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ABSTRACT

The parameters of an electronlc system are not
deterministlic varilables; but rather because of varia-
tions in manufacturing processes, they are randomly
distributed varlables. In addition, aglng mechanisms
Wwill cause these parameters to drift wlth time. As
a result of both of these factors, the system perform-
ance criterla devlate from their initlal design center
values, Thls research studled the effect of component
parameter varlatlions upon these electronic system
performance criterla and then presented a thesls to

minimize tne effect of these varlatlions.

The distributions of the performance crilteria
were obtalned as functions of the parameter dlstribu-
tions, by filrst approxlmating the performance criteria
by the linear terms of a Taylor's serles. Thils tech-
nigque made 1t possible to obtaln relatively simple
expressions for the mean values and varilances of the
performance criteria. Then by assuming that the per-
formance crilterla were normally distributed, the
probabllities of the performance criteria belng wilthin

the required limits were determlned.



This analysls showed that the probabllities of
the system performance crlterla being out of tolerance
could be minlimized, 1f the mean values of the per-
formance criterlia were held at their design center
levels and 1f the varlances of these criterla were
kept as small as possible. It was seen that the mean
values of the performance criterla could be set at
thelr design center levels by proper cholce of the
parameter mean values. The varlances of the criteria
were kept as small as possible by first minimlzing
these varlances wlth respect to the system parameter
mean values wlth the constraint that the inltial per-
formance criterla means assume thelr design center
levels. Increases 1n the varlances of the performance
criteria with time, as well as drift of the mean
values of these criteria, were prevented by satlsfying

certain relatlionships among the parameter drift rates.

The results of this research include the extenslon
and refinement of technlques for determining the dis-
tributions of system performance criteria as functions
of system parameter dlstributions. In additilon,
methods were developed for the selection of the mean
values of the parameters and the parameter drift rates,

so as to minimize the varlances of the system performance

ii



criteria, while at the same time preventing drift of
the mean values of these criterla. Expresslons for
computing the coefflcient of llinear correlatlon between
two varlables whose values where selected 1n a non-

random manner were also obtalned.
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CHAPTER 1: INTRODUCTION

1-1. The Problem

The parameters of an electronic system are not
deterministic variables; but rather because of varia-
tions in manufacturing processes, these parameters are
randomly distributed variables. Hence the system per-
formance criteria, which are functions of the system
parameters, are functions of randomly distributed
variables. Thus a system, whose performance criterila
must be within certain 1imits to insure proper opera-
tion of the system, generally has a non-zero prob-
ability of being out of tolerance. The problem then
is to analyze the’effect of the above variations of
system parameters on the system performance criteria

and to determine methods of minimizing this effect.

The above situation is compounded by aging mecha-
nisms that cause the parameters of a system to drift
with time. The problem 18 further complicated by the
fact that the parameters which describe the aging
mechanisms are in themselves random varlables. The
net effect is that the system performance criteria are
functions of random variables whose dilstributions

change with time. Thls means that the probability of



the performance criteria being out of tolerance varies
with time. Thus 1n attempting to analyze and reduce
the effects of parameter variations on the system per-
formance, the aging of the components must also be

considered.

1-2., The Method of Solution

The first step in the solution of the above prob-
lem 18 to find methods of determining the effects of
parameter variations, due to both manufacturing
processes and aging mechanisms, on system performance
criteria, This requires methods for determining the
distribution of a function of a number of random
variables., Techniques for handling this type of prob-
lem have been developed (Ref. 16,20,27). Hence the
real task at hand 18 to refine and extend these

techniques to the analysis of electronic systems.

Once the above analysis has been completed, the prob-
lem of minimizing the effect of parameter variations
on system performance can be considered. PFirst, the
minimizing of this effect due to manufacturing
processes should be handled. In other words, the
initial probabllity of the system performance being

out of tolerance must be minimized., This can be done



by noting that in the design of electronic systems
there are usually an infinite number of combinatlions
of parameter values which will give the required
values of the system performance criterla. Hence
that combination of parameter values which minimizes
the effect of the initial parameter variations on
the 1nitial system performance criterlia should be

selected.

After this has been accomplished, attention must
be glven to minimizing the effect of parameter drift.
Generally speaking, this means obtalning combinations
of parameter drift rates which prevent the probabllity
of the system performance criteria's being out of
tolerance from increasing with time. 1In somé cases,
this goal may be difficult to achleve; while in others
it may, in fact, be possible to reduce thls prob-
ability of belng out of tolerance as time increases.
In any event that combination of drift rates which
makes the probabllity of being out of tolerance as a

function of time as small as possible should be chosen.



CHAPTER 2: COMPONENT PARAMETER DISTRIBUTIONS

2~-1. Introduction

The purpose of this chapter 1s to discuss param-
eter distributions of devices, as manufactured, as
well as the parameter distributions of the devices as
they are supplied to the customer. The mean values
and the variances of these latter distributions will
be studied. In addition, models for the parameters

as functions of time will be considered.

2-2, Parameter Distributions of Manufacturing Processes

In thls research the parameter values of devices,
as manufactured, will be assumed to be continuous
random variables within a specified range. This 1s a
reasonable assumption, for 1f a sufficlently large
number of units is manufactured, 1t will be possible
to obtain almost any value of parameter desired (to
say, three significant figures) within the specified
range. The distribution of the output of most manu-
facturing processes can be approximated by the normal
distribution. If the normal distribution is used, 1t
must be truncated at the origin since parameters have
values of but one sign (See Fig. 2-1)., If a dis-

tribution other than the normal distributlon 1s used



to represent these parameters, thls distribution must
also have such a range that parameters of but one s8ign

are represented.

When a particular device 1s characterized by more
than one parameter, these parameters will often be
correlated. For example, the h-parameters of a
transistor are correlated. If the parameters of a
device are correlated, it will be assumed that this

correlation 1s linear,

2-3., Parameter Distributions as Supplled by the

Manufacturer

One of the basic assumptions made throughout mcst
of this research is that the standard deviation of
each parameter is considerably smaller than the mean
value of that parameter. For high quality components
this assumptlon will often be met by parameters of
the components taken directly from the manufacturing
process. Most manufacturers will, however, apply
some type of selection process to theilr product.

Thus, even 1f the above assumption 1s not met by the
manufactured product, it will be assumed that 1t 18

met by the product after the selection process.

\JL
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When a selectlon process 1is applied to a normal
distribution, one of a number of types of distribu-
tions can result. One posslbilility is the single-
sided truncated normal distribution., In fact, as
was previliously noted, the normal distribution even
before any selection process 1s of this type. Double-
slded truncation may also be applled to the normal
distribution (See Fig. 2-2). In this case the trunca-
tion 18 usually symmetrical, but asymmetrical trunca-
tion is sometimes used. It should be noted that the
distrlibution remaininé’after the doubled-sided trunca-
tion of a normal distribution wlll not be considered
in this investigation. The reason for this restric-
tion is that such a distribution does not meet the
assumption that the standard deviation of a parameter

is considerably smaller than 1ts mean value.

In the above selection processes the purpose of
the truncation is td eliminate units whose parameter
values differ by too great an amount from the re-
quired nominal values of the parameter. The manu-
facturer will in some instances, however, deslire to
obtain components with a number of different nominal
parameter values from a single normal distribution.

In this case the distribution of each parameter value

lThis refers to the common situation where two relative-

ly small tails remain after double-sided truncation.



will be a section of a normal distribution (See

Fig. 2-3). These sectlons can be viewed as being
cagses of extreme asymmetrical truncation., It wlll be
assumed that these distributions meet the requirement
that the standard deviation of a parameter be much
smaller than i1ts mean value. The assumption of a
normal distributlion cannot, however, be made in this

case.

2-4, Moments of Parameter Distributions as Supplled

by the Manufacturer

(a) The normal distribution. The density func-

tion of a normally distributed variable x 18 given by

| —(Xzﬂxﬁﬁof
F(XJ=‘5:———~'E

Nerd (o< X< ) (2-1)

where Ky is the mean value of x,

. 1s the standard deviation of x.

" As discussed in Sec. 2-2 the normal distribution
is always truncated before 1t 18 used to represent
parameter distributions. If the points of truncation
are sufficiently far from the mean value of the un-
truncated distribution - three standard deviations 1s

often considered sufficiently far - then the mean



value and the standard deviation of the untrucated dis-
tribution are good approximations to the mean value and

standard deviation respectively, of the truncated dis-

tribution.

(b) The asymmetrically truncated normal distribu-

tion. For a continuous random variable x with a
density function f(x), the mean value of x 1in the

range dl < x < d2 is given by
da

fx F(X) dX
d,
Axe= ” (2'2>
2
f £(x) dX
d

If this definition is applied to the density function
of Fig. 2-2, dy = Xy, d, = X and f(x) 1s given by
Eq. (2-1).

Now f(x) may be transformed to the unit normal

density function, f(k), by the followlng equation:

A= (2-3)
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Application of this transfamation to the mean value of
the distribution of Flg, 2-2 shows that the mean of the

truncated distribution is given by

An
o5 [ 4 rhyIA
L, = —2 y: . 4 (2-4)
ff‘(;()c//
A,
where
- XO“AX -
”{""T (2-5)
Xn" X
A, =Tt (2-6)

Also note that the symbols ux and g, will be used for the
untruncated distribution while p . and o, . will be
used for the truncated distribution,

The denominator of Eq. (2-4) can be evaluated
from any unit normal distribution table (Ref. 2 ).

On the other hand, while there 1s a table in existence
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(Ref. 32) from which the numerator of Eq. (2-4) can be
evaluated, thils table 1s not generally avallable., 1t
is possible, however, to obtain the followling identity
(Ref.14):

yE

J A F(R)d k= F14) - A4) (2-7)
A

0

Use of this identity 1s Eq. (2-4) gives

“,, - a-xfiuo)~f(1n)] o, (2-8)

f F(4) I
Ao

With this equation it 1s possible to evaluate Mot

by use of only the unit normal distribution table.

For a continuous random variable x with a den-
sity function f(x), the variance of x in the range

dl < x < d, 1s given by

>4 s
da
oL
SOt T 700 ax
a_ 4
g, = 2-
o ” (2-9)
J[f¥x)dx

o



Expanding (x-—uxt)2 and simplifying yilelds

da
f X3L(X) X
o
o= d'd — Ly (2-10)
X
j £(X)ydx
d,

If this definition 1s applied to the distribution of
Fig. 2-2, the following expression for the variance

of the truncated distribution is obtained (Ref. 14 ):

i 3]
a_ a 4y £ (4o) - Aif (4, ) F (£0) = (4n)
S S -
4 4
[ A4 S FA4
4, 4

(2-11)

It should be pointed out that this is the variance
about the mearn value of the truncated distribution,
Als8o, notice this expresslon allows cxtz to be evalu-
ated in terms of quantities in the unit normal distri-

bution table.

The means and varliances of sections of a normal

distribution can also be determined by use of
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Egs. (2-8) and (2-11) respectively. This is true be-
cause these sections are merely extreme cases of

asymmetrical truncatlon of a normal distribution.

(c) The symmetrically truncated normal distribu-

tion., In the case of symmetrical truncation, 1t 1s

noticed from Flg. 2-2 that
( %o~ Mx) ==( Xn=Mx)
Hence Egs. (2-5) and (2-6) reveal that in this case

440 —‘—"‘/(n

Consequently, Eg. (2-8) shows that b, = K for the

symmetrical case. Furthermore, the variance as given

by Eq. (2-11) becomes (Ref. 14)

6;9. - a_xa ) — j,, ‘/'/An) (2_12)
t A
[ Fth)d4
0

(d) Other distributions. The truncated normal

distribution and sections of a normal distribution
will be the only distributions treated specifically
in this 1nvestigation. The mean values and variances
of other distributions of continuous random variables

may, however, be obtained by use of Egs. (2-2) and
(2-9) respectively.



2.5 Models for Parameters that Drift

In general, parameters which drift will be non-
linear functions of time. Thus a parameter xJ which
drifts may be represented by the following function of

time:
X; (£)= (o)(a pa b+ A, - ta t$+~——a- t’:“)“—) (2-13)
¢ “/jxa' o 7h jat t 4 am

where p_ (0) is the mean of the initial value of x,,
x J

J
a.  1is the drift rate® associated with the q D

Ja
power of ¢,
t 18 time.
Also note that the ajq's are continuous random vari-
ables while t is not. In general, there will be

correlation among the a, 's.

Ja

An l1mportant speclal case of the above model is
obtained when the drift is assumed to be a linear func-

tion of time (Ref., 42). In this case Eq. (2-13) becomes

X, () =/ux&-(0)(a&-o+ d,t) (2-14)

aJO is8 not a drift rate, but rather Just a random
variable whose mean value 1s unlty and whose variance

is equal to the 1nitial variance of xJ divided Dby
ui (0). Also note that ajq may be regarded as a generalized

drift rate in that it is a change per unit time to the qth

power.
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A further simplication of this linear model results when
it is assumed that the initial value and the drift rate
are uncorrelated. It is this linear model with no corre-

lation which will be used in most of the work in this re-

search,

There are a number of reasons why this simplified
model will be emphasized. First is the fact that the
primary object of this research is to develop new tech-
niques for designing more reliable electronic systems.
Consequently, an approximate model, which yields results
that are sufficiently simple so as to be useful for design
purposes, is preferred to a more exact model, which yields
results that are so cumbersome that they are virtually
worthless in design. Another reason for the use of the
simplified model is the lack of component drift data.

At the present state of the art, there is relatively little
data which gives drift as a function of stress, and most of
what is available pertains to resistors. Purthermore,

data relating to the effect of correlation on drift is prac-
tically non-existent. This does not mean, however, that
correlation can always be neglected in drift models, To
the contrary, it can be quite important particularly when

feedback is present.

