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ABSTRACT

A pile load test program was conducted at Newark Airport to

determine the most economical piles to be utilized to support the

structure in the Redevelopment of Newark Airport. The controlling

criteria were the pre-determined design capacity of 50 to 100 tons

for the piles and conformance to the Newark Building Code regarding

the maximum allowable loads on the Airport's bearing strata and the

allowable settlements for test loaded piles. Thirty-four piles,

ten timber, four steel 11-piles, four pre-stressed concrete, seven

cobi shell and nine steel pipe piles, were driven to determine driv-

ing characteristics of the piles and the reaction of the supporting

soils strata. Six piles, test loaded in conformance with the City

Building Code, were used to test van Weele's theory of separating

the bearing capacity of a pile into frictional and tip resistance.

Three of these piles, a single concreted cobi shell, and two steel

pipe piles, one of which was concreted, were instrumented along the

length of the pile to determine the portion of the applied load which

was assumed by the frictional resistance. All the piles tested,

except for the timber piles, exceeded the design loads and the cri-

teria of the Building Code. Van Weele's method of determining the

load transferred to friction by calculating the elastic recovery of

the pile was compared to the load transferred to friction by instru-

menting the test piles. The frictional forces from the instrumented

tests exceeded the results obtained by van Weele's method. Pile



movement and peak frictional resistances for the tests were compared

to shear strengths of the soil. Residual forces resulting from the

pile driving and forces exerted on the instrumentation from the

concrete encasement were in evidence but the values were not

calculated.
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INTRODUCTION

A pile load test program was conducted at Newark Airport to

determine the piles to be utilized in the Redevelopment of Newark

Airport. The Structures to be supported in the Redevelopment consist

of three three level Terminal Buildings, approximately 600' long by

160' wide, with nine connecting satellite terminals, bridges, bi-level

roadways, a heating and refrigeration plant and other associated

structures.

There were four objectives for conducting the test pile program.

First, based on column loads for the Terminal Buildings, piles

capable of supporting 50 to 100 tons would be required. To attain

this capacity in the subject soils strata, a pile would have to be

point bearing on bedrock. The Newark City Building Code limited piles

founded in the shale bedrock at the Airport to an 80 ton capacity.

Thus, it was anticipated that if the pile tests exceeded the 80 ton

capacity established by the Building Code, the governing criteria for

the local conditions might be relaxed.

Second, the evaluation of the driving performance of the various

types of piles would aid the design engineer in establishing the

contract requirement. Piles driven under previous contracts were

unable to penetrate through some of the soils strata requiring spudding,

jetting, pile modification and tip elevation re-evaluation which caused

costly delays to the projects.



The compilation of research data was attained. Certain piles

were instrumented to determine stresses under various test loads

for determining the proportion of load distributed in friction and

that reaching the pile tip. These results were compared to van

Weele's method of separating the bearing capacity of a pile into

skin friction and point resistance. The driving characteristics and

tip elevations of steel pipe piles of different wall thicknesses were

observed.

Most important, the premise for performing the pile tests was

to determine the pile that meets the design load criteria and pro-

vides the greatest economy.

2
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SOIL CONDITIONS

Figures 1 and 2 show the soil profile obtained from borings at

Sites "A" and "B" prior to driving.

An early phase of the Redevelopment Program called for the plac-

ing of hydraulic fill within the complex to overlay the tidal marsh

providing a suitable fill and a working elevation for construction.

It would also surcharge the area to provide primary settlement by

consolidation of the organic silt.

The general geologic condition of the Airport as determined in

a Preliminary Report on Soil Studies - 1963 ? showed that the Airport

had been developed by filling over a tidal marsh deposit varying

from 2' to 20' in thickness. This deposit is composed of unusually

soft compressible organic silts, with moisture contents ranging from

60% to 100% and variable degrees of peaty soils sometimes attaining

a moisture content of 600%. These organic and peaty soils are

characteristic of the tidal marsh deposit. The upper portions contain

extensive amount of dead vegetation interposed with fine-grained silts

deposited by streams which emptied into the marsh. The lower portions

of this deposit are frequently coarse grained, varying from sandy

organic silts to fine-grained sands.

Underlying the tidal marsh are variable and not often distinct

layers of glacial outwash and lake deposits, residual soil and basement

rock in this sequence. The glacial lake deposits which underlie the



Airport are usually interposed with outwash material. These coarse-

grained soils were probably washed down from the more highly-elevated

outwash deposits that are located to the north and west of the Airport.

These lake deposits which consist of reddish brown silts and clays,

frequently varved, are pre-consolidated to pressures of 3 to 4 tons

per square foot, while present overburden-pressure is about 1 1/2 tons

per square foot. Exactly how these soils became overconsolidated is

not known; possibly the terminal moraine was breeched and the glacial

lake drained when the ocean was much lower than its present level.

The loss of buoyancy resulting from a lowering of the water level of

50 feet would have subjected the lake deposits to an overburden load

of more than 3 tons per square foot.

Bedrock lies from approximately elevation 260' at the east of

the field to elevation 186' at the extreme west end. (Newark Airport

Datum - Elevation 297.347 is equivalent to U.S. Coast and Geodetic

Elevation of 0.000 which is mean sea level at Sandy Hook). It is a

soft red shale, known as Brunswick shale, from the Triassic period.

Overlying the bedrock is the weathered upper surface, a dense clayey

silt with shale fragments.

Site "A" was 13' above Site "B". The quality of stone at Site

"B", where there was 5' of decomposed rock due to weathering and only

17% of core recovery as compared to Site "A" where there was no

4



measurable amount of weathering and a 63% of core recovery, was

inferior. The piles driven at Site "A" would be more economical,

due to the length, and would probably be seated into the bedrock

more readily.

5



INSTRUMENTATION

Three of the test piles to be loaded were instrumented to measure

the loads distributed to skin friction and point bearing. To calculate

the stresses along the length of pile 5b, a 12-3/4" diameter steel pipe

pile with 3/8" thick walls, strain rods were installed. Test piles 9A,

a 12-3/4" diameter steel pipe pile with 1/4" thick walls, and 17A, a

12" diameter "Cobi" pile, both concreted, utilized Carlson strain

meters.
8

In conjunction with these aforementioned measuring devices a Wild

precise N-3 level was utilized to record the gross settlement of the

subject piles. Permanent bench marks, two of the untested piles which

were driven to bedrock, were utilized as back sights. In a similar

fashion, a permanent foresight was utilized at the pile as shown in

photos 1 and 2.

