plot of ln (f_1T) vs. N^{2/3} should also produce linear isobars. Figure 11, page 104 shows that this is actually the case for the normal alkanes. Thus one may justifiably write

$$\ln (T r_1) = A + Bx$$
 (70)

Figure 11: DENSITY, N-ALKANES

104

Ě

105

$$A = \left[\ln \frac{P}{R} + 1 \right] , \qquad (71)$$

where

$$B = \begin{bmatrix} \frac{N_A z \psi}{2RT} - 1 \end{bmatrix} .$$
 (72)

and

Equation (71) shows that A is some linear function of In P. By setting x in equation (70) equal to zero, one may solve for A at different pressures. A plot of A vs. In P demonstrates the expected linear function for the normal alkanes, as shown in Figure 12, page 106 It was shown similarly that B too is a linear function of In P as demonstrated in Figure 13, page 107. Substituting these linear functions for A and B in terms of In P into equation (68) one obtains

$$\ln (T_{1}) = C + D \ln P + Ex + Fx \ln P .$$
 (73)

Thus an equation has been developed which relates the liquid density of any compound in a straight chain homologous series with the effective chain length of the compound and its vapor pressure at a corresponding temperature. Application of this equation to the n-alkenes, n-alkyl chlorides and the n-alcohols reveals that these series also conform. The results of this application are fully discussed in a later section.

Figure 12:

Figure 13: <u>N-ALKANES, SLOPE B</u>

A Modified Kurata-Isida Heat of Vaporization Equation

One may recall equation (65) as

$$E_{v} = \frac{N_{A}xz}{2} .$$
 (65)

Since all the terms, except x, on the right side of equation (65) are constants, a plot of E_v as a function of x where x equals N^{2/3} shows a linear relation between E_v and x; but contrary to equation (65), this linear relation is a function of vapor pressure as seen in Figure 14, page 109 Note that there is a common intercept at x = 0 and $E_v = 0$ for the normal alkanes. Similar plots for the n-alkyl chlorides and the n-alcohols, Figures 16 and 17, pages 111 and 112, show the same linear functions but different common intercepts at x = 0. Plots of the slopes of these curves as a function of pressure show them to be linear in ln P. This plot may be seen in Figure 15, page 110.

Thus at constant pressure one may write

$$E_{v} = A + Bx$$
 (74)

where B equals $\frac{N_A z \hat{c}}{2}$ and A is a constant characteristic of the series.

Figure 14: <u>HEAT OF VAPORIZATION - N-ALKANES</u>

111

Figure 16: HEAT OF VAPORIZATION, N-ALKYL CHLORIDES

From the foregoing discussion one is justified in writing

$$B = C + D \ln P$$
 . (75)

By combining equations (74) and (75) an equation is obtained which describes the internal energy of vaporization as a function of vapor pressure and effective chain length for an homologous series. Thus

$$E_v = A + Cx + Dx \ln P$$
. (76)

ANALYSIS AND APPLICATION OF CORRELATIONS

Computational Methods of Data Correlation

<u>The Antoine equation</u>. The Antoine equation possesses several advantages over other types of vapor pressure equations. In every case it fits the data better than the equations of the simple Clausius-Clapeyron type, except where C is equal to 273, at which point it corresponds. The values of the constants are readily determined and the equation may be rearranged easily so that it is explicit for either variable. The Antoine equation reproduces the value of moderately precise data within an error of 0.1 to 2 per cent in P, more precisely than many more complex equations. On the negative side, the Antoine equation cannot be extrapolated above a reduced temperature of .8 to .85 although two sets of equations can be used, one up to $T_R = .8$ and the other from $T_R = .8$ to and including the critical point (<u>62</u>).

The three Antoine constants were determined by the method of multi-linear regression analysis. A regression analysis is based upon three assumptions ($\underline{62}$). The given equation shall be a true representation of the data, the experimental data shall contain only random errors, and

these errors are normally distributed. The latter two requirements were assumed true based upon a study of the instrumental precision. The first assumption was justifiable because the Antoine equation has been shown to fit the vapor pressure data of many compounds of all types well, and because a theoretical basis for the equation was deduced for the relationship.

Application of a least squares curve fitting technique requires that the equation in question must be of the linear form

$$y = a + bx_1 + cx_2 \dots (77)$$

Winslow $(\underline{71})$ has shown that the Antoine equation may be expressed as

$$\log P = a + (b/t) + (c \log P/t)$$
, (78)

where the Antoine A, B and C constants are expressed as

Thus if the following substitutions are made one obtains

the equivalent of equation (77):

$$\frac{1/t = x_1}{\frac{\log P}{t} = x_2}$$
$$\log P = y$$

The computational work was programmed for an IBM 1620-II computer. The complete Fortran program is shown in Appendix D.

The density correlation. The derived density correlation was presented as

$$\ln (T_{1}) = C + D \ln P + E_{x} + F_{x} \ln P .$$
 (73)

In order to test the validity of the equation it would be necessary to determine the constants and then compare the calculated density values obtained with this function with the experimental values. The constants for the equation were evaluated using the technique of least squares multiple linear regression analysis (<u>66</u>). In order for this technique to be used, the equation had to be linearized. The following substitutions were made

$$\ln (T\rho_1) = y$$
$$\ln P = x_1$$
$$x \ln P = x_2$$

and the resulting linear equation becomes

$$y = C + Dx_1 + Ex + Fx_2$$
. (79)

The computational work in obtaining the least squares coefficients was done by an IBM 1620-II computer with disc storage. The complete program may be found in Appendix D. It should be pointed out that a Fortran IID compiler with a format of fourteen significant figures was used in order to insure an ample degree of significance. This was found necessary since two large numbers are subtracted to find a small difference when solving for the individual partial regression coefficients, as can be seen in the program.

The program was arranged so that temperature-density data points for an entire homologous series were read directly into core storage along with the Antoine constants for each compound. Thus at any temperature-density point the vapor pressure could be determined. With this information the least squares analysis was carried out and the constants were generated along with a statistical analysis of the correlation. The analysis produced information for the total correlation coefficient, the sum of squares of regression, the residual sum of squares, and the variance of estimate for the line. The program then generated density data at the original input temperatures so that a point

by point comparison could be made between the experimental density and the calculated density. The comparison produced a density difference and per cent error for each point as well as average and maximum absolute per cent errors for the total data set. The results of this analysis will be presented in a following section.

In order to use the correlation to predict unknown densities from vapor pressure data, a program was written which predicts densities at every ten degrees Centigrade from corresponding vapor pressure data ranging from 5 to 760 mm Hg, using the derived density equation. The program is shown in Appendix D.

<u>Heat of vaporization correlation</u>. The modified Kurata-Isida heat of vaporization equation was given on page 113 as

$$E_{v} = A + C_{x} + D_{x} \ln P$$
 (76)

As with the density correlation, an equation was fitted to the data using the technique of multi-linear regression analysis. The following substitutions were made in order to linearize the equation:

$$E_v = y$$

x ln P = x₁

After substitution the equation presents itself in the multi-linear form

$$y = \mathbf{A} + C\mathbf{x} + D\mathbf{x}_1 \quad . \tag{80}$$

The multi-linear regression analysis was carried out according to Volk (<u>66</u>). The computational work was done by an IBM 1620-II computer using a Kingston Fortran compiler. The program was designed so that only the Antoine constants for each compound in a series had to be supplied. The heat of vaporization data were self-generating in the program. The method of generation will be discussed in the following section. The entire program is found in Appendix D. The program output presented a statistical analysis of the correlation and a point by point comparison of the experimental with the correlation value. A summary of the output values is given in the section headed "Results".

Variation of Effective Chain Length Parameter

It may be recalled that x, the effective chain length, was assumed to be the two-thirds power of the number of carbon atoms. In order to determine whether this was the optimum power, a generalized function was set up as

$$\mathbf{x} = \mathbf{N}^{\mathbf{y}} \tag{81}$$

where N equals the number of carbon atoms in the chain. In order to find the optimum y the density correlation was carried out with different powers of N. The variance of estimate of the least squares line obtained for each power was plotted against the power. The power which produced the minimum variance of estimate was chosen as the optimum. Examples of these plots are presented in Figures 18 and 19, pages 124 and 130.

Data Sources

<u>Density</u>. Density data for the investigated homologous series were obtained from the American Petroleum Institute, Project 44 (<u>57</u>) wherever possible, since it was felt that this was the most reliable source. Missing data were obtained wherever possible.

A complete listing of density data and references is given in Appendix E. A listing of the Antoine constants used to determine the vapor pressure for compounds, other than those which were determined experimentally, is also given in the Appendix, together with their sources.

Heat of vaporization. The internal heats of vaporization were calculated from vapor pressure data using the Haggenmacher method (29), and Fishtine's method (18) for obtaining the delta compressibility factor, $\triangle Z$. The Haggenmacher equation uses as its basis the Clapeyron equation in the form -

$$\frac{d \log P}{d(1/T)} = -\frac{H_v}{2.303R(Z_g - Z_1)} .$$
 (82)

Differentiating the Antoine equation with respect to 1/T yields,

$$\frac{d \log P}{d(1/T)} = \frac{T^2 B}{(t+C)^2} .$$
 (83)

Subtracting equation (83) from (82) and rearranging results in

$$H_{v} = \frac{2.303RT^{2}B\Delta Z}{(t+C)^{2}}$$
(84)

where $\triangle Z$ equals $Z_g - Z_1$.

- Since, $H_v = E_v + P \triangle V$ (85)
- and, $V = \frac{RT}{P} \triangle Z$ (86)

one obtains by proper substitution

$$E_v = \frac{2.303RT^2B\Delta Z}{(t+C)^2} - RT\Delta Z$$
 (87)

Fishtine gives different values of $\triangle Z$ as a function of $\frac{T}{T_b}$ where T_b is the normal boiling temperature. He claims an accuracy of $\stackrel{+}{-}1.5$ per cent for most substances, which is sufficient for the purpose in this dissertation.

Equation (87) was used in the heat of vaporization correlation program to generate internal heats of vaporization.

<u>Results</u>

The Kemme-Kreps density equation and the modified Kurata-Isida heat of vaporization equation were tested by applying them to the four homologous series: n-alkanes, n-olefins, n-primary alkyl chlorides and the n-primary alcohols. The following discussion will consider each equation separately.

<u>The density correlation</u>. A summary of the results for the n-alkanes is shown in Table 15, page 123. The plot to obtain the optimum power for the chain length parameter, y, is shown in Figure 18, page 124. It should be noted that a large error was obtained in correlating the density for the series between C_1 and C_{18} . This large discrepancy was found only when methane was included in the correlation. Because of this result, the first member of any series which contained only one carbon atom was not included in this and

- n-Alkanes
Correlation
Density
15:
Table

Type of Correlation	All Data	Neglect C _l	Limited Data	Prediction with Lim- ited Data Constants
Range of Series	$c_1 - c_{18}$	c ₂ - c ₁₈	c ₅ - c ₈	c ₂ - c ₁₈
No. of Density Data Pts.	186	183	00	183
Optimum y	.80	.57	.57*	.57*
C constant	1.0517	1.1382	1.1602	1.1602 *
D constant	.051381	.068721	.069374	.069374*
E constant	12549	19568	20286	20286*
F constant	0034700	0090056	0091401	0091401*
Sum of Squares of Regression	12.09	11.61	.1308	
Correlation Coefficient	.9947	6666.	6666.	
Var. of Est. of ln $(T\beta_1)$	7.0x10 ⁻³	1.3x10 ⁻⁵	8.0x10 ⁻⁸	
Avg. Absolute Error, %	1.25	.282	.019	. 699
Max. Absolute Error, %	21.57	1.50	.042	2.380

*Assumed values

2-01 x stemster to sonsiteV

other correlation analyses.

The API density data (57) are given only up to 260 degrees Centigrade. By using the correlated equation (73) for the series between C₂ and C₁₈, density data are produced for each compound at 10 degrees Centigrade intervals between the temperature at which its vapor pressure is about 10 mm Hg and its saturation temperature. The highest temperature, at 310 degrees Centigrade, is given for octadecane. Thus any density points above 260 degrees Centigrade have been predicted. The results are given in Appendix F.

It was also of interest to determine how well the density could be predicted if only a few data points are known for the lower members of an homologous series. Thus the densities at 20 and 30 degrees Centigrade for C_5 to C_8 nalkanes were chosen as typical data that might be available for the less common series. By using these data the correlation constants were determined as shown under the heading of "Limited Data" in Table 15, page 123. Density data were then generated using the determined constants and compared with known data. The average and maximum per cent error is shown under the heading of "Prediction with Limited Data Constants".

Table 16, page 126 presents the results obtained in

- n-Alkenes	
Correlation .	
Density	
16:	
Table	

Prediction with Limited Data Constants .68* -.20496* -.011011* 1.1913* .076455* 63 $c_2 - c_{14}$ 5.27 .721 1 1 Limited Data .68* 1.4x10⁻⁷ -.20496 c₅ - c₉ .1473 6666. .025 ∞ 1.1913 .076455 .058 -.011011 93 .68 4.592 .9989 1.1x10⁻⁴ .752 2.69 -.14185 -.0064619 All Data $c_2 - c_{14}$ 1.1146 .066227 Var. of Est. of ln $(\rho_1 T)$ Correlation Coefficient ~ % No. of Density Points Avg. Absolute Error, Max. Absolute Error, Type of Correlation Sum of Squares of Range of Series Regression C constant E constant F constant D constant Optimum y

*Assumed values

correlating the densities for the n-alkenes. The same format is presented as for the n-alkanes. Again, using the correlation constants from known data, a complete set of density data were computed between C_2 and C_{18} for temperature corresponding to vapor pressure between 10 and 760 mm Hg. These data are given in Appendix F.

Very few density data were available for the n-alkyl chlorides. All available data were used to compute the correlation constants and the optimum y shown in Table 17, page 128. The missing data were then predicted using these constants. These results are summarized in Appendix F.

A limited number of density data for the n-alcohols were found for homologues between C_2 and C_{18} . This entire set of data was used in determining the correlation constants and the optimum y. This information is given in Table 18, page 129 and Figure 19, page 130. Again, all missing data in the temperature range corresponding to vapor pressures between 10 and 760 mm Hg were predicted with the determined constants.

Some low temperature vapor pressure-density data $(\underline{63})$ were obtained for a few of the higher alcohols. It was of interest to see how well the correlation would perform over an area of extremely low vapor pressure with constants obtained from the previously mentioned higher vapor

Table 17: Density Correlations - n-Alkyl Chlorides

Type of Correlation	All Data
Range of Series	^c ₃ - ^c ₆
No. of Density Points	17
Optimum y	.55
C constant	1.3960
D constant	.080328
E constant	26550
F constant	015683
Sum of Squares of Regression	.3270
Correlation Coefficient	.9999
Variance of Est. of $\ln(T_{l})$	8.1×10^{-7}
Avg. Absolute Error, %	.059
Max. Absolute Error, %	.209
	1

Table 18: <u>Density Correlation - n-Alcohols</u>

Type of Correlation	All Data
Range of Series	^C 2 ^{- C} 18
No. of Density Points	60
Optimum y	.2
C constant	3.8072
D constant	.069556
E constant	-2.0470
F constant	026009
Sum of Sq. of Regression	8.4 99
Correlation Coefficient	.9999
Var. of Est. of $\ln (\mathcal{G}_1 T)$	2.0×10^{-5}
Avg. Absolute Error, %	.369
Max. Absolute Error, %	.839

SX J

Figure 19: LINEAR REGRESSION OF DENSITY CORRELATION
N-ALKANOLS

pressure density data. The results are shown in Table 19, page 132.

The heat of vaporization correlation. As in the density correlation, x is equal to the carbon number raised to some power, y. The optimum power was determined by substituting various powers in the regression analysis and obtaining the respective variance of estimate of the internal heat of vaporization. These values were then cross plotted and the optimum power was taken at the minimum variance of estimate as with the density correlation.

Table 20, page 133, presents a compilation of results when the heat of vaporization correlation was applied to the four series considered. E_v is expressed in calories/gm. mole. The correlation is not extremely sensitive to y so that the average value of .675 for all four series might well be used without any apparent increase in error. Predicting Densities at Low Vapor Pressure with Constants Obtained at High Vapor Pressure Table 19:

Carbon No.	Temperature oC	Vapor Pressure mm Hg	% Error in Density Estimate
10	20.0	.00535	-1.48
10	25.0	.00912	-1.25
12	30.1	.00161	-2.37
12	25.0	.000846	-3↓01
14	38.0	.000597	-2.99
16	50.0	.000363	-3.44
18	59.0	.000027	-7.96

Table 20: Results of Heat of Vaporization Correlation

n-Alcohols $c_{1} - c_{18}$ 1.418x10⁹ .65 -246.4 .9976 1.30 162 267.1 4.14 7341.2 2463.1 n-Alkyl Chlorides .9983 247.8 8.18 1.890x10⁹ 1.53 .70 2159.7 c₁ - c₁₈ 3228.6 -115.9 162 n-Alkenes .70 .9996 65.5 1.00 $c_2 - c_{14}$ 117 60.09 125.43 2407.3 -103.83 2.542x10⁹ 1.032x10⁹ n-Alkanes .65 .9996 $c_1 - c_{18}$ 86.4 -125.891.18 157 2870.5 7.41 -304.91 ы Р Variance of Estimate of Correlation Coefficient % 2 Max. Absolute Error, Avg. Absolute Error, No. of Data Points at a Point Sum of Squares of Regression Range of Series A constant D constant C constant Optimum y Series

DISCUSSION OF RESULTS

Experimental

Instrumental precision. It was necessary to determine the precision of the instrument in order to ascertain what magnitude of errors could be ascribed to the DTA method. Any other errors would necessarily be due to faulty calibration or poor sample purity. It was felt that the method of calibration insured against any error greater than the instrument precision. Sample purity, of course, could be checked by a variation in boiling point.

In order to determine the instrument precision, the boiling point of doubly distilled water was determined at a pressure of 233.9 mm Hg over a period of about eight months. Between August 25, 1965 and September 22, 1965 eight runs were made. The data are shown in Appendix A. On April 11, 1966 another check was made to determine if the thermocouple characteristics remained the same after obtaining all the necessary data. After repeated exposure to thermal cycling, no noticeable change in the thermocouple characteristics could be observed.

The instrument precision was evaluated and is shown by the following statistics: Range.0053 milli-volts $\approx .13^{\circ}$ CentigradeStandard Deviation \div .0018 milli-volts $\approx \div .05^{\circ}$ CentigradeC.I. (95%) $\div .00407$ milli-volts $\approx .10^{\circ}$ Centigrade

The range is the difference between the highest and lowest values of the series of measurements. The calculations are shown in Appendix A.

Experimental data. In some instances, especially for the lower members of an homologous series, there are some reliable experimental data in the literature. This was especially true for the alcohols and much less so for the alkyl chlorides. Table 21, page 136 presents a comparison between the experimental data generated from Antoine constants based on this author's experimental results, and the literature values for the alcohols and alkyl chlorides. The source of literature data is indicated in the tables. It should be noticed that for any one compound some discrepancy exists among several literature sources. As stated in the "Introduction", this was one of the reasons why original data were sought for this work. These chosen literature values were characterized by experimental techniques of seemingly good quality.