It is also important to note that the above linear

model provides a reasonable approximation for many
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practlical devices. As an 1llustration of this point,

conslder the MIL-R~10509D metal film resistor, Curves
of the drift of thls type resistor for various stresses
(percentage of rated power in this case) are available
for an ambient temperature of 125°C (Refs.33 4land 46).
By approximating these curves wlth stralght lines, the

following drift rate vs. stress data 1s obtalned:

Table of the Mean Values of the Drift Rates

Percentage of Drift rate as percentage of
rated power initial resistance per hour
25 2 x lO—6
50 5 x 107°
100 10 x 107°

Now the actual power ftaken by any individual
resistor, 1f 1t is supplied by a constant current
source, 1s directly proportional to its resistance.
Since the drift rate 18 influenced by the power, the
initial resistance and the drift rate are then corre-
lated. For example, suppose that a particular
resistor 1s 5% above the mean resistance of distribu-

tion from which it was drawn. Then this resistor
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will consume 5% more power than the average resistor,
By use of linear interpolation in the above table, 1t
1s found that if the average resistor drifts at the
rate of 2 x 10—6% per hour - then the resistor which
is 5% high in resistance drifts at the rate of

2.15 x 10-6% per hour,

From thls example 1t should be noted that 1f none
of the resistors in the distribution differs from the
mean value by too great a degree (say 5% or less),
then the correlation between the initial resistance
and the drift rate 1s small and may thus be neglected.
Now 1t has already been assumed that the standard
deviation of parameters will be much smaller than the
respective mean values of those parameters. Therefore,
in this research the correlation between the initial
reslistance and the drift rate may be neglected for

resistors of the above type.



CHAPTER 3: DISTRIBUTIONS OF

FUNCTIONS OF RANDOM VARIABLES

3-1., Intrcduction

When a device is characterized by more than one
parameter, these parameters may be correlated. In
this chapter functions of correlated variables will
be studied 1n order to determine their distribu-
tions, Functions of uncorrelated variables will

be treated by speclalizatlion of the correlated case,

3-2. Correlated Random Variables

It 1s possible to divide linearly correlated
variables into three classes., In the first class,
the varliables are correlated for physical reasons,
For example, the h-parameters of a translstor maybe
correlatedlbecause they are used to characterize the
same device, The second class pertalns to those
variables which are correlated because they are func-
tions of the same set of variables, It should be
noted, however, that the distinction between these
two types of correlation is really artificial. In
the so-called physical case, the correlated variables
are also functions of the same set of varilables. The

functions in this case are generally so complicated,

lTommerdahl and Nelson (Ref.L2) have taken data on 200

type 2H526 transistors. From this data they have found
that the coefficient of linear correlation between h
and hf for this type transistor is 0.512.



however, that 1t is easlier to measure the correlation
experimentally than to compute it. The third class
pertains to parameters which are correlated because
they were not selected at random. An example of this
is a situation where a low value of one parameter is

purposely matched with a high value of another param-

eter,

The degree of correlation between varlables may
be specified in varlous ways. One measure of the -
amount of linear correlatlion between two variables

xl and x2 i1s theilr covarilance. The covariance between

Xq and X5 in the range dlg;xlg_dg, d3 < X5 < d4 is
defined as
oy oy
[ [ (st ) xam sty £, %) i o,
d, d
Oy « = 2 (3‘1)
e dz oy
[ J Fog,x)dxd% -
4 b

where f(xl,xg) is the Jjolnt density function of Xq
and X5 This equation can be written in the following
form by using the symbol E to denote the process of

taking the mean:

19
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G £ [(xit0) (a0, (3-2)

The covariance can also be written as (Ref. 45)

Oy = E(XXa) = Mg, Ly, (3-3)

The coefficient of llnear correlation between
Xl and x2 can be defined in terms of this covarilance

(Ref. 45) as

-
Ry 7 o (3-4)
XXy 0'7‘(' O—Xa.

In describing the degree of linear correlation between
two random variables, it 1s the coefficient of linear

correlation which 1s usually specified (Refs.23 and 39).

3-3. Functlons of Correlated Random Variables

In general, system performance criteria will be
functions of correlated varlables., These criterla
will be both linear functions and non-linear functlons,
The non-linear functions may, however, be approximated
by linear functions. Thilis 1s done by expanding these
functions in a Taylor's series about the point at

which all the variables assume thelr mean values and



then neglecting the non-linear terms of the seriles.
Thls technlque provides a reasonable approximation to
non-linear functions, if the standard deviliations of
the respective varlables are considerably smaller
than their mean values (Ref. 37). It should be noted
that thls method also applles to the special cases

where all or some of the variables are uncorrelated.

3-4, Moments of Distributions of Functions of

Correlated Random Varilables

Consider the following function:
=9(X X === X === Xp) (3-5)

In general, 1t will be assumed that the x's in this

equation are correlated.

Expressions for the mean and the variance of y
are readily available (Ref.20), The mean value of y

1s given by

/Uyz3(ﬂx,)/”xa)"“‘/uxé-f‘"/ax,,) (3-6)

The expression for the variance of y is
n

9y °?Y
6§—3—§a—) NEE(BXW) v 7 K o

=l §=l A= =3+
=l Ay Ao = ==Hx,,
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Egs. (3-6) and (3-7) are exact expressions for hy and
oy2 respectively, if y 18 a linear function, If y 1is
a non-linear function, then these equatlons are rea-
sonable approximations to “y and 0y2 as long as the
standard deviations of the respective varlables are

much smaller than thelr mean values,

These expresslions also apply when all or some of
the x's are uncorrelated., This case 18 handled by
simply setting the coefficient of linear correlation

between them equal to zero,

3-5, Functions of Normally Correlated Random Variables

22

T™wo random varlables, x, and Xos are saild to be

1
normally correlated if their jolnt density functlon is

given by (Ref. 44)

~Q/a
B [ (- 0<% < ) :
K2 S e, o<y O
where
e - Al 2%, (KA (Xam M) . (-t

= 3 ey
O‘?mgp 0}1 O%O;a 02;
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It can be shown that the marginal distributions of Xq
and Xx_. are both normal wlth moments & , o, and &L_ ,
2 X X X
1 1 2
c respectively. 1In addition, p is found to be
X X X .
2 172
the coefflclent of linear correlation which was defined

by Eq. (3-4) (Ref. 30).

The converse of the above statements 1s also true

(Ref. 28). 1In other words, if x, and x, are each

1 2
normally distributed with moments 4, o  , and W_ ,
X X X
1 1 2
Gx and if the coefficlent of linear correlation be-
2

tween X4 and X5 s ¢ , then the Jjolnt denslty func-

2

tion of x, and x, ls given by Eq. (3-8).

Xl}(

All of the above ldeas may also be extended to a
multivariate normal distribution of n dlmensions

(Refs. 28 and 20).

Now consider the function y given by Eq. (3-5)

for the speclal case whzre n = 2. Le¢t Xq and X5 both

be normally distributed with moments ux s Oy and
1 1
S oX and a coefficient of linear correlation
2 2

Py x between them. Assume that y 1s a linear function
172

of Xy and X5 Or that it may be approximated by a linear

function of xq and x2. In this case, y 1s then

" normally distrlbuted with uy and oyE given by
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Eqs. (3-6) and (3-7) respectively. This idea can also
be extended to the case where y 18 a function of n

variables (Ref. 28).

It should be emphasized that all the concepts
expressed 1In thils section apply to the special cases

where all or some of the varlables are uncorrelated.

3-6. The Coefficient of Linear Correlation Between

Two Functions of the Same Correlated Random Variables

Consider the followlng functions:

Y;"'gl(xuxa)“‘xﬁ—““xn) (3-9)

ya=3a(x,,x;)———xi,——-—><,,) (3-10)

It will be assumed that 1n general there is correlation
between the x's. Now 8since Yy and v, are functions of
the same variables, there will be correlation between
Yy and Yo - even in the specilal case, where all the
iTgmare uncorrelated. The problem is to determline the
coefficient of linear correlation between vy and Yo in
terms of the functional relationshilps 84 and 85> the

standard deviations of the x's and the coefficients of

linear correlation among the x's.
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Expanding ¥y and Yo in a Taylor's series about the

point at which all the variables assume their mean

values and neglecting the non-linear terms ylelds

n

93
Ui 31 (%, %2,= == Xa )| + Z(S%) (X,-—/lxa-)

3=
/tlxl )/uxlfg_/“xn /’)(,)/’(Xa_)""'/ax,,

and
n
39,
/2= SJ(XI)XJJ———X"’) + z (g_x;) (XJ‘JUYJ)
¢=! -

Al My =My M ey =~ Hx,

(3-11)

(3-12)

As discussed in Sec., 3-3, these expanslions will be

exact representations of linear functions and approxi-

mate representations of non-linear functions,

The covariance between ¥y and yp can be obtalned

by application of Eq. (3-2) to Egs. (3-11) and (3-12).

Thus
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0"\/‘\&:{3 E (—z_zj) (XJ'_'UXJ) E(aﬂa) (% ~Ah) (3-13)

Pl Pl
A o=t M by ==l

Since variance and covariance respectively are defined

as

=
Oy, = E (% -Alx,) (3-14)

Ty = E (XJ"/IXJ‘)(X,(‘/UXI)] (3-15)

the expression for Oy y can then be rewritten as
172

n

_N 20 35

— S
¢ /Ux,f“x == A ﬂ)‘uﬂxbﬂﬂ—/[xn

39, 99,; 33 3% (3-16)
A% ag ERTERYS k %

Using the definition of the coefficient of llnear

correlation, 1t 1s seen that

33; 833 331 333
BXJ' 3)@ a)(/ BX

= —'J .H
s My, M = =M,

n

_ LX ] REE
%Y{E (BX 3%y

=l

?)%(5%_%(347)

o M=~y



Finally, the coefflcient of linear correlation between
¥y and Vo is

94Ya

R,y = —— (3-18)
11 7a oylc}a

where oy and Oy are obtailned by application of
1 2

Eq. (3-7) to Egs. (3-9) and (3-10).

This 18 the desired result 1n that the coefficilent
of linear correlation between Y1 and ¥y, can now be
computed from information on the distributions of the
x's. It might also be noted that Wilks (Ref. 48)
presents an expression similar to Eq. (3-16) for m
linear functions of n variables, W1llks does not con-
sider, however, the case where the functions may be
nonlinear. Since Eq. (7-1%) is an approximation for
the nonlinear case, it really 1is not any more general
than Wilks! result but it iz in a more convenient form

(see itz application in Sec. l.-7).



CHAPTER 4: INITIAL DISTRIBUTIONS OF THE

PERFORMANCE CRITERIA OF ELECTRONIC SYSTEMS

4-1, Introduction

In thischapter the techniques of Chapter 3 will be

ugsed to determine the initial distributions of the per-

formance criteria of a number of electronic systems,.

It will then be shown how these distributions can be

used to determine the initial probability of the system

operating satisfactorily. Throughout thls discussion,
it will be assumed that the performance criteria are

elther linear functions of the system parameters or

that they are non-linear functlions of the system param-

eters, which may be approximated by linear functlons,
In this latter case the standard deviations of the
respective parameters wlill be considered to be much

smaller than thelr mean values,

L-2, Reslstors in Series

A simple type of electronic system which has a
variety of applications 1s the series system. As an
example of a series system, a network in which n
resistors are placed in series will be considered.

The total series resistance of this arrangement 1is
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R:Z R& (4-1)

where Rj is the initial value of the resistance of the

jth resistor.

Application of Eq. (3-6) to this expression yields

the following equation for the mean value1 of R:

n

/‘JRZE /uRg (h-2)

N

The variance of R can be obtained by use of Eq. (3-7).

This gives
n n-| s}
= D 0+ A Q 6x.0, (4-3)
R Ri %8
=1 a=l =4+
1

In discusslons where only inlitial values are belng
considered, the (0) to denote initial value in y (0)
and ¢ (0) will be omltted.
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Since each resistor is a separate device% there
will be no correlation among the resistances because
of any physical relationship between them, Conse-
quently, 1f each resistor is selected at random all
the resistances comprising the series resistance will

be uncorrelated. In this case, Eq. (4-3) becomes

2_ a L4-4

4-3, Voltage Divider

Another simple but widely used electronic system

is the resistive voltage divider shown in Fig. 4-1,

Fig. 4-1, Resilstive voltage divider.

If the effect of loading can be neglected, the divider
ratio of this circult 1is

Kv= \éo = R;L (4_5)
: TR + A,

This requires that the resistors be thérmally insulated
from one another, a condition which can be approximated

if the amount of power they dissipate is small and the
ventilation is good.
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The mean value of Kv can be obtained by use of
Eq. (3-6) which gives
A,

s (4-6)

M= it g

Application of Eq. (3-7) ylelds the following expression

for the varlance of Kv:

a
2 |oKv 2 [ 3Ky : a Ky 3Ky
6, = a, +|—]]|0; | N3 6,0
Kv B,UR’ ) R +(apR‘1 R;_+a Qﬂgl 3”(2 RR27R Ry
/URU'URJ /(,lm/uﬁ,J ﬂf(’.,/'(Rl /'IR,)NR;

If the indicated operatlons are carrlied out, 1t 1s seen

that

2 2

a Me 2 A, 2

6= 2 G e " 7 (4-7)
(g v age ) T (e + e )T

A, A
T

If, as was discussed in Sec. 4-2, the values of
resistance are uncorrelated then thils expression re-

duces to

2 2
7/ U,
‘ij: = 7 Of;QJ’ g p 07‘?1
(Mt He)” 5 (gt i )" "=



4-4, Single Stage Transistor Amplifier

In order to 1llustrate how the techniques of
Chapter 3 may be applied to a transistor circuit, con-
slder the transistor amplifier stage whose mid-

frequency equivalent circult is shown in Fig., 4-2

(Ref. 8 ).
X T, hee :ic <
|
e heYe] he (1) o, Ve R

Flg., 4-2, Mid-frequency equivalent
circult of a transistor amplifier.

The symbols used on this circuit are defined as fol-
lows:

h_ _, h

1e? and h are the common emitter
e re oe

fe
h parameters of the tran-

sistor.

RL is the load resistance.

I, 1s the ac base current and also the input

b
signal current.
IC is the ac collector current and also the

output signal current,
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be 1s the ac base voltage and 1s also the input

signal voltage.

Vce 1s the ac collector voltage and 1s also the

output signal voltage.