The strain rods, which were used to measure the elastic shortening

of the pile due to loading were anchored at several locations inside

a hollow steel pipe pile, (figure 5), thus dividing the pile into

several segments as recommended by Coyle and Reese. 1 Dial indicators,

as shown on photo 1, were attached to the strain rods to measure the

elastic shortening of each pile segment. Knowing the modulus of

elasticity and the dimensions of the pile, the stress at each strain

indicator in the pile was readily calculated.

6
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The Carlson Strain Meter
8 

is an unbonded, electric resistivity

strain measuring instrument which is enclosed in a completely sealed

brass tube, one inch in diameter and ten inches long. The meter not

only reads to an accuracy of a few micro inches, but it also is an

accurate thermometer.

Installation of the strain meter (figure 6) was accomplished

with care since being unbonded it is sensitive to shock. Prior to

installation of the meter, it was centered to a positioning bracket

which aligned it to the axis of the pile. Concrete was first placed

to the bottom of the meter location, then the positioning bracket and

meter were lowered into place. Concrete was carefully placed around

and one foot over the meter using a long cylindrical bucket with a

flap bottom. The pile was then concreted to just below the next meter

installation and the procedure was repeated until all the meters were

placed. The meters were pre-set prior to installation, thus when the

piles were concreted the strain meters were subject to a force equiva-

lent to the hydrostatic pressure of the full head of concrete. Except

for one strain meter, #5, which was installed ten feet from the top

of Pile 17A, all responded satisfactorily, indicating that the pressure

of the fluid concrete produced a continuous column of dense concrete.

The testing system consisted of four strain meters for pile load

measurement and one meter at the top of the pile for Calibration. The

load at the top of the pile was measured with a 350 ton load cell

manufactured by the Brewer Engineering Laboratories, which has an

accuracy of .002%. The upper strain meter, because it is in the portion
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of the pile where the soil has been removed by the pipe cylinder or

by the mud slurry, does not show any dissipation of the applied

axial load. When cycling, the upper strain meter was calibrated with

the load cell and a calibration curve for the upper meter was derived.

This was then utilized to determine loads at the other meters.

The instrumentation used in the test pile program demonstrated

advantages and disadvantages for their use in future pile programs.

The strain rods are more durable than the Carlson strain meters

but because of improper installation, insufficient results were ob-

tained. The Rods, if they are placed properly, are more resistive

to shock than the meters and should be more reliable. They are limited

in their use since they could only be utilized in a homogenous pile

such as a pile where the strain rods would not be affected by confin-

ing stresses.

The meters were perhaps the more sophisticated of the two but

because of their sensitivity to shock, their value was slightly

diminished. The main advantage of the meters was their use in a

composite pile of steel and concrete. They could be set within the

pile showing only a minor affect from the hydrostatic pressure of the

concrete. The problems arising from the use of the composite piles

probably discounted some of its distinct advantages and flexibility.

Meter #2 in pile 17A at a depth of approximately 52' was im-

properly pre-set prior to installation and submitted doubtful data.



During the cycling program, Meter #1 for test pile 9A, at a depth

of 57', began to act erratically, as will be explained in the Test

Results.

9
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DRIVING RECORDS 

A contract for the driving of 34 piles of various types, includ-

ing 10 timber piles, 9 steel pipe piles, 3 10-3/4" O.D. with 1/4"

wall, 2 10-3/4" O.D. with 3/8" wall, 2 12-3/4" O.D. with 1/4" wall,

2 12-3/4" O.D. with 3/8" wall, 4 steel H piles (10 BP 57) 4 fourteen

inch octagonal prestressed concrete piles and 7 twelve inch "Cobi"

piles was awarded to the Cayuga Construction Corp. Six Piles of which

three were instrumented at several locations along its length, were

load tested. In addition, there was a provision for seven pipe

cylinders, 18 feet in length, to act as casings through the sand fill

and tidal marsh deposit in order to remove the frictional support of

these strata. 9 Due to installation problems with the 14" octagonal

prestressed concrete and the "Cobi" pile it was not feasible to provide

a pipe cylinder for every test load.

The piles were driven with a Lima 803 crane equipped with 100

foot leads to permit driving to the underlying shale without having to

splice in the leads. The plan view drawing of the piles and their

locations in each area is shown on figures 3 and 4.

The pile driving results are summarized on figures 3 and 4. Draw-

ings of the pile record reports for each individual test pile are shown

on figures 1 and 2. The records show easy driving to the shale with

only a slight build-up of driving resistance through the dense sands
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and silts below the tidal marsh deposit. All the other piles yielded

similar results and only differentiated at the bearing strata.

All of the steel piles, which were driven to a final driving

resistance of 20 blows per inch with a Vulcan "0" hammer developing

24,375 foot pounds per blow, penetrated into the bedrock. There was

no apparent difference in pile penetration in Area "A" where the shale

was of a sounder quality, as discussed in the soil conditions, but in

Area "B", the more weathered bedrock section, there was a marked

delineation. The H piles penetrated to approximately 235.0'. The

pipe piles with a wall thickness 3/8 inch penetrated 1.5 to 2.5 feet

lower than the 1/4 inch thick pipe. There was no indication at Area

"A" that the thickness of the pipe had any effect on the penetration

of the shale. In Area "B" the 3/8" walled pipes, being stiffer, did

not lose as much energy in driving as the 1/4" walled pipe, thus they

penetrated the shale further. The dissipation of driving energy through

friction because of the greater surface area was the probable cause of

the 12-3/4 inch diameter pipe piles not driving as far as the 10-3/4"

diameter pipe. Also, a consideration that the tops of the 12-3/4 inch

diameter pipe piles (6B & 8A were rolled during driving because the

driving head did not fit the piles properly.

Seven "Cobi" cast-in-place piles were driven, four in area "A"

and three in area "B". These piles were 12 inch outside diameter,

16 gauge, hel-cor steel shell driven with an expanding type mandrel.