<u>Sample purity</u>. It is felt that sample purity is one of the major factors leading to the observed discrepancies. The most common method to test for purity is to record

<u>Alcohol and Alkyl Chlorides: Comparison of Experimental</u> Table 21:

Pressures	
ce Vapor	
teratur	
and Li	

puno	Points	mm Hg	Max.	Avg.	Avg. % Diff.	Ref.
lot	1	760.0	02			(<u>8</u>)
	12	199.4 - 751.0	81	.576		(3)
	1	760.0	02	1 1 1	50	(7)
01	6	6.78 - 578.6	18.86	2.68		(2)
	1	760.0	55	! ! !		(1)
	10	247.9 - 697.5	.69	.032		(3)
	£	125.5 - 506.5	1.37	- , 93	.91	(<u>1</u> 2)
nol	Ø	26.0 - 611.9	-7.97	-4.84	-4.84	(2)
ol	10	9.75 - 659.8	16.39	1.95		(2)
	11	7.80 - 714.0	-11.90	5.11		(<u>32</u>)
	1	763.1	.75	1 8 1		(<u>65</u>)
	5	10.3 - 124.0	2.16	.95	-1.21	(<u>56</u>)

¹ The difference is calculated by subtracting the author's experimental value from the literature value for vapor pressures.

Table 21: Continued

Lit. Ref. $(\overline{5})$ (<u>65</u>) (<u>55</u>) (<u>55</u>) (<u>1</u>5) (<u>15</u>) (65) (<u>55</u>) (28) The difference is calculated by subtracting the author's experimental value % Avg. % Diff. -4.95 -1.17 -.88 -2.13 2.37 1.07 -2.75 1.08 -8.04 -1.63 .808 .616 -1.38 2.37 1.07 1 1 Avg. % Diff.¹ Max. Av .74 -1.90 -8.85 -10.18 1.54 -8.40 -4.95 -2.20 4.15 1.42 3.21 11.80 7.50 **Pressure Range** 7.0 507.5 12.20 - 211.0 506.5 6.68 - 201.5 - 364.5 5.40 - 225.6 9.90 - 199.9 591.4 mm Hg 57.0 -123.5 -82.3 -7.50 -7.48 1 No. of Data Points 10 σ ø 9 ω S 9 2 n-Butyl Chlor. Dodecano1 Compound Heptanol Octano1 Nonanol **Decanol** = z z Ξ =

137

from the literature value for vapor pressures.

the boiling point range of the collected material upon fractional distillation (5, 58, 32, 4, 8). This is not per se a guarantee of purity unless one knows the boiling point of the pure material. A truer test would be to perform a simple distillation on the collected material and notice its boiling point range. If a material is sufficiently pure, its boiling point will not vary by more than the sensitivity of the temperature measuring device employed in the vapor pressure measurement apparatus. This test is exactly what is performed during a boiling point measurement by DTA as explained in the "Experimental" section of this thesis. Thus it is felt that the major problem in obtaining accurate data has been overcome by the use of DTA.

Measurements of the refractive index were used by one investigator (55) to test purity, but this is good only if data are available for the pure components. Gas chromatography has proved to be a very useful tool in checking for purity and was successfully used (3). Freezing point determinations were employed (15, 3) to check purity but it was pointed out that the alcohols were difficult to test since they are apt to supercool before crystallization set in.

<u>Temperature sensors</u>. Temperature measuring devices

in many works were not chosen with adequate care. In two cases reported, thermocouples were employed. In one instance ($\underline{8}$) the thermocouple had not been calibrated, in another ($\underline{55}$) the thermocouple had been calibrated at 100 to 200 Centigrade degree intervals. It is shown in the "Experimental" section that thermocouple calibration at 20 to 30 Centigrade degree intervals, at the very least, is required in order to obtain data within .3 degrees Centigrade.

Of all the data considered, those of Biddiscombe et al (3) and Dreisbach et al (15) were considered of high quality. Good agreement with their data is shown in Table 21, page 136.

<u>Correlations of data</u>. Li and Rossini (<u>42</u>), using extrapolation techniques and empirical correlation methods, have tried to estimate the Antoine constants of several homologous series, using the limited amount of data available. One of these series was the 1-chloro-alkanes. Their estimated data were compared with this author's work. This was accomplished by generating vapor pressuretemperature data by the use of this author's Antoine constants, and those estimated by Li and Rossini. The points were chosen between 5 mm and 760 mm Hg so that they would be equally spaced on a plot showing the reciprocal tem-

perature as a function of the logarithm of pressure. Thus these points carried an equal weight upon comparison. Α per cent difference based on this work's experimental data was then obtained at each point and averaged for each com-The results are seen in Table 22, page 141. pound. It may be noticed that a rather definite trend exists rather than a random distribution of differences. As one goes toward higher molecular weights in the series, the difference between the experimental data and the Li and Rossini estimates becomes more pronounced. This might be expected in that over seventy per cent of the data available in making the estimates existed for only the first four members in the series. Thus one would expect the estimates to be good in the beginning and become less reliable as the extrapolation increased. Although much care was taken by Li and Rossini, it is felt that their estimates are in error and must be revised in the light of these present data.

A similar situation exists with data published for the 1-alkanols by the API (<u>57</u>). No source or method for obtaining these data was mentioned. The same method of comparison was used as with the alkyl chlorides. The results of the comparison are given in Table 23, page 142. It may only be surmised that a similar method of estimation was used, producing the same trend in differences.

...

Table 22:Alkyl Chlorides - Comparison of Experi-
mental and Literature Vapor Pressures

Compound	Average % Difference ¹ on Pressure Comparison
1-Chloropropane	- 2.00
1-Chlorobutane	- 1.51
1-Chloropentane	- 2.73
1-Chlorohexane	- 1.94
1-Chloroheptane	- 3.66
l-Chloro-octane	- 4.15
1-Chlorononane	- 4.46
l-Chlorodecane	- 4.79
l-Chloroundecane	- 5.90
1-Chlorododecane	- 7.03
1-Chlorotetradecane	-11.00
l-Chlorohexadecane	-10.85

¹ Vapor pressures were compared at thirteen points between 5 mm and 760 mm Hg pressure by subtracting the literature value (<u>42</u>) from the experimental. The per cent difference was averaged for each compound.

. . .

Table 23: Alcohols - Comparison of Experimentaland API Vapor Pressures

Compound	Average % Difference ¹ on Pressure Comparison
Propanol	.94
Butanol	1.47
Pentano1	- 1.38
Hexanol	- 4.33
Heptanol	- 4.94
Octanol	- 4.19
Nonanol	- 2.78
Decanol	- 6.74
Dodecanol	-13.17
Tetradecanol	-17.49
Hexadecanol	-18.67

¹ Vapor pressures were compared at thirteen points between 5 mm and 760 mm Hg pressure by subtracting the API value (<u>57</u>) from the experimental. The per cent difference was averaged for each compound.

<u>,</u>.....

The Antoine equation. In determining how well the experimental data was described by the Antoine equation one may refer to Table 11, page 95. It is seen that no trend existed between the average or maximum absolute error and the carbon number. This is true both for the n-alkyl chlorides and the n-alcohols. One would expect this to be the case since the instrument precision is not a function of boiling temperature, the only factor which varies.

Another aspect in analyzing the fit of the Antoine equation is how well it describes the data at any one of the two pressure extremes and whether there is a greater error of fit at any one extreme. This analysis was accomplished by averaging the absolute per cent error for the first three points of comparison, about 5, 10 and 15 mm Hg, and the last three points, about 300, 500 and 760 The results of this comparison are shown in Table mm Hg. 24, page 144. It may be noticed that there is no error trend at either high or low pressure with carbon number. There is, however, somewhat greater incidence of error at low pressures, as shown by comparison of the average error of the high and low pressure estimates. This might be expected since the pressure can be read to a higher degree of accuracy, on a per cent basis, at higher than at lower pressures.

Carbon No.	Pressure Est Average Absolute High	imate Error, ' Low	%
	n-Alkyl Chlorides	<u></u>	
3	.30	.70	
4	.67	.80	
6	.87	.63	
7	.37	.57	
8	.53	.80	
9	.37	.70	
10	.13	.33	
11	.27	.30	
12	.07	.33	
14	.57	.97	
16	1.07	.77	
Average	.47	.63	
	n-Alcohols		
3	.30	.70	
4	.70	.10	
5″	.30	.12	
6	.50	.90	
7	.33	1.23	
8	.50	1.20	
9	.43	.33	1
10	.63	1.83	
12	. 57	.33	
14	.70	1.37	
16	.40	2.03	
Average	. 54	.92	

Table 24: Antoine Equation - Error Analysis of Fit

<u>Decomposition of samples</u>. Because some of the organic materials studied were exposed to relatively high temperatures it was necessary to consider the problems of molecular degradation.

In considering the alcohols the most common decomposition reaction should be the dehydration to the corresponding olefin. This reaction takes place over an aluminum oxide catalyst at 350 to 450 degrees Centigrade, higher than the boiling temperatures of any alcohol tested.

Since none of the liquid is exposed to a catalytic surface during a vapor pressure determination by DTA, it is felt that no significant degradation occurs. This is verified by the constancy of the boiling points obtained for the alcohols.

The alkyl chlorides would most likely decompose to the olefin plus hydrogen chloride. A piece of moist litmus paper placed near the sample tube opening verified the production of HCl above 240 degrees Centigrade. This was also indicated by the formation of a cloud of white vapors in the working chamber. Chlorides heavier than chlorodecane were exposed to temperatures greater than 240 degrees Centigrade; the highest temperature was the normal boiling point of chlorohexadecane at 326.8 degrees Centigrade. Nonetheless, no boiling point range could be de-

145

tected with any of these compounds except chlorotetradecane and chlorohexadecane which contained small amounts of impurities. Therefore, it is concluded that decomposition took place only in the vapor and had no effect upon the recorded boiling point. Products of decomposition formed in the vapor phase had no opportunity to condense and to contaminate the boiling liquid with the present technique.

Density Correlation

<u>The effective chain length parameter</u>. It may be remembered from the "Correlation of Results" section, page 119, that the effective chain length, x, was described as a function of the carbon number to some power, y, in equation (81). This section also presented the method whereby the optimum power, y, was obtained. The following are the optimum values of y:

n-Alkanes	.57
n-Alkenes	.68
n-Alkyl Chlorides	.55
n-Alcohols	.20

It is of interest at this point to know how sensitive y is in the density correlation. In order to determine this sensitivity, y was perturbed from its optimum value. Using the perturbated value of y, the correlation was analyzed by making a point by point comparison between

At this time, one might ask why does the effective chain length vary as a function of the number of carbon atoms raised to a power rather than being a direct linear function. It must be remembered that the effective chain length, x, expresses the number of consecutive cells occupied by N carbon atoms. The cell size was defined as a volume slightly larger than that occupied by a methane molecule. Thus if each carbon group occupied an equal volume, a linear function would be in order. But this is not the case, since the end groups of a chain such as CH_3 -, are larger than the center $-CH_2$ - segments. As the chain becomes longer, the effect of these larger end Table 25: Perturbation of y

• · •

Series	Opt. V	Correl Eri Avg.%	Lation for Max.%	<u>∆Avg.% Error¹ ∧y</u>	$\frac{\Delta \text{Max.\% Error}^1}{\wedge y}$	Range
					1	
Alkanes	.57	.282	1.50	.201	.961	c ₂ - c ₁₈
Alkenes	.68	.752	2.69	.038	.975	c ₂ - c ₁₄
Alkyl Chlorides	.55	.059	.209	.003	.0093	c, c
Alcohols	.20	.369	.839	.304	.921	$c_2 - c_{18}$

∆y = .1

Table 26: Estimated Error When Using a Mean y

Series	Opt. y	Avg.Error %	Max.Error %	Avg. y	Avg.Error %	Max.Error %
Alkanes	.57	.282	1.50	.60	.342	1.23
Alkenes	.68	.752	2.69	.60	.782	3.47
Alkyl Chlorides	.55	.059	.209	.60	.061	.214

groups upon the chain length diminishes. One might also visualize that as a chain becomes longer it acquires a greater number of degrees of freedom, thereby allowing it to seek a lesser volume per number of carbon atoms in the chain. This effect manifests itself only during the addition of the first few carbon atoms, further addition only results in a more or less linear increase in effective length. Therefore, the effective chain length is best described as a power of N.

Different terminal groups on a molecular chain do not seem to influence the effective chain length as indicated by the almost identical chain length parameter, y, for the alkanes, alkenes, and alkyl chlorides. This might be expected since the per cent increase in chain length due to the substitution of a chlorine atom for a hydrogen atom quickly diminishes as the chain grows. The same reasoning may be applied to the difference in chain lengths between an alkene and alkane except in this case there is a decrease in length due to a loss of two hydrogen atoms, thereby inducing a greater attraction between the two affected carbon atoms.

The alcohols, however, provide a glaring exception to this generalization. Instead of a y of about .6 they produce a y of .2. If this was consistently the case,

one could attribute the exception to hydrogen bonding present in the alcohols. The effect of this bonding is a greater attraction between the molecules resulting in a more compact molecular structure which would manifest itself in a shorter effective chain length. But when the effective chain length parameters for the heats of vaporization correlation are examined, one finds they are all of the same order of about .68, including the alcohols. No reasonable explanation for this inconsistency can be offered at present.

Significance of correlation terms. It is of importance to determine if each term in the correlation is significant in comparison to the whole. Thus, if one term is consistently very small compared to the others, it might be neglected resulting in a simpler correlation. An analysis was made of each term at average conditions of 100 mm Hg vapor pressure for a chain of nine carbon atoms. An average chain length power of .60 was used for each of the series except for the alcohols where .20 was chosen. The results are given in Table 27, page 152. Note that each term is significant and must be retained in the correlation.

Heat of Vaporization Correlation

The heat of vaporization expression is given in terms

Table 27: Significance of Terms

Series	υ	D ln P	EX	Fx ln P	γ
n-Alkanes	1.1382	.3162	7335	1553	.60
n-Alkenes	1.1146	.3045	5322	1117	.60
n-Alkyl Chlorides	1.3960	.3832	9947	2706	.60
n-Alcohols	3.8072	.3200	-3.175	1860	.20

P = 100 mm HgN = 9

 $x = N^{y}$

152

•

of three constants as

$$E_{v} = A + Cx + Dx \ln P . \qquad (76)$$

It was found that for four different straight chain homologous series the effective chain length, x, could be expressed as the carbon number to the 0.675 power. Thus a very concise equation is given which will correlate the internal heat of vaporization of an entire homologous series as a function of the vapor pressure and the number of carbon atoms. Such an equation could be very easily stored in a computer memory along with the constants for different series, and called for whenever these data are It also serves as a useful equation in concisely required. expressing heat of vaporization data of homologous series in terms of one equation rather than expressing the data in terms of an equation such as equation (87), page 121. where the Antoine constants B and C must be given for each member of the series and a $\triangle Z$ must be determined.

Effect of terminal groups. It is of interest to look at the effects of the different terminal groups on the constant A. It may be recalled that A is the "heat of vaporization" when the number of carbon atoms is zero. For the alkane series, where there is no terminal group, the value of A is -304.91 cal./gm. mole. This would be only

about 3 per cent less than zero if an average heat of vaporization of 10,000 cal./gm. mole is chosen. Thus it is not unreasonable to say that A is practically zero. This would be reasonable in the sense that the only end group to give rise to a heat of vaporization is a hydro-The alkene series shows a slightly higher A gen atom. of 125.43 cal./gm. mole. Though the increase over the A for the alkane series is slight, it is felt that it is It could very well be attributed to the effect real. which the double bond has upon the increase of attraction between molecules. The increase in A for the alkyl chlorides is much more pronounced, the value being 3228.6 cal./gm. mole. Thus one might say that the Cl- group has an attractive energy equivalent to A. The alcohols again show a definite increase with an A value of 7341.2 cal./gm. This increase should definitely reflect the effect mole. of hydrogen bonding which exists between alcohol groups. Thus, from this correlation it is possible to obtain approximate additive values for the heat of vaporization for different organic groups. It is also of interest to note that as the chain length increases, the effect of a terminal group becomes smaller and smaller so that the heat of vaporization of higher members of different series approach the same value.

<u>Comparison with Nakanishi et al (48) correlation</u>. A correlation was presented by Nakanishi et al as shown below:

$$H_{v} = \frac{2128 n^{2/3}}{1+0.00512 n^{2/3} + (.0930)(\log P)} .$$
 (9)

This equation is discussed in the "Literature Survey", page 16. Although the authors correlated the external, instead of the internal, heat of vaporization with carbon number and vapor pressure, it is still of interest to find how well the equation given in this thesis compares with equation (9) in correlating heat of vaporization. The comparison was so made that an absolute per cent difference between the observed heat of vaporization and the computed value for the normal alkanes at the normal boiling point was obtained for each correlation. The results are shown in Table 28, page 156. It can be seen that no significant difference exists between the two correlations, although the average per cent error is somewhat lower with the modified Kurata-Isida equation (76).

Nakanishi has applied his equation to only the first nine members of the alkane series. It has been shown that the modified Kurata-Isida equation could be applied

Table 28:Comparison Between Observed and
Correlated Heats of Vaporization

;

.

Compound	Modified Kurata-Isida Equation (76) Abs. % Diff. E V	Nakanishi et al Equation (9) Abs. % Diff. H v
Methane	8.59	8.29
Ethane	3.51	4.73
Propane	1.45	2.39
Butane	.37	1.07
Pentane	.16	.49
Hexane	.04	.20
Heptane	.05	.90
Octane	.16	1.52
Nonane	.41	2.09
Average	1.64	2.19

successfully not only to the normal alkanes up to octadecane, but also to the normal alkenes, the normal primary alkyl chlorides and the normal primary alcohols. The average absolute error for all four series was 1.25 per cent.

A Corresponding State

It is of interest to note that in both the density and the heat of vaporization correlations, expressions presented themselves which were found to be constant, at a constant vapor pressure, for an homologous series. Both of these expressions, in general, included terms which are descriptive of the attractive energies between full cells.

The density equation (72) introduces Ψ/T as a constant at constant vapor pressure. Here Ψ represents the Helmholtz free energy change in separating two full cells by an empty cell. The temperature, T, may be considered as representative of the kinetic energy of the system. Thus, the ratio, $\Psi/2T$, quantitatively describes an energy level per cell which is constant at constant vapor pressure. In this sense one might look at vapor pressure as a corresponding state within an homologous series.

A similar situation exists for the heat of vaporization equation (74) where \hat{c} , the energy required to separate two full cells, is constant at a constant vapor pressure. Again, vapor pressure presents itself as a corresponding state.

In summation, it may be said that within any one homologous series the energy level per cell is constant when the vapor pressures are equal.

• • • •

CONCLUSIONS

 The molal liquid density of a straight chain organic homologous series may be expressed as a function of the vapor pressure and the number of carbon atoms in a chain with a maximum error in density of 2.69 per cent. The equation given as

$$\ln (T \rho_1) = C + D \ln P + E N^{y} + F N^{y} \ln P ,$$

where C, D, E, F and y are constants, was derived using the hole model of liquids. The constant y may be assumed as .60 except for highly associated series, such as the alcohols, where .20 must be used. The four other constants may be determined from a knowledge of a minimum of eight sets of data points for four members of a series and applying them in a multilinear regression analysis.

2. The internal heat of vaporization of a straight chain organic homologous series may be expressed as a function of the vapor pressure and the number of carbon atoms in a chain with a maximum error of 8.18 per cent and an average error of 1.25 per cent. The

equation given as

$$E_{y} = A + CN^{y} + DN^{y} \ln P$$

was obtained using the hole theory of liquids. The constant, y, is equal to .68 for the straight chain homologous series examined.

- 3. The boiling points of pure organic liquids may be determined by the method of DTA described in this thesis with an accuracy of ⁺.1 degree Centigrade C.I. (95%). This can be done between 5 and 760 mm Hg pressure for a temperature range of -40 to 325 degrees Centigrade.
- 4. Each vapor pressure determination by DTA may be made in about ten minutes. A sample volume of less than 10 micro-liters is usually sufficient, making the method ideally suited for determining vapor pressures
 of small gas chromatographic samples.
- 5. The DTA technique provides a method whereby vapor pressures of thermally unstable materials may easily be determined, even at temperatures where the rates of decomposition are high.
- 6. The DTA method provides a way of checking on the

purity of substances so that accurate vapor pressure data is insured.