The current gain of this amplifier is given by
Ki= =¢ = —F& (4-9)
Ty I+ hoeRe

The mean value of the current galin 1s, by application

of EQ- (3"6):

M= — e (4-10)

Use of Eg. (3-7) shows that the variance of the current

galn is

=3
3

9K 3K * 3 K. 2 2
Q : ¢ d ¢

o = 2 oy — O o}
Kt (ah$> mék(ahw> %e+(a?L) RL

e
K\ [ 2K
+a —|% S, O
(BhFe)(—ahoJ hrehoe hFe hoe




where each partial derivatlve is evaluated at the mean
values of the amplifier parameters. Thls expression

in turn ylelds

a a d &
6_9. B } - 2 N /Uh,;e Upl_ a + /L/A;e Moe a
= 3 P 7
i ( b+ /Uhoe'URL) hFe ( ‘ +Mhoe j’(RL) hoe ( ! +’{'Ihoe ’ufl_>

"‘Q. /{'/ﬁpe 'é/FL e o._ O...
( f‘f"ﬂhoeuRL)a hFC ;\oe h.pe hoe

In this analysis 1t has been assumed that the h param-
eters of the transistor are correlated with a coeffi-

clent of linear correlation o o The value of
fe oe

reslstance RL and the h parameters, however, have been

assumed to be uncorrelated.

4-5, Correlation Between the 2 Parameters in Terms

of Correlatlion Between the h Parameters

At the present state of the art there 1s very
little data avallable on the correlation between tran-
sistor parameters. Furthermore, much of the data that
is avallable is in terms of h parameters. On the
other hand, it 1s deslirable to be able to exercise
some flexibility with respect to the cholce of param-

eters used to analyze a circuit. For example, con-

3l

&> (4-11)
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sider the circuit of Fig. 4-2. If this circult con-
tained an unbypassed emltter resistor, it could be
analyzed most easily by use of z parameters, Thls
is true because the addition of the emitter reslstor
can be taken into account by simply adding the value
of thls resistance to each of the z parameters

(Ref., 17).

In view of this situation 1t would be desirable
to be able to determlne the correlation among any
set of parameters in terms of the correlatlon among
the h parameters. Fortunately, thls can be done by

use of Eq. (3-1%).

As an example of this application of Eq. (3-18)
consider the circult of Fig. 4-2. The current gain

of this amplifier in terms of z parameters 1s (Ref. 19)

K¢=——;Eiﬁ—- (4-12)
Zaaé+RL
From thils expression it can be seen, 1f the varilance
of this current galn is to be obtained, that the co-
efficlient of linear correlation between Zole and Zooe

1s required. These z parameters can be expressed in

terms of h parameters as follows(Ref. 18):
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z.ue"‘“ hale (4‘13)
haae

= (4-14

%ad )

Now the use of Eq. (3-17) to obtaln the covariance

between Z2le and 222e shows that

J Zye a e
o, =l = 0,
i.llei.ne (a h;]e 3}"1'9 h.Ne

a . dZye dzue o> + 9250 I21ze
hne Ihge hyge

o2y 9 e
— < 60 O
¥ S hyge the)thleh;;e h;le hQ;1e

where all the partial derlivatives are evaluated at the

mean values of hEle and h22e' Thils expression in turn

ylelds

My /
o; , =, 1R o o (4-15)
Zyetye /%u: '5_32e /U/,;ie h.nehue hate haae

The variances of Z51e and Zone CAN be obtained by ap-

plication of Eqg. (3-7) to Egs. (4-13) and (4-14)

respectively. Thus these variances are given by
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o
o> =oxa’ s /I”,;"'o;)“ ~aR —/"ﬁ;ma; (L-16)
ale /‘(bue Qe /Llﬁ.zle Jdae 2|e Jle /é%.zle z2/e .l-le
and
a / o .
g o (L-17)
Z33e /ﬁ) hrze

22€

Substituting Egs. (IL-17), (4-16), and (4-17) into

and simplifying gives

a
_ )
0 B /u”;/eafgue * N harehaze /uh.tae O;a't‘ (1,-18)
lee.znc 2 \/ |
4 ‘.20 a g J?
( pY al€ /uh.ue ch h.llch.ne/uh.ue//lhuc h.?le hJJe)

This expression is of the desired form; 1t gives the co-

efficient of linear correlation between Z51e and Zoog in

terms of information describing h”le and h296

-4 Single Loop Feedback Amplifier System

The techniques of Chapter 3 can also be applied to a

single feedback 3ys5ten.



Fig. 4-3. Single loop feedback amplifier system,

In this diagram A is the voltage gain of the amplifiler
without feedback and £ 1s the fraction of the output
voltage which 1s fedback, The voltage gain of thils

system can be shown to be

KV:-——éL—— (4-19)
I-AB

Application of Eq. (3-6) to this expression shows

that the mean value of the voltage gain 1s

_ S (4-20)
T, Mg

By using Eq. (3-7) the variance of the voltage gain may

be written as
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a_ oKy a [ oKy 6.3 3Ky oKv
%‘(‘a‘;\— )OA *(35“ ) ptd (a‘A— F QApO/Q%
%,’uﬁ /‘/A)ﬂﬁ ,(,%),Up 'A(A)'L(,E

which then ylelds

4 2 2
s Op°+ My G5 +2%0g 44704 g

~ (4-21)
Ky (/_/é{/’%)‘r‘

This expression can also be used for the situation
where A and B are uncorrelated, 1if AR is set equal

to zero,

4.7, Cascade System

Another commonly used system to which the methods
of Chapter 3 can be applied 1is the cascade system. The
galn of a cascade system 1s equal to the product of the
gains of the individual stages. Thus if n

stages are placed in cascade the overall galn is glven
n

oy K=T1T K (4-22)

i=

where K, 1s the gain of the Jth stage.

J
By use of Eq. (3-6), the mean value of the overall

gain is found to be

n
¢=!
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The varlance of the overall galin is obtalned by appli-

cation of Eq. (3-7) which results in

n n-{ n
n n
a_ a _a 2 (4-24)
%= Z NEXCN az E%mﬁﬂw K %; %
a:l X:I
I=1 ixg 370 m=in o fxgm
When there 18 no correlation between the gain of

any of the stages, pjm becomes zero for all comblna-

tions of J and m,

L-8, The Probability of the System Peformance Belng

Within Tolerance

The principal reason for obtaining the means and
the varilances of the system performance criteria is so
that the probabllity of these criteria belng within
tolerance can be determined. Since the above expres-
sions represent the initial values of the means and
varlances, they can be used to determine the initilal
probabllities of performance criteria being within

tolerance,

As an example, assume that the mean and the varl-
ance of the current gain of an amplifier are given by

My and oﬁ s respectively. Furthermore, assume that
i i

the distributions of the amplifier parameters are
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truncated sufficlently far from thelr mean values, So

that the current galn 1s normally distributed.

Now suppose that the current gain must be between

the 1limits of Kil and K if the system is to be con-

i2
sidered operating. The probability of the system

operating 1s then given by

Kia \ '(m7AkJ7hok?
Pr(K0 = M=)~ o € k. (4-25)

K(l

This integral can be put 1n a form so that it can be
obtained from a unit normal distribution table by the

followlng transformations:

Ki Ak
Gl (4-26)
A o
/«/‘/UA"
o Nu— e I
7% een)
P Celd (4-28)

C
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This results in

4(& 2
-4
Prlicy S k)= [ 2= € (4-29)
4

which can be evaluated by use of any unit normal dis-

tribution table,

It should be pointed out that there exist several
commonly used desipgn criteria which make the above proba-
bility unity. One such criteria is the worst case method,
which insures that the system performance be within specifi-
cations, even when all the system parameters assume the worst
possible values permitted by their tolerances.  This method
is advantageous when only a few units of a system are being
produced and no defective systems can be tolerated,
Furthermore, this method is more generally applicable be-
cause it is not limited by the restrictions previously
stated for the statistical method. For mass produced sys-
tems, however, the worst case method is often not economi-
cally feasible as it usually results in too conservative a

design,



CHAPTER 5: MINIMIZATION OF THE VARIANCES OF THE

DISTRIBUTIONS OF FUNCTIONS OF RANDOM VARTABLES

5~1., Introduction

Investigation of the example in Sec. -8 reveals
that an increase in the variance of a system perfor-
mance criterion generallyl means an increase in the pro-
bability of the criterion being out of tolerance.
Hence, it will be advantageous to minimize the variances
of the system performance criteria. From Eq. (3-7) it
will be seen that the variances of these criterisa are
often functions of the mean values of the parameters of
the systems. Furthermore, there are generally an unlimi-
ted number of combinations of parameter mean values, which
will make the mean of a particular performance criterion
have the value required by the specifications of the sys-
tem. Therefore, that combination of parameter means
which yields the minimum variance of the performance cri-
terion, while still giving the mean of the performance

criterion its desired value, should be used.

1This statement 1s true for most practical cases. How-
ever, 1t would not be true, for example, if the mean
value of the criterion was outside of the specified
limits of this criterion,
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This chapter will investligate the varlance mini-
mization of three elementary functions; while Chapter 6
will apply thils technique to a number of electronic

systems,

5-2. The Standard Deviation to Mean Ratio of System

Parameters2

In determining the combination of parameter means
required in the above analysis, 1t should be noted
that Eq. (3-7) shows that the variance of the per-
formance criterion depends upon the standard devia-
tions of the parameters and coefficients of linear
correlation between them, as well as the paramefer
means., It will be assumed that the coefficients of
linear correlation are independent of the parameter
means., On the other hand, this assumption cannot be
made with respect to the variances of the parameters,
Clearly, the larger the mean value of a parameter,
the larger 1ts variance, In this work it will be
assumed that the standard deviation of a parameter
1s directly proportional to its mean value,

2This is also the standard deviation of a

30 in Eq.
(2-14), but the symbol ¢ will be used for this

quantity in the present context.
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The physical meaning of the above assumption is
that the standard deviation to mean ratio for a
particular type of device 1s 1ndependent of the
mean value(s) of the device parameter(s). For ex-
ample, consider the following density functions of

two resistors:

£ (Rl)ﬂ‘ £(r,) 4

[ !
| |

{
' |
| 1
| :
! i

|
! |
!

|
V95 100 105 R;—ohms JFJ\/95O 1300 1050 Fg—

ohms
Fig, 5-1. Density func- Fig. 5-2. Density func-
tion of a 100-ohm 5% tion of a 1000-ohm 5%
reslstor with a high reslstor with a low
varlance, varlance,

Obviously, the above assumptlon would not be valld for
this situation though both resistors have the same
tolerance, because the standard deviation to mean
ratio of the manufacturing processes are different.
Thus 1t is seen that it is a combination of the manu-
factured standard deviation to mean ratlio and the
tolerance which determines the standard deviation to

mean ratio for a parameter.
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Though theoretically this hypothesis may appear
very limiting indeed from a purely mathematical point
of view, there are various practical engineering situ-
ations for which the above assumption is satisfied.

The most obvious situation is the case where the stan-
dard deviation to parameter mean ratio of the manu-
facturing process 1s independent of the parameter mean
and the distributions corresponding to each nominal
value are truncated to the same degrse. An example

of this is provided by the distributions of 59 carbon
composition resistors such as the IRC type GBT. For
this type of resistor the manufacturer will usually re-
move from the manufactured distribution those resistors
which are within 7 % of the required nominal value (which
is approximately the mean of the manufactured distri-

bution) and label them as being T % tolerance (Ref. 33).

Resistors of 1 9% tolerance may be obtained by
selecting those resistors which are within 1% of the
required nominal value. If this nominal value is
sufficiently close to the mean value of the manufactured
distribution, then the situation will be identical to
that of the 5 % resistors discussed above and the
standard deviation to mean ratio will be constant. On

the other hand, 1° resistors are sometimes obtained by
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selecting those resistors which are within 19 of the
respective nominal values from appropriate positions
on the manufactured distributions for various nominal
values. Since each 1 % value will then contain

units from a number of the manufactured distributions,
these 1 % values may well have a uniform distribution.
This procedure will then yield a constant standard
deviation to mean ratio. Unfortunately, however, all
the units of each nominal value are not always mixed.
Thus, a customer may receive units drawn from only one
distribution, in which case the standafd deviation

to mean ratio will not be a constant, 3ince the
distribution of each nominal value will then be a

dafferent section of a normal distribution.

As discussed in 3ec. 2-3 a manufacturer will in
some instances obtain a number of different nominal
parameter values from a single normal distribution.

In this case the distribution of each parameter will be
a section of a normal distribution. Since each of
these sections usually includes an equal range of values
of the parameter, the standard deviation to mean ratio

will vary with the nominal value of the parameter,
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In general, manufacturers will not supply the
customer with any specific parameter distribution infor-
mation beyond the nominal value and the tolerance,
The reason that this vital information is usually
withheld is that it forms part of the cost-price
structure of a device and thus would be valuable to
the manufacturer's competitors. Thus, if a customer
requires this information under present market con-
ditions, he will have to obtain it by making measure-
ments himself. This has been done in some cases and
a set of results of such measurements is given in the

tables below.

The data preszented in these tables has its
limitations. For example, the resistor data was
taken from one production run and is not necessarily re-
presentative of what a customer might receive from a
vendor, The transistor data leaves much to be desired
in that not enocugh types of transistors were tested to
establish any connection between the standard deviation
to mean ratio and transistor types. Furthermore there
is no evidence that the data was taken on a represen-
tative sample of transistors. Nevertheless, the re-
sistor data does give strong evidence that the standard

deviation to mean ratio 1s constant for the type of
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resistor tested; while the transistor data gives some hope

that this relationship can be established for various types

of transistors.

Table of Standard Deviation to Mean Ratios for IRC
Type GBT-1/2 Carbon Composition Resistors (Ref., L2)

Nomi,
omnal | 330 | 390 | 470 | #47x | é8k | K | 47k
/in Ohms
Sample Size 767 349 343 367 3¢3 350 354
o/ 0.02%2 |0.0aa% | 0.0238 | 0.0a83 | aocava |00a3y | 00206
Table of Standard Deviation to Mean Ratios for hfe of
a Number of Types of Transistors (Ref. l3)
QAN2A0 | ANAYO | QN3Y3 | 2N/28 | aANJT] | RN3EY
7 PNP PNP NPN PNP PNP PN P
ransistor German | German | Silicon German. | German. | German.
Type Alloy Surface Surface | Surfae | DOrift
Junction | Barrier Barrrer | Barrer
Mean Age 727 | 372 S1& | 34 /6.8 77.6
Sample Srze 39 /09 36 30 35 39
o/ U 0./57 023a | 023%¥ | 023 037/ | 0385

.
5-3

Minimization of a Function of n Variables

In order to minimize the variances of system perfor-

mance criteria,

a technique will be required to minimize a

function of a number of variables with the constraint that

another function of these variables have a prescribed value.