These piles were driven with a Vulcan 06 hammer producing 19,000 foot



pounds per blow. A number of construction problems related to the

utilization of these piles was encountered.

In driving "Cobi" piles, 13B and 14B, the mandrel became stuck

within the shell and had to be withdrawn by utilizing the pile

hammer as a pile extractor. Both these piles were driven to a final

driving resistance of 15 blows per inch, while all the other "Cobi"

piles were driven to a final resistance of ten blows per inch with

the mandrel being extracted easily. The problem of overdriving these

piles would only increase the construction problems and not improve

the capacity of the pile.

All the piles, except for pile 15B, were able to penetrate through

the decomposed rock to the shale. Test pile 15B had a tip elevation

3.7' above the tip elevations of the two other "Cobi" piles in its

grouping. Because of the proximity of the two deeper piles the

variation in the depth of bedrock was discounted. An attempt was made

to test load this pile, however, in driving, the pipe cylinder

collapsed the pipe shell, and the test loading of this pile could not

be accomplished.

Since the test piles in Area "B" were driven first, it was decided

to devise a different method for test loading a "Cobi" pile. For test

pile 16A the pipe cylinder was driven and cleaned out prior to driving

the test pile. However, in driving 16A, its shell caught on the tip

immediate area to pour into the pile.
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Test pile 17A was driven and concreted for load testing and

instrumentation. An annular cylinder of mud slurry was constructed

around the test pile, through the upper fill and marsh deposit as a

field expedient substitute for the pipe cylinder. A "mud rig" used

for test borings was utilized for the work.

Four prestressed concrete piles were driven, two in Area "A"

and two in Area "B". The piles were octagonal in cross-section,

measuring 14 inches between opposite sides.

The piles were to be driven with the Vulcan No. 0 Hammer to

resistances of 20 blows per inch and 14 blows per 1/2 inch. In

Area "B", driving difficulties occurred. Because the driving head

used for the piles was too large for the pile, it moved off center

during the driving. It slipped off the cushion, striking the head

of test pile 9B and eventually cracking the upper three feet. How-

ever, with necessary interruptions to re-position the driving head,

test pile 9B was driven without any other damage to elevation 241.6

with a resistance of 15 blows per inch. Test pile 12B, with a 9"

cushion compared to the 41/2", cushion for pile 9B, was driven to a

tip elevation of 237.8' with a final resistance of 15 blows per inch.

The two prestressed concrete piles in Area "A" resembled similar

driving qualities to the 10" inch steel pipe piles and the "Cobi" piles.

These piles were driven to the designed driving resistance of 20 blows

per inch and 14 blows per 1/2 inch.
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The 10 timber piles, 5 in each area, were driven with a Vulcan

No. I hammer, developing 15,000 foot lbs. per blow. Each pile was

spudded through the overlying sand fill to overcome the initial

resistance to driving. In Area "B", test piles 1B, 3B and 4B were

driven into the decomposed shale to resistances varying from 3.7 to

4.8 blows/inch.

Pile 2B broke at elevation 259, after attaining a resistance of

36 blows per foot, while pile 16B could not be driven any lower than

elevation 277, possibly because of losses in driving energy resulting

from a blow on the pile which caused it to whip in the leads. These

piles in penetrating the very fine sandy silt stratum between eleva-

tions 263 and 285 attained a driving resistance of 2.9 to 3.7

blows/inch.

The driving results for the timber piles at Site A demonstrate

the requirement of an empirical approach to the pile design. Test pile

3A was the only pile to penetrate to the shale. Test piles 1A. and 2A

resisted at 44 blows/inch in the reddish brown silt at tip elevations

of 272 and 275. Test pile 4a attained a resistance of 11 blows/3 inches

at Elevation 260.8, Test pile 5a attained a resistance of 25 blows/inch

at Elevation 269.

The differentiation in the driving results between the two areas

is a common occurrence. The engineering properties of each stratum of

soil are variable at diverse areas of the field, sometimes at only a

few hundred feet.
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Experience from previous pile driving contracts gave evidence

of inconsistency in driving characteristics and tip elevations at

times within 20 to 30 feet.

Inspection of the "Cobi" pile and steel pipe pile for alignment

and dryness showed satisfactory results. By dropping a light down

the pile it was noted that only pile 16A, as previously mentioned,

had a torn shell; all others had no visible damage.

Piles 7B, 7A, 8A and 18A had slight dog legs, but not much more

than the diameter of the pile, since the light was still visible.

The steel pipe piles remained dry but the "Cobi's" had a tendency

to take on some water. The water level in pile 17A during the 41 day

period, subsequent to driving, varied from 2" to 4" to 1/2". This

was not considered either abnormal or detrimental.
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LOAD TEST PROCEDURE 

The basic criterion for performing the load tests was to conform

to the requirements of the Building Code of the City of Newark since

two of the three Terminal Buildings and most of the primary pile

supported structures would lie within the City of Newark's limits.

The Newark Code states that "the allowable load on any pile when

determined by the application of an approved driving formula shall not

exceed forty (40) tons." Thus to utilize an approved test load "the

resulting allowable load shall be not more than one-half (1/2) of that

test load which produces a permanent net settlement per ton of test

load of not more than one-hundredth (0.01) inch." With no restriction

on gross settlement, the allowable net settlement on an 80 ton pile

is 1.6 inches. The net settlement does not seem critical. Thus the

provision in the code regarding the rate of settlement, whereby the

test pile is loaded to 200% of the proposed design load in eight

equal increments, was the critical factor. This test load was to be

maintained until the settlement rate did not exceed 0.01 inches in

eight hours and at 150% of the proposed design load the settlement

rate did not exceed 0.01 inches in twenty-four hours. A provision of

the New York City Code was also adhered to during the tests whereby

200% of the proposed design load was maintained until the rate of

settlement did not exceed 0.01 inches in 24 hours.



17

The program also checked the code restrictions regarding the

maximum allowable loads on different bearing strata. For sedimentary

deposits, or hard shale, the maximum allowable load was 80 tons. For

piles bearing on "soft, broken shale" the allowable load was 60 tons.

Also, if the pile receives lateral support from the soil, the allow-

able load must not exceed the capacity of the pile designed as a short

column.

In addition to conforming to the previously mentioned codes, a

method of performing load-tests first introduced by van Weele and

suggested by Ireland3 was utilized.