RECOMMENDATIONS

- 1. Vapor pressures of many different homologous series should be obtained with the existing equipment. These data should be applied to the developed equations to test for further validity. Some modifications may have to be made in order to express the number of cells a molecule will occupy.
- 2. The existing equipment may be modified so that high vapor pressure data may be obtained.
- 3. The possibility of obtaining the bubble points of mixtures using the DTA equipment should be investigated.

NOMENCLATURE

E _v	=	internal heat of vaporization, cal./gm. mole
f	8	free energy per molecule related to intra- molecular freedoms
F	=	Helmholtz free energy
FI	N	intramolecular free energy
F_{MIX}^{E}	=	excess free energy of mixing
F ^{IDEAL} MIX	a	ideal free energy of mixing
h	=	number of holes in a liquid
h'	=	Planck's constant
$\triangle H_v$	=	external heat of vaporization, cal./gm. mole
k	=	Boltzmann constant
L _v	=	latent heat of unknown substance
L _{vR}	2	latent heat of reference substance
no	H	number of cells in a lattice
N	=	number of carbon atoms in a molecular chain
^N A	=	Avagadro's number
No	=	number of molecules in a system
Р	=	vapor pressure mm Hg
R	=	gas constant
$\triangle s_{MIX}$	=	ideal entropy of mixing holes with a perfectly arranged solid
∆s*	=	entropy of disordering a perfectly arranged

 $\Delta S'_{MIX}$ = ideal entropy of mixing holes with a randomly arranged solid $t = temperature, {}^{O}C$ $T = absolute temperature, {}^{O}K$ $T_{\rm b}$ = normal boiling point, ^OK v_g = volume per gaseous molecule v₁ = volume per liquid molecule v_{σ} ' = molal volume of the gaseous phase v_1 ' = molal volume of the liquid phase V = volume of the system or lattice W = total number of configurational combinations W_{MIX} = number of configurations possible in a mixture of empty and full cells $W_{H} = number of configurations possible for empty cells$ W_M = number of configurations possible for a per-fectly arranged crystalline solid lattice x = number of consecutive cells y = effective chain length power z = coordination number Z_{g} = gas compressibility factor Z_1 = liquid compressibility factor $\triangle Z$ = difference between gas and liquid compressibility factors \propto = number of cells available for each consecutive segment δ = frequency of a mole of vibration $X_{\rm M}$ = the highest value of X

 \mathcal{E} = internal energy

 $\hat{\theta}_{\rho}$ = Debye temperature

 μ = the chemical potential

 χ = total number of configurations of a molecular chain

$$f_{\ell}$$
 = liquid density, gm. mole/ml.

 γ = cell volume

 Ψ = an increase in free energy defined on page 31.
APPENDIX A

GENERAL COMPUTATIONS

CALCULATING INSTRUMENT PRECISION

Refer to data in Table 29, page 168.

Data Points m.v.	m.v m.v.	$(m.v \overline{m.v.})^2 \times 10^8$
2.8384	.0003	9
2.8403	.0016	256
2.8368	.0019	361
2.8395	.0008	64
2.8398	.0011	121
2.8401	.0014	196
2.8395	.0008	64
2.8391	.0004	16
2.8350	.0037	1369

$$\overline{\text{m.v.}} = 2.8387$$

$$\underline{\text{variance}} = s^2 = \sqrt{\frac{\sum (m.v.-\overline{m.v.})^2}{n-1}} = \sqrt{\frac{2456 \times 10^{-8}}{8}} = 17.521 \times 10^{-4}$$

where n = number of data points

<u>standard deviation</u> = s = +.0018 m.v.

<u>C.I. (95%)</u> = $\overline{m.v.}$ + ts = 2.8387 + (2.262)(.0018) = 2.8387 + .00407

where t is the Students T test factor from Volk (66).

Date	EMF m.v.	Pressure mm Hg
8/24/65	2.8384	233.8
8/26/65	2.8403	233.9
8/26/65	2.8368	233.9
8/27/65	2.8395	233.9
9/1/65	2.8398	233.8
9/7/65	2.8401	233.9
9/9/65	2.8395	233.7
9/22/65	2.8391	234.3
4/11/66	2.8350	233.9

o

.....

Table 29: Boiling Points of Water

DETERMINING THE EFFECT OF A CURVED SURFACE UPON VAPOR PRESSURE (25)

The difference between the vapor pressure of a liquid on a curved surface and that on a flat surface may be determined by the following equation:

$$\ln \left[\frac{P}{P_{o}}\right] = \left[\frac{2\chi}{r\rho}\right] \left[\frac{M}{RT}\right] ,$$

Let us consider water at 30 degrees Centigrade and a .01 cm. radius bead. Then

$$\ln \left[\frac{P}{P_{o}} \right] = \left[\frac{(2)(71.18 \text{ dynes/cm.})}{(.01 \text{ cm})(1 \text{ gm/cm.}^{3})} \right] \left[\frac{(18)}{(8.48 \times 10^{5} \text{ dynes-cm})(303^{\circ} \text{K})} \right]_{\text{mole}^{\circ} \text{K}}$$

$$\ln \left[\frac{P}{P_o}\right] = 2.3 \times 10^{-5}$$

Thus one can readily see that there is no significant difference in vapor pressures between the curved and flat surface.

COMPUTING MEAN FREE PATH (39)

The mean free path is given by the equation

$$\lambda = \frac{.707}{6n}$$

if a Maxwellian distribution of molecular velocities is assumed. For the purposes of this calculation, such an assumption is warranted.

> G = the collision cross section = $4 \pi r^2$ n = number of molecules per unit volume r = molecular radius

Assume an ideal gas of molecules with $r = 1.5 \times 10^{-7}$ mm at a pressure of 10 mm Hg and 25 degrees Centigrade.

$$\mathcal{S} = (4)(\pi)(1.5 \times 10^{-7} \text{ mm}) = 28.3 \times 10^{-14} \text{ mm}^2$$

n = 3.95×10¹⁴ molecules/mm³
 λ = .006mm \approx .01mm

APPENDIX B

THERMOCOUPLE CALIBRATION

Temperature, ^O C	EMF, m.v.
$\begin{array}{r} -39.34\\ -25.03\\ -4.05\\ +13.00\\ 20.57\\ 28.53\\ 38.29\\ 49.75\\ 62.77\\ 69.97\\ 78.49\\ 90.00\\ 110.04\\ 132.13\\ 140.27\\ 166.09\\ 181.17\\ 195.28\\ 215.50\\ 231.55\\ 266.90\\ 287.20\\ 305.90\\ 350.90\end{array}$	$\begin{array}{r} -1.4959 \\9674 \\1715 \\ +.5158 \\ .8161 \\ 1.1363 \\ 1.5330 \\ 2.0015 \\ 2.5380 \\ 2.8362 \\ 3.1892 \\ 3.6660 \\ 4.4993 \\ 5.4031 \\ 5.7296 \\ 6.7496 \\ 7.3462 \\ 7.9067 \\ 8.7038 \\ 9.3420 \\ 10.7626 \\ 11.5885 \\ 12.3546 \\ 14.1978 \end{array}$
350.90	14.1978

Table 30: <u>Thermocouple Calibration</u>

[Thermocouple EM	(F	
Run	at Boiling Poir	it Pressure	Boiling Point
No.	<u>m.v.</u>	mm Hg	oC
		Dentres e	
2215	1 / 050	<u>Pentane</u> 21.2	30 3/
221E	- 9674	51 1	-25 03
220E	- 1804	150.0	-23.03
219E	1715	152.0	-4.05
218E	.5781	346.2	14.85
223E	.7268	402.2	18.63
222E	1.4280	756.5	35.94
		Hexane	
225E	0989	40.0	-2.30
148E	.5198	88.0	13.00*
149E	.5140	87.3	
150E	.5135	87.5	
151E	.8155	124.3	20.5/*
152E	.8158	124.5	
155E	.0170	175 9	28 53*
155E	1,1365	175.9	20.55
156E	1.1370	175.9	
157E	1.5330	261.6	38.29*
158E	1.5341	261.7	
159E	1.5320	261.3	
160E	2.0007	401.8	49.75*
161E	2.0002	401.3	
162E	2.0038	402.2	60 77+
164F	2.5350	627.9	02.//*
165E	2.5398	628.2	
		• · -	
1		later	
	2.4204	149.0	60.02*
160F	2.420U 2.420U	149.4	
160E	2.4234	233.0	69 97*
170E	2.8363	233.5	
171E	2.8384	233.8	
181E	3.1892	334.0	78.49
1			

* The boiling temperature is given at an average pressure for a set of runs. The corresponding EMF used in the calibration is an average value for the set.

Table 31: Calibration Data

	Thermocouple EMF		
Run	at Boiling Point	Pressure	Boiling Point
NO.	m.v.	mm Hg	<u> </u>
1705	Water	<u>con't</u>	00 004
176	3.6660	525.7	90.00*
1746 175F	3 6655	526.1	
	3.0055	520.1	
	<u>m-X</u>	<u>Ylene</u>	
176E	4.5006	325.0	110.04*
1//E	4.4982	324.8	
170E	4.4990	324.9	122 12*
180E	5,4036	628.5	152.15
181E	5.4026	628.1	
10/17	<u>n-Octyl</u>	Alcohol	1/0 074
184E	5.7302	123.7	140.27*
185E	5,7283	124.0	
188E	6.7496	315.5	166.09*
189E	6.7495	315.5	
190E	6.7498	315.5	
191E	7.3460	507.5	181.17*
192E	7.3480	507.7	
194E	7.9071	760.0	195.28*
195E	7.9087	760.0	175120
196E	7.9042	760.0	
		•	
2025	8 1254 Benzop	<u>nenone</u> /17 5	200 65*
202E	8,1200	47.5	200.05*
204E	8.7054	76.0	215.50*
205E	8.7022	76.0	
206E	9.3435	123.5	231.55*
20/E	9.3405	123.4	266 00+
200E	10.7632	315.3	200.90*
210E	11.5881	506.9	287.20*
211E	11.5888	507.0	
212E	12.3570	759.0	305.90*
ZIJE	12.3322	104.0	

Table 31: Continued

APPENDIX C

.

۲.,

ORIGINAL EXPERIMENTAL DATA

¥ <u></u> *	Thermocouple EMF		
Run	at Boiling Point	Pressure	Boiling Point
No.	<u> </u>	mm Hg	<u> </u>
	1 Chia		
1095	- 9688	28.8	-25 1
110F	7611	39.9	-19.6
111F	5391	55.4	-13.7
112F	2798	79.5	-6.9
113F	+.0395	120.5	+1.2
114F	.4/82	200.2	12.1
115F	.000/	503.9	21.8
116F	1.3941	776.0	54.9 67 1
11/1	T.0322		→/ •⊥
	<u>1-Chlc</u>	robutane	
259F	6511	10.1	-16.7
260F	4169	15.2	-10.5
201r 262F	2312	29.0	-0.2
263F	-2395	40.2	6.2
264F	.4746	54.8	12.0
265F	.7814	79.8	19.7
266F	1.1460	121.6	28.8
267F	1.6461	203.1	41.1
268F	2.0641	302.0	51.3
209F 270F	3.1878	7.58.8	78.5
	1 Ch1c	rahavana	
131F	. 5937	5 0	15.0
132F	1.0635	10.4	26.7
133F	1.3212	15.0	33.1
134F	1.5440	20.1	38.6
135F	1.8786	30.1	46.7
130F 137F	2.1187	39.9	52.6
138F	2.7699	55.U 70 8	59./ 68./
139F	3.2309	125 6	79 5
140F	3.7746	203.2	92.6
141F	4.2710	305.7	104.6
142F	4.9200	500.9	120.3
143F	5.5439	774.0	135.6
1-Chloroheptane			
246F	1.3760	5.1	34.4
247F	1.8740	10.5	46.6

Table 32: Vapor Pressure Data for the Primary Alkyl Chlorides

- 1.

Run	Thermocouple EMF at Boiling Point	Pressure	Boiling Point
}	<u>1-Chloroher</u>	<u>otane_con't</u> .	
248F	2.1574	15.2	53.5
249F	2.3839	20.1	59.1 67.5
251F	2.9876	39.8	73.6
252F	3.2952	55.0	81.1
253F	3./046	81.9	90.9
255F	4.7260	203.0	115.6
256F	5.2312	302.6	127.9
257F	5.9190	502.5	145.1
2 301	0.3120	/ 53.4	100.1
	1-Chlore	o-octane	-
144F 145F	2.1814	5.6	54.1
145F	2.9355	15.3	72.4
147F	3.1787	20.3	78.2
148F	3.5438	30.3	87.1
149F	3.8090	40.1	93.4
151F	4.5266	80.5	110.7
152F	4.9791	121.2	121.8
153F	5.5862	201.0	136.7
155F	6.8028	501.0	167.4
156F	7.4642	773.2	184.1
	1-Chlord	ononane	
157F	2.7990	5.1	69.1
159F	3.2/6/	9.6 15 1	80.6 80 0
161F	3.8926	19.6	95.4
162F	4.2725	29.5	104.6
163F	4.5601	39.6	101.5
165F	4.0900 5,2 9 55	55.U 79.7	129.8
166F	5.7690	121.2	141.3
167F	6.3794	200.5	156.7
168F 170F	6.9150 8.2826	301.6 752 8	170.3
172F	7.6404	501.8	188.6
176F	2.8696	5.5	70.8
L			

Table 32: <u>Continued</u>

Run No.	Thermocouple EMF at Boiling Point m.v.	Pressure mm Hg	Boiling Point
	1-Chlor	odecane	
173F	3.5096	5.5	86.2
177F	4.0350	10.5	98.9
178F	4.3390	15.0	106.2
179F	4.6137	20.2	112.8
180F	5.0162	30.8	122.7
181F	5.2810	40.1	129.2
1935	6 02/3	54.7 80 0	137.1
184F	6.4830	120.5	159.3
185F	7.1310	201.6	175.7
186F	7.6785	301.4	189.5
187F	8.4326	501.5	208.6
188F	9.1055	754.7	225.6
1	1-Chloro	-undecane	
189F	4.1404	5.5	101.4
190F	4.6714	10.4	114.3
191F	5.0000	15.1	122.3
192F	5.2521	19.8	128.4
193F	5.65/2	30.1	138.5
194F	2.9380	39.8	145.0
195F	6 7087	22.0 91.0	104.0
1905	7 1724	120 5	176 8
198F	7.8456	203.0	193.7
199F	8.4345	308.0	208.7
200F	9.1836	499.1	227.6
201F	9.1848	499.8	227.6
202F	9.8980	763.0	245.4
	1-Chlord	dodecane	
215F	4.7447	5.5	116.0
216F	4.7483	5.6	116.1
217F	5.2372	10.0	128.1
218F	5.6027	15.1	137.1
219F	5.8/UY 6.2600	20.1	143.9 152 7
2205	0.2000 6 561/	27.7 /0 0	161 2
2225	6,9084	40.0 55 3	170 1
223F	7.3355	80.3	180.9

Ċ,

	Thermocouple EMF		
Run	at Boiling Point	Pressure	Boiling Point
NO.	<u>m.v.</u>	mm Hg	
		•	
00/7	<u>- 1-Chlorodode</u>	ecane con't.	
2248	/ • 8163	120.6	193.0
	8.5061	204.2	210.5
22275	9.0700	500.5	24.7
220F	10.6301	764.0	263.6
		10410	20010
	<u>1-Chlorote</u>	etradecane	
202F	5.7872	5.2	141.7
203F	6.3145	9.9	155.1
204F	6.6908	14.9	164.6
205F	0.9904 7 3601	20.4	181 8
200F	7,7232	41.0	190.7
208F	8,0550	55.2	199.1
209F	8.5064	80.0	210.5
210F	9.0353	122.4	223.8
211F	9.7870	203.8	242.6
212F	10.4123	311.2	258.2
213F	11.2000	498.4	277.7
214F	11.9889	/64.2	297.0
	1-Chlorof	nexadecane	
231F	6.7302	5.1	165.6
232F	6.7347	5.1	165.7
233F	7.3075	10.0	180.2
234F	7.7102	15.2	190.3
235F	7.7070	15.2	190.3
2301	/.9818	20.0	197.2
2375 2385	8 7288	30.2	200.3
239F	9,1052	54.8	225.6
240F	9.5813	79.9	237.5
241F	10.1344	122.2	251.3
242F	10.8986	204.6	270.2
243F	11.5045	295.5	285.1
244F	12.3969	501.5	306.9
2455	13.2105	/00.0	320.8

Table 32: <u>Continued</u>

D	Thermocouple EMF		Deilie Deine
No.	at Boiling Point m.v.	mm Hg	
5F	.7836	<u>anol</u> 14.9	19.8
6F	.7649	14.7	19.3
8G 10G	.9756	20.4	24.5
11G	1.2078	29.4	30.3
12G 13G	1.40/2	39.7 56.4	35.2
14G	1.9317	81.3	48.1
15G 16G	2.2335	120.4 199.4	55.4
18G	3.0297	300.0	74.6
19G 20G	3.5232	499.5	86.6 97.3
200	5 () ()		
8F	.8969	<u>5.5</u>	22.6
9F	1.2322	10.3	30.9
10F	1.4487	14.8	36.2 40.7
12F	1.9375	31.0	48.2
13F 14F	2.1109	39.6 55.3	52.4
15F	2.6614	81.4	65.8
16F 17F	2.9829	208.0	/3.5 85.1
18F	3.8243	303.5	93.8
19F 20F	4.3525 4.8181	507.0 766.0	106.5
	Dent	ana 1	
21F	1.3559	4.3	33.9
22F	1.8329	9.5	45.6
23r 31F	2.2894	19.8	56.7
32F	2.5708	29.4	63.6
34F	3.0415	54.8	74.9
35F	3.3788	82.7	83.1
	J.U747	117.1	20.7

Table 33: Vapor Pressure Data for the Primary Alkanols

Run	Thermocouple EMF at Boiling Point	Pressure	Boiling Point
<u>No.</u>	m.v.	mm Hg	
	Pentan	ol con't.	
37F	4.1801	200.0	102.4
38F	4.5933	302.0	112.3
39F	5.1435	502.1	125.8
40F	5.6368	765.4	138.0
	Hex	anol	
55F	2.1011	5.7	52.2
56F	2.4420	9.7	60.4
57F	2.7304	15.3	67.4
58F	2.9436	20.5	72.6
59F	3.2185	29.8	79.2
60F	3.4570	40.7	85.0
61F	3.1710	55.3	91.1
62F	4.0292	80.0	98.7
63F	4.3972	120.8	107.6
64F	4.8940	201.0	119.7
65F	5.3216	301.8	130.1
66F	5.8967	500.0	144.5
67F	6.4040	757.3	157.3
	Hep	tanol	
68F	2.5726	4.7	63.6
69F	3.0885	10.9	76.1
70F	3.3128	15.0	81.5
71F	3.5649	21.1	87.6
72F	3.8435	30.2	94.3
73F	4.0756	40.2	99.9
74F	4.3466	55.5	106.4
75F	4.6824	80.5	114.5
76F	5.0744	122.4	124.1
77F	5.5766	201.0	136.5
78F	6.0250	303.5	147.8
79F	6.6181	501.0	162.8
80F	7.1570	760.8	176.4
	Octa	anol	
96F	3.2076	5.3	78.9
97F	3.61 54	10.2	88.8
025	3,8902	15.0	95 A