Such a technique has been developed

(Ref. 1).




This technique will be explalned wlith reference

to the following function of n varlables:
Y:S(X,J )(2)—-—~—)(,\) (5-1)

The necessary conditions for y to have a minimum at
the point whose coordinates are <X10’ Xog ———xno)

are given by the following equations (Ref, 15):

9y (X0, Xa0, = = = Xpo) = O
9% (Xio, Xao, =~ Xno) =0
(5-2)
CC‘)S (Xlo) Xao, ™~ x“0> =0
3x,,( o, X20,” - == no) =0
The notation used 1in these equations 1s
9(% Xh ~= %n) -
Ix (X0, X%20,~ >—- =2 (5-3)

¢ Xy
X0y~ Xno

50



The sufficient conditions for the point (x X

10’
———xno) to be a minimum of y have been derived

20’

(Ref. 1 ). These conditions may be explained with

reference to a matrix | G|] which is defined as fol-

lows:
ﬂxlxg (jxlxa - SYIXJ'——_SXIX,]
3>SX1 SYJX;“_- - 3Y3Y“ - 3X3 Xn
ls]= (5-4)
ax 3&%“"3&%"“"3&%
jxh X; I X7~ 3>(nX&“" - = Ixnx,

The notatlion in this case 1s

__aﬂxug;——-mq
a&% EX(B%

Xy X

1o J%_“"x

no

Now let HGHJ be the determinant obtailned from |G|
when the last J rows and the last J columns are
deleted., The necessary conditlons for y to have a
minimum at the point (xlo, X500 ——-xno) are that

|6l g5 16l 45 Gl 5 ==-[Gl ,_; all be positive.
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This result can easlily be speclalized to yleld the
sufficient conditions for a minimum of functlions of one
and two varlables. For the case where n = 1, the re-

sult 1s

9 © (5-6)

17

For n = 2 the conditions are:

Ix,x, ”° (5-7)
~q? o (5-8)
T Boxa™ I x,
In obtaining Eq. (5-8), the fact that gxlxg = gxgxl

was used.,

The above results can be modified to include the

)

must have a particular value, L. Suppose that this

constraint that another function of (xl, Xpy —==K,

constraint is stated as follows:
G(X, Xg===Xp) =L (5~9)

This expression may now be solved for X, and the result
used to eliminate x_ from Egq. (5-1). The above pro-
cedure for obtainlng the necessary and sufficlent con-
ditions for a minimum of y can now be applied agailn.

In thils case there are only n-1 variables.
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In some situations it is impossible to solve
Eq. (5-9) for any of the x's. In this event a more
general procedure for the minimization of a function with
a constraint must be used. One such procedure 1is the
method of Lagrange multipliers (Ref. 1). The above
difficulty did not arise in this research, however, and

thus this latter method will not be discussed.

5-lt., Minimization of the Variance of a Linear Function

of Uncorrelated Random Variables

The technique of the preceding section will now be
used to minimize the variance of a linear function of n
uncorrelated random variables, The following function

will be studied:

Y =} b, (7-10)

In this expression the b;'s are constants and the x.'s

J J

are random variables. This equation can also be written

YZE by X; + by, Xn (5-11)

a3
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By application of Eq. (3-6) the mean value of this

function 1s seen to be

n-t{

/u‘/ZE b,;//’xi t by Mx, (5-12)
=

and by Eq. (3-7) the varlance of y 1s

n-|

P 2 4 _a
0y= b)crx:+ by, 0, (5-13)

Assumlng that the standard deviation to mean ratio of

the jth term is cj, this expression can be rewritten as

n-|
2 a4 :
51:<:*bjcjf§'+bncﬂ}&n (5-14)
4=t

Now suppose that this variance is to be minimized
with respect to the mean values of the x's with the
constraint that the mean value of y be glven by
Eq. (5-12). This constraint means that Eq. (5-12) can
be used to eliminate one of the mean values of the x's
from Eq. (5-14). Solving Eq. (5-12) for uxhand sub-

stituting the result into Eq. (5-14) glves
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n-i n-i 2
R} a
Q‘YQ: bJ‘C:,UxJ. + C: /uy"‘ Eb() ,Uxa. =0 (5"15)
&':] 3:'

The varlance 1s now a functlon of the mean values

2

My o Hy o ==7Hy . Setting the derivatlves of

1 %o n-1
with respect to each of these means equal to zero
ylelds n-1 equatlons. These equatlions can be solved

simultaneously for R . The expres-
1

2 *n-1

slons for these means can then be substltuted 1nto

Eg. (5-12) which may then be solved for i+ The
detalls of these manlpulations are given 1in Appendlx A.

The result 1is

ms= |
my4 -
,UX&_:: /(1)( (5-16)
n
L 2
5> T
m=|



It 1s also shown 1in Appendlx A that the value of
6&2 defined by Eq. (5-16) meets the sufficlent condi-

tlons for a minimum of'a&?. From Appendix A the mini-

2
mum © 1s
y

n
P
Cq
o = - " (5-17)
I My 5= 17
n
3
> Tl
m=t
33 mxq

If all the c's are equal, thls expresslon becomes

an N
3 C a C a
oy = W/Uy = —— My (5-18)

The standard deviatlon to mean ratlio 1ls then

05 C
A (5-19)
My Vn
Thus, 1f y has n components and the parameter means of
2

the components are chosen so that 0& 1s a minimum, the
standard deviatlion to mean ratio of y 1s smaller than
the same ratio for one of the components of y by a

factor of \m.
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5-5. Minimizatlon of the Variance of a Llnear Functlon

of Correlated Random Varlables

In this sectlion the analysis of Sec. 5-4 will be
extented to the case where there 1s correlation between
the varlables. Theoretlcally, the problem can be
solved for the general case of a linear functlon of
n correlated varlables. As a practical matter, how-
ever, thls 1s not feaslble since the equatlon corre-
sponding to Eg. (A-3) for the uncorrelated case will
have coefflclents whlch are complicated functlons of
the coeffilclents of llinear correlatlon among the
variables. Conseguently, 1t 1s better to handle each

case as 1t arlses.
As an 1llustration, the following function of two
varlables willl be consldered:
Y= b,X, + by%3 (5-20)

Application of Eq. (3-6) reveals that the mean value

of y 1s
/é(y: by Ay, + b, /a)\ﬁ (5-21)

By Eq. (3-7) the varilance of y 1is

2 4 2 2
0y =b, O +b; O +aR . b b, 0x 0, (5-22)

)4 Xy
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1r c1 and c, are used to denote the standard deviation
to mean ratio of Xq and X5 respectlvely, then Eq.

(5-22) becomes

a a a_a,,a
O—ya=b« CIg/uxl tby G My + AR biby G M pix, (5-23)
Substituting Eq. (5-21) into Eq. (5-23) glves

2
a;f: b“l(c,’Jer—a?xl v & Ca ) M (5-24)

-2 b,ﬂy(cf—‘a&&c,cn)ﬂ){+C;/Iya

Differentlating wilth respect to oy ylelds

1
ao&a /3 R

a —
Y (P GmaReita) = 20 Py (G- 6 @) (5-25)

If this derivative 1s set equal to zero and the re-

sulting equation 1s solved for My s the followling
1

expression 1s obtalned:

_ (Cll"e)ﬁ)(zcl Ca_) (5—26)
/’(ﬁ—" bl (Cl;l_/_caa_agxtxl ¢ Ca ) /(’(Y



59

Substituting this expression for u, 1into Eq. (5-21)
1

ylelds the followlng expression for My *
2
2
¢~ —R ¢ C
/(lx - g | _ X Xa Q) /J (5_27)
& by (c +C;z"‘"?Qx,xf'Cl)

Differentiating Eq. (5-25) with respect to u, glves
1

Q. dd

as given by Eq. (5-26) defines a minimum of
1

0§2 then the right hand side of Eq. (5-28) must be

Ir Ky

positive. Since -1 €€, , =1 (Ref. 24 )

172

agoyg/aui wlll assume 1ts most negatlve value with
1
respect to @ when © = 1, In thils case,
X1¥5 X1%5

Eq. (5-28) becomes

a2

2, .2 2 a
%:Qb/ (G™+G-2¢ C:z) :;}b‘(C,-C;) (5-29)
%
2.2 2
Hence o O& /épx 1s positilve for all posslible values of

1

@x.x, and thus Eq. (5-26) defines a minimum of 0y2.

172
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5-6, Minimlzatlon of the Variance of the Product of

Random Varilables

The technique of varlance minimlzatlon wlll now be
applied to a functlon which 1s the product of random
variables. Thils will be done by considering the fol-~

lowing functlon of n correlated random variables:

y= ﬂ X, (5-30)

Application of Eq. (3-6) to thls function shows

that the mean value of y is

N
My = ‘ ’ M, (5-31)
$=1

Use of Eg. (3-7) shows that the varlance of y 1s glven

by

n " n-i n
Hﬂ%6§+a E E XX (‘ﬂxm[ l/ux 1(5"32)

5=t A% $7 gy i ‘M
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Assuming that the standard devliatlon to mean ratlo for

the Jth varlable 1s a constant cj’ this equation may

be rewrltten as

no N,
a >
ST S S o T as -
=1 4 Wz,
=

§=l A=
Factoring thils equation and using Eq. (5-31) leads to

n N~i n
0y'= 4y G + Ry G (5-34)
y = Ay y T ’%Yx(”

=

i=0 A=y

This result shows that once the mean value of y
1s specified, the varlance of y 1s independent of the
mean values of the x's., Hence 1t 1s not possible to
minimize the variance of the product of correlated
random varlables by adjusting the mean values of the
various factors. It should also be noted that since
the case of the product of uncorrelated random varl-
ables can be treated by letting QJQ = 0 1n Eq. (5-34),
the above result applles equally well to the uncorre-

lated case.
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5-7. Mlinimizatlon of the Varlance of the Quotlent of

Random Varilables

In this sectlon varlance minimization willl be ap-
plied to a functlon which 1s the quotlent of a number
of random varlables. The followlng function of corre-

lated random varlables will be used:

T

i (5-35)
w

ik

1: N+t

7:

Eq. (3-6) shows that the mean value of y 1s

My= (5-36)

Use of Eg. (3-7) shows that the varlance of y may be

wriltten as:
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4= t& £ f=nri
f=n¢
n-il n
! h n
13— E Q"é"aU”"r' [ 15,5 5
. 2l s=1
XH{”"; 3= g4 r sug
~1 W

n
i WMXJE E QX!X‘)W /Ux Hy _I—T My ux X
A osenp S )

f Nyl $_X+' r=n+|

w W/uxr W/u’(r
-2 zequ ~ B Ox Xy (5-37)
£l g=nt M ,U ¥
L %H B g Nss i

The respectlve terms of thls equation represent the
followlng components of 6&2: the components due to
the variables in the numerator of y, the components
"due to the varlables 1in the denominator of y, the com-

ponents due to correlation between the varlables in
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the numerator of y, the components due to correlation
between the varlables 1n the denomlnator of y and the
components due to correlatlon between the varlables 1n

the numerator of y and the varlables in the denomlnator

of y.

This equatlon can be simplified by representing
the standard deviation to mean ratio of the respective
variables by the symbol c¢ and then factoring. This

glves

2 = Y
PSS S St

TT,H)Q l=n# 3 =1 3 =4+

w
E . (5-38)
Qﬁ&L%cl




Now simplifylng the term in brackets and using Eq.

(5-36) ylelds the following expression of(Tyg:

65

e ZC +a§§ X‘baq)u} ZQX’X ¢y~ 2 E}m % (5-39)

= i g A=hvi g=d 3=l f=nt!

Thils result shows that 1f the mean value of y 1s
specified, then the varlance of y 1s 1ndependent of
the mean values of the x's. Hence, under these clr-
cumstances 1t 1s not possible to minimize the varl-
ance of the guotlent of random varlables with respect
to the mean values of the variables. It should also
be noted that thls result applies to the sltuatlon
where the varlables are uncorrelated, slnce this case

can be handled by simply letting ex x = 0.
374

5-8, Minimization of the Varilance of Other Functlons

of Random Varlables

There are an unllimlited number of functions to

which the above minimization of varlance procedure may

be applled. In general, the procedure for a functlon

of n varlables 1is:

(1). Use Eq. (3-7) to obtaln the variance of the

function.



(2). Assume that the standard deviations of the
respectlve n varlables are directly proportional to
thelr mean values.

(3). Apply the constraint that the mean value of
the function 1s specifled by using Eg. (3-6) to elimi-
nate the mean value of one of the varlables in the
expression for the varlance of the functlon.

(4)., Differentlate the resulting varlance ex-
pression wlth respect to the mean value of each of
the remaining n-1 varlables.

(5). Form n-1 eguations by setting each of these
derlivatives equal to zero.

(6). Solve these equatlons for the mean values
of the n-1 variables.

(7). Use the technigue of Sec. 5-3 to see if
these mean values specify a minimum of the varlance
of the function.

(8). Obtain the mean value of the varilable that
was eliminated 1n Step 3 by substituting the above

mean values into Eq. (3-6).

This procedure willl not be applled to any more
specific functions in thls chapter. However, 1t will

be used to minimlze the varlance of the performance
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criteria of a number of electronic systems in Chapter 6.



CHAPTER 6: MINIMIZATION OF THE VARIANCES

OF THE INITIAL DISTRIBUTIONS OF THE

PERFORMANCE CRITERIA OF ELECTRONIC SYSTEMS

6-1. Introduction

In Chapter 5 a technlique for minimlzing the vari-
ance of a function of random varlables was developed.
This method was then applled to three elementary func-
tlons. In thls chapter the variances of the per-
formance criterla of a number of electronic systems
will be minimlzed. For some of these systems 1t willl
be possible to make use of the results obtalned for
the above-mentloned elementary functlons; whille 1n
other cases the varlance of the performance criterila

under conslderatlion willl be minimlzed directly.