Van Weele suggests that after applying each load increment, the

test pile is reset to a "zero" load, then re-cycled again to the test

increment two or three more times before applying the next load incre-

ment. The purpose of the re-cycling of the pile load after each incre-

ment is to relieve the residual frictional forces in order to determine

the residual settlement of the pile tip in addition to the total settle-

ment.

As the loading occurs, in increments, the maximum resistance in

skin friction is attained, the resistance is then mobilized, and all

loads applied thereafter will be transmitted to the tip. If only the

displacements of the pile top are measured the elastic compression of

the pile, together with that of the sub-soil, can be obtained by means

of the recovery of the pile top during unloading. The elastic



18

compression of both the pile and, the material supporting the pile tip

will have a linear relationship to the pile load after the skin

friction is fully mobilized, thus the same should apply to the elastic

displacements of the pile butt.

The apparatus utilized in applying the load tests is illustrated

in photos 1 and 2. The loads were applied by jacking against a loading

platform which supported the dead weight. For the piles to be test

loaded, the load cell, as described in the instrumentation and the

swivel plate as suggested by Davisson 2 were utilized.

Pile 5B which was equipped with the strain rods as shown on figure

5, was load tested in conformance with the Newark City Building Code

in increments of 40 Kips each testing day. The initial load was applied

in approximately 5 minutes, remained for 30 minutes, and unloaded in

5 minutes. This load was not re-applied until 30 minutes had elapsed.

This sequence of operations was repeated two more times. The fourth

and final load applied for the day was the test load for the following

test day; an additional 40 Kips. This load remained on overnight and

the sequence continued until termination of the test.

Measurements were taken at every break in the loading sequence.

Level readings, checks on the load cell strains, strain dial readings,

and temperature variations were maintained.

Prior to performing the load tests on pile 9A and 17A, which were

equipped with the Carlson Strain Meters, as shown on figure 6, readings
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were taken to determine the effect the shrinkage of the concrete

developed upon the meters. Testing of these piles proceeded when

the compressive strain exerted by the concrete on the meters varied

linearly with time.

The test load for the day, which had been applied on the previous

test day was initially reduced to a "zero" load for calibration of

the strain meters. The load was then applied in increments of 1/8 of

the test load every 3..5 minutes until the load had been attained. It

was allowed to stand for 30 minutes and was recycled back to "0" load.

Only the upper strain meter was read during this procedure to obtain

data for calibration. After a 30 minute duration the test load was

applied within 5 minutes and this procedure was repeated once again,

reading all =tore. The test load for the following day was then

applied and allowed to remain overnight. This sequence was repeated

each test day.

Measurements were taken at distinct intervals. Level readings,

load cell checks, direct and reverse resistivity readings and

temperature readings from the Carlson Strain Meters were performed.

Piles 4B, es and 11A► were not instrumented and the load tests

only consisted of the load application as prescribed by the City of

Newark Building Code.
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LOAD TESTS 

Cycling Theory and Method 

Van Weele II states that by cycling the load in a heavy loading

test the residual settlement can be determined. The settlement of

the pile top, which is the total settlement is composed of (a) the

elastic compression of the pile, (b) the elastic compression of the

sub-soil below the pile tip, (c) and the residual settlement of the

sub-soil. Thus, by obtaining the displacement of the pile top dur-

ing unloading the elastic compression of the pile and sub-soil are

determined. The elastic compressions of both these components have

a linear relation to the pile load, thus when the skin friction is

mobilized the elastic displacement of the pile top and the applied

load will have a linear relationship. Thus, it is possible to prove

that the skin friction remains constant beyond a certain pile load,

that is, after a certain settlement has occurred. At the point the

skin friction is mobilized any increase in the pile load will be

transmitted directly to the point without any further increase or

decrease in load carried in skin friction.

To test van Weele's premise, incremented loads were cycled to

obtain the combined elastic recovery of the pile and the sub-grade;

from this linear relationship the constant frictional force is derived.
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Using test pile 5B for an example, in measuring the replacement

of the pile top during cycling for test pile 5B, the data as shown

on figure 7 is obtained. This graph represents the incremental load-

ing of 280 kips for December 19, 1966. Level readings were taken at

the start and completion of each phase of operation in loading and

unloading.

(A) is the uncorrected total settlement, which was taken prior

to cycling in the morning after the load had been held since at least

the previous afternoon.

The uncorrected net settlement for each cycled load is the

average of (C) and (D). The uncorrected elastic deformation of the

pile, the sub-soil under the pile toe, and the residual settlement of

the pile toe is the difference between the total and net settlements.

To obtain the corrected total settlement, the difference of (B)

minus (A) is taken and added to (B)0 This is the increment so each

incremented load has the same settlement for each final load as

illustrated by the sample calculations in Table I.

TABLE I

TEST PILE 8B - CYCLING DATA

20050 100 150

(A) Total Settlement - ft - 0.0012' 0.0048' 0.0089 0.0135
50 Ton 	 + 0.0020' +0.0020' 0.0020 0.0020

100 	 " -0.0012' -0.0012 0.0012
150 	 ft -0.0006 -0.0006
200 	 " 40.0016

(B)- 	 (B-A) Corrected Set. 0.0008' 0.0056 0.0091 0.0153
Elastic Deformation -0.0024' -0.0050 -0.0085 -0.0130
Point Settlement -0,0016' 0.0006' 0.0006 0.0023



22

The corrected elastic deformation is derived from

(A) + (B) 	 (D) + (E)

2 	 2

which is the difference between the average of the total settlement

prior to first and final unloading cycles and of the incremented

load and the average at the first and final loading cycles. The

corrected point or net settlement is then the difference between

the corrected total settlement and elastic deformation.

Effects of Cycling 

Three piles 5B (10-3/4" - (.D. pipe pile), 9A. (10-3/4" - O.D.

pipe pile) and 17A. (12" Cobi pile) were instrumented to check van

Weele's thesis in separating the bearing capacity of a pile into

skin friction and point resistance.

Pile 5B was equipped with strain rods. The rods were anchored

at several locations inside the hollow pipe pile to measure the

elastic shortening of different segments. From the dial readings,

the strains for the segments could be determined and using 29 x 10 6

psi Modulus of Elasticity of the pile, the stress could be determined.