	Thermocouple EMF		
Run	at Boiling Point	Pressure	Boiling Point
NO.	<u>m.v.</u>		
	Octano	l con't.	
99F	4.1456	21.0	101.5
100F	4.4305	30.0	108.4
101F	4.6596	39.5	114.0
102F	4.9410 5 3629	24.4	131 2
1051	5.5027	0.5.4	131.4
	Not	nanol	
273F	3.7351	5.6	91.7
278F	4.1685	10.5	
279F 280F	4.4307	20.3	114.4
281F	5.0051	30.2	122.4
282F	5.2655	40.6	128.8
283F	5.5494	55.5	135.8
284F	5.9044	80.4	144./
205r 286F	6 8628	201.4	169.0
287F	7.3456	302.4	181.0
288F	8.0142	502.5	198.0
289F	8.6268	763.9	213.6
	Dec	anol	
41F	4.2875	5.6	105.0
42F	4.6804	10.2	114.5
44F	4.9757	15.0	121.7
45F 76F	5.2046	20.1	127.3
40r 47F	5.8041	40.1	142.2
48F	6.1103	56.0	149.9
49F	6.4779	81.1	159.2
50F	6.8988	121.3	169.9
51F	7.4554	198.0	183.9
52r	8,6961	504.8	215.3
54F	9.3204	757.6	231.0
		-	
Q1 17	5 1720 Dode	canol 5 2	196 5
82F	5.6487	2.3 Q R	138 3
83F	5.9561	14.6	146.0

Table 33: Continued

	Thermocouple EMF		ين المراجع الم المراجع المراجع
Run	at Boiling Point	Pressure	Boiling Point
<u>No.</u>	m.v.	mm Hg	<u> </u>
	De de cer		
85F	6.6082	$\frac{101}{30.1}$	162.5
86F	6.8830	40.9	169.5
87F	7.1861	55.6	177.1
88F	7.5826	81.2	187.1
89F	8.0416	122.3	198.7
90F	8.0033 0.2163	201.3	214.5
92F	9.2103	503.7	220.4
93F	9.9920	499.0	247.7
94F	10.7026	766.0	265.4
95F	10.6980	766.0	265.3
	Totrod	loonno1	
332F	8.0584	<u>48.4</u>	199.1
333F	6.1757	5.2	151.6
334F	6.6260	10.5	163.0
335F	6.9426	15.3	171.0
336F	7.1799	19.9	177.0
33/F 220F		32.1	188.4
330F	9 1104	120 0	213.3
340F	9.8079	202.8	243.1
341F	10.3976	302.6	257.8
342F	11.2085	501.2	277.9
343F	11.9462	755.2	295.9
	Hexade	ecanol	
316F	6.9875	5.9	172.1
317F	7.5085	10.3	185.3
318F	7.8306	15.1	193.4
319F	8.1310	19.8	201.0
320F	8.52/0	30.1	211.0
321F	9,1709	40.4 55 3	218.0 227 3
326F	9.6290	80.3	238.7
327F	10.1456	120.3	251.6
328F	10.8610	200.5	269.3
329F	11.4995	302.1	285.0
330F	12.3555	502.4	305.9
331F	13.1424	/59.2	325.1
L	الم المحمد بالمراجع المراجع المراجع المحمد المحم	يد عال موج عد عند عند عند عبيبي عد كال ال	وروار المحادي الريار المحادين المراجع المحادي المراجع المحادي

Table 33: Continued

APPENDIX D

COMPUTER PROGRAMS

MULTIPLE LINEAR REGRESSION ANALYSIS OF THE ANTOINE EQUATION

Method

The basis for this computer program may be found on page 278 of Volk (<u>66</u>). Volk presents a complete set of equations which describe the solution for the regression correlation of two independent variables by the method of Gaussian multipliers. Statistical parameters useful in the analysis of the correlation are also presented. This information, in conjunction with the computer program, should adequately describe the method of correlation and data output.

Data Input

The program was written in Kingston Fortran and as such all data are in free format. The data input order is as follows:

- 1. listing of Student's probability factors for a probability of a deviation greater than t of .025.
- 2. number of compounds to be individually correlated
- 3. individual pressure temperature data points

NOMENCLATURE FOR THE MULTIPLE LINEAR REGRESSION OF THE ANTOINE EQUATION

TTEST = Listing of Student's probability factors

N = Number of data points

- CODE = Compound identification number
 - PI = Vapor pressure
 - TI = Temperature
 - CN = Number of carbon atoms
 - A = Constant of the linearized equation, Antoine constant A
 - B1 = Constant of the linearized equation
 - B2 = Constant of the linearized equation

ALO = Lowest value of A about 95% C.I.

- B1LO = Lowest value of B1 about 95% C.I.
- B2LO = Lowest value of B2 about 95% C.I.
 - AHI = Highest value of A about 95% C.I.
- BlHI = Highest value of Bl about 95% C.I.
- B2HI = Highest value of B2 about 95% C.I.
- SPC2 = Sum of squares of regression
 - R = Correlation coefficient
- S2YES2 = Residual sum of squares
- DFS2Y = Degrees of freedom
- S2YES = Variance of estimate

B = Antoine constant, B

C = Antoine constant, C

T(J) = Temperature

P(J)	Ξ	Calculated vapor pressure from determined Antoine equation
PXP	=	Experimental vapor pressure
PCER	=	Per cent error on the pressure estimate
GOOF	=	Error on the pressure estimate
AVERR	=	Total average absolute error
BIG	=	Maximum absolute error
AWOW		Per cent of errors under 5%
APOO	=	Per cent of errors over 10%

	COMPUTER PROGRAM		
	MULTIPLE LINEAR REGRESSION ANALYSIS OF THE ANTOINE EOUATION	9. KANY VINI VI DILAK KANGGU KANA YANG MININA MUTUKAN MUTUKAN	•
••••••••••••••••		PAGE O	12
	DIMENSION P(100),T(100),TINV(100),TERM(100),TTEST(35)		
•	$\frac{10 \text{ PEAD 2011}}{\text{TTEST(N)}}$		
30	OD READ 2011, THESTONY		
20	01 FORMAT(2N)		
<u></u>			
	DO 4 K=1, N		
	3 READ 202, PI, TI, CN		
20	02 FORMAT (3N)	1999 - 199 - 1999 - 1996 - 1996 - 1996 - 1996 - 1996 - 1997 -	
	IF(TI) 1, 3, 1		
	1 J = J + 1		
	P(J) = PI		
····	4 {J}=]		
	SY=0.0		
	SX1=0.0		
	SX2=0.0	ar f / Amerikan (j. j. ar f . an f . an f . an in a sa martan a Airgan ; a . a . a . a faar	
	DO 5 J=1, N		
	TERM(J)=LOGF(P(J))*0.43429	ananniart salais an san shaanni ti -ingissa aasaan	
	SY=SY+TERM(J)		
	TINV(J)=1.0/T(J)		••
	SX1=SX1+TINV(J)	1997 1 19 1 1974 1974 1974 1974 1974 197	
	5 SX2=SX2+TERM(J)*TINV(J)		
	YBAR=SY/EN		
	SPYX1=0.0		
	SPYX2=0.0		~
	SPX1X2=0.0		
••• ••	S2X2=0.0		•••
	S2X1=0.0		
	N=EN		
	DO 6 J=1, N		
	DELY=TERM(J)-YBAR		
	DELX1=TINV(J)-X1BAR		
	DELX2=TERM(J)*TINV(J)-X2BAR		
	SPV2=SPV2+DFI2V		
	SPYX1=SPYX1+DELY*DELX1		
	SPYX2=SPYX2+DELY+DELX2		•••
	SPX1X2=SPX1X2+DELX1*DELX2		
	S2X2=S2X2+DEL2X2		-
	S2X1=S2X1+DEL2X1		
	6 CONTINUE	1999 Hill I Inger van de er kenne fan Kaner oak herde Kaninger, gewyn angekaak we	-
	SPXX2=SPX1X2*SPX1X2		
	DENOM=S2X1*S2X2-SPXX2		
	B1=(SPYX1*S2X2-SPYX2*SPX1X2)/DENOM		
	BZ=(SPYX2*SZX1-SPYX1*SPX1X2)/DENOM		
	A=YBAK-B1#XIBAK-B2#XZBAK		

1		
		189
C		PAGE 0
C		SPC 2= B1 * SP YX 1+ B2 * SP YX 2
->=		R=(SPC2/SPY2)**0.5
()		DFS2Y=EN-3.0
		F=SQRTF(SPC2)/SQRTF(S2YES2)
12	1. T	S2YES=S2YES2/DFS2Y
1		
		GAUSI2=SPX1X2/DENOM
L		S2B1=S2YES*GAUS11
		S2B2=S2YES*GAUS22
		SDB1=SQRTF(S2B1)
<u>.</u>		N=DES2Y
		IF(N-30) 11, 11, 12
I.	11	GO TO 13
	12	IF(N-35) 14, 14, 15
r	14	N=30
1	15	10 10 13 IE(N=50) 16, 16, 17
	16	N=31
(GO TO 13
	17	IF(N-90) 18, 18, 19
1	18	
<u></u>	19	10 10 15 IE(N-150) 20, 20, 21
	20	N=33
(GO TO 13
	21	
i .	13	BIHI=BI+SDBI*TTEST(N)
		B2LO=B2-SDB2*TTEST(N)
		B2HI=B2+SDB2*TTEST(N)
**		ALO=YBAR-B1HI*X1BAR-B2HI*X2BAR
		AHI=YBAR-B1LO*X1BAR-B2LO*X2BAR
T	203	FORMAT(33HTHE LINEAR FOUATION FOR COMPOUND . F6.0.3H IS)
	200	PUNCH 204. A. B1. B2
	204	FORMAT(5X,9HLOG (P)= ,E14.8,1X,1H+,E14.8,8H*(1/T) +,E14.8,
1	2	210H*(LOGP/T))
	205	PUNCH 205
Ť	209	PUNCH 206. ALD. AHI
	206	FORMAT(5X,3HA= ,E14.8,4H TO ,E14.8)
		PUNCH 207, B1LO, B1HI
4	207	FURMAI(5X,4HB1= ,E14.8,4H TU ,E14.8)
	208	FORMAT(5X.44HB2= $_{0}$ F14.8.4H T() $_{0}$ F14.8)
	200	PUNCH 209
	209	FORMAT(/7X,43HANALYSIS OF VARIANCE OF THE LINEAR EQUATION)
	<u></u>	PUNCH 210, EN
**	210	FURMAT(/8X,F6.0,11HDATA POINTS)
		PUNCH 211, SPLZ

		P		4 -	10	•
	1977 - 178 - 178 - 198 - 1989 - 1989 - 198 - 198 - 198 - 198 - 198 - 198 - 198 - 198 - 198 - 198 - 198 - 198 -				190	9
			ар уни 1940 - а баар А.А.Кана стат Таланан Талан т		rn	PΔG
	211 50			OF PECPESSION-	E14 8)	
		INCH 212 D	SUM UF SQUARES	OF REGRESSION-	901400	
	212 FC	NGH 2129 K 18MAT(8X.27HCC	BRELATION COE	EFICIENT R= .EI	0.7)	
	PL	INCH 213. S2Y	S2. DFS2Y			
	213 FC	RMAT(8X,25HR	SIDUAL SUM OF	SQUARES= ,F10.	7,5H FOR ,F6.0,	
	219	H DEGREES OF	FREEDOM)			
	Pl	JNCH 214, F				
	214 FC	RMAT(8X,28HF	TEST FOR SIGN	IFICANCE, F= ,F	8.2)	
		INCH 215, DFS2				
	215 FL	IRMAI (8X, 38HCL	INSULT VULK PA	GES 148 151, F2	= 2,FI= ,F6.0	
. <i></i>		JNCH 216				مراجعه من مركبة من المرجع المرجع من من من المرجع من
	210 FL DI	INCH 217, S2V	C FIND PRODADI	LIFT UP A LARGE	K VALUE UF F)	
	217 FC	RMAT (8X, 22HV)	ARTANCE DE EST	IMATE= . E14.8)	адар на полити на полити и име в и вели и на току и току и току и на стали и на таки и следни и на току и и на П	
	Pl	INCH 218 • S2B	• S2B2	INATE YEINOV		
	218 FC	RMAT (8X, 35HV	ARIANCE OF REG	RESSION COEFFIC	IENTS,/12X,	
	210)HS**2(B1)= ,	E14.8/12X,10HS	**2(B2)= ,E14.8)	
	Pl	JNCH 219	ing an an agent agent say garant san a haap aan da aarda oon bo 4 mart 1996 da yay na aqonayaa da b	99 82 8 74 5 92 4 8 94 14 4 8 14 14 8 14 14 8 14 14 14 14 14 14 14 14 14 14 14 14 14		
	219 FC	DRMAT(///5X,2	SHTHE ANTOINE	CONSTANTS ARE)		
	C=	-1.0*B2				
	B		~ ~ ~			
		UNCH ZZU, A, I	39 U N = E16 0 /10V	240- E1/ 0 /1	OV 240- E14 9)	
		INCH 221	$A = 9 E I 4 \cdot 8 9 / 10 X$	90ND= 9014.09/1	UX,5HU= ,E14.01	
	221 FC	NCH 221 NRMAT(///2X.39	HERROR ANALYS	IS OF THE PRESS	URE ESTIMATE./)	
	B	G=0.0				a ann - a a d d d a - an cana - abh an - a - a - a
	SI	JMPE=0.0			•	
	M	0=0				
	M	5=0	an a firm, and any distribution of the reaction of the first state of the second state of		un anna an ann an an an an an an an an an	
	Pl	JNCH 222				_
	222 FL	IRMAT(2X, /1HT	MP C P XPER	P CALC ERR	UR PCERR	2
	211	MP CAL DI	-F (/)			
:	5 U N -	JMS=0.0	• ··· · · ·			F. F. F. M. MCC. International Contraction Communications.
	יעי	- LIN) 117 I=1, N				
***	P	(P=FXPF((A-B/	(T(.1)+C.))*2.30	259)		
	T	CAL=B/(A434	29*LOGF(P(J)))	-C		
	GC	OF = PXP - P(J)				
	FC	OG=T(J)-TCAL	· · · · · · · · · · · · · · · · · · ·			
	P(CER=GOOF*100.	D/P(J)			
	: ۲ ۱	= P (J) / P X P		an an anna anna anna anna anna anna an		
	AI	SSEREADSF(PUE)	<) 50. 61. 61			
	40 M	(AD3LK-J.0)	50, 01, 01			
	.M 00 Gl	TO 62				
	61 II	(ABSER-10.0)	62, 62, 63			
	63 M	10 = M10 + 1				
	62 SI	JMPE=SUMPE+AB	SER	ana ayaya biyaya kara manan karana ayan yanaya wwana w	a mana manana manang karang mananan ang sangkan nang pang pang pangkan nangkan nangkan nangkan nangkan nangkan	And and a state of the state of
	S	JMS=SUMS+GOOF				
	PI	JNCH 223, T(J), P(J), PXP,	GOOF, PCER, Z,T	CAL,FOOG	
··	223 F	DRMAT(2X,F6.1	, 3X , F6 . 1 , 3X , F6	•1,3X,F6.1,3X,F	7.1,3X,F6.3,4X,	F7.2,5X,
	2F0		117 117 40			
	1	- (ADSEK-BIG)	1119 1119 49		n man kanalanan kanalanan kanalan kana	and any server and a second distance of the second

 		_	-
-	~		
	u		
	-7		
	_		

.

C			PAGE 0
(°,	. 49	BIG=ABSER	
<u>\.</u>	117		
(:		PUNCH 227. AVERR	
ς.	227	FORMAT(/2X,24HAVERAGE ABSOLUTE ERROR= ,F8.5,8H PERCENT)	
		PUNCH 228, BIG	
(228	FORMAT(2X,24HMAXIMUM ABSOLUTE ERROR= ,F8.5, 8H PERCENT)	n a constant a constant to the activity
		GOOD=M5	
($\Delta P \Omega \Omega = B \Delta D / F N * 100.0$	
V		AWOW=GODD/EN*100.0	
		PUNCH 229, AWOW, APOO	
(229	FORMAT(2X,F6.1,35H PERCENT OF ERRORS UNDER 5 PERCENT, ,	
	:	2F5.1,24H PERCENT OVER 10 PERCENT)	
(SU=SWRIF(SUMS/(EN=1.0)) ENN=EN-1.0	
V,		N=FNN	
		RANGE=SD*TTEST(N)	
(PUNCH 230	
	230	FORMAT(2X,48H95 PERCENT CONFIDENCE RANGE OF VAPOR PRESSURE IS)	
		PUNCH 231, RANGE	
(231		
	232	FORMAT(/5X,33H''''''''''''CASE COMPLETE'''''''''''''''''''''''''''''''''''	
(2011	FORMAT(1N)	
		GO TO 300	
		END	
(
	*******		-1997 1997 - 1997 - 1998 - 1998 - 1999 - 1997 - 1988 - 1997 - 1998 - 199
(
(
(
			····
(
			· ···
(
			tar Baller L. A., Yug B. An Is and a star star of a sub-sub-star star
(
		······································	
،			
(
4			
Ne		· · · · · · · · · · · · · · · · · · ·	

ņ

C

MULTIPLE LINEAR REGRESSION OF THE MODIFIED KURATA-ISIDA HEAT OF VAPORIZATION EQUATION

Method

The identical method of correlation as applied to the Antoine equation is used here. The method again is shown very clearly by Volk (<u>66</u>) on page 278.

Data Input

The program is written in Kingston Fortran so that the data input is in free format. The order of input is as follows:

 listing of Student's probability factors for a probability of a deviation greater than t of .025

2. vapor pressure

3. number of compounds to be correlated

4. homologous series identification number

5. number of carbon atoms of each compound

6. the Antoine constants for each compound

7. the effective chain length power

NOMENCLATURE FOR THE MULTIPLE LINEAR REGRESSION OF THE MODIFIED KURATA-ISIDA HEAT OF VAPORIZATION CORRELATION

TTEST = Listing of Student's probability factors

PP = Vapor pressure

L = Number of compounds

SERIES = Homologous series identification number

CN = Number of carbon atoms

CODE = Compound identification number

A,B,C = Antoine constants

PW = Chain length power

AA, B1, B2 = Linearized equation constants

ALO = Lowest value of AA about 95% C.I.

BlLO = Lowest value of Bl about 95% C.I.

B2LO = Lowest value of B2 about 95% C.I.

AHI = Highest value of AA about 95% C.I.

BlHI = Highest value of Bl about 95% C.I.

B2HI = Highest value of B2 about 95% C.I.