6-2. Resistors in Serles

As an example of the application of varilance
minimization to an electronlc system, the varlance
of the series resistance in Sec. 4-2 willl be minimized.
If 1t 1s assumed that the resistance values of the in-
dividual resistors are uncorrelated and that the
standard deviation to mean value ratlo of each of
these resistances 1s c, then Eq. (4-4) for the total

serles resistance becomes

2 2T 2 ¢ -1
Og=¢ ;/“Ri (€-1)



Now let it be required that this variance be minl-
mized with respect to the mean values of the individual
resistances, while stl1ll maintalning the mean of the
total series resistance at 1ts required value, This
can be accomplished by applying the results of the
minimization of the varlance of a linear function of
n variables in Sec. 5-4 to this situation. In this
case all the b's are unity and all the c's are identi—
cal. Thus, from Eq. (5-16), the mean values of the
reslstances requlred to make the variance of R a mini-

mum are glven by

From Eq. (5-18) the minimum variance of R is

* 2
Ogl= ——Mg (6-3)

These results show that the minimum varilance of R
(when all the c's are the same) is achieved when the
mean values of the serles reslstors are all equal. In
addition, it is seen that thls procedure reduces the
variance of R by a factor of n from what 1t would

have been 1f R had consisted of just one resistor.
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The above results do not ﬁecessarily mean that a
number of resistors in series should be used in preference
to a single resistor, Other factors to be considered are
the cost of a number of relatively high tolerance resis-
tors vs, one low tolerance resistor, the increased proba-
bility of a catastrophic failurel in the series circuit,
and the higher assembly cost for the series circuit. In
addition, the availability of components with low parameter
tolerances must be considered. Therefore, the decision
as whether to use a number of resistors in series or to

use a single quality resistor must be made on the merits

of each case.

lrthis assumes that failure is due to an open circuit.
If the mode of failure is by a short circuit, the series

configuration is actually more reliable than a single
resistor,



6-3, Voltage Divider

In this section the minimization of varilance
technique wlll be applied to the voltage divider
studled in Sec. 4-3., The first step in this procedure

wlll be to assume that

Oklzcl/,lRl (f)—u)

%a:caﬂga (6:-5)

Substitution of these equations in Eq. (4-7) leads to

s a2
A 2
Y (’uRyf’URa)

Now suppose that the mean value of the dlvider
ratio has been specified., Thls constraint can be ap-
plied to the problem by substituting Eq. (4-6) into
Eq. (6-0). Thus the expression for the variance of

the divider ratlio becomes
2 & ~ Y «1__
=i, (1 V(#6238 g ) (o1

From this expression 1t 1s seen that the varilance of
the divider ratio 1s independent of the varlances of
the resistances once the mean value of the divider

ratio and the c's have been specified., Thus 1t is not
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possible to minimize the variance of the divider ratio
with respect to the mean values of the resistances under
these circumstancesg- It should also be noted that a posi-
tive coefficient of linear correlation between Ry and Rp
will reduce the variance of the divider ratio. Ordinari-
ly, however, the resistors are selected at random and thus
their values will not be correlated. A method for
introducing correlation between uncorrelated parameters

will be discussed in Chapter 7.

=l Single Stage Transistor Amplifier

The minimization of variance technique may also be
be applied to active circuits. This will be illustrated
by minimizing the variance of the current gain of the
single stage transistor amplifier discussed in Sec. li-l.
This minimization will be carried out under the assumption
that the standard deviations of the various parameters may

be expresszed as follows:

o~ =c (6-8)
/’F’e F/a/)r“e

~ (6-9)
O;OQ - Co//lhoe
CT;L = C /(‘,L (6-10)

2It should be noted that this variance can be minimized

by using another method; namely, by considering this as

a feedﬁ?ck system and minimizing the return difference
(Ref. .



If these relatlionships are used in Eq. (4-11),

expression for the variance of the current gailn becomes

- /é(/),c [3 /é(e d
g € C o +C7 (6-11)
< (g AP s

e

2[/*/{9) ehpehoeCFCo]

where3
o= M H (6-12)

Now assume that the mean value of the current
galn 1s specified. Thils constralnt can be applied by
substitution of Eq. (4~10) for the mean value of the

current gain into Eq, (6-11)., This gives

oy
2 glc2 (e ~:fgl_ - _Me

3This definition 1s useful since and u only
hoe RL

appear as the product w, up 1in Eq. (6-11).
oe "L
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where has been ellminated. This expression will

Bre

now be minimized wlth respect to LRge Differentiating

with respect to LR ylelds

2
3 Oy,

_ P a2 _;;Eﬁi__ - '——l_——_~ )
Mg gﬂKékCOHL)(H/UR)a thehoe(.;co(’ ’f/UR)a] o

Setting thls derlvative equal to zero and solving for

KR results 1in
c,Q .
/L{ﬁ - C;-' ] hre hoe (6—15)
C°:+CL - CFCO h
hFe o€
and

The latter value for KR will be discarded as belng
impractical, since an 1nfinite KR would requlre an
Infinite uhfe in order to achleve the required current
gain of the amplifier. Furthermore, 1f LR Wwere simply
made much greater than unity, this would stili require

an 1mpractically high By -
fe

The expression for up given by Eq. (6-15) will now

be checked to see if 1t specifies a minimum of Lge
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Differentiating Eq. (6-14) with respect to ug sives

I a
3 % _ A4k
3 /UR i (/’L/a/?)a

Ecjm;“)—%%f 4 ‘Qcﬁco‘ehF ho;l (6-17)

Substituting up as given by Eq. (6-15) into this

expresslion ylelds

2 4
9 O-K?"‘Q/UJ (CngCLa—;l?h“hQ)
B/Jga K (CO&*CLD”)B

(6-18)

Hence the second derivative of sz with respect to
1

ug 1s positive at the point defined by Eq., (6-15)

and, therefore, this point 1s a minimum of 6'2. Use
1

of Eq. (6-15) in Eq. (6~11) ylelds the following ex-

pression for the minimum value of UkQ:
i

o}

v

2 [ a (%% hee)
0.7 4, [cw o (6-19)

Now if Eg. (6-12) is substituted in Eq. (6-15),
the relationship between LR and Wy which must be
L oce
satisfied in order that Gkg be a minimum is thereby
1
obtalned:

7h.



75

e R
/%% - 73 1P° Péehee ) (6-20)
LooCot+et-coc,P My,

hee hoe
This expression can be shown to define a practical rela-
tionship between WRT, and Hhgg For example, suppose
that cr = cg = 3eg,, In addition, a typical value of

P is 0.5 (Ref. L2). Using this information in

hfe hoe

in Eq. (%#-20) rives

(3¢.)(3¢)(0.5) | 0.6/8
}% = =

= H-21
L (3ct_;\+CC1 - (3¢)(3¢)(0.5) /ahoe /L("oe ( )

This is a relationship which it is possible, as a prac-

!

tical matter':,to satisfy.

5-T, Single Loop Feedback Amplifier System S

As an illustration of the application of the minimi-
zation of variance method to a feedback system, the vari-
ance of the voltage gain of the system of 3Sec. )}~ will be
minimized. In performing this minimization, it will be
assumed that there 1s not any correlation between the
voltage gain of the amplifier without feedback and the
fraction of the output voltage which is fedback. It will

also be assumed that

uIt should be noted that this condition gives a mean
current gain of only 0.55 bhe - Also indications

are that better results could be obtained by designing
by the sensitivity method, and then using the above tech-
nique to improve this design. This will result however
in a more complex circuit.



Ty = CA My (€.-22)
and
O;é = C’g /Uﬁ (6-23)

Under the above conditions, Eq. (4-21) for the vari-

ance of voltage gain of the feedback amplifiler becomes:

&
a* /('(A by ol a ad e u
T gy 54 ) (coat

Now suppose that the mean value of the overall
voltage gain 1s specifled. This constraint can be
applied by substituting Eq. (4-20) into Eq. (6-24)
to eliminate elther Wy or ub. If ub 1s eliminated,
the result is:

3

7
K M

& a2 1 d
0., ={cq+C ~dcg —+ Cg A (6-25)
( P)/,%“ £ 2 B 77K,

Differentiating with respect to My glves

a # 3

30
e g —/f/;_wgc; /f;v (6-26)
Iy A )
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c°1+ C;2
At s .
3 ary (6-27)

4 -

In order to see 1f thils expression for Kp defines a

minimum of OK 2, the second derivative of Ik 2 wlth

v v
respect to Ha will be evaluated at the point defined

by Eq. (6-27). Differentiation of Eq. (6-26) gives

2 2 td 3
7 A A
e o) e v (6-26)
34 / 7
Using Eq. (6-27) in this expression shows that
a _* g
d G dc .
v - £ >0 (6-29)

I (e )

Since thie second derivative 1s positive, Eq. (6-27)

does define a minimum of Ox 2.

\

2 ls to be a mini-
Kv

mum can be obtalned by substituting Eq. (6-27) into

The value of ub required 1f o

Eq. (4-20) and solving for Mg« The result is

&
CA /

2 2
A +Cﬁ /aKv

(6-30)

/&;:

T
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Now if B 1s determined by only the parameters of pas-

slve elements, cﬁ2 <L ca2 and thus
L v - / -—
/u;},v o (6-31)

This 18 the familiar expresslion for galn of a feedback
amplifier, which results when “A“B 1s made considerably
larger than unity in order to ellminate the dependence

of this gain upon Hp e

The varlance of the overall voltage galin when
the criterion for a minimum 1s met can be obtained by

substitution of Eq. (6-27) in Eq. (6-25). The result

is
a C‘:C"l 2
A B .
g = ——— )=
Ko et c? Ak, (6-32)
Y

Conversely, 1f there 1s no feedback
My, = Ay
and thus Eq. (6-25) becomes

PoR 2 oL T
%= G He, (6-33)
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Comparison of Eqs. (6-32) and (6-33) shows that feed-
back with variance minimization always reduces the

variance of the overall galn below 1ts value without

feedback., In fact, 1f c§'¢<ci, Ik 2 as gilven by
\
Eq. (6-32) becomes
am 2 P
%, X B, (6-34)

which 1s much smaller than the variance wlthout feed-

back in practical circuitas.

It 18 also interesting to note that feedback
(even without variance minimization) will always re-
duce the variance of the overall galn below 1ts value
wilthout feedback, 1f the following condltion is met:
9:~€:"£ Ko
g+ Ca A4

</ (€-35)

This condition 1s derived in Appendix B and shows that

only negative feedback( <1 defines negative

MKV/HA
feedback) within certain 1imits will reduce the vari-
ance of the overall galn below its value wlthout feed-

back.

This treatment touches on only one phase of this
topic. For example, the design obtained here should be
compared with that obtained by the sensitivity method.

In addition, a design which allows for the possibility of
the system being unstable should be considered.
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6-6, Cascade Voltage Amplifier

In this sectlon the varlance minimization techni-
que will be applied to the voltage gain of an amplifier
consisting of n stages in cascade. The overall voltage

gain of such an arrangement 1s (Ref. 10)

n
Ky-_— HKV} (63—3(’,)
#=1

where KVJ 18 the voltage gain of the Jth stage.

Now the problem is to determine that combination
of mean values of voltage galins of the respectlve
stages, which wlll yleld the minimum variance of the
overall voltage gain, while glving the requlired mean
value of this galn. This 1s to be done under the
assumption that the standard deviation to mean ratilo

of the voltage gain of the J™? stage is c,. With

5
this assumption, the analysis of Sec. 5-6 for the
minimization of the varlance of the product of n
random variables applies. Thls analysis reveals that
if the mean value of the product 1s specified, 1t is
not possible to minimize the variance of the product
with respect to the mean values of the varilous factors.

Thus 1n the present problem 1t is not possible to

minimize the variance of the overall voltage gain
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with respect to the mean values of the voltage gailns
of the respective stages. It should also be noted
that this result holds for the case where the voltage
gains of the stages are uncorrelated, as well as the

situation where they are correlated.

It should be emphasized that the above result applies
only under the limitations previously stated; namely, that
the propagation of variance formula can be applied to the
gain of the amplifier, and that the standard deviation to
mean ratio of the parameters is constant. Thus, if another
technique under another set of assumptions is applied, it
may be possible to improve this design. For example, a
better design for this amplifier can be obtained by use of
the sensitivity method. Furthermore, it may be possible to
improve upon this latter design by applying the above statis-

tical techniques to it.



CHAPTER 7: CORRELATION DUE TO SELECTION PROCESSES

7-1, Introduction

In Sec, 6-3, 1t was seen that it was not possible
to minimize the varlance of the divider ratio of the
voltage dlvider with respect to the mean values of the
resistances, This was true because once the mean value
of the divider ratio was specifled, the varlance of the
divider ratio was independent of the mean values of the
resistances., It was noted, however, (see Eq. (6-6))
that the divider ratic varlance could be reduced if the
coefficlent of linear correlatlion between the two re-
sistances 1s posltive. Now ordinarlly when the voltage
divider unlits are assembled, the fespective registors
are selected at randem. In this case, there would be

no correlation between the resistances.

It 1s the purpose of this chapter to discuss
methods of selecting components during the assembly of
system8, so that the system parameters will be corre-
lated in such a manner, that the variance of the system
performance criteria will be reduced. Expressions for
the coefficlents of linear correlation between these

parameters will also be derived,
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7-2. Selectlon Processes

In general, the selectlon processes mentioned
above i1nvolve dividing the distributlons of the param-
eters to be correlated into a number of cells and then
matching the respective cells of the parameters during
the assembly of the systems. For example, conslder the

parameter distributions in Figs, 7-1 and 7-2.

£ (x4 £ (x50

.
«—/\/—. — /\, . } .