Thus, for each segment of the pile, the load transferred to the skin

friction could be calculated.

Three plates and five strain rods were installed in the pile as

shown on figure 5.

With this location system the readings could be readily ascertained

for accuracy in determining the load at set positions of the pile.

Expectations from this pile though were not forthcoming. Rods #2 and #3
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did not move since they probably became jammed and obstructed. Also,

the results from Rod #5 were not applicable since the strain readings

approximated the sum of Rods #1 and #4, probably because the rod

slipped and was caught immediately below plate #2.

By cycling each increment of test load, the residual stresses

being exerted on the pile tend to be relieved. Figure 8 shows the

effect between the initial reading prior to cycling and the decreased

readings during cycling. Both figures 8 and 9 shows that the relief

of the residual load increases gradually with the increased applied

load. As the applied load is increased, the elastic deformation

increases causing a greater relative movement between the pile

surface and the adjoining soil. The continual movement from the cycl-

ing tends to release the effective pressure exerted on the pile by the

soil thereby relieving any negative frictional or residual forces.

10 Kips of residual load was measured to have been relieved at the

280 Kip loading. If the strain rods could have carried an applied load

greater than 280 Kips, there would probably have been a greater

relieved residual load. This result, which was due to the increased

movement of the pile face where the bond of the pile and soil yielded,

also caused a decrease in the mobilization of skin friction.

The graph on figure 9 illustrates the load carried by skin friction

above elevation 268.5. It shows a loss of skin friction from the

initial unloading cycle for the 80 Kip, 120 Kip and 160 Kip applied

loads, because when the peak skin friction is mobilized, soil creep
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occurs, causing a loss in the skin friction. Continual load cycling

appears to stabilize the load carried by skin friction. Using only

the final readings after load cycling, the load carried by skin

friction attained a maximum of 27 Kips for the 80 Kip applied load

and then decreased gradually with increasing load until at the 280 Kip

load it was 17 Kips. This curve, which illustrates the approximate

shear strength of the soil, at the 80 Kip load, showed a similar trend

to results that will be discussed later. These results show that

there is a decrease in skin friction for soil strains beyond the

frictional resistance.

Piles 9A (10-3/4" - O.D. pipe pile with a 0.25" wall) and 17A

(12" Cobi) both concrete filled, were each equipped with five

Carlson strain meters. The meters were placed as previously mentioned,

figure 6, with the #1 meter at the tip of the pile and increasing in

equidistant segments to meter #5 at the base of the casing, which was

provided to void any friction loads in the compressible material.

Pile loads at each strain meter were determined by calibrating

the upper meter with a known load at the outset of the day's cycling.

However, meter No. 5, the upper strain meter, for test pile 17A

recorded strains that were too large, probably because the concrete

at the meter was not properly densified. This meter was only 10 feet

from the pile top so that the hydrostatic pressure was small and the

upper portion of the concrete fill was not nodded as should have been

required. After the readings from 17A were deemed doubtful, it was
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necessary to use the modulus of elasticity of the concrete from the

measurement for 9A to calculate the pile loads. In effect, meter #4

was used for calibration. This method, though not desirable, yielded

consistent results.

The calibration for the load strain relationship of pile 9A,

(figure 10), was constant until January 16 when the 320 Kip load was

applied and cycled. The elasticity of the pile or testing apparatus

increased approximately 10% and an additional 10% on January 19, 1967

when the applied load was increased to 360 Kips. All meters were

assumed to be effected and further development of the test data was

similarly affected.

The Analytical method of determining the modulus of elasticity

of a steel pipe with a concrete core is to assume that the percentage

of the total applied load carried by the member is proportional to the

cross-sectional area and the modulus of elasticity of each element.

Applying a modulus of elasticity of concrete of 5.0 x 10 6 psi, as

averaged from breaks on test cylinders which ranged from 4.5 x 10 6

psi to 5.4 x 10 6 psi, and 29 x 10 6 psi for steel, the theoretical

modulus of elasticity of the pile should have been approximately

7.0 x 10 6 psi. From the load strain curve of figure 10 the modulus of

elasticity of the pile was actually 26 x 10 6 psi, thereby showing that

the steel pipe was carrying a greater share of the applied load.

This disparity is due to the exhibited physical properties that

concrete cannot exceed its tensile strength. As concrete cures, the
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volume decreases, thereby shrinking the concrete core. This shrink-

age induces a force along the inner wall of the steel pipe which does

not move in relation to the concrete. The steel pipe takes this force

in compression and because of an equal and opposite reaction, the

concrete core takes the stress in tension. Cooling causes a thermal

contraction in the core which is only minor but is increased because

the pile is held in friction and the steel pipe cannot contract be-

cause of the adherence of the concrete on the inside and the soil

pressure on the outside. Concrete, under sustained loading, will

creep, exhibiting an effect similar to the shrinkage of the concrete.

Because of these physical properties the stresses in the steel

pipe could have increased two to four times of that obtained under

initial loading, if at that time, the stresses in the pipe were

determined. 6

Under initial loading of the pile, when most of the pile load is

absorbed in friction, most, if not all of the load, is carried by

the steel pipe with a negligible amount, if any, carried by the

concrete core. When the pile is cycled from load to unload, the tend-

ency is for the steel pipe to expand to its original length, but both

the concrete core which does not expand or contract as uniformly as

the pipe and the negative skin friction now exerted on the outside of

the pipe prevent a full elastic recovery.
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Because of this extreme cycling effect and the pressure exerted

by the steel pipe the concrete core could not withstand the tension

load and on January 16, with an applied load of 320 Kips, the concrete

core ruptured. This is then the probable cause of the calibration

shift.

Figure 11 shows the inelastic strain at a "0" load condition vs.

time for pile 9A. The temperature strains for meters #2 and #4 were

based on the cooling temperatures taken from the readings on the strain

meters.

The total strains due to creep and shrinkage prior to loading

reached a linear stage 9 days after the concrete was poured and con-

tinued until the initial loading. During cycling it can be noted that

the meters showed that the pile was restricted from rebounding to its

original "0" setting prior to loading. This was due to the twofold

effect of the negative skin friction and the restrictive pressure

of the concrete core.

With the application of the 376 Kip loading the inelastic strain

curve started to show a relief in the compressive forces in the pile.