SPC2 = Sum of squares of regression

R = Correlation coefficient

S2YES2 = Residual sum of squares

DFS2Y = Degrees of freedom

A,B,C = Modified Kurata-Isida equation constants

X1LV = Experimental heat of vaporization

CX1LV = Calculated heat of vaporization

GOOF = Error on heat of vaporization estimate

PCER = Per cent error on heat of vaporization estimate

COMPUTER PROGRAM 195 MULTIPLE LINEAR REGRESSION OF THE MODIFIED KURATA-ISIDA HEAT OF VAPORIZATION EQUATION

PAGE 0

	DIMENSION P(9,20),PP(9),C(20),CN(20),TC(9,20),CODE(20),A(20),B(20)
2	2,XILV(9,20),X(20),TTEST(34)
	DO 600 N=1,34
600	READ 601, TTEST(N)
601	FORMAT(1N)
	DO 200 J=1,9
200	READ 201, PP(J)
201	FORMAT(1N)
	READ 2039 L
203	FURMAI(IN)
	READ JULY SERIES
301	FURMAT(IN)
204	READ ZUO9 UN(N)
200	
405	$ \begin{array}{c} READ \ \ FOD \ \ FOD \$
405	
	DU = 204 = J = 199
	$\frac{7}{7} \frac{1}{10} $
204	$\frac{1}{2} \left[\frac{1}{2} \left$
204	1000000000000000000000000000000000000
	D0 + R = 1, C
	$T_{k} = T_{k} (1 - k) + 272 T_{k}$
	$TB = TC(9 \cdot K) + 273 \cdot 16$
	$TR = T\Delta/TB$
	IF(TR99)6.5.5
5	DZ= 95
an ann anaite an Shine ann a sann a shine ann an Anthon	GO TO 10
6	IF(TR-,96)8,7,7
7	DZ = • 96
	GO TO 10
8	IF(TR92)11,9,9
9	DZ = • 97
	GO TO 10
11	IF(TR87)13,12,12
12	DZ = • 98
	GO TO 10
13	IF(TR79)15,14,14
14	DZ = •99
	GO TO 10
15	IF(TR74)16,16,16
16	DZ = 1.00
	GO TO 10
10	R=1.987
	XLV=((2.303)*(R)*(TA**2.0)*(B(K))*(DZ))/((TN+C(K))**2.0)
4	XILV(J,K) = XLV - DZ * R * TA
د. ای میچ در این این این ا	EN=9×L
111	READ 205, PW
205	FURMAI(IN)
	5X1=U•U
	······································

.		·	PAGE 01
r		\$X2=0.0	
P		DD 300 K=1.L	
		X(K) = CN(K) * PW	
t -		DO 300 J=1,9	
•		SY=SY+XILV(J,K)	
		SX1=SX1+X(K)*LOGF(P(J,K))	
ľ.	300	SX2=SX2+X(K)	
		YBAR=SY/EN	
.		X1BAR=SX1/EN	
K.		X2BAR=SX2/EN	
		SPY2=0.0	
8 .		SPYX1=0.0	
<u>I. </u>		SPYX2=0.0	
		SPX1X2=0.0	
\$		S2X2=0.0	
•		DU 701 K = 1 C	
t.			
L		$\frac{DEV(3)K}{V}$	
		DELX2=X(K) = X2BAR	
í ······			
ha			
1 48-1 -1			
ſ		SPY2=SPY2+DEL2Y	
L		SPYX1=SPYX1+DFLY*DFLX1	and a second
		SPYX2=SPYX2+DELY*DELX2	
(SPX1X2=SPX1X2+DELX1*DELX2	ант ба такта на страните на селото со селото се то селото на селото на селото селото селото селото селото на се Спорт
•		S2X2=S2X2+DEL2X2	
4	701	S2X1=S2X1+DEL2X1	
Ũ		SPXX2=SPX1X2*SPX1X2	
		DENOM=S2X1*S2X2-SPXX2	
		B1=(SPYX1*S2X2-SPYX2*SPX1X2)/DENOM	
(B2=(SPYX2*S2X1-SPYX1*SPX1X2)/DENOM	l
		AA=YBAR-B1*X1BAR-B2*X2BAR	
		SPC2=B1*SPYX1+B2*SPYX2	
(R=(SPC2/SPY2)**0.5	· · · · · · · · · · · · · · · · · · ·
		S2YES2=SPY2-SPC2	
		DFS2Y=EN-3.0	
		F=SQRTF(SPC2)/SQRTF(S2YES2)	
		S2YES=S2YES2/DFS2Y	
ć		GAUS11=S2X2/DENDM	
(
,		5201=521E5*GAUS11 	
ť,		SDR1 = SODTE(S2R1)	
		SDB1-SWRTF(S2B1)	
5-		N=DFS2Y	
		TF(N=30)31,31,32	······································
	21	CO TO 33	
ſ.	27	$IE(N-35)34 \cdot 34 \cdot 35$	and the second
i.	34	N=30	

Ľ

r

Ĉ

PAGE 0 GO TO 33 35 IF(N-50)36,36,37 36 N=31 GO TO 33 37 IF(N-90)38,38,39 38 N=32 GO TO 33 39 IF(N-150)30,30,41 30 N=33 GO TO 33 41 N=34 33 B1LO=B1-SDB1*TTEST(N) B1H1=B1+SDB1*TTEST(N) $B2LO = B2 - SDB2 \times TTEST(N)$ B2H1=B2+SDB2*TTEST(N)ALO=YBAR-B1H1*X1BAR-B2H1*X2BAR AHI=YBAR-B1LO*X1BAR-B2LO*X2BAR PUNCH 303, SERIES, PW 303 FORMAT(31HTHE LINEAR EQUATION FOR SERIES , F7.2, 3H IS,/ 2,5X,7HX=CN**,F7.4,/) PUNCH 304, AA, B1, B2 6HINHV= ,E12.6,3H + ,E12.6,4HXLNP,3H + ,E12.6,1HX,//) 304 FORMAT(PUNCH 402 402 FORMAT(75X,36HTHE 95 PERCENT CONFIDENCE LIMITS ARE) PUNCH 406, ALO, AHI 406 FORMAT(5X, 3HA=, E14.8, 4H TO, E14.8) PUNCH 407, B1L0, B1H1 407 FORMAT(5X,4HB1= ,E14.8,4H TO ,E14.8) PUNCH 408, B2L0, B2H1 408 FORMAT(5X,4HB2= ,E14.8,4H TO ,E14.8,/) PUNCH 20 20 FORMAT(17X,43HANALYSIS OF VARIANCE OF THE LINEAR EQUATION) PUNCH 21 21 FORMAT(17X,43H----./) PUNCH 22, EN 22 FORMAT(18X, F6.0, 11HDATA PUINTS/) PUNCH 211, SPC2 211 FORMAT(8X, 30HSUM OF SQUARES OF REGRESSION= ,E14.8) PUNCH 212, R 212 FORMAT(8X,27HCORRELATION COEFFICIENT R= ,F10.7) PUNCH 213, S2YES2, DFS2Y 213 FORMAT(8X,25HRESIDUAL SUM OF SQUARES=,E14.8,5H FOR ,F6.0, 219H DEGREES OF FREEDOM) PUNCH 214, F 214 FORMAT(8X,28HF TEST FOR SIGNIFICANCE, F= ,F8.2) PUNCH 215, DFS2Y 215 FORMAT(8X,38HCONSULT VOLK PAGES 148-151, F2= 2,F1= ,F6.0) PUNCH 216 216 FORMAT(8X,42HTO FIND PROBABILITY OF A LARGER VALUE OF F) PUNCH 217, S2YES 217 FORMAT(8X,22HVARIANCE OF ESTIMATE= ,E14.8) PUNCH 218, S2B1, S2B2 218 FORMAT(8X,35HVARIANCE OF REGRESSION COEFFICIENTS,/12X,

	198	
		PA
2	10HS**2(B1)= ,E14.8/12X,10HS**2(B2)= ,E14.8,//)	
	PUNCH 501	
501	FORMAT(///5X,29HTHE KEMME-KREPS CONSTANTS ARE)	
	PUNCH 502, AA, B1, B2	
502	FORMAT(/10X3HA= ,E14.8,/10X,3HB= ,E14.8,/10X,3HC= ,E14.8,)	
502	PUNCH 503	
202	PURMAIL/// 22, 40HERRUR ANALTSIS UP THE INT. HEAT UP VAP. ESTIMATE/	
	SUMPE=0.0	
	M10=0.0	
	M5=0.0	
	PUNCH 504	
504	FORMAT(2X,69HTEMP C INHV XP INHV CAL ERROR PC ERR Z	
ć	2 PRESSURE MM HG,/)	
	SUMS=0.0	
	DU 506 K=1, L	
607	PUNCH 507, CUDE(K)	
507	FURMAT(23X) = SHUUMPUUND + F(-2)	
	$CYIIV = AA + B1 \times Y(K) \times IOCE(P(1,K)) + B2 \times Y(K)$	
	GOOF = CXIIV - XIIV(.1 K)	
	$PCER = GOOF * 100 \cdot 0 / XILV(J \cdot K)$	
	$Z = X I L V (J \cdot K) / C X I L V$	
•	ABSER=ABSF (PCER)	
	IF(ABSER-5.0)60,61,61	
60	M5=M5+1	
	GO TO 62	
61	IF(ABSER-10.0)62,62,63	
63		
62		
	$PUNCH = 508 \cdot TC (J \cdot K) \cdot X I V (J \cdot K) \cdot C X I V \cdot GOOF \cdot PCFR \cdot 7 \cdot P (J \cdot K)$	
508	FORMAT($2X \cdot F6_{-1} \cdot 2X \cdot F10_{-3} \cdot 1X \cdot F10_{-3} \cdot 1X \cdot F9_{-3} \cdot 1X \cdot F7_{-2} \cdot 1X \cdot F7_{-4} \cdot 1X \cdot F8_{-2}$)	
	IF(ABSER-BIG)506,506,56	
56	BIG=ABSER	
506	CONTINUE	
	AVERR=SUMPE/EN	
	PUNCH 57, AVERR	
57	FURMAI(/12X,24HAVERAGE ABSOLUTE ERROR= ,F10.5,8H PERCENT)	
EO	PUNCH DO; BIG FORMAT(102 26UMAXIMUM ADCOUNTE ERROR— E10 E ON DERCENT)	
20	GODDEM5	
	BAD=M10	
	APO0=BAD/EN*100.0	
	AWOW = GOOD/EN*100.0	
	PUNCH59,AWOW,APOO	••
59	FORMAT.(2X,F6.1,35H PERCENT OF ERRORS UNDER 5 PERCENT, ,	
	2F5.1,24H PERCENT OVER 10 PERCENT/)	
	SU=SWKIF(SUMS/(EN-1.0))	
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	-
40	CΠ TΠ Δ2	
70		

	PAGE 0
91 IF(N-35)43,43,44	
43 N=30	
44 IF(N-20/42942940 45 N-21	
$\frac{45}{10-51}$	
46 IE(N-60)47.47.48	
47 N=32	
GO TO 42	
48 IF(N-150)49,49,50	
49 N=33	
GO TO 42	
50 N=34	
42 CUNTINUE PANCE=SD+TTEST(N)	
PLINCH 51	
51 FORMAT(2X,51H95 PERCENT CONFIDENCE RANGE OF F	EAT OF VAPORIZATION)
PUNCH 52, RANGE	
52 FORMAT(8X,7HD +OR- ,F7.4)	
PUNCH 53	
53 FORMAT(25X,33HCASE COMPLETE	///)
······································	
	·
-	
······································	a and an analysis water water a construction of an antipartic state of the state of the state of the state of t
·· ·· · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
······································	
	anna an
	····· · · · · · · · · · · · · · · · ·
······································	· · · · · · · · · · · · · · · · · · ·

-

....

•---•

. . .

....

MULTIPLE LINEAR REGRESSION OF THE KEMME-KREPS DENSITY EQUATION

<u>Method</u>

The regression correlation is solved using the equations shown by Volk (<u>66</u>) pages 262 and 287. The program was written in Fortran II-D incorporating fourteen significant figures in the floating point variables. Because the program required more core storage than was available, it was divided into sections and stored in disc storage. Thus each section was called from the disc into core storage, the statements carried out, and placed back into the disc. The different sections may be identified in the computer program as REPEAT, MAIN, ADDD, BDDD and CDDD.

Data Input

The following order was used for the data input. Data format as shown in the program must be used.

- listing of Student's probability factors for a probability of a deviation greater than t of .025
- 2. point by point error analysis, yes or no indicated by 2 or 1 respectively

\$

- 3. homologous series identification
- 4. number of compounds
- 5. Antoine constants for each compound

6.	number of	carbon	atoms,	molecula	ar weight
	and numbe	r of dat	ta point	s per co	ompound

7. density-temperature data

8. effective chain length power
NOMENCLATURE FOR THE MULTIPLE LINEAR REGRESSION OF THE KEMME-KREPS DENSITY EQUATION

- TTEST = Listing of Student's probability factors
- CHOICE = Variable to indicate whether a point by point error analysis is to be carried out
- SERIES = Homologous series identification number
 - K = Number of compounds
 - CODE = Compound identification number
- AA, BB, CC = Antoine constants
 - CN = Number of carbon atoms
 - W = Molecular weight
 - EN = Number of data points per compound
 - TC = Temperature
 - TERM = Density
 - PW = Chain length power
 - A = Constants for the Kemme-Kreps equation
 - Bl = Constants for the Kemme-Kreps equation
 - B2 = Constants for the Kemme-Kreps equation
 - B3 = Constants for the Kemme-Kreps equation
 - SEN = Total number of data points
 - SPC2 = Sum of squares of regression
 - R = Correlation coefficient
 - S2YES2 = Residual sum of squares
 - DFS2Y = Degrees of freedom
 - GOOF = Error on density estimate
 - PCER = Per cent error on density estimate

AVERR = Average absolute error

BIG = Maximum absolute error

PAGE 0 COMPUTER PROGRAM MULTIPLE LINEAR REGRESSION OF THE KEMME-KREPS С DENSITY EQUATION С EL. С С С CALL LINK (REPEAT) *LDISKREPEAT DIMENSION AA(20),BB(20),CC(20),CN(20),W(20),EN(20),TC(20,12), TA(20,12),DM(20,12),P(20,12),X(20),TERM(20,12), 2 3TTEST(34) COMMON AA, BB, CC, CN, W, EN, TC, TA, DM, P, X, TERM, TTEST, SERIES, K, SEN, 2N,SY,SX1,SX2,SX3,X1,X2,YBAR,X1BAR,X2BAR,X3BAR,SPY2,SPYX2,SPYX3, 11 3SPYX1, SPX1X2, SPX2X3, SPX1X3, SP2X1, SP2X2, SP2X3, DELY, DELX1, DELX2, 4DELX3,DEL2Y,E,Y,Z,S,R,T,U,Q,F,B1,B2,B3,A,SPC2,S2YES2,DFS2Y COMMON_____D, BIG, SUMPE, M10, M5, SUMS, PXP, GOOF, PCER, ABSER, AVERR, 1GOOD, BAD, APOO, AWOW, SD, ENN, RANGE, S2YES, B, C, DXP, PW, CHOICE, PASS PASS=0.0CALL LINK (MAIN) JOB FOR 3 *FANDK1404 *LDISKMAIN 1]. DIMENSION AA(20), BB(20), CC(20), CN(20), W(20), EN(20), TC(20, 12), 2 TA(20,12), DM(20,12), P(20,12), X(20),TERM(20,12), <u>3TTEST(34)</u> COMMON AA, BB, CC, CN, W, EN, TC, TA, DM, P, X, TERM, TTEST, SERIES, K, SEN, 2N, SY, SX1, SX2, SX3, X1, X2, YBAR, X1BAR, X2BAR, X3BAR, SPY2, SPYX2, SPYX3, 3SPYX1, SPX1X2, SPX2X3, SPX1X3, SP2X1, SP2X2, SP2X3, DELY, DELX1, DELX2, 4DELX3, DEL2Y, E, Y, Z, S, R, T, U, Q, F, B1, B2, B3, A, SPC2, S2YES2, DFS2Y D, BIG, SUMPE, M10, M5, SUMS, PXP, GOOF, PCER, ABSER, AVERR, COMMON 1GOOD, BAD, APOO, AWOW, SD, ENN, RANGE, S2YES, B, C, DXP, PW, CHOICE, PASS IF(PASS-1.0)7000,7000,3000 7000 DO 10 N=1,34 10 READ 2011, TTEST(N) 1.1. 2011 FORMAT(F7.4) 300 READ 301, SERIES 301 FORMAT(F5.1) READ 302, K 302 FORMAT(F5.1) SEN=0DO 2 L=1, K READ 303, CODE, AA(L), BB(L), CC(L) 303 FORMAT(F7.1,F10.5,F10.5,F 10.5) READ 304, CN(L), W(L), EN(L)304 FORMAT(F4.1,F10.5,F10.5) N = EN(L)111 DO 3 J=1,N READ 305, TC(L,J), TERM(L,J)