Fig., 7-1 Flg. 7-2

Suppose that each of these distributions 1s divided
into two cells with the mean values of the respective
parameters as boundaries between the cells, Then, as

the system units are assembled, values of xl < “x are
1

matched with values of X5 < hy In a2 similar manner,
2

values of x. > are matched with values of x, >u_ .
1 X 2 x2



8l

This procedure results in a positlve coefficlent of
linear correlation between Xy and x2. If instead the

smaller values of Xq are matched with the larger
values of X5 and vlce versa, then the coefflcilent of
linear correlation between Xq and Xn willl be negative,
It should also be noted that the magnitude of this
coefflclent can be increased by 1lncreasing the number
of cells. As mentioned 1n Sec., 5-6, the coefficient
of linear correlation ranges from a minimum of -1 to

a maximum of +1. This statement is true, in general,

and does not depend on the process under conslideration,

7-3. Choosing the Cell Boundarles

In choosing the boundaries of the cells, the
basic principle, which should be kept in mind, is
that the respective cells to be matched must contain
an equal number of components. In terms of the density
functicons, this means that the cells to be matched must
contaln equal fractions of the total areas under their
respective density functions., For example, 1f cell 1
of f(xl) and cell 1 of f(xg) in Figs. 7-3 and 7-4 are

to be matched, this would requlre that
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Xi X5

f‘F(xl)o(X, f WC(’Q)dX;

Xio - X0 (7_1)
Xy Xy

f £(x) dX, f £0g) d%

Xo %o

(Thils condition 1S not met for the boundaries shown,).

N

—m T T —>

X12 ¥13 X3y X

Fig. 7-3. Distribution with four cells,
each of which has an equal number of
components,

f(xg) (/”\

! 4

N* L T T >
X

Xo0 *o1 *o2 ¥p3 ¥ou 2

Fig. 7-4, Distribution with four cells,
each of which covers an equal range of
values of X5



Within the framework of the above baslc prlnciple,
there are two general technliques for selecting cell
boundaries. The first involves fixing the boundaries,
so that each cell of the parameter distribution con-
tains an equal number of components, This 18 equivalen
to saylng that each cell of the distribution must have
an equal portion of the area under the density functlon
assoclated with it. This situatlion 1is 1llustrated 1n

Figu 7—30

Now suppose that 1t 18 desired to divide a normal

distribution which 1s truncated at x, = X and at

1 10

X, = X into n cells, each of which contalns an equal

1 in
number of components. The area per cell then is the

total area of the truncated distribution divided by n.

Thus S, ,, the area of the 3 ce11 of £(x,) can be
written as
Xlﬂ
f F(x)dx
_ % (7-2)
S)S“ n

S may be written as

1J

\)&'H

S =f £(x)dX, (7-3)
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In Egqs. (7-2) and (7-3), f(xl) can be transformed to

the unlit normal dilistrlbutilon, f(kl), by the following

relationships:
4= oL (7-4)
%,
and
X .
4&_:_/:_/_4’*_: (7-5)
Ox

|
If after this transfymation is made, Egs. (7-2) and

(7-3) are combined, the result is

‘é’no ‘(l,/f-l |
5= L [FUh)L4 = [ F4)dd, (7-€)
’élo '/IJ

A unit normal distribution table can now be used to
select the cell boundaries kiJ (J = 1,2,----n-1), so
that Eq. (7-6) is satisfied,

A second method of choosing cell boundaries 1s to
fix the boundaries, so that each cell covers an equal
range of values of the variable, This technlique was
used to draw the boundaries in Fig. 7-4., In terms of
the notation of thils figure, the followlng relation-
ships would be required to hold, if a distribution 18

to be divided into n equal range cells:
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It should be noted that the equal area method may
be applied to any palr of truncated normal distribu-
tions. On the other hand, the equal range method
usuallyl may not be applied to normal distributions
which are not truncated in the same manner, since the
cells to be matched would contaln unequal humbers of
components, For example, the distributions of
Figs. 7-3 and 7-4 could not be matched by the equal

cell method for this reason.

7-4, Expressions for the Coefficient of Linear

Correlation

In this section expressions for computing the

coefficient of linear correlation between two variables

88

selected by the methods discussed above wlll be derived.

The equal range method will be consldered first, since

1an exception to this rule occurs if (n, - X,.) =

X 10
(x2n - uxz) and (xln - uxl) = (uxe - XEO) and 1f it 1is
desired to match cells, so that a negatlive coefficient
of linear correlation 1s obtalned,
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the results of this case can be specilallized to yleld

the expressions for the equal area case.

In general, the coefflcient of linear correlation

between two random variables, x, and x can be com-

1 2’
puted by use of Eq. (3-4). Since the standard devia-

tions of xl and x2

the real problem here 1s to derlive an expression for

can be obtained by using Eq. (2-11),

and X..

the covarlance between xl o

An expression for this covariance can be obtained
by application of Eq. (3-3). Using the notation of
Figs. 7-3 and 7-4, Eg. (3-3) becomes

th &n
X, Xy £(X, %) dx dxg
X
J§§: o oo ~ My ﬁ& (7-8)
} xlr\ Xgh 14 at
(X, %, ) d% d Xy
Xo %o

Because of the selectlon process, the contribution to
the first term on the right-hand side of thils expression
by each pair of cells must be evaluated separately.

The entlire term 1s then the summation of the contribu-

tions of all palrs of cells, This results 1in



90

X4t XJ_, it
J o0 [ xo0dx,
X

J ¥, XQ-J
f £x) dx, : _
X1 3+l X35t
)l

f FX)dX | F0)d% (7-9)
_ Xy %0,
X Xin Moy

In obtalning the above expression, 1t was noted that
since xq and X5 are independent before the selection

process,

£%,%,)= F00) F04)

It should also be noted that the contribution to the
first term on the right-hand side by each palr of cells
1s weighted accordling to the number of components i1n

each cell,.

The evaluation of the integrals in Eq. (7-9) can
be facilitated by introducing the followilng transforma-

tions:



= A (7-10)

A@;;.Eilfgi (7-11)
4 Ox
-8
4,22 (7-12)
I)'- 6;(‘
_ XJJ_/IJXQ_ (7_13)
A 7 Ox

d

where the quantities pu. , . , o , and ¢ pertaln
X X X X
1 2 1 2

to the untruncated distributions. With these trans-

formations and the definition of S, in Eq. (7-3), 1t

J
can be seen that Eq. (7-9) becomes
n-i Ai}ﬁ ffg;+;
;S. G [AFB)4 || [4 A4
W 4,
_ e : S ]| = S F
T, %, jﬁ” 'Ub&w,labt
F(h)d L
-14
4 (72t

If the identity given by Eq. (2-7) 1s used in this

expression, the result 1is
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ES‘* o, [Fk) - 54, )] y O, [P0 - £ 10)]

Sl i % SJ ) %

P ¢

X3 lln
[F(4)d4
Lo

Ay My (7-15)

This equatlon can now be evaluated wlth the ald of a

unit normal distributlion table,

Wlth this expression for the covarlance between
x, and x,, Eq. (3-4) can be used in conjunction with
Eq. (2-11) to compute the coefficlent of linear corre-
lation between Xy and X5 for the equal range selection

process,

The covariance between xq and X5 for the equal
area case can also be obtained from Eq. (7-15). 1In
thls situation, however, Slj and SQJ are the same for
each cell of thelr respective distributions. Hence

Eq. (7-15) may be rewritten as
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h-1

s'-E [FL- LA )]+ S, by, 403 (P& ~FCAs )]+ S04

=0

P Ay
[ £ih)d4
Ao

_16
‘ﬂ’ﬁt’u’fzt (7-16)

The computation of the coefflclent of linear
correlation between two variables correlated by a
selectlon process is illustrated in Appendlx C. Both
the equal range process and the equal area process are
conslidered. The results of these computatlions are
summarized 1n the table of Appendix C, Inspection of
thls table reveals that for the dlstributions con-
sldered, both processes yleld the same value of the
coefficient of linear correlation in the two-cell case,
For three, four, and flve cells, the equal area case

gives a larger pX x * For six or more celis, both
172

processes yleld essentlally the same results. It
should also be noted that the rate of increase of

Py x with respect to the number of cells decreases,
172
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as the number of cells increases, Thus the use of more
than three or four cells would not 1n most siltuations
be economlcally feasible; that 1s, the small increases

in px x would not Justify the cost of adding more

1
cells,

2

7-5. Application to a Voltage Divider

It was found 1in Sec. 6-3 that while the varlance
of the divider ratio of the voltage divlider could not
be minimized, it could be reduced by making the co-
efflclent of llnear correlation between Rl and R2
positive, In order to 1llustrate thls polnt, assume

that ¢, = ¢, = ¢ in Eq. (6-7). Then the variance of

the divider ratlio becomes
a__ a3 2 (7 17)
O-KV B QC/('(KV (I—-///(v) (I _QR.R;> -
Without correlatlon, thls varlance 1s
P a, R o _19
Oy, = 2 (- ) (7-18)

The percentage decrease in the varlance because of

correlation 1s then

3 ade (1= f V-2 (145, ) (~%s)
Kv 1l c‘}({(j </—‘/%)a

X [00= ’O‘RR,RJ
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Now assume that both Rl and R2 are normally distributed
with symmetrical truncation at R = Lgr + 30R for each
resistance, If a three-cell equal area selectlon

process is used, PR R from the table 1in Appendix C
1e

is equal to 0.800. This means that there is an 80.0%
reduction in the variance of the divider ratio because

of the selectlion process,.

In conclusion, it is seen that this method provides
an assembly process which is intermediate between exact
matching of the parameter values of the components and a
completely random method of selection, The choice of
the selection method is dependent upon such factors as the
tolerances available in the components to be used, the
relative costs of the selection processes, and the toler-

ance required for the performance criteria.



CHAPTER 8: DRIFT ANALYSIS OF ELECTRONIC SYSTEMS

8-1., Introduction

In Sec. 2-5, the drift of the parameters of
electronlic systems was discussed. Now 1f the param-
eters of a system drift, then system performance
criteria which depend on these parameters will also
drift (Refs, 40, 46, 47)., The purpose of thils chapter
is to analyze this drift of the system performance cri-
terlia. In order to perform this analysls, the first
step wlll be to derive expressions for the mean values
and the variances of the models of Sec. 2-5. Next,
the mean value and varilance of a function of these
parameters will be obtalned. These results will then
be used to study the effect of parameter drift on a

number of electronlc systems.

It should alsoc be noted that the drift rates of
the parameters of the electronic systems to be con-
sidered 1n this chapter and in Chapter § will be as-
sumed to be extremely small fractions of the initial
mean values of these parameters (Refs. 4 and 12),
Some typical values for the drift rates of a resistor

are given in the table of Sec. 2-5.
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8-2, Moments of System Parameters as Functlons of Time

In this section, expressions for the mean values
and the variances of the parameter models of Sec, 2-5
wlll be derived. Since these parameters are varying
with time, thelr means and varlances wlll also vary

with time.

First of all, the model given by Eq. (2-13) will
be studied. Thilis wlll be done with the assumption that
xj(t) may be approximated by the first m + 1 terms of
the series in Eq. (2-13). Thus, xJ(t) can be written as

m

xd(f)=ﬂx4(0)§qg%ta (8-1)
=0
Then by Eq. (3-6) the mean value of xJ(t) is
m
A=A Mo, t ¢! (8-2)
=0

where 1t should be noted that t is not a random vari-
able, Application of Eq. (3-7) ylelds the following

expression for the varilance of xJ(t):

m m-1 m
3\ 2 39 2 24t ——
il S Stenae e
cb=o

Cb';O Q:%H
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The linear model of Eq. (2-14) with no correlation be-
tween the initial value and drift rate of xJ(t) can be
handled by letting m = 1 and the coeffliclents of linear

correlation equal zero in Eqs. (8-2) and (8-3). This

glves
‘pﬁuryuﬁ@ﬂywu%ﬁ) (8-4)
and
= a a 2. _
O}&. (t) :/st(o)(qﬁ;r Ga“t ) (8-5)

In deriving Eq. (&-4), 1t was recalled that the mean

value of a is unity.

30

§-3. Moments of a Function of Parameters that Vary

wlith Time
In this section, the mean value and the variance
of the following function of parameters that drift will

be obtained:
V=[5 (1), 1), === (), - =, (1) (8-6)

Substitution of Eq. (8-1) in this expression ylelds



The mean value of y(t) can now be obtalned by use

of Eq. (3-6). This yields

M ; m m ;
3
My(t) =9 /U&(")E/’lﬂwt) ﬂx&(o)zﬂaﬂt) - —/U)SW)E/JQ}.%t J
(b:o %20 %30

. _
- x(0)§/ua # (8-8)
n )|
}=0

This result can be applled to the llnear drift model

by letting m = 1, This gilves

/u{z‘)r3[,14,(1(0)(l+,uﬂuf)}/uxa(o)(l +,Ua;'t)) —— _‘/uxé(")(”/(’(“(g\f))

———/aXn(O)(H/Uthﬂ (8-9)
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Application of Eq. (3-7) to Eq. (8-7) shows that

the variance of y(t) 1s given by

m
Jy (t)

t N
9= §< ) HZ ZZ( (a)eaeés %3

é=! %=o §=t §=0 s=gtl

n-l m-| m

av(f) RG]

+Q g ¢ (8-10)
> > (?’%> Q“A%“Js Y Yys

=l §=0 f=zg+1 s=o

where all the derivatives are evaluated at the mean
values of the parameters for the drift model of y(t).
In obtaining Eq. (8-10) it should be noted that the
second and third terms respectively, of this equation
represent the correlation between the an coefficlents
of a component and the correlation between the ajq co-
efficients of the various components., The complexity
of the expression emphasizes the need for a simplified

drift model in order to obtain an engineering solution

to the drift problem.

The linear model with no correlation among any of
the parameters can be handled by letting m = 1 and all

the coefficients of linear correlation equal zero

00

O,.
JS
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in Eq. (8-10). This results in

2 . ay ) * YW ? 3

a
0,t)= g g 0,. 8-11
Y(t) SQJ‘D (1}0 + 3 Q“ (1“ ( )

J

8-4, Resistors in Series

In this section, the above techniques for deter-
mining the mean values and variances of functions of
parameters that drift wlll be applied to the seriles
circuit of Sec. 4-2. If the linear model of Eq. (2-14)
is used for each resistance, then from Eq. (4-1) the
resistance of the series clrcult as a function of time

is
n
= . Wt -
Rie) Z}J%(o)(aww“ ) (8-12)
el

Use of Eqg. (3-6) shows that the mean value of R(t) is

n
Mo ('c)=z/u&.(o)(l +/jqnt) (8-13)
o

If, 1n accordance with the discussion of Sec. 2-5, it
1s assumed that there 1s no correlatlon between any of
the parameters of the model of Eq. (8-12), then Eq.