Similarly, as with pile 5B, the greater the load cycled, the greater

the relief of any residual forces in the pile. Meters #2 and #5 show

relief of the forces constricting the pile from rebounding after un-

loading. Meters #3 and #4 show not only relief of the aforementioned

forces but also show relief of the forces due to concrete shrinkage

and creep. Possibly with time these forces would have been relieved.



28

With greater loads relieving the residual forces, these meters

would possibly react similarly to meter #1, whose concrete encase-

ment of the meter could not withstand the tension from the complete

recovery of all the residual forces in the pile. These stresses were

established in the pile due to driving. The pile is contracted at

each application of the driving hammer, and when this impact load is

withdrawn, the pile tends to expand back to its original length, but

the negative skin friction exerted by the soil constricts the complete

elastic recovery, thereby inducing a compressive strain on the pile.

Thus, when this compressive force is relieved the tension load is

transmitted to the concrete core, which, of course, was poured after

driving, thereby straining the concrete to its yield point.

The inelastic strain at a "0" loading for test pile 17A, figure

12, seemed as if it would follow a pattern similar to 9A except the

residual forces were not as readily relieved with increased loading.

Results and Analysis 

Two graphs, one of the butt load versus the gross and net

settlements and the other of butt load versus the elastic recovery of

the pile top were derived for each of the six piles test loaded using

van Weele's analysis. These results are shown an figures 13 to 24.

Using the load-settlement graphs, failure conditions can be

ascertained. Test pile 4B (Timber) failed at approximately 40 Kips

(figure 13). The other piles to reach failure were 5B (10-3/4" 0.D.

pipe pile with a 0.365" wall) at 360 Kips (figure 14) and 8B (12-3/4"
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O.D. pipe pile with a 0.25" wall) at 400 Kips (figure 15), None of

the piles tested in Area "A" failed though pile 9A (10-3/4" 0.D.

pipe pile with a 0.25" wall) appeared close to failure at 400 Kips

(figure 16). Pile 17A (14" prestressed concrete) was tested to 600

Kips without any indication of failure (figure 17). Pile 17A (12"

Cobi shell) had exceeded a capacity of 320 Kips when the test data

for net settlement became doubtful (figure 18).

In Area "A" the 400 Kip loading showed net settlements of 0.042'

for 9A, 0.033 for 17A and only 0.010 for 11A. The lesser proportion

of settlement for the prestressed concrete pile could be attributed

to development of added friction resistance from the compressible

deposit and overlying sand surcharge and to the added frictional factor

of concrete over steel. In addition, the load at the tip was distributed

over a greater surface area.

Figures 19 to 24 exhibit the elastic recovery of the test piles

4B, (figure 19), 5B, (figure 20), 8B, (figure 21), 9A, (figure 22),

11A (figure 23), and 17A (figure 24). The mobilized skin friction,

obtained with van Weele's method is listed and compared in Table II.

In averaging the axial load of the pile, utilizing the elasticity

of steel as 29 x 106 psi and of the concrete as 5.0 x 106 psi, as was

previously discussed, the theoretical elasticity of the pile was

derived. Comparing these results to the actual pile and sub-grade

recovery a similarity in results was noted. Actually, these results

are misleading, because if the load at the pile tip were actually that
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excessive, as say 266k for pile 17A, and using a sub-grade modulus

of 13k/in3 (figure 29), the sub-grade would develop an elastic

recovery of .015' which signifies that the mobilized skin frictions

for all the test loaded piles was not attained by this method,

TABLE II 

TEST PILES - CHECK. ON VAN WEELE METHOD

Pile Mobilized
Friction

Arbitrary
Butt Load

Theo, Pile
Elasticity

Actual
Pile and
Sub-Grade
Recovery

4B - Timber 2323k 120k .039' .024'

5B - Steel pipe 38k 200k .033' .033'

8B - Steel pipe 83k 250k .18' .0171

9A - Steel pipe 43k 300k .030' .028'

11A - Prestress. Conc. 73k 300k .19' .019'

17A - Cobi shell 34k 300 k .030' .032'

The load distribution curves for test piles 9A and 17A are

illustrated on figures 25 and 26. The load transferred to skin friction

at each meter location increases until the maximum possible skin friction

is attained. The mobilization along the pile continues in a downward

direction until the pile is completely mobilized and all of the addi-

tional applied load is transmitted to the tip. The illustrations do

not show a definite trail because as the friction forces at the lower

end of the pile are being mobilized the upper portions which have

already been mobilized, tend to lose any support to maintain the

mobilized frictional strength, because their excessive relative movement
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with the adjoining soil tends to cause a .shear failure and disrupt

the soil bond. Thus, a load greater than the applied additional

load is transmitted to the pile tip.

Data from these results with the results obtained using van

Weele's analysis from figures 22 and 24 for separating the load

carried by point bearing and skin friction, did not agree. Van

Weele's method showed that the mobilized friction loads for 9A and

17A should have been 43 Kip and 34 Kips respectively. With only

an 80 Kip applied loading the piles each have a load carried by skin

friction of 60 Kips and 78 Kips. At a 300 Kip loading the skin

friction loads increase to 130 Kips and 170 Kips. This difference

is attributable to the differing soil conditions at the test sites.

Van Weele's tests were conducted in a soft soil whereas the soil at

Newark Airport is medium stiff and dense with differing stress strain

characteristics.

That portion of the load distribution curves showing the tip

load increasing at the same rate as the applied load compares favorably

with results obtained by Mohan, Jain and Kumar 5 , whose soil structure

was similar to the Airport. Mansur and Kaufmann
4
, and Seed and Reese 9 ,

did not compare favorably with the results of the subject tests for

the load applied to the tip. Their soil conditions were similar to van

Weele's but their results did not agree with his since their load,

carried by friction, kept increasing with each increasing applied load.

The results of these others are illustrated on figure 27.
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Figure 28 shows graphs of the Tip Load vs Tip Settlement for

9A and 17A. The tip load for each applied loading was taken from

the strain meter reading at the bottom meter or from the projected

reading from the load distribution curve. The tip settlement is the

total settlement minus the elastic recovery of the pile. Figure 29

shows graphs of the elastic recovery of the pile tip vs the tip

load for 9A and 17A. The elastic recovery of the sub-grade is

determined from the elastic recovery at the pile top minus the

elastic recovery of the pile.