		205	
111			PAGE 0
	305	EOPMAT(E7, 1, E7, 6)	
	505	$T_{A}(1 - 1) - T_{C}(1 - 1) + 273 - 16$	· .
		DM(1, 1) = TERM(1, 1) / W(1)	
	3	$P(1 \bullet J) = FXPF((AA(1) - BB(1))/(TC(1 \bullet J) + CC(1)))*2 \bullet 30259)$,
	2	SEN=SEN+EN(L)	
	3000	READ 556, PW	
	556	FORMAT(F10.7)	
		READ 555, CHOICE	
	555	FORMAT(F10.7)	
5 k		TERM(L,J)=0.0	······································
		SY=0.0	
		SX1=0.0	
		SX2=0.0	
		SX3=0.0	
		$DO_4 L=1, K$	
		$\frac{DU \ 5 \ J=1}{N}$	
		$FERM(L,J) = LUGF(TA(L,J) \times DM(L,J))$	
		SI = SI + IEKM(L, J)	
- 1º E		XI = CUGP(P(L,J))	
• • • •		$3^{1-3^{1+\sqrt{1}}}$	
		SY2 = SY2 + SY2	
	5	$5x^{2}-5x^{2}+x^{2}$	
	4	CONTINUE	
	· · · ·	YBAR=SY/SFN	
		X1BAR=SX1/SEN	
		X2BAR=SX2/SEN	
		X3BAR=SX3/SEN	
		SPY2=0.0	
		SPYX1=0.0	
		SPYX2=0.0	
1. I.		SPYX3=0.0	
		SPX1X2=0.0	
		SPX2X3=0.0	
		SPX1X3=0.0	
		SP2X1=0.0	
		SP2X2=0.0	
c		CALL LINK (ADDD)	
بە			
~~~	LU13	DIMENSION AA(20) RR(20) CC(20) CN(20) $W(20)$ EN(20) TC(20, 12)	
1.1.		$\frac{1}{2} = \frac{1}{2} + \frac{1}$	
		3TTEST(34)	
		COMMON AA-BB-CC-CN-W-EN-TC-TA-DM-P-X-TERM-TTEST-SERIES-K-SEN-	
		2N. SY. SX1. SX2. SX3. X1. X2. VBAR, X1BAR, X2BAR, X3BAR, SPY2. SPX2. SPX3.	
		3SPYX1. SPX1X2. SPX2X3. SPX1X3. SP2X1. SP2X2. SP2X3. DELY. DELX1. DELX2.	
		4DELX3, DEL2Y, F, Y, Z, S, R, T, U, Q, F, B1, B2, B3, A, SPC2, S2YES2, DFS2Y	
		COMMON D.BIG.SUMPE.M10.M5.SUMS.PXP.GOOF.PCER.ABSER.AVERR.	• .
		1GOOD, BAD, APOO, AWOW, SD, ENN, RANGE, S2YES, B, C, DXP, PW, CHOICE, PASS	

ŁŁ.

PAGE 0

		PAGE U
. I. K	DU ( J-L9 N DU ( J-L9 N	
	DELXI=LUGF(P(L,J))-XIBAR	
·····	$\underline{DELX2 = (X(L) * LOGE(P(L,J))) - X2BAR}$	
·		
	SPYZ=SPYZ+DELZY	
· • · · · · · · · · · · · · · · · · · ·	SPYXI=SPYXI+DELY*DELXI	
	SPYX3=SPYX3+DELY*DELX3	
	SPX1X2=SPX1X2+DELX1*DELX2	
	SPX2X3=SPX2X3+DELX2*DELX3	
£. [.	SPX1X3=SPX1X3+DELX1*DELX3	
	SP2X1=SP2X1+DELX1*DELX1	
	SP2X2=SP2X2+DELX2*DELX2	
	7_ <u>SP2X3=SP2X3+DELX3*DELX3</u>	
	6 CONTINUE	
	E=SP2X1	
	Y = SPX 1X2	
	Z=SPX1X3	
	S=SPX2X3	
	R=SP2X2	
	T=SP2X3	
	U=SPYX1	
• •	Q=SPYX2	
1. 1.	F=SPYX3	
	B1 = ((((Q*S)-(F*R))*((Z*R)-(S*Y)))-(((U*R)-(Q*Y))*((S*S)-(R*T))))	/
	<u>2((((Y*S)-(Z*R))*((Z*R)-(S*Y)))-(((E*R)-(Y*Y))*((S*S)-(R*T))))</u>	
	B2=((((U*Y)-(Q*E))*((S*Z)-(T*Y)))-((Q*Z)-(F*Y))*((Z*Y)-(S*E))))	1
	2((((Y*Y)-(R*E))*((S*Z)-(T*Y)))-(((R*Z)-(S*Y))*((Z*Y)-(S*E))))	
	B3=((((U*Y)-(Q*E))*((R*Z)-(S*Y)))-(((Q*Z)-(F*Y))*((Y*Y)-(R*E))))	/
	2((((Z * Y)_(S * E)) * ((R * Z ) - (S * Y))) - (((Y * Y) - (R * E)) * ((S * Z) - (T * Y))))	
	A=(YBAR)-(B1*X1BAR)-(B2*X2BAR)-(B3*X3BAR)	
	SPC2=(B1*U)+(B2*Q)+(B3*F)	
	S2YES2=SPY2-SPC2	
	DFS2Y=SEN-3.0	•
	R=(SPC2/SPY2)**0.5	
1. 1.	F=SQRTF(SPC2)/SQRTF(S2YES2)	
	S2YES=S2YES2/DFS2Y	
	CALL LINK (BDDD)	
С		
С		· .a
*L[	DISKBDDD	•
	DIMENSION AA(20), BB(20), CC(20), CN(20), W(20), EN(20), TC(20,12),	
	2 TA(20,12), DM(20,12), P(20,12), X(20), TERM(20,12),	
	3TTEST(34)	
	COMMON AA, BB, CC, CN, W, EN, TC, TA, DM, P, X, TERM, TTEST, SERIES, K, SEN,	
	2N, SY, SX1, SX2, SX3, X1, X2, YBAR, X1BAR, X2BAR, X3BAR, SPY2, SPYX2, SPYX3,	
	3SPYX1, SPX1X2, SPX2X3, SPX1X3, SP2X1, SP2X2, SP2X3, DELY, DELX1, DFLX2.	
li I.	4DELX3, DEL2Y, E, Y, Z, S, R, T, U, Q, F, B1, B2, B3, A, SPC2, S2YES2, DFS2Y	
	COMMON D, BIG, SUMPE, M10, M5, SUMS, PXP, GOOF, PCER, ABSER, AVERR.	· · · · · · · · · · · · · · · · · · ·

11		207
		PAGE (
		LGOOD, BAD, APOO, AWOW, SD, ENN, RANGE, S2YES, B, C, DXP, PW, CHOICE, PASS
		PUNCH 203, SERIES
	203	FORMAT(41HTHE LINEAR EQUATION FOR THE HOMO. SERIES , F6.1, 3H IS)
	201	PUNCH 204, A, B1, B2, B3
	204	FURMAL (//2X,IINLN(IA*DM)- ;EI4.0,IN*;EI4.0,ONLN(P) + ;/EI4.0; 2004/10/0) + .E1/ 8.10///)
		PUNCH 209
	209	FORMAT(17X,43HANALYSIS OF VARIANCE OF THE LINEAR EQUATION)
	er e <del>an air</del> aí a	PUNCH 2099
1.1.	2099	FORMAT(17X,43H/)
		PUNCH 210, SEN, PW
	210	FORMAT(18X, F6.0, 11HDATA PUINTS/, 6HX=CN**, F10.7,/)
	211	PUNCH 211, SPC2
	211	FURMAT(8X, 30HSUM UF SQUARES UF REGRESSIUN= ,E14.8)
	212	FORMAT( $8X \cdot 27HCORRELATION COFFEICIENT R = \cdot F10.7$ )
	~ ~ ~ ~	PUNCH 213, S2YES2, DFS2Y
	213	FORMAT(8X, 25HRESIDUAL SUM OF SQUARES= ,F10.7,5H FOR ,F6.0,
		218HDEGREES OF FREEDOM)
		PUNCH 214, F
10 A	214	FORMAT(8X,28HF TEST FOR SIGNIFICANCE, F= ,F8.2)
1 <b>8</b> 1.	015	PUNCH 215, DFS2Y
	215	FURMAT(8X, 38HCUNSULT VULK PAGES 148-151, $FZ = 2,FI = ,F0.07$
	216	FORMAT(8X-42HTO FIND PROBABILITY OF A LARGER VALUE OF E)
	210	PUNCH 217. S2YES
	217	FORMAT(8X,22HVARIANCE OF ESTIMATE= ,E14.8)
· · ·		PUNCH 219
	219	FORMAT(///5X,23HTHE KEMME CONSTANTS ARE)
	4	<u>B=B1</u>
		U=0.5
$\{ f_i\}_{i=1}^{n}$	220	$FORMAT(/10X3HA= \cdot F14.8 \cdot /10X \cdot 3HB= \cdot F14.8 \cdot /10X \cdot 3HC= \cdot F14.8 \cdot /10X \cdot 3HD=$
		2 ,E14.8)
		IF (CHDICE-1.0)5000,5000,4000
	4000	PUNCH 221
	221	FORMAT(///2X,38HERROR ANALYSIS OF THE DENSITY ESTIMATE,/)
		SUMPE=0.0
		M5=0
		PUNCH 222
	222	FORMAT(2X, 70HTEMP C DEN XP DEN CAL ERROR PCERR Z
· • •		2 PRESSURE MM HG,/)
). l.		SUMS=0.0
	5000	CONTINUE
	<u>с</u>	CALL LINK (CDDD)
	C	
	*LDIS	KCDDD
		DIMENSION AA(20), BB(20), CC(20), CN(20), W(20), EN(20), TC(20, 12),
		2 TA(20,12),DM(20,12),P(20,12),X(20),TERM(20,12),

. . ....

. . . . . . . . .

		PAGE O
	3TTEST(34)	
	COMMON AA, BB, CC, CN, W, EN, TC, TA, DM, P, X, TERM, TTEST, SERIES, K, SEN,	
	2N, SY, SX1, SX2, SX3, X1, X2, YBAR, X1BAR, X2BAR, X3BAR, SPY2, SPYX2, SPYX3,	
։ հ հ	3SPYX1, SPX1X2, SPX2X3, SPX1X3, SP2X1, SP2X2, SP2X3, DELY, DELX1, DELX2,	
	4DELX3, DEL2Y, E,Y,Z,S,R,T,U,Q,F,B1,B2,B3,A,SPC2,S2YES2,DFS2Y	
	COMMON D.BIG.SUMPE.M10.M5.SUMS.PXP.GOOF.PCER.ABSER.AVERR.	
	1GOOD, BAD, APOO, AWOW, SD, ENN, RANGE, S2YES, B, C, DXP, PW, CHOICE, PASS	
	IF (CHDICE-1.0)5000,5000,4000	
	4000 DO 117 L=1, K	
	N=EN(L)	
	DO 118 J=1, N	
	D=B3	
	DXP=((EXPF(A+B*LOGF(P(L,J))+C*X(L)*LOGF(P(L,J))+D*X(L)))/	
	2(TA(L,J)))*(W(L))	
ñ. h	D = DM(L, J) * W(L)	
<b>1</b> . 1 [.]	GOOF=DXP-D	
	PCER=GUUF*100.07D	
	ABSER=ABSF(PUER) $IE(ABSED=5, 0) = 60, 61, 61$	
	$\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}$	
	61  LE(ABSER - 10, 0)  62,  63	·····
	63  M10=M10+1	
	62 SUMPE=ABSER	
	SUMS=SUMS+GOOF	
	PUNCH 223,TC(L,J), D ,DXP,GOOF,PCER,Z,P(L,J)	
11	223 FORMAT(2X, F6.1, 2X, F8.5, 1X, F8.5, 1X, F8.5, 1X, F7.2, 2X, F6.3, 5X, F8.2)	
	IF(ABSER-BIG) 118, 118, 49	
	49 BIG=ABSER	
	118 CONTINUE	
	117 CONTINUE	
	AVERR=SUMPE/SEN	
	PUNCH 227, AVERR	
	227 FURMAT(712X,24HAVERAGE ABSULUTE ERRUR= ,FIU.5,8H PERCENT)	
	PUNCH 228, BIG	
	220 FURMATTIZA;24HMAAIMUM ABSULUTE ERRUR- ;FIU•J;0H PERCENT) COOD-M5	
	RAD - M10	
þξ	$\Delta P \Omega \Omega = B \Delta D / S E N \approx 100 \circ \Omega$	
	$\Delta W \cap W = G \cap O \cap D / S E N \times 1 \cap O = O$	
*****	229 FORMAT(2XF6.1.35H PERCENT OF ERRORS UNDER 5 PERCENT, ,	
	2F5.1,24H PERCENT OVER 10 PERCENT/)	
	SD = SQRTF(SUMS/(SEN-1.0))	
	$ENN = SEN - 1 \cdot O$	مولد م در .
	N = E NN	
	IF(N-30) 11, 11, 12	
	11 GO TO 13	
	12 1F(N-35) 14, 14, 15	
<b>H</b> 4	14  N=30	
5 Y L	U I U I 3	
	10  IF(N-DU)  10, 10, 11	

. . . ... ... ....

.....

PAGE 16 N=31 GO TO 13 17 IF(N-60) 18, 18, 19 18 N=32 ....... GO TO 13 19 IF(N-150) 20, 20, 21 20 N=33 GO TO 13 21 N=34 1.4 13 CONTINUE RANGE=SD+TTEST(N) PUNCH 230 230 FORMAT(2X,48H95 PERCENT CONFIDENCE RANGE OF VAPOR PRESSURE IS) PUNCH 231, RANGE 231 FORMAT(8X,7HD +OR- ,F7.4) 5000 PUNCH 232 232 FORMAT(15X,33H-----CASE COMPLETE-----///) PASS=2.0 CALL LINK (MAIN) END 1.1.1. 1.1 11 r----.-ξĿ.

.

1. 1,

#### NOMENCLATURE FOR DENSITY PREDICTION EQUATION

- A,B,C,D = Kemme-Kreps density equation constants
  - CODE = Compound identification number
    - AA = Antoine constant, A
    - BB = Antoine constant, B
    - CC = Antoine constant, C
    - CN = Number of carbon atoms
    - W = Molecular weight
    - TC = Temperature
  - DXPW = Molal density
    - DXP = Density
      - P = Vapor pressure

PAGE O

#### COMPUTER PROGRAM DENSITY PREDICTION EQUATION

111 READ 10, A, B, C, D 10 FORMAT(4N) PUNCH 6, A, B, C, D ,6 FORMAT(/10X3HA= ,E14.8,/10X,3HB= ,E14.8,/10X,3HC= ,E14.8,/10X,3HD= 2 ,E14.8,///) 1 READ 2, CODE, AA, BB, CC 2 FORMAT(4N) READ 3, CN, W, DATA 3 FORMAT(3N) PL0 = 5.0PH1=760.0 TCLO=(BB)/(AA-.43429*LOGF(PLU))-CC  $TCHI = (BB) / (AA - 43429 \times LOGF(PHI)) - CC$ MTCLO = TCLO / 10.0MTCHI=TCHI/10.0 J=MTCLO*10 K=MTCHI*10 PUNCH 7 7 FORMAT(5X, 6HTEMP C,5X,13HDENSITY GM/ML,5X,17HDENSITY GM MOL/ML,5X 2,14HPRESSURE MM HG,) PUNCH 5, CODE 5 FORMAT(/ ,23X9HCOMPOUND ,F7.1,/) DO 4 L=J, K, 10 TC=L TA=TC+273.16 X=CN**•55 P=EXPF((AA-BB/(TC+CC))*2.30259)DXP = ((EXPF(A+B*LOGF(P)+C*X*LOGF(P)+D*X))/(TA))DXPW=DXP*W 4 PUNCH 9, TC, DXPW, DXP, P 9 FORMAT(5X,F6.1,5X,F8.5,10X,F10.7,12X,F8.2) GO TO 1 END

## APPENDIX E

## LITERATURE DATA

Compound	An A	toine Consta B	nts C
Ethane	6.80266	656.40	256.00
Propane	6.82973	813.20	248.00
Butane	6.83029	945.90	240.00
Pentane	6.85221	1064.63	232.00
Hexane	6.87776	1171.530	224.366
Heptane	6.90240	1268.115	216.900
Octane	6.92377	1355.126	209.517
Nonane	6.93513	1428.811	201.619
Decane	6.95367	1501.268	194.480
Undecane	6.97674	1572.477	188.022
Dodecane	6.98059	1625.928	180.311
Tridecane	6.9887	1677.43	172.90
Tetradecane	6.9957	1725.46	165.75
Pentadecane	7.0017	1768.82	158.60
Hexadecane	7.03044	1831.317	154.528
Heptadecane	7.0115	1847.82	145.52
Octadecane	7.0156	1883.73	139.46

Table 34: The Antoine Constants for the n-Alkanes (57)

Compound	An A	toine Consta B	nts C
Ethene	6.7476	585.00	255.00
Propene	6.8196	785.00	247.00
Butene	6.8429	926.10	240.00
Pentene	6.8465	1044.895	233.516
Hexene	6.86572	1152.971	225.849
Heptene	6.9007	1257.505	219.179
Octene	6.93263	1353.486	212.764
Nonene	6.95387	1345.359	205.535
Decene	6.96034	1501.872	197.578
Undecene	6.96662	1562.469	189.743
Dodecene	6.97522	1619.862	182.271
Tridecene	6.9692	1662.68	173.90
Tetradecene	6.9615	1699.76	165.53
Pentadecene	6.9503	1730.30	157.02
Hexadecene	6.936	1755.2	148.4
Heptadecene	6.920	1774.6	139.7
Octadecene	6.901	1789.4	130.9

## Table 35: The Antoine Constants for the n-Alkenes (57)

- -

Compound	Ant	Antoine Constants		
-	Α	B	C	
Ethanol	8.21337	1652.05	231.48	
Undecano1	6.655	1372.	118.	
Tridecanol	6.503	1362.	100.	
Pentadecanol	6.372	1351.	82.	
Heptadecano1	6.264	1338.	63.	
Octadecano1	6.214	1330.	54.	
Undecanol Tridecanol Pentadecanol Heptadecanol Octadecanol	6.655 6.503 6.372 6.264 6.214	1372. 1362. 1351. 1338. 1330.	118. 100. 82. 63. 54.	

Table 36: <u>Antoine Constants for the n-Alcohols (57</u>)

Compound	Ant	Antoine Constants		
	A	<u> </u>	С	
1-Chloro-ethane	6.94914	1012.771	236.67	
1-Chloropentane	6.96617	1332.890	218.50	
1-Chlorotridecane	7.391	2087.9	186	
1-Chloropentadecane	7.474	2240.5	180	
1-Chloroheptadecane	7.543	2378.8	175	
1-Chloro-octadecane	7.573	2443.5	173	

Table 37: Antoine Constants for the n-Alkyl Chlorides (42)

Temperature ^O C	Density gm/ml	Temperature °C	Density gm/ml
Met	hane	Pentane e	onit
-180.0	4497	10 0	6357
-170 0	4362	20.0	6262
-160.0	4218	30.0	.6159
-10010	•	40.0	.6053
Eth	ane		.0055
-140.0	.6086	Hexa	ne
-130.0	.5972	-30.0	.7032
-120.0	.5856	-20.0	.6946
-110.0	.5737	-10.0	.6858
-100.0	.5613	0.0	.6769
-90.0	.5482	10.0	.6679
		20.0	.6594
Prop	ane	30.0	.6502
-110.0	.656	40.0	.6411
-100.0	.646	50.0	.6316
-90.0	.635	60.0	.6214
-80.0	.6241	70.0	.6102
-70.0	.6130		
-60.0	.6017	Hept	ane
-50.0	.5900	0.0	.7006
-40.0	.5784	10.0	.6920
		20.0	.6838
But	ane	30.0	.6753
-80.0	.6801	40.0	.6669
-70.0	.6703	50.0	.6583
-60.0	.6605	60.0	.6493
-50.0	.6511	70.0	.6398
-40.0	.6416	80.0	.6303
-30.0	.6318	90.0	.6207
-20.0	.6218	100.0	.6110
-10.0	.6115		
0.0	.6011	<u>Octa</u>	ne
_		20.0	.7025
Pent	ane	30.0	.6945
-50.0	.6908	40.0	.6866
-40.0	.6820	50.0	.6/84
-30.0	.6/31	60.0	.6/01
-20.0	.6640	/0.0	.6614
-10.0	.6546	80.0	.6528
0.0	.6452	90.0	.6442
<u> </u>			

Table 38: Literature Density Data for the n-Alkanes (57)

Temperature ^O C	Density gm/ml	Temperature ^o C	Density gm/ml
Octane	con't.	Undecan	e con't.
100.0	.6352	120.0	.6641
110.0	.6261	130.0	.6560
120.0	.6166	140.0	.6479
		150.0	.6396
None	ine	160.0	.6311
30.0	.7099	170.0	.6223
40.0	.7022	180.0	.6133
50.0	.6944	190.0	.6040
60.0	.6864		
70.0	.6781	Dode	rane
80.0	.6701	90.0	.6976
90.0	.6620	100.0	.6900
100.0	.6536	110.0	.6824
110.0	.6451	120.0	.6745
120.0	6363	130.0	6667
130 0	6270	140 0	6589
140 0	6180	150 0	6509
150.0	6000	160.0	6427
190.0	.0090	170.0	.0427
Door		190.0	.0344
FO O	7072		.0200
50.0	.7075	190.0	.01/3
80.0	.0990	200.0	.0082
70.0	.691/	210.0	.5985
80.0	.6840	220.0	.5878
90.0	.6/61		
110.0	.6681	Trideo	cane
110.0	.6600	120.0	.6834
120.0	.651/	130.0	.6757
130.0	.6432	140.0	.6681
140.0	.6348	150.0	.6604
150.0	.6260	160.0	.6525
160.0	.6169	170.0	.6446
170.0	.6074	180.0	.6365
		190.0	.6283
Undeca	ine	200.0	.6200
70.0	.7029	210.0	.6107
80.0	.6954	220.0	.6010
90.0	.6878	230.0	.5910
100.0	.6800	240.0	.5807
110.0	.6722		

Table 38: <u>Continued</u>

Temperature	Density gm/ml	Temperature	Density gm/ml
	<u>8,</u>		
ma have de		Uerredee en	o conit
	ecane	<u>Hexadecan</u>	e con c.
120.0	.6911	210.0	.0370
130.0	.6836	220.0	.0289
140.0	.6/61	230.0	.6206
150.0	.6685	240.0	.6124
160.0	.6609	250.0	.6041
170.0	.6532	260.0	.5955
180.0	.6454		
190.0	.6375	Heptad	<u>ecane</u>
200.0	.6295	160.0	.6802
210.0	.6209	170.0	.6730
220.0	.6119	180.0	.6657