(3-7) shows that the varlance of R(t) 1s glven by
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n
6? (t) = E,U;: (°)(%?o* cg; t“) (8-14)
=
These results show that the direction of the drift
of the mean value of the serles resistance will depend
on the signs of the drift rates of the individual re-
gslstors., On the other hand, however, the varlance of

R(t) will always increase with time.

-5, Voltage Divider

The techniques of Sec. -3 will now be applied to
the voltage divider discussed in Sec. 4-3, If the
linear model of Eq. (2-14) is again used for the re-
sistors, then the divider ratio, as glven by Eq. (4-5),

becomes

t)= AR CTD,
Al —//,?/ ) (% # 4, t) +/’{ﬁ2 (o) (aao * Gy t)

(8-15)

By application of Eq. (3-6) the mean value of this

divider ratio 1s

i} Lo, 0)(1+ Hay t ) (8-16)
Mo )1+ dlo, ) + Moy @ (1t Yo, t)

s

v

(t)
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With the assumption that there 18 no correlation be-
tween any of the parameters in Eq. (8-15), Egq. (3-7)

shows that the variance of the divider ratio is
SN ELT0) PR LY O\ 2 (360N (2kO)

G‘ op
O}V({) (30\0 Yo aqy Q v EALETS + 30y, L

where the partial derlvatives are evaluated at the

mean values of the parameters in Eq. (8-15). If these

operations are carrlied out, the result 1s

"t q() Q(0)(lJr’u“.ch)l(G;"l tl) "L/Uc.f 0~.zo‘L ‘1-u
= 0
(£)= Mo 0 g E,(Rl(o)(H Ja,t) + Mp ©)( 1+ /uamt)]

(8-17)

Inspection of the expressions for the mean value
and the variance of the divider ratio shows both of
these quantities may drift in elther direction, de-
pending upon the magnitudes and the signs of the vari-
ous parameters in these equations. A more detailled

study of these expressions wlll be made in Chapter 9,

-6. Single Loop Feedback Amplifier System

As an example of the application of drift analysils
to a feedback system, the drift of the single loop
feedback amplifier system of Sec. 4-6 will now be

analyzed. The primary obJect of thils analysis 1s to
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obtain expressions which willl be useful in the design
methods to be developed in Chapter 9. Therefore,
consistent with the remarks of Sec. 2-5, the linear
model of Eq. (2-14) will be used to represent the

drift of both the gain of the amplifier without feed-
back and the fraction of the output which is fedback.
In addition, it will be assumed that there 1s no corre-
lation among any of the parameters 1n the drift model

of the system.

If the model of Eq. (2-14) 1s now applied to

Eq., (4-19), the drift model of the system becomes

My 0 (ot Auit)

K (t)= = (8-18)
v /= A4 (0) L4y @) Qo # Gyt )+ gy 2)
The mean value of this galn obtained by use of
EQO (3"6) is
) M 0) [ 14 Mg, ) (8-19)

My (t) =
Y A0 1ty ) 14 p )

Eq. (3-7) shows that the variance of K, can be ex-
pressed as

2 d a 2
O_JH:): (3 Kv(t)> 0?1: + (9 Kvuf)) 0.3 N (3 Kv(ﬂ) - 1+(9 Ky (t')) O‘a

Ky QGAO 0 BQM Al Saﬁo %go aaﬂ, a}?/
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where each of the derivatlves 1s evaluated at the mean
values of the system drift model parameters. From
thls expression the variance of the overall voltage

galn of the system becomes

a

(@2 G2 B) e L0 L0 14y ) (Ga, % )

2 (8-20)
E—AA (o)/xp(o)( ! +,aamt)( /+/L/aﬁ/f):l

a D]
0 (0= 4

— The above results show that both the mean value
and the variance of the overall voltage gain may elther
increase or decrease with time, depending on the values
of the parameters of the system drlft model. These ex-
pressions for the mean value and the variance wlll be
analyzed 1n more detall in Chapter 9 in connection with
design to limit the drift of the system performance

criteria.



CHAPTER 9: PREVENTING DRIFT OF THE

PERFORMANCE CRITERIA OF ELECTRONIC SYSTEMS

9-1, Introduction

In Sec., 5-1, 1t was noted that an electronic
system 1s generally designed so that the mean values
of the system performance criteria have the values
called for in the system specifications. In addition,
1t was seen that the probabllities of the performance
criteria being out of tolerance shculd be made as
small as possible by minimlzing the variance of these

crlteria,

Now in Chapter &, it was found that, due to the
drift of the system parameters, the mean values and
the variances of the system performance criteria vary
with time. Thus the system should be designed so
that these time variations do not cause the probablli-
ties of the system performance criterla being out of
tolerance to lncrease with time - 1n fact, a decrease
with time would be desirable. Thils can be accomplished

if1 the mean values of the criteria are held constant

1If the drift of a performance criterion in a particular

direction cannot be prevented, 1t 1s often compensated
for by bilasing the initial value of this criterion in
the direction opposite to the drift (Ref. 50).



107

with time whille the variances of the criteria are

prevented from increasing with time.

The approach in this chapter will be to devise
techniques for achleving the above goals by working
with a number of elementary functlons whose parameters
vary with time. These techniques willl then be applied
to a number of electronic systems, In all cases, the
linear model of Eq. (2-14) will be consildered to be
valid. In addition, it will be assumed that there is
no correlation among any of the initilal values of the
system parameters and the parameter drift rates

(Ref. 4¢t).

9-2, Linear Functlons

In thls section, the following linear function of

time-varyling parameters will be consldered:

n

Y(t)=z b, X,(t) (9-1)

o=l

where the b,'s are constants., If the x,(t)'s are

J J
given by Eq. (2-14), then y(t) can be written as

n
Yit) = E bJ NXJ(O)(QJO ¥ Q;(‘t) (9-2)

§=l
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Application of Eq. (3-6) to this expression ylelds the

following equation for the mean value of y(t):

n
7@):2 by Ag(0) +,ua“t) (9-3)
i=!

The variance of y(t) can be obtained by use of Eq. (3-7).

This gives

a a
oylt)= 0. w(Ga+ k) (9-4)
f& G %

4!
Now 1f the mean value of y(t) is to remain con-

stant at its initial value, then from Eq. (9-3) this

requires that

n N
z by 00+ 1) = z o4 g 9 (9-5)
}ﬂ

or
n
E b, p";(o)/u%. =0 (9-6)
4=
Thus the mean value of y(t) can be held constant at 1ts
initial value, if the drift rates of the parameters. are
such that Eq. (9-6) is satisfied. Inspection of

Eq. (9-4), however, reveals that no combination of
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parameter variances and drift rates will prevent the
variance of y(t) from ilncreasing with time. Hence
i1t 18 important that variance minimization be used to

make the initial variance as small as possible,

9-3, Product Functions

The following function, consisting of the product
of n randomly distributed variables which vary with

time, will be studied next:

4=l

Since it will be assumed that xj(t) is given by

Eq. (2-14), this expression can be written as

N
wt>=Wﬂxé<°>(%o+%l t) (9-8)
¢=t

Now by Eq. (3-6) the mean value of y(t) is

n
/(,(\/(f)zw/uxé(o)(H ,ua”)c> (9-9)
4=

Application of Egq. (3-7) to Eg. (9-8) shows that

n

2 a
2 |V 2 (|
UY(H“E (aaéo ) %o ¥ (aa“ Oy

&=
/UGJO)/J % /aa*'o:uaé'l
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from which the variance of y(t) 1s seen to be

n n
a a iy
o,ya({): %/j{;(")(%‘o‘h %‘;l @) l I#’:;@)(H/Uaﬂt) .(9—10)
4=l X:‘
e

In order to determine under what condltlons the
mean value of y(t) will remain constant with time,

uy(t) wlll be approximated as follows:

n h n
fy£) & W’U":@ +Wﬂx&.(o) E Ha, t (9-11)
i j=! =

In writing this expression, 1t was assumed that those

terms involving the product of more than one Hy t
J1
type factor could be neglected. This generally can be

done 1f the parameter drifts only a small percentage
of its initlal value durlng the period of Interest.
Now on the basis of Eq. (9-11), uy(t) will remain

constant at 1ts initial value 1if

N h
ﬂ/“ (O Eﬂ @~ °
=1 L=
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n
E /Ua“: o (9-12)
=

Thus 1f the summation of the mean values of all the

or

parameter drift rates 1s zero, the mean value of y(t)

will not drift.

Inspection of Eq. (9-10) shows that there are
two binomial factors which affect the drift of the
variance of y(t). The first of these necessarily
increases in magnitude with time, The second factor
will decrease with time 1f ua_l 1s negative. Whether
or not the variance of y(t) increases or decreases

with time, if Mg 1s negatlve for at least some
J1

components, depends on the relative magnitudes of all
the parameters in Eq. (9-10). In any event, it 1s
desirable, from the standpolint of keeplng the vari-
ance of y(t) small, to make as many as possible of

the mean values of the component drift rates negative,

9-4, Quotlient Functions

A quotilient function of the following form will

now be consldered:
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n —
T xé(t)

I=! (9-13)

Yit)=

b3

% t)

A= hnl

Ir xj(t) and xr(t) are represented by the model of

Eq. (2-14), then this function can be written as

n §
-

yi= — (9-14)
w

/“x,(")(a;o + a}“t>
,(:hH

From Eq. (3-6) the mean value of y(t) is

-{*yﬂxb7|+kﬁ
—{—T)lﬁw |+%1%

J=nn

(9-15)

The variance of y(t) can by application of Eq. (3-7)

be expressed as
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a v Y\ i\ BV 2
7 (*")%-*( Jouu + (i) et By )
aao o \39, ¢! 30, 0 dy A

where the derivatives are evaluated at the mean values

of the parameters in Eq. (9-14). From this expression

the variance of y(t) 1s

a LNEN d 3
E © TT,u (o)(\*r/iamt) 0&;%- H/iﬁ(o)(lw“t)o(;}rc

a = ‘i‘*'& %

TTMX o1+, )

=nl

w a

n & a
t H,U;@) H'/ua.t E 10
§! } ( ! ) 1=0¢t (l +ﬂ0‘1lt>lﬁ ir(o)(Hﬂan{:)a

r=h¢l

w a 2

E 031\t
+
o (14 Magt) T]',u (O)(H,ua” )

r=n+i




or
" n
a a a 2 2 &
)
§ﬂxé {0a, + %, t) Hﬂx“m(' ¢ Mo t)
0_;&): = 9§54

oo 2
TT /uxl (0) ( | +}'laﬂf)

I=n+i

n 2
Tl w2 o

%0 Ty

+ . [+ M, £ a
Wﬂ;r(o)(”/uo”t)a 1=ntl ( bl )

=Nty

11l

(9-16)

Now if the mean value of y(t) is to remain con-

stant at its 1nitial value, it 1s seen from Eq. (9-15)

that

n n
'FT/uﬁm%z+,u%{Q 1}iuﬁ;o)

=

w n
_rTﬂﬁmb+}hﬁ) 'TTﬂ&WJ

JELTS: f=nt1

By inspection, Eq. (9-17) will be satisfiled if

n n
T la, TT M0
§=! =t

w n
TThyose 1Ty

L=nt! f=n+

(9-17)

(9-18)
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or

n
= ‘]—T/ua“ (9"19)

4 j:m—l

n
[T,
i

If the relationship among the mean values of the drift

rates given by Eq. (9-19) can be satisfied, then the

mean value of y(t) will not drift.

Inspection of Eq. (9-16) shows that 1if the vari-
ance of y(t) is to be kept as small as possible at all
times, then the mean values of the drift rates of the
parameters in the numerator of Eq. (9-13) should be
negative and the mean values of the drift rates of
the parameters in the denominator of this equation
should be positive. Whlle 1t may not be feaslble to
satisfy these conditions for all the parameters, they
should be met for as many parameters as possible., It
also should be noted that satisfylng these conditions
does not insure that the variance of y(t) will not
increase with time but at least 1f these condiltilons
are met, the tendency for Oyg(t) to increase with

time willl be kept at a minimum,
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9-5, Reslstors in Series

The above techniques wlll now be applied to the
circult of Sec., 4-2 consisting of n resistors in
serlies. The expressions for the mean and the vari-
ance of the series resistance as a function of time
of this circult are given by Egs. (8-13) and (8-14),

respectively.

Since the serles resistance 18 a linear functlon
of the individual resistances, the results of the
linear function analysis of Sec., 9-2 may be applied
here. Comparison of Egs. (8-13), (9-3), and (9-6)
reveals that if the mean value of the serles reslst-
ance 1s to remain constant, then the drift rates of

the 1ndividual resistances must meet the following

n
E e, (0 Moy = (9-20)
E

On the other hand, as was noted 1n Sec. 9-2, 1t is

condlition:

not possible to prevent the variance of a linear
function from lincreasing wlth time by proper cholce
of the parameter drift rates. Hence 1t is doubly
important that the initlal varlance of the series

resistance be as small as possible., Thus the
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procedure of Sec. 6-2 should be used to minimize this
variance,

9-6 Controlling the Drift Rates of Resistances

From the condition stated by Eq. (9-20), it is seen
that it is important to be able to control the drift
rates of resistances, In considering methods of adjus-
ting the drift rates of resistances, 1t should be noted
that at constant ambient temperature the rate of drift of
a resistance depends on the type resistor and the percen-
tage of its rated power taken by the resistor (Ref. 33,

L1 and It%).

Now for the series circuit of Sec. 9-7, the same
current flows through each resistance, Thus once the
mean values of the resistances are determined (by say,
the variance minimization conditions), the amount of power
each resistor takes with respect to the other resistors
is fixed. Hence the drift rates must be adjusted by
selection of the types of resistors used and the percen-
tages of rated power taken by the resistors. This
latter factor can be controlled by choosing resistors with
the proper wattage rating. Thus 1if two resistors of the
same type are connected in series and one resistance is
twice the other then, as has been determined by other
methods, the larger resistance should have twice the power

rating of the smaller one.
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g-7., Voltage Divider

As a second 1llustration of the technlques for
preventing the drift of the performance crlterion of
an electronic system, the divider ratio of a resistilve
voltage divider will be considered. Thls circuilt
was first discussed in Sec. 4-3 and the drift of the

divider ratio was analyzed 1n Sec, 8-5.