The results show that for a tip settlement of .02', Pile 9A,

the lesser cross sectional bearing area, had a load of 164 Kips and

17A a load of 128 Kips.

Both sub-grade moduli of 9A were approximately twice as large

as 17A. These variations could be attributed to the differing quality

of shale at the pile tip. Pile 9A, the stiffer pile, 710 was driven

1.6 further into the bedrock than 17A where it possibly rested on a

sounder quality stone, thereby it required a greater load to attain

a tip settlement equal to 17k. The variations in the sub-grade moduli

based on settlement and plastic recovery could be accounted for with

the same premise.

Actually, the basis for these curves is questionable since there

is no certainty that the pile was able to recover elastically as the

loads were being cycled.
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Figures 30, 31, 32 and 33 show the Load Transfer vs Pile Move-

ment for both net settlement and elastic movement at the meter

segments for piles 9A and 17A.

The load transfer is the difference of load between two meters.

The net settlement, again, is the difference between the total

settlement and the elastic recovery. The elastic movement is the

difference at the "zero" loading prior to cycling the incremental

load and immediately after.

The movement for each segment of the pile is that movement

that the centroid of the segment travelled relative to a fixed

position. Both sets of curves resemble each other except that elastic

movement curves at the bottom of the pile do not show a peaking effect.

The relation between the peaks from the Load Transfer vs Pile

Movement curves for 91i. and 17A, especially for net settlement,

figures 30 and 32, is defined. For the lower two segments, the peak

strength for 17A is approximately 407. higher than Rh. This is

attributable to the effect of friction on the pile surface. Because

of the corrugations on pile 17A the interface of the frictional force

is almost soil against soil. Pile 9A is a smooth steel pipe where the

interface is soil against steel, thus the soil will yield more readily

against this smooth surface.

These curves resemble, in structure alone, the laboratory find-

ings of Coyle and Reese" figure 34,
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For the lower depths, where the lateral pressure on the pile

is greater, the load required to yield the soil from the interface

of the pile is much greater. The effect is that at the upper section

of the pile where the lateral pressures are less, less movement is

required to shear the soil. The soil reaches a peak, similarly to

remoulded soils, mobilizes and then decreases.

These segments of the pile lower down did not exhibit the de-

creasing stresses but did show a peaking where mobilization of the

skin friction does occur. The non-uniformity of the soil structure

is illustrated by the overlapping curves of the slightly organic

material.

Field tests have been connected by others and studied by Coyle

and Reese/ which tend to peak, mobilize and not decrease the load

transferred to friction, but these tests were run in a clay softer

and looser than at Newark Airport.
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EVALUATIONS 

The pile test results validated the opinion that the Building

Code for Newark, as it pertains to the Airport, is too restrictive.

The code pile capacities of 80 tons for the shale and 60 tons for

the broken shale could be safely increased to 100 tons. Failure in

test areas 	 and "B" did not occur until the loading capacity was

almost 50% over the code's limiting capacities. In addition, the

code does not assign any size or type of pile for specific load

carrying capacities.

The timber piles showed an inconsistency in driving and refusal

depth. This was expected since the previous contracts in which

timber piles were utilized were delayed and costly because some piles

could not be driven to their minimum tip elevation. The sturdier

piles drove with less consistent results at Site "B" than at Site "A"

because of the broken, weathered shale. The steel pipe piles drove

more uniformly than the others and reached the bedrock at consistent

elevations.

Van Weele's theory for separating the bearing capacity of a pile

load into point resistance and skin friction varied with the results

from this test. The test pile van Weele studied was driven 40' in a

soft, loose peat and sandy clays. The shearing strengths do not

exhibit a peak as did the shear strengths obtained from this test,

which was conducted in medium stiff and medium dense soils. Van Weele's
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frictional load also resembled his shear strength curves, in that

the load carried by skin friction increased until maximum skin

friction was reached and then remained constant, whereas, this

test showed a decrease in strength after peaking.

The relief of residual stresses due to the load cycling were

more pronounced after maximum skin friction had been attained.

The instrumentation was relatively successful even though a

good percentage of the meters did not function as anticipated.

Both the strain rods and strain meters emitted comparable results.

The strain rods are more expensive to install and more durable,

though not proven by this test program. The strain meters, though

economical and more sophisticated, had a distinct disadvantage in

their installation. The physical properties of the concrete

affected their durability and subsequently made some inoperable.

The effect of energy loss on the steel pipe piles with variable

wall thicknesses was inconclusive since a number of the pile tips

were pointed. However, it was noted that at Site B, when the stiffer,

thicker walled pipes were tipped, the penetration of bedrock was

almost 2' further than the flat bottomed thinner walled piles. At

Site A, where the thinner walled pipe piles were tipped, the penetra-

tion was approximately the same.

In evaluating the economics of the piles tested, it was determined

that the timber piles could only be justified for loads to 25 tons.

Their use would be limited since the driving problems encountered

would not be alleviated.
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The prestressed concrete piles were over designed and could not

be utilized unless the load requirements of the City Code were re-

laxed. Their cost, which is approximately triple the steel H or the

steel pipe piles, is an economic disadvantage.

The use of steel H-piles was discounted because it was doubted

that the pile tips could be firmly founded in the bedrock.

The concrete filled pipe piles were considered the most suitable

of all the piles tested. They surpassed the requirements of the

Building Code and were able to withstand loads in excess of 80 tons.

The "Cobi" piles were less expensive but were not considered as

economical as the pipe piles. The allowable load on the "Cobi" pile

is limited to the allowable stress of the concrete, whereas, in the

pipe pile, the casing absorbs a greater share of the applied load,

thus decreasing the stresses on the concrete core. Also, the "Cobi"

piles, which met the design loads, required greater construction

inspection due to their vulnerability to damage during driving.

Phase II of the Test Pile Program at Newark Airport, which is

pending, will be performed at different sites to validate design

for structures in other areas. Only steel pipe piles will be

utilized. Additional results will be studied to determine the

phenomenon of the load bearing capacity of piles.