230.0	.6026	190.0	.6584
240.0	.5933	200.0	.6510
250.0	.5839	210.0	.6435
		220.0	.6357
Pentade	ecane	230.0	.6278
140.0	.6830	240.0	.6199
150.0	.6756	250.0	.6119
160.0	.6682	260.0	.6037
170.0	.6606		
180.0	.6531	Octade	cane
190.0	6454	170.0	.6781
200.0	6378	180.0	.6710
210.0	6296	190.0	6638
220 0	6211	200.0	6566
230.0	6124	210.0	6492
240 0	6036	220.0	6416
250.0	50/0	230.0	6340
250.0	5050	240.0	·0540
200.0	. 2020	240.0	.0204
Unand		250.0	6100
	6010	200.0	.0100
	.0017		
	.0743		
	.00/2		
	.6598		
190.0	.0323		
200.0	•044/		
1			

## Table 38: <u>Continued</u>

Temperature ^O C	Density gm/ml	Temperature ^O C	Density gm/ml
F+	hene	Her	
-150.0	<u>6318</u>		720
-140.0	6182	-20.0	711
-130.0	6046	-10.0	702
-120.0	5910		.6920
_110.0	5774	10.0	.6826
-100.0	5638	20.0	.6732
10010		30.0	.6637
Pro	pene	40.0	.6543
-110.0	.682	50.0	.6449
-100.0	.671	60.0	.6354
-90.0	.659		
-80.0	.647	Hept	ene
-70.0	.6358	0.0	.7146
-60.0	.6237	10.0	.7058
-50.0	.6116	20.0	.6970
-40.0	. 5995	30.0	.6882
		40.0	.6793
Bu	tene	50.0	.6705
-80.0	.707	60.0	.6617
-70.0	.6962	70.0	.6528
-60.0	.6854	80.0	.6440
-50.0	.6746	90.0	.6352
-40.0	.6638		
-30.0	.6529	Oct	ene
-20.0-	.6419	0.0	.7316
-10.0	.6306	10.0	.7233
0.0	.6190	20.0	.7149
		30.0	.7066
Pen Pen	tene	40.0	.6982
-60.0	./23	50.0	.6899
-50.0	./13	60.0	.6816
-40.0	./02		.6/32
-30.0	.692	80.0	.0649
-20.0	•000 672	90.0	.0202
-10.0	.0/2		.0482
	.0012		.040
	•0300·	120.0	.032
20.0	.0405		

Table 39: Literature Density Data for the n-Alkenes (57)

Temperature °C	Density gm/ml	Temperature oC	Density gm/ml
Nonene		Dodecene	con't.
20.0	.7292	100.0	.6997
30.0	.7213	110.0	.692
40.0	7135	120.0	.685
50.0	.7056		
60.0	.6977	Tride	cene
70.0	.6898	90.0	
80.0	.6819	100.0	7073
90.0	.6741	110.0	.700
100.0	6662	120.0	.693
110.0	.658	12010	.075
120.0	.650	Tetrado	ecene
			7140
De	ene	110 0	707
40.0	7253	120.0	700
50.0	7175	120.0	
60.0	7007	Pentada	ecene
70.0	7020	110 0	713
	60/2	120.0	706
	·0942 6864	120.0	./00
	.0004		
110.0	.0700		
120.0	.0/1	4	
120.0	.003		
Und	ecene		
50.0	.7276	11	
60.0	.7201	1	
70.0	.7125		
80.0	.7050	1	
90.0	.6974		
100.0	.6898		
110.0	.682		
120.0	.675		
Del			
	<u>7017</u>		
	71//		
	·/144 7070		
70.0	./0/0		

# Table 39:

Continued

Temp.	Density gm/ml	Lit. Source	Temp. OC	Density gm/ml	Lit. Source
20.0 25.0	<u>Ethano1</u> .78931 .78504	( <u>57</u> ) ( <u>57</u> )	140.0 160.0	<u>Dodecano1</u> .7468 .7307 .7144	$(\underline{63})$ $(\underline{63})$
20.0 25.0	<u>Propano1</u> .80342 .79948	( <u>57</u> ) ( <u>57</u> )	200.0 220.0 240.0 260.0	.7144 .6982 .6810 .6635 .6457	(3) (3) (3) (3) (3)
20.0 20.53 25.0 40.27 60.31 78.09	<u>Butano1</u> .8096 .8078 .8058 .7929 .7775 .7631	(57) (17) (57) (17) (17) (17) (17)	160.0 180.0 200.0 220.0 240.0	<u>Tetradecano</u> .7340 .7188 .7032 .6865 .6700	$ \begin{array}{c} \underline{63} \\ \underline{63} $
39.91 40.0 59.01 60.0 78.00 80.0 100.0 120.0	<u>Pentano1</u> .7987 .7981 .7848 .7834 .7711 .7680 .7515 .7356	$(17) \\ (617) \\ (17) \\ (617) \\ (17) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\ (617) \\$	280.0 280.0 180.0 200.0 220.0 240.0 260.0 280.0	.6534 .6362 <u>Hexadecanc</u> .7233 .7082 .6928 .6770 .6607 .6454	$ \begin{array}{c} (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)\\ (63)$
59.01 60.0 78.00 80.0 100.0 120.0 140.0	<u>Hexanol</u> .7915 .7924 .7772 .7766 .7599 .7432 .7247	$(17) \\ (63) \\ (17) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ (63) \\ $	300.0 200.0 220.0 240.0 260.0 280.0 300.0	.6288 <u>Octadecano</u> .7103 .6956 .6808 .6661 .6498 .6316	$(\underline{63}) \\ (\underline{63}) \\ (6$
60.31 78.09	<u>Heptanol</u> .7928 .7804	$\binom{17}{17}$			
120.0 140.0 160.0 180.0 200.0 220.0	Decanol .7550 .7387 .7224 .7053 .6883 .6708	( <u>63</u> ) ( <u>63</u> ) ( <u>63</u> ) ( <u>63</u> ) ( <u>63</u> ) ( <u>63</u> )			

- Table 40: Literature Density Data for the n-Alcohols

Temperature o _C	Density gm/ml	Literature Source
	l-Chloropropage	
20.0	.8909	( <u>57</u> )
25.0	.8850	( <u>57</u> )
	<u>l-Chlorobutane</u>	
20.0	,8862	( <u>57</u> )
20.0	.8866	( <u>63</u> )
25.0	.8809	( <u>57</u> )
25.0	.8811	( <u>63</u> )
	<u>1-Chloropentane</u>	
0.0	.90137	( <u>63</u> )
15.0	.88657	( <u>63</u> )
20.0	.8840	( <u>63</u> )
20.0	.8818	( <u>57</u> )
25.0	.8769	( <u>57</u> )
25.0	.8795	( <u>63</u> )
30.0	.87163	( <u>63</u> )
	<u>1-Chlorohexane</u>	
20.0	.8785	( <u>57</u> )
20.0	.8790	( <u>63</u> )
25.0	.8739	( <u>57</u> )
25.0	.8745	( <u>63</u> )

. .

. .. **.** 

# Table 41:Literature Density Data for<br/>the n-Alkyl Chlorides

## APPENDIX F

## PREDICTED DENSITY DATA

t

Temperature oC	Density gm/ml	Temperature oC	Density gm/ml
Ethana		Hey	ane
140.0	60086	-30.0 <b><u>Her</u></b>	.69977
	60060	20.0	60238
-130.0	.00000	-20.0	.07230
-120.0	. 20922	-10.0	.0042J
-110.0	.57723	.0	.0/000
-100.0	.56425	10.0	.66648
-90.0	.55096	20.0	.65/14
-80.0	.53761	30.0	.64/63
		40.0	.63804
Pro	pane	50.0	.62843
-110.0	.65415	60.0	.61885
-100.0	64639		
_90.0	63702	Her	otane
-80.0	62656	-10.0	.70685
70.0	61538	.0	.69957
-70.0	60270	10.0	.69165
-00.0	•00379 50100	20.0	.68326
	· J7170	30.0	.67453
-40.0	. 56011	40.0	.66556
<b></b>		50.0	65644
But	ane	60.0	64727
-80.0	.67657	70.0	63802
-70.0	.66894		62002
-60.0	.66013		.02002
-50.0	.65048	90.0	101907
-40.0	.64027		
-30.0	.62970		
-20.0	.61892	.0	./1/02
-10.0	.60806	10.0	./103/
.0	.59721	20.0	.70302
		30.0	.69515
Pen	tane	40.0	.68689
-50.0	.68792	50.0	.67835
-40.0	68010	60.0	.66961
-30.0	.67144	70.0	.66075
-20.0	66220	80.0	.65184
_10 0	65254	90.0	.64291
- 10.0 N	6//263	100.0	.63400
100	63756	110.0	.62515
20.0	62270	120.0	.61638
20.0	.02243		
50.0	.01231	li	
E7			
y = .5/ $E =19508$			
b = 0.69721 $F =0090030$			
υ <b>-</b> .	000/21		
Table 42: <u>Density Predictions for the n-Alkanes</u>			

....

224

Temperature oC	Density gm/ml	Temperature oC	Density gm/ml
Nonane		Undecane	con't.
20.0	.71848	170.0	.62322
30.0	.71152	180.0	.61508
40.0	.70401	190.0	.60706
50.0	.69609		••••••
60.0	.68785	Dode	cane
70.0	.67939	70.0	71631
80.0	.67079	80.0	.70878
90.0	.66210	90.0	70095
100.0	.65338	100.0	69290
110.0	.64466	110.0	68469
120.0	.63597	120.0	67639
130.0	.62735	130.0	66804
140.0	.61881	140 0	65968
150.0	.61036	150.0	65133
19010		160.0	6/303
Dec	ane	170.0	63/78
40.0	71676	180.0	.03470
50.0	70951	100.0	.02002
60.0	70183		.01055
	69383	210.0	.01039
	68560	210.0	.00273
90.0	67721	Tride	ane
100 0	66872	90 0	71017
110 0	66018	100.0	70234
120.0	65163	110 0	69430
130.0	64311	120.0	68613
1/0 0	63463	130 0	67787
150.0	62622	140 0	66956
160.0	61790	150 0	66124
	60968		65295
1/0.0	.00/00	170 0	64470
Unde	03D0	180 0	63651
60.0	71367	190.0	62840
	70609	200.0	62038
	60810	210.0	61267
00.0	60002		60/67
100.0	68180	230.0	50600
110.0	673/3	230.0	
	66500	Totas	decane
130.0	65656	100 0	71054
	6/21/	110.0	70765
	63076		60/ 50
160.0	631/5	130.0	.074,70
100.0	.03143	130.0	.00039

## Table 42: <u>Continued</u>

Temperature oC	Density gm/m1	Temperature o _C	Density gm/ml
		Vousdooss	
1/0 0	<u> 2701</u> 2	2KO O	$\frac{2}{61095}$
140.0	.0/012	240.0	.01005
150.0	.00902	250.0	.00314
100.0	.00132	200.0	.59550
1/0.0	.65325	270.0	.58810
180.0	.64503	280.0	.58078
190.0	.63687		
200.0	.62880	<u>Heptade</u>	ecane
210.0	.62082	140.0	.69925
220.0	.61295	150.0	.69085
230.0	.60520	160.0	.68240
240.0	.59755	170.0	.67394
250.0	.59004	180.0	.66550
_		190.0	.65710
Pentad	ecane	200.0	.64877
120.0	.70212	210.0	.64053
130.0	.69398	220.0	.63237
140.0	.68573	230.0	.62433
150.0	.67744	240.0	.61639
160.0	.66912	250.0	.60858
170.0	.66081	260.0	.60089
180.0	.65255	270.0	.59333
190.0	.64433	280.0	.58590
200.0	.63620	290.0	.57860
210.0	.62815	300.0	.57144
220.0	.62020		
230.0	.61236	Octado	ecane
240.0	.60464	150.0	.69696
250.0	59704	160.0	68839
260.0	.58955	170.0	.67980
270.0	.58220	180.0	.67123
2,000	190220	190.0	.66270
Heyad	ecane	200.0	.65424
130.0	70125	210.0	64586
140.0	.69294	220 0	.63758
150.0	.68455	230 0	62940
160 0	67615	240 0	62134
170 0	.66775	250.0	61340
180 0	.65938	260.0	60559
190.0	65106	270 0	50701
200 0	.64283	280.0	50027
210.0	63467	200.0	58706
220.0	62662	300.0	57568
230 0	.61868	310 0	56854
230.0	.01000	11 510.0	• 50054

Table 42: <u>Continued</u>

Temperature oc	Density gm/ml	Temperature °C	Density gm/ml
Ethene		Hex	ene
-150.0	.6435	-30.0	.7217
-140.0	6334	-20.0	7138
-130 0	6209	-10.0	7051
120.0	6068	-10.0	6050
-120.0	5010	10.0	.09.09
-110.0	. 3717		.0003
-100.0	.3/0/	20.0	.0/03
_		30.0	.6666
Prope	ne	40.0	.6566
-110.0	.6650	50.0	.6466
-100.0	.6568	60.0	.6366
-90.0	.6471		
-80.0	.6362	Hep	tene
-70.0	.6247	-10.0	.7275
-60.0	.6127		.7197
- 50 . 0	.6006	10.0	7112
-40 0	5884	20.0	7024
-40.0	. 2004	30.0	6032
Desta		50.0	.0932
		40.0	.0030
-80.0	.6940	50.0	.0743
/0.0	.6860	60.0	.664/
-60.0	.6768	70.0	.6551
-50.0	.6668	80.0	.6456
-40.0	.6562	90.0	.6361
-30.0	.6453		
-20.0	.6342	Oct	ene
-10.0	.6230	.0	.7362
. 0	.6118	10.0	.7290
		20.0	.7211
Pente	ne	30.0	7128
-60.0		40.0	7040
-50.0	7102	50.0	6951
-40.0	7017	60.0	6850
	602/		6767
-30.0	·0724 2092	/0.0	.0/0/
-20.0	.0020		·00/4
-10.0	.0/24	90.0	.0302
.0	.0019		.0489
10.0	.6513	110.0	.6398
20.0	.6407	120.0	.6307
C = 1. D = .0 E =	1146 66227 14185	F = y = .6	0064619 8

## Table 43 Density Predictions for the n-Alkenes

. .....

-

227

κ.

<u>Nonene</u> 20.0 .7339 <u>Undecene con't</u> 170.0 .6	287 204 122
20.0 .7339 170.0 .6	287 204 122
	204
30.0 .7264    180.0 .6	122
40.0 .7185 190.0 .6	
50.0 .7101	
60.0 .7015 Dodecene	
70.0 .6926 70.0 .7	214
80.0 .6837 80.0 .7	135
90.0 .6747 90.0 .7	052
100.0 .6657 100.0 .6	968
110.0 .6567 110.0 .6	883
120.0 .6477 120.0 .6	796
130.0 .6388 130.0 .6	710
140.0 .6301 140.0 .6	624
150.0 .6	538
Decene 160.0 .6	453
40.0 .7293 170.0 .6	368
50.0 .7216 180.0 .6	286
60.0 .7134 190.0 .6	203
70.0 .7050 200.0 .6	5121
80.0 .6964 210.0 .6	6041
90.0 .6877	
100.0 .6789 Tridecene	
	112
120.0 .6612 100.0 .7	030
130.0 .6524 110.0 .6	<u>945</u>
140.0 .6437 120.0 .6	860
150.0 .6350 130.0 .6	775
160.0 .6265 140.0 .6	689
170.0 .6181 150.0 .6	603
160.0 .6	518
Undecene 170.0 .6	3433
50.0 .7300 180.0 .6	349
60.0 .7224 190.0 .6	266
70.0 .7144 200.0 .6	185
80.0 .7061 210.0 .6	5104
90.0 .6976 220.0 .6	025
100.0 .6890 230.0 .5	5947
110.0 .6803	
120.0 .6716 Tetradecene	
130.0 .6629 100.0 .7	077
140.0 .6543 110.0 .6	994
150.0 .6457 120.0 .6	<b>5910</b>
160.0 .6371 130.0 .6	5824

## Table 43: <u>Continued</u>

Temperature oC	Density gm/ml	Temperature oC	Density gm/m1
Tetradecer	ne con't.	Hexadecer	ne con't.
140.0	.6739	240.0	.5973
150.0	.6653	250.0	.5895
160.0	.6568	260.0	.5818
170.0	.6482	270.0	.5743
180.0	.6398	280.0	.5670
190.0	.6315		
200.0	.6232	Heptade	ecene
210.0	.6151	140.0	.6839
220.0	.6071	150.0	.6751
230.0	. 5992	160.0	.6663
240.0	.5915	170.0	.6576
250.0	.5839	180.0	.6489
		190.0	.6403
Pentade	ecene	200.0	.6318
110.0	.7035	210.0	.6234
120.0	.6951	220.0	.6151
130.0	.6866	230.0	.6069
140.0	.6780	240.0	.5989
150.0	.6694	250.0	.5910
160.0	.6608	260.0	.5833
170.0	.6522	270.0	.5757
180.0	.6437	280.0	.5682
190.0	.6353	290.0	.5609
200.0	.6270		
210.0	.6188	Octade	ecene
220 0	6107	150.0	.6772
230.0	.6027	160.0	.6683
240 0	50/0	170.0	.6595
250 0	5872	180.0	.6506
250.0	5797	190.0	.6419
200.0	• 57 57	200.0	.6333
Uovad	00000	210.0	.6247
130 0	6808	220.0	.6163
1/0 0	6811	230.0	.6080
	6725	240.0	5999
160.0	.0725	250.0	5919
	.0030	260.0	5840
	6/.6C	270.0	5763
	.0400	280.0	5687
	.0301 6207	290.0	5613
	·0271 601/	300.0	5540
	.0214	1 310.0	5469
220.0	6052		
230.0	· · · · · · · · · · · · · · · · · · ·	11	

# Table 43: <u>Continued</u>

Temperature °C	Density gm/ml	Temperature oC	Density gm/ml	
Ethanol		Bontanol con!t		
10.0	8043		7520	
-10.0	7980	110.0	.7427	
	7909	120.0	7334	
	.7831	130.0	.7241	
30.0	.7749	Hex	anol	
40.0	7663	1 50.0	.8007	
50.0	.7574	60.0	.7938	
60.0	.7483	70.0	.7862	
70.0	.7391	80.0	.7781	
Prop	anol	90.0	.7695	
.0	.8107	100.0	.7607	
10.0	.8045	110.0	.7516	
20.0	.7974	120.0	.7425	
30.0	.7897	130.0	.7332	
40.0	.7815	140.0	.7239	
50.0	.7729	150.0	.7146	
60.0	.7641	Hept	anol	
70.0	.7550	60.0	.7971	
80.0	.7458	70.0	.7908	
90.0	.7366	80.0	.7836	
Butanol		90.0	.7757	
20.0	.8062	100.0	.7674	
30.0	.8002	110.0	.7587	
40.0	.7933	120.0	.7498	
50.0	.7856	130.0	.7407	
60.0	.7774	140.0	.7315	
70.0	.7687	150.0	.7222	
80.0	.7596	160.0	.7129	
90.0	.7503	170.0	.7036	
100.0	.7409	<u>Oct</u>	anol	
110.0	.7314	70.0	.7926	
Pent	anol	80.0	.7865	
30.0	.8079	90.0	.7795	
40.0	.8016	100.0	./718	
50.0	.7946	110.0	./63/	
60.0	./868	120.0	./551	
/0.0	.//86		./463	
80.0	.//00		./3/3	
90.0	./611	150.0	.7282	
C = 3	8072	R = _	026009	
D = 0.6072		v = .2	0	
E = -2 0.470		y •2	-	
			,	

. . .

Table 44: Density Predictions for the n-Alcohols

Temperature OC	Density gm/ml	Temperature oC	Density gm/ml
Octorol		Undoganol	conit
	7100		7056
	7009		.7050
1/0.0	./070	210.0	.0900
100.0	./000	210.0	.0001
190.0	0912	220.0	.0/95
Nona		230.0	.6709
80.0	./893	240.0	.6625
90.0	.7825	Dode	<u>canol</u>
100.0	.7751	120.0	• 7634
110.0	.7671	130.0	.7560
120.0	.7588	140.0	.7482
130.0	.7503	150.0	.7401
140.0	.7415	160.0	.7318
150.0	.7326	170.0	.7234
160.0	.7237	180.0	.7149
170.0	.7147	190.0	.7064
180.0	.7057	200.0	.6979
190.0	.6968	210.0	.6894
200.0	.6879	220.0	.6809
210.0	.6791	230.0	.6725
Deca	nol	240.0	.6642
100.0	.7754	250.0	.6560
110.0	7686	260.0	.6479
120.0	.7611	Tride	canol
130 0	7532		7588
140 0	7450	140 0	7515
150.0	7364		7438
160.0	7277	160.0	7350
170.0	7188		7777
180.0	7000		710/
	7010		7110
190.0	.7010	190.0	7025
200.0	.0721	200.0	.7025
210.0	.0033	210.0	.0941
220.0	.0/45	220.0	.0000
230.0	.0000	230.0	.0//2
Undec	anol 770/	240.0	.0089
110.0	.//24	250.0	.000/
120.0	. /649	260.0	.6525
130.0	./5/1	2/0.0	.6444
140.0	.7488	Tetrad	ecanol
150.0	.7404	140.0	.7513
160.0	.7318	150.0	.7441
170.0	.7231	160.0	.7365
180.0	.7144	170.0	.7287

.

.

-

## Table 44: <u>Continued</u>

231

.....

Temperature	Density	Temperature	Density
O	gm/m1	oC	gm/m1
Tetradecanol con't.		Hexadecano	l con't.
180.0	.7207	290.0	.6351
190.0	.7125	300.0	.6275
200.0	.7043	310.0	.6200
210.0	.6960	Heptade	ecanol
220.0	.6877	170.0	./271
230.0	.6794	180.0	. /203
240.0	.6/12	190.0	./132
250.0	.6630	200.0	./058
260.0	.0349	210.0	.0903
	.0409	220.0	.0900
200.0	.0390	230.0	.0029
290.0 Pontada	.0312	240.0	.0751
$150 \frac{rentate}{0}$	7//36	250.0	6595
160 0	7365	270.0	6518
170 0	7291	280.0	6441
180.0	7214	290.0	.6365
190.0	.7135	300.0	.6290
200.0	.7055	310.0	.6216
210.0	.6974	320.0	.6142
220.0	.6893	330.0	.6070
230.0	.6812	Octade	canol
240.0	.6730	180.0	.7194
250.0	.6650	190.0	.7126
260.0	.6570	200.0	.7056
270.0	.6490	210.0	.6984
280.0	.6412	220.0	.6910
290.0	.6334	230.0	.6834 ľ
300.0	.6257	240.0	.6758
Hexadeo	canol	250.0	.6682
160.0	.7350	260.0	.6606
170.0	.7281	270.0	.6530
	. /209	280.0	.6454
190.0	./134	290.0	.6378
200.0	./05/		.6304
210.0	.07/7	310.0	.0230
	.09UL	320.0	.013/
230.0	.0021	330.0	·0003
240.0	.0/42	340.0	.0014
250.0	.0005		
270 0	6506		
280:0	.6428		

Temperature °C	Density gm/ml	Temperature °C	Density gm/ml
1-Chloropropane		1-Chlorobexane con't.	
-40.0	.9448	70.0	.8271
-30.0	.9387	80.0	.8160
-20.0	.9310	90.0	.8048
-10.0	.9221	100.0	.7937
.0	.9123	110.0	.7826
10.0	.9018	120.0	.7716
20.0	.8908	130.0	.7607
30.0	.8795	<u>1-Chlorohe</u>	eptane
40.0	.8678	30.0	.8669
<u>l-Chloro</u>	butane	40.0	.85/2
-20.0	.9215	50.0	.8469
-10.0	.9142	<b>60.0</b>	.8303
.0	.9057	70.0	.0255
	.0703		8035
20.0	•000J 9757		7024
50.0	8647		7814
50.0	8535		7704
60.0	8420	130.0	7596
70.0	.8306	140.0	7489
1-Chloron	entane	150.0	7383
		160.0	.7278
10.0	.8924	l-Chloro-d	octane
20.0	.8827	50.0	.8460
30.0	.8725	60.0	.8355
40.0	.8619	70.0	.8247
50.0	.8510	80.0	.8137
60.0	.8399	90.0	.8026
70.0	.8287	100.0	.7915
80.0	.8175	110.0	.7804
90.0	.8063	120.0	.7694
· 100.0	.7951	130.0	.7585
<u>1-Chlorohexane</u>		140.0	.7477
10.0	.8874	150.0	./3/0
20.0	.8/88	160.0	.7265
30.0	.8693	1/0.0	./101
40.0	•0373 0/00		.7060
50.0	•0400 0200		
60.0	.0300	<u>  </u>	
C = 1.3960		F =0	015683
D = .080328		y = .5	5
E =26550			

Table 45: Density Predictions for the n-Alkyl Chlorides

Temperature	Density	Temperature	Density
о <u>с</u>	gm/m1	<u> </u>	<u>gm/m1</u>
1-Chloro		1-Chloroundec	ane con't.
60.0	.8360	200.0	.6798
70.0	.8250	210.0	.6697
80.0	.8137	220.0	.6599
90.0	.8024	230.0	.6502
100.0	.7910	240.0	.6408
110.0	.7797	<u>1-Chlorod</u>	odecane
120.0	.7685	110.0	.7823
130.0	.7574	120.0	.7698
140.0	.7464	130.0	./5/5
150.0	./305	140.0	•/404
150.0	./249	150.0	./333
1/0.0	./145		./219
100.0	.7042		./100
200.0	6842	190.0	6886
1_Chloro	Jecane	200.0	.0000
80.0	.8150	210.0	.6676
90.0	.8032	220.0	.6575
100.0	.7915	230.0	.6477
110.0	.7798	240.0	.6381
120.0	.7682	250.0	.6287
130.0	.7568	260.0	.6196
140.0	.7455	1-Chlorot	ridecane
150.0	.7344	120.0	.7732
160.0	.7235	130.0	.7601
170.0	.7128	140.0	.7473
180.0	.7023	150.0	.7348
190.0	.6920	160.0	. /226
200.0	.6819	1/0.0	./10/
210.0	.0/21		.0992
220.0	.0025		.00/9
		210.0	.0770
100 0	7926	220.0	6559
110.0	.7805	230.0	.6458
120.0	.7685	240.0	6360
130.0	.7567	250.0	.6265
140.0	.7451	260.0	.6172
150.0	.7336	270.0	.6081
160.0	.7224	<u>1-Chlorote</u>	tradecane
170.0	.7114	140.0	.7483
180.0	.7006	150.0	.7353
190.0	.6901	160.0	.7227
1			

## Table 45: <u>Continued</u>

Temperature	Density	Temperature	Density
°C	gm/m1	. o ^C	gm/m1
1-Chlorotetra	decane cont.	1-Chlorohexad	ecane cont.
170.0	.7104	270.0	. 5986
180.0	.6984	280.0	.5891
190.0	.6868	290.0	. 5798
200.0	.6754	300.0	. 5708
210.0	.6644	310.0	.5620
220.0	.6536	320.0	.5535
230.0	.6432	<u>1-Chlorohe</u>	<u>ptadecane</u>
240.0	.6330	170.0	.7161
250.0	.6232	180.0	.7021
260.0	.6135	190.0	.6887
270.0	.6042	200.0	.6757
280.0	.5951	210.0	.6632
290.0	.5863	220.0	.6511
<u>l-Chlorope</u>	ntadecane	230.0	.6394
150.0	./3/5	240.0	.6282
160.0	.7240	250.0	.61/3
1/0.0	./110	260.0	.6067
	.0984	270.0	• 3963
190.0	.0002	280.0	. 200/
200.0	.0/43	290.0	.5//1
	.0020		. 20/9
220.0	.0017		• 5502
230.0	.0409	320.0	5/19
240.0	.0303	1 Chloro-o	otadocano
250.0	6105	$\frac{1-0.0000-0}{180.0}$	70/5
270.0	6009	190.0	6903
280.0	.5917	200.0	6767
290.0	.5827	210.0	.6636
300.0	.5739	220.0	.6510
310.0	.5654	230.0	.6388
1-Chloroh	lexadecane	240.0	.6271
160.0	.7265	250.0	.6158
170.0	.7129	260.0	.6049
180.0	.6998	270.0	. 5944
190.0	.6870	280.0	.5842
200.0	.6747	290.0	.5743
210.0	.6628	300.0	.5648
220.0	.6512	310.0	.5556
230.0	.6400	320.0	.5467
240.0	.6292	330.0	.5380
250.0	.6187	340.0	.5297
260.0	.6085		

Table 45: <u>Continued</u>

#### REFERENCES

- 1. Antoine, C., <u>Comptes Rendus</u>, vol. 107, 1888, pp. 681 and 836.
- Barrall, E., S. Porter and J. Johnson, <u>Analytical</u> <u>Chemistry</u>, vol. 37, July 1965, pp. 1053-54.
- Biddiscombe, D. P., R. R. Collerson, R. Handley,
   G. Harrington, J. F. Martin and C. Sprake, <u>J. Chem</u>. <u>Soc</u>., 1963, p. 1954.
- 4. Brunel, R. F., J. L. Crenshaw and E. Tobin, <u>J. Am.</u> <u>Chem. Soc.</u>, vol. 43, 1921, p. 561.
- 5. Butler, J., C. N. Ramchandani and D. Thompson, J. <u>Chem</u>. <u>Soc</u>., vol. 138, 1935, p. 280.
- 6. Calingaert, G., H. A. Beatty, R. C. Kuder and G. W. Thompson, <u>Ind. Eng. Chem.</u>, vol. 33, 1941, p. 103.
- Calingaert, G. and J. W. Hladky, <u>J. Am. Chem. Soc.</u>, vol. 58, 1936, p. 153.
- 8. Carley, J. F. and L. W. Bertelsen, <u>Ind</u>. <u>Eng</u>. <u>Chem</u>., vol. 41, 1949, p. 2806.
- 9. Chipman, J., J. Phys. Chem., vol. 33, 1929, p. 1131.
- 10. Chiu, J., Analytical Chemistry, vol. 27, 1955, p. 1102.
- 11. Chu, J. C., M. Dmytryszyn, J. Moder and R. Overbeck, Ind. Eng. Chem., vol. 41, 1949, pp. 131-5.
- 12. Debye, P., Ann. d. Physik, vol. IV 39, 1912, p. 789.
- 13. Dreisbach, R. R., <u>Ind</u>. <u>Eng</u>. <u>Chem</u>., vol. 41, 1949.
- 14. Dreisbach, R. R. and R. A. Martin, <u>Ind. Eng. Chem.</u>, vol. 41, 1949, p. 2879.
- Dreisbach, R. R. and S. A. Shrader, <u>Ind. Eng. Chem.</u>, vol. 41, 1949.
- Egloff, G. and R. C. Kuder, J. Phys. Chem., vol. 45, 1941, pp. 836-45.

17.	Feurstein, Erwin, Masters Thesis, Newark College of Engineering, 1964.
18.	Fishtine, S. H., <u>Ind. Eng. Chem</u> ., vol. 55, 1963.
19.	Flory, Paul J., J. Chem. Phys., vol. 10, 1942, pp. 51-61.
20.	Francis, A. W., <u>Ind</u> . <u>Eng</u> . <u>Chem</u> ., vol. 33, 1941, p. 554.
21.	Francis, A. W., <u>Ind. Eng</u> . <u>Chem</u> ., vol. 49, 1957.
22.	Francis, A. W., <u>Ind. Eng. Chem</u> ., vol. 49, 1957, pp. 1787-8.
23.	Frenkel, J., <u>Kinetic Theory of Gases and Liquids</u> . New York: Dover Publications, Inc., 1946.
24.	Frost and Kalkwarf, <u>J. Chem</u> . <u>Phys</u> ., vol. 21, 1953, pp. 264-67.
25.	Glasstone, Samuel, <u>Textbook of</u> <u>Physical Chemistry</u> . New York: D. Van Nostrand Co., Inc., 1946, p. 496.
26.	Gorden, D. H., <u>Ind</u> . <u>Eng</u> . <u>Chem</u> ., vol. 35, 1943, pp. 851-3.
27.	Greenshields, J. B. and F. D. Rossini, <u>J</u> . <u>Phys</u> . <u>Chem</u> ., vol. 62, 1958, p. 271.
28.	Gutmann, F. and L. Simmons, <u>J. Chem</u> . <u>Phys</u> ., vol. 18, 1950.
29.	Haggenmacher, J. E., <u>Ind. Eng</u> . <u>Chem</u> ., vol. 40, 1948, pp. 436-7.
30.	<u>Handbook of Chemistry and Physics</u> . Cleveland, Ohio: Chemical Rubber Publishing Co., Fortieth Ed.
31.	Hirschfelder, J. O., C. F. Curtiss and R. B. Bird, <u>Molecular Theory of Gases and Liquids</u> . New York: John Wiley & Sons, Inc., 1954.
32.	Hovorka, F., H. P. Lankelma and S. C. Stanford, <u>J. Am</u> . <u>Chem</u> . <u>Soc</u> ., vol. 60, 1938, p. 820.
33.	Kemme, H. R., <u>The Determination of Boiling Points by</u> <u>Differential Thermal Analysis</u> , Masters Thesis, Newark College of Engineering, 1963.
34.	Kistiakowsky, W., <u>Z</u> . <u>Physik</u> . <u>Chem</u> ., vol. 65, 1923, p. 107.
-----	----------------------------------------------------------------------------------------------------------------------------------------------
35.	Krawetz, A. A. and T. Tovrog, <u>Rev. Sci. Inst</u> ., vol. 33, 1962, p. 1465.
36.	Kreglewski, B. and B. J. Zwolinski, <u>J. Phys</u> . <u>Chem</u> ., vol. 65, 1961, pp. 1050-2.
37.	Kurata, M. and S. Isida, <u>J</u> . <u>Chem</u> . <u>Phys</u> ., vol. 23, 1955, pp. 1126-31.
38.	Kurtz, S. S. and A. Sankin, <u>Ind</u> . <u>Eng</u> . <u>Chem</u> ., vol. 46, 1954, p. 2186.
39.	Lee, J., F. Sears and D. Turcotte, <u>Statistical Thermo-dynamics</u> . Reading, Mass.: Addison-Wesley Pub. Co. Inc., 1963, pp. 73-75.
40.	Lenth, C. W., J. Am. Chem. Soc., vol. 55, 1933, p.3283.
41.	Lewis, G. N. and M. Randall, Revised by K. S. Pitzer and L. Brewer, <u>Thermodynamics</u> . New York: McGraw- Hill Book Co., 1961.
42.	Li, C. M. J. and F. Rossini, <u>J. Chem. Eng. Data</u> , vol. 6, 1961, pp. 268-270.
43.	Li, K., R. Arnett, M. Epstein, R. Ries, L. Bitler, J. Lynch and F. Rossini, <u>J. Phys</u> . <u>Chem</u> ., vol. 60, 1956, pp. 1400-6.
44.	Marcus, J., <u>J. Chem. Phys</u> ., vol. 26, 1957, pp. 1765-6.
45.	McCurdy, C. and K. Laidler, <u>Can</u> . <u>J. Chem</u> ., vol. 41, 1963, pp. 1867-71.
46.	Meisner, H. P. and O. H. Paddison, <u>Ind. Eng. Chem</u> ., vol. 33, 1941, pp. 1189-91.
47.	Miller, A. A., <u>J. Phys. Chem</u> ., vol. 68, 1964, pp. 3900-02.
48.	Nakanishi, K., M. Kurata and M. Tamora, <u>J. Chem. Eng</u> . <u>Data</u> , vol. 5, 1960, pp. 210–19.
49.	Osborne, N. S. and C. H. Meyers, <u>J. Rsch</u> . <u>Natl. Bur</u> . <u>Stds</u> ., vol. 13, 1934, pp. 1-20.

- 50. Othmer, F. D. and H. Huang, <u>Ind</u>. <u>Eng</u>. <u>Chem</u>., vol. 57, 1965, pp. 42-48.
- 51. Parkell, personal communication. E. I. DuPont de Nemours and Co., Del.
- 52. Partington, J., <u>An Advanced Treatise on Physical</u> <u>Chemistry</u>, vol. 1. London: Longmans, Green and Co., Ltd., 1949.
- 53. Pratap, R. and G. Narsimhan, <u>Brit</u>. <u>Chem</u>. <u>Eng</u>., vol. 7, 1962, pp. 757-9.
- 54. Reid, R. C. and T. K. Sherwood, <u>The Properties of</u> <u>Gases and Liquids</u>. New York: McGraw-Hill Book Co., Inc., 1958.
- 55. Rose, A., B. T. Papakronis and E. Williams, <u>Chem</u>. <u>Eng. Data</u>, vol. 3, 1958, p. 216.
- 56. Rose, A. and W. R. Supina, J. <u>Chem. Eng. Data</u>, vol. 6, 1961, p. 173.
- 57. Rossini, Frederick D., <u>Selected Values of Physical</u> <u>Properties and Related</u> <u>Compounds</u>. Pittsburgh, Pa.: Carnegie Press, 1953.
- 58. Smyth, C. P. and E. W. Engel, <u>J. Am</u>. <u>Chem</u>. <u>Soc</u>., vol. 51, 1929, p. 2646.
- 59. Steward, G. W., <u>Phys</u>. <u>Rev</u>., vol. 35, 1930, pp. 296 and 726.
- 60. <u>Temporary Operating Manual</u> for DuPont 900 Differential Thermal Analyzer. E. I. DuPont de Nemours and Co., Wilmington, Del., 1962.
- 61. Tetrode, H., Physik. Zeits., vol. 14, 1913, p. 212.
- 62. Thompson, G. W., Chem. <u>Rev</u>., vol. 38, 1946, pp. 1-39.
- 63. Timmerman, J., <u>Physico Chemical Constants of Pure</u> <u>Organic Compounds</u>.
- 64. Vassallo, D. A. and J. C. Harden, <u>Analytical Chem</u>., vol. 34, 1962, pp. 132-35.
- 65. Verkada, P. E. and J. Coops Jr., <u>Rec. Trav. Chim.</u>, vol. 46, 1927, p. 903.

i._ •

- 66. Volk, William, <u>Applied</u> <u>Statistics</u> for <u>Engineers</u>. New York: McGraw-Hill Book Co., 1958.
- 67. Wall, F. T., J. Chem. Phys., vol. 16, 1948, p. 508.
- 68. Waring, C. E. and P. Becker, <u>J. Chem. Phys.</u>, vol. 16, 1947, p. 488.
- 69. Weissberger, A., <u>Technique</u> of <u>Organic</u> <u>Chemistry</u>, vol. I, Part I. New York: Interscience Publishers Inc., 1959, pp. 434-51.
- 70. Willingham, C. B., W. J. Taylor, J. M. Pignocco and F. D. Rossini, J. <u>Rsch. Natl. Bur</u>. <u>Stds</u>., vol. 35, 1945, p. 219.
- 71. Winslow, D. H., <u>A Correlation of Vapor Pressure</u>, <u>Temperature and Carbon Numbers of Homologous Series</u>. Masters Thesis, Newark College of Engineering, 1965.

## VITA

Herbert R. Kemme was awarded the degree of Bachelor of Science in Chemical Engineering from Newark College of Engineering in 1962. That year he received a three year grant through the National Defense and Education Act for Doctoral studies at the same institution. In 1963 he was granted the degree of Master of Science in Chemical Engineering.

His experience includes summers spent as a chemical engineer at Colgate-Palmolive Co. in Jersey City, N. J. and Marbon Chemical Co. in Parkersburg, West Virginia. Presently he is employed by the American Cyanamid Company in Bound Brook, N. J. as a Chemical Research Engineer in Process Development.