REFERENCES 

1. Coyle, H.M. and Reese, L.C., "Load Transfer for Axially
Loaded Piles in Clay", Proceedings, ASCE, Vol. 92, S.M. 2,
1966.

2. Davisson, M.T., "Summary of Knowledge Gained from Tests on
Instrumented Driven Piles", Seminar, SM&FE, United Eng. Center,
N.Y., May, 1966.

3. Ireland, H.O., "The Conduct and Interpretation of Pile Loading
Tests", Seminar, Met. Section, SM&FE, United Eng. Center, N.Y.,
May, 1966.

4. Mansur C.I. and Kaufmann, R.I., "Pile Tests, Low Sill Structure,
Old River, Louisiana", Transactions, ASCE, Vol. 123, 1958.

5. Mohan, Jain, Kumar, "Load-Bearing Capacity of. Piles",
Geo-technique, Vol. 1, March, 1963.

6. Proceedings, American Concrete Institute, Vol. 27, 1931;
Vol. 28, 1932.

7. Raamot, T. "Analysis of Pile Driving by the Wave Equation",
Foundation Facts, Raymond International, Vol. III, No. 1, 1967.

8. Raphael, J.M. and Carlson, R.W., "Measurement of Structural
Action in Dams", J.J. Gillick & Co., Berkley, California, 1956.

9. Seed, H.B. and Reese, L.E., "The Action of Soft Clay Along
Friction Piles", Transactions, ASCE, Vol. 122, 1957.

10. Smith, E.A.L., "Pile Driving Analysis by the Wave Equation",
Proceedings, ASCE, Vol. 86, S.M. 4, August, 1960.

11. Van Weele, A.F., "A. Method of Separating the Bearing Capacity
of a Test Pile into Skin Friction and Point Resistance",
Proceedings, 4th International Conference on S.M. and F.E.,

Vol. 2, London, 1957.



SOIL PROFILE AND DRIVING RESISTANCE OF
TEST PILES AT SITE "A"
(Surface Elevation 307.0)



SOIL PROFILE AND DRIVING RECORDS OF
TEST PILES AT SITE "B"
(Surface Elevation 303.2)



SITE "A"
PLAN AND DATA

(Surface Elevation 307.0)

PILE
NO.

TYPE
PILE

TYPE
HAMMER
VULCAN

DRIVING
RESISTANCE
BLOWS/DIST.

TIP
ELEV. DESCRIPTION

1A Timber 1 44/1' 272.0 Southern Yellow Pine 7" Tip
2A " 1 44/1' 275.0 " 	 " 	 " 	 6 1/2" "

3A "
1 11/3" 250.8 " 	 " 	" 6 1/2" "

4A
"

1 ►11/3" 260.8 " 	 " 7 1/2" "
5A " 1 25/1' 269.0 "	 " 	 " 9" 	 "

6A St. Pipe 0 19/1" 249.4 10 3/4 O.D. x 1/4" wall with point
7A

" "
0 20/1" 250.0 10 3/4 O.D. x 3/8" wall

8A " " 0 Rolled Top 249.5 12 3/4 O.D. x 1/4" wall with 1" Bot. Plate
9A

" "
0 20/1" 249.2 10 3/4 O.D. x 1/4" wall with 1" Bot. Plate

10A Concrete 0 20/1" 250.1 14" Octagonal prestressed concrete
11A Concrete 0 14/1/2" 251.2 14" Octagonal prestressed concrete
12A St. Pipe 0 20/1" 251.2 12 3/4 O.D. x 3/8" wall with point
13A H. Pile 0 14/0" 250.8 10 BP 57 with Pruyn point
14A H. Pile 0 20/1/2" 248.9 10 BP 57 with Pruyn point
15A Cobi 06 10/1/2" 251.0 12" O.D. Hel Cor Shell, 16 Gauge
16A Cobi 06 10/1" 250.8 12" O.D. Hel Cor Shell, 16 Gauge
17A Cobi 06 15/1" 250.8 12" O.D. Hel Cor Shell, 16 Gauge
18A Cobi 06 10/1" 246.0 12" O.D. Hel Cor Shell, 16 Gauge

FIGURE 3



SITE "B"
PLAN AND DATA

(Surface Elevation 303.2)

PILE
NO.

TYPE
PILE

TYPE
HAMMER
VULCAN

DRIVING
RESISTANCE
BLOWS/DIST.

TIP
ELEV. DESCRIPTION

1B Timber 1 29/6" 244.2 Southern Yellow Pine, 71/2" Tip
2B If 1 - Broke " 	 " 	 " 	 7"

3B ft 1 11/3" 243.1
" 	 " 	 " 	 71/2"

4B u 1 44/1' 243.3 " 	 u 	 " 	 8" 	 "
5B St. Pipe 0 20/0" 237.2 10 3/4 O.D. x 0.365" wall with point
6B St. Pipe 0 60/3" 236.1 12 3/4 0.D. x 3/8" wall with point
7B St. Pipe 0 20/0" 238.5 10 3/4 0.D. x 1/4" wall
8B St. Pipe 0 20/1" 238.6 12 3/4 O.D. x 1/4" wall
9B Concrete 0 Head Spalled 244.2 14" Octagonal prestressed concrete
10B H. Pile 0 20/1/2" 234.1 10 BP 57 Pruyn Point
11B H. Pile 0 20/1" 235.5 10 BP 57 Pruyn Point
12B Concrete 0 15/1" 237.8 14" Octagonal prestressed concrete
13B Cobi 06 15/1" 238.4 12" O.D. Hel Cor Shell, 16 Gauge
14B Cobi 06 15/1" 238.1 12" O.D. Hel Cor Shell, 16 Gauge
15B Cobi 06 10/1" 242.1 12" O.D. Hel Cor Shell, 16 Gauge
16B Timber 0 44/1' 277.0 Southern Yellow Pine, 6" Tip

FIGURE 4



Tip

PILE 5B
STRAIN ROD INSTALLATION

FIGURE 5



PILES 9A & 17A
STRAIN METER INSTALLATION

FIGURE 6



PILE 5B
CYCLING GRAPH

FIGURE 7



PILE 58
'EFFECTS OF CYCLING

FIGURE 8



PILE 5B
LOAD DISTRIBUTION

FIGURE



PILE 9A
LOAD - STRAIN

ELASTIC STRAIN X10
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