If the mean value of the divider ratio 1s to re-
main constant, then from Eq., (8-16) the following

relationship must hold:

Up, @1+ Hayt) e (0)
= » (9-21)
Mg @1+l t) Mo O)(1t Hayt) Mo ©)+ e (0
This 1s equivalent to writing
M OMo, M)
M 0 (©) Mg, /Uﬁgm ﬂaﬂ 'Uﬁ:@) + M. (0)
which upon simplification yields
/ua”= /45, (9-22)

Therefore, drift of the mean value of the divider
ratio can be prevented, 1f both of the resistors have

the same drift rate.
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Now, 1f the resistors are of the same type and
power rating, Eq. (9-22) will be satisfied when both
resistors take the same amount of power. This occurs
only 1f the two reslstances are equal, which means
that the divider ratlio must be 0,5. The condltion
stated by Eq. (9-22) can be met, however, even 1f the
divider ratio 1s not 0.5, by using different types of
resistors for R; and R, and/or by using a resistor

with a larger power rating for the larger resistance.

For example, 1f p, 1s to be 0.1 then from Eq. (4-6)
v

must be 9, Hence R, takes 9 times the amount

1 2

of power that R, does. Thus in this case, Eq. (9-22)

2
can be approximately satisfied if Rl 1s a two-watt
reslstor and R2 is 1,/4-watt resistor of the same type;
provided, of course, that the input voltage 1s such

that nelther resistor takes more than 1ts rated amount

of power.

The conditions under which the varlance of the
divider ratio wlll not increase with time will now be
found., In performing this analysis, 1t will be as-
sumed that the drift rates of both reslstors are
equal; i.e., Eq. (9-22) is satisfied. In addition,

it will be assumed that
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_ -2
Oa“_ oaat (9-23)
and that
o, = oazo (9-24)

The assumption of Eq. (9-24) really amounts to saying
that the standard deviation to mean ratios for Rl and
R, are equal (see Footnote No, 1, Chapter 2).

Using Egs. (9-22), (9-23), and (9-24) in Eq. (8-17)

results 1n

J

g (0) Uz, (G, + Oa )
(g @+ 2t @) (14 My, t)°

a -—
0, ()=

or by Eq. (4-6)

(6, t %, £°)
(1 +/ua"t)

(9-25)

o;fvu):/‘iv( )2

Now since j, (t) is being held constant, this vari-
v

ance will not rise above 1ts initial value 1f

4 pe -
0a10> %IO—*-OEH t

| (H-/Uant)a

or

2, G £

o
Ao éu%mt+/adlf;
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This last expression may also be wrltten as

3
a Oa,

Z L
' /Ua“(——_{:— “',Ua“)

J (9-26)
Since the drift rates of the parameters are assumed

to be extremely small fractions of the respective
initial values of the parameters, there 1ls no danger
of the denominator of Eq. (9-26) going to zero if

uall 1s negative., From the standpoint of keeping

Ox 2(t) small, however, 1t can be seen from Eq. (9-25)
v

that 1t is desirable to make by positive., Regardless
11

of the sign of p  , Eq. (9-26) will be most difficult
» 11

to satlsfy when t assumes 1ts largest value of inter-
est. Thus if the inequality of Eq. (9-26) holds at
this value of t, the variance of the divider ratilo
will never rise above its initial value during the

useful life of the system,

9-8. Single Loop Feedback Amplifier System

In this section, methods of preventing the drift
of the overall voltage galn of a feedback amplifier
wlll be considered., This same system was discussed in
Sec, 4-6 and expressions for the mean value and the

variance of its overall voltage gain as functions of
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time were developed in Sec, 8-6,

If the mean value of the overall voltage gailn of
the amplifler 1s to remain constant at its initlal

value, then from Eq. (8-18) it can be seen that

M O1+ U, t) M@
1A 0401+ Mo Y Moy R ACY/KC)

(9-27)

Since the term uA(O)uD(O)ua £2 may be neglected

o
A1 2p1
if the percentages of drift of A and B are both very

small, Eq. (9-27) can be written as

AG00) + Ay 0) Mg, A (0)

I~ 400 11y (0)~ 4, ) sy (0 iy, # ,L(aﬂ/)z‘ I=44,0 44,(0)

whilch means that

Ma,, 3 p (0
*/‘,‘s@(ﬂaﬁ,*//ap/) =4, 0) Y l0)

Thls expression can now be solved to obtain the follow-

ing condition for zero drift of the mean value of the

overall voltage gain of the feedback amplifier:

A
——/—L(—;L:—-/é//q(())/[fg@) (9-28)
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In attempting to satlsfy this relationship, it
should be noted that both uA(O) and ua(o) are gener-
ally determined by the specification of the mean value
of the overall voltage galn and the condition for the

minimization of 02 . Furthermore, 1s not
Kv uaAl

always a quantity which is easily controlled. On the
other hand,. however, P 18 1n many cases determined by
the parameters of a resistive network. Thus Eq. (9-28)
can usually be satisfied by using the methods of

Sec, 9-6 to select the proper value of p, .
b1

It now remains to investigate the possibility of
preventing the variance of the overall voltage gain
from increasing with time. In order to do this,

Eq. (8-19) will first be substituted into Eq. (8§-20).
This ylelds
ﬂ%l-qug)

& _ 4 o T
O )= ) [ yOAnE

* ,L{j(o)(%a o t;’)} (9-29)

B0 B

Now if it 1s assumed that Eq. (9-28) has been satis-
fied, then uy (t) does not vary with time. Thus but
A

for the binomial involving , , oy 2(t) necessarlly
Al

A%

Ilncreases with time If ua is made positive, then
Al
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V2(

t) will either decrease with time or at least its

tendency to increase with time wlll be reduced. There-
fore, in designing the subsystem A, 1t 1s desirable to

make e posltive.
Al

The i1mportance of minimlzing the initial values
of the variances of the A, £, and Kv should also be
emphasized. If this is done, then even 1f the varlance
of KV increases with time, it wlll start lncreasing
from a relatively small value., Hence at any instant

of time chg(

t) will be smaller than 1f the above

initial varlances had not been minimized.

The design criteria derived in this section are
actually conditions on the pagameters of the systems A
and B, rather than on the parameters of specific compo-
nents such as resistors, Thus, rather than merely pur-
chasing components with the desired parameters, it may be
necessary to design the systems A and B to meet the above
conditions or to work with the manufacturer in meeting

these conditions.



CHAPTER 10: CONCLUSIONS

10-1 Introduction

This dissertation is concerned with the application
of the techniques of mathematical statistics in the design
phase of the reliability problem. A diligent search has
not brought to attention any work which has applied this
field of mathematics to reliability engineering. Instead,
previous design efforts have focused on the use of
special configurations, such as feedback, to insure that
with the parameter tolerances given, the initial performance
criteria of each system produced will fall within speci-
fications. 3uch techniques, however, have ignored the
reliability problem in that they have not considered the

system performance as a function of time,

10-2 Analysis of the Distributions of the Performance

Criteria of Electronic Systems

In the course of the investigation to formulate a
thesis for the design of more reliable electronic systems,
several conclusions were reached indicating specific
mathematical techniques and the practical value of the
approach, In particular, it was found that:

(a) The propagation of variance formula and the correspon-
ding expression for the mean value can be'used to de-

termine the initial mean values and variances of the
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performance criteria of a wide class of electronic
systems, Thus, if the distributions of the system
performance may be approximated by the normal distri-
bution, the initial probabilities that these perfor-
mance criteria are within tolerance can be determined.
Although this technique is limited to systems whose
performance criteria may be approximated by the linear
terms of a Taylor's series, many electronic systems
such as quality amplifiers and wave filters fall
within this category.

The expression for the coefficient of linear correla-
tion between functions of the same correlated vari-
ables can be used to determine the correlation among
one set of two part parameters, when information 1is
given describing another set. In addition, the
variances and means of the second set of parameters
can be obtained by the propagation of wvariance

formula and the corresponding expression for the mean.
Therefore, even when the twe port parameters are con-
sidered as rardom variables the circuit analyst can
select the set which is best suited to his prcblem.
Though the above technique may be applied to most
passive circuits with low tolerance parameters, 1its
real usefulness lies in its application to transistors

since manufacturers generally supply information on
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only one set of transistor parameters. The limi-
tations of this method are the same as those stated
for the propagation of variance formula. Such tran-
sistor data as is available, indicates that the para-
meter distributions of many transistors meet these
requirements,

(¢) The propagation of variance formula and the corres-
ponding expression for the mean value can also be
applied to the analysis of electronic systems whose
parameters vary slowly with time. Furthermore,
these parameters may be linear functions of time or
they may be represented by a power series in time.
Therefore, the mean values and variances of the per-
formance criteria for a variety of types of electronic
systems can be obtained as functions of time, provided
of course, that these performance criteria meet the
previously stated conditions for the application of
the propagation of variance formula. This then per-
mits the determination of the reliability character-
istics of these systems. This information in turn can

be used to design more reliable systems.

10-3 Improving the Reliability of Electronic Systems

This research resulted in the development of the

following design techniques:



(a)
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The variances of the system performance criteria

were minimized with respect to the mean values of

the system parameters, while constraining the cri-
teria means to equal their prescribed values, This
technique allows the designer to make sizeable reduc-
tions in the initial variances of the system perfor-
mance criteria without changing the system configura-
tion or the parameter to!erances. This technique
was developed under the assumption that the parameter
standard deviations are proportional to their respec-
tive mean values, While the parameters of a number
of quality components meet this assumption the method
is not restricted to these components, since the basic
technique may be extended to parameters with other
standard deviation-to-mean relationships.

Otherwise uncorrelated parameters were correlated by
dividing the distributions of these parameters into
cells and then matching the components from certain
cells. This technique permits a manufacturer to re-
duce the variances of the system performance criteria
by use of an assembly process which is intermediate
between the’random selection of components and an
exact matching procedure,. The final decision on which
process to use is an economilc problem since the cost
of the assembly process must be weighed against the

component cost.
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(c) Both the drift of the mean values of the performance
criteria of electronic systems and the tendency of
the variances of these criteria to increase with
time can be reduced by satisfying certain relation-
ships among the drift parameters of the system.

As an illustration, when the linear drift model was
used to represent the parameters of certain systems,
it was possible to hold the mean values of the per-
formance criteria of these gystems at their initial
values while preventing their variances from increas-
ing with time, Therefore, this method can be used
to design more reliable electronic systems without
necessarily using more expensive components or
elaborate system configurations. Furthermore, since
most electronic circuits contain components whose drift
rates can be controlled (such as resistors), this
method can be applied tu a wide variety of systems,
In conclusion, it is seen that several techniques
were developed to solve the following practical problems:
minimization of the initial variance of the performance
criteria of electronic systems; correlation of uncorre-
lated parameters; and prevention of the drift of the per-
formance criteria of electronic systems. Though these
techniques, as developed herein, are limited tc systems
whose performance criteria may be analyzed by the propa-

gation of variance formula and whose parameter standard
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deviations are proportional to their mean values, they cover
many practical situations. Furthermore, they can be ex-
tended (see Chapter 11: Recommendations) to include a

variety of additional systems.

10-li. Summary

This dissertation has shown that it is possible to
design for reliability. Up to this time systems either
have been designed to insure that their performance
criteria would be within tolerance by use of expensive
worst case methods or the probabilities that these per-
formance criteria would be within tolerance was left to
chance, The techniques developed here make it possible
to determine the effect of parameter variations on the
gystem performance criteria as a function of time and
then to take these variations into account in design.
Thus, a powerful new tool has been made available which
permits the designer to meet the evergrowing demands for

greater reliability in mass produced systems.

oo



CHAPTER 11y "RECOMMENDATIONS

11-1. Introduction

In this chapter recommendations for future work will
be considered. These recommendations will be divided
into two categories: 1. suggestions for the extension
of the methods of analysis and design formulated in this
research; 2. proposals for obtaining more data pertaining

to the distributions of system parameters.

11-2. DBExtension of this Research

One of the most limiting assumptions made in this re-
search 1s that the standard deviation of each parameter
is directly proportional to its respective mean value.
The variance minimization procedure discussed in Chapters
€ and 5 was performed on the basis of this assumption.
Now as pointed out in Sec. T-2, this assumption is true
for the parameters of components such as certain types of
resistors. However, it will undoubtedly be found to be
untrue for certain other components. For example, it will
noct be true for parameters whose distributions are sec-
tions of a normal distribution. Hence it would be use-
ful to devise a method for minimizing the variances of the
performance criteria of a system whose parameter standard
deviations are not proportional to their mean values.

Furthermore, there are instances when certain systems
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will become subsystems of a larger system. Thus it

would be helpful to determine the relationship between

the standard deviations and mean values of the performance
criteria of wvarious systems, For example, in the case

of the transistor amplifier studied in this dissertation,

o]
Egs. (6-13) and (6-19) reveal that OEi has been minimized.

Another assumption made in this research is that the
standard deviations of the system parameters are consider-
ably smaller than theilr respective mean values. While
this assumption is true for a great many high quality
components, it certainly would be useful if the methods
of analysis and design formulated in this research were
to be extended to include systems with relatively high
tolerance components. Then these design procedures could
be applied to situations where economic or technical
difficulties preclude the use of low tolerance components.
Some possible techniques which might prove helpful in this
investigation are the inclusion of the first non-linear
term in the Taylor's series approximation for non-linear
functions (Ref. 38), moment-generating techniques (Ref.
29) and the Monte Carlo method (Ref. 31).

It also should be noted that there are situations
where the Taylor's series for the system performance
criteria may not converge, even when the standard devia-

tions of the parameters are considerably smaller than
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their mean values. An example of this is the single
loop feedback amplifier when the system is unstable, in
which case the denominator of the gain equation is zero.
Another example is the parallel resonant circuit. While
the analysis and design techniques of this dissertation
should prove useful with respect to the resonant frequency
(for example, the variance of this frequency might be
minimized with respect to the parameter means of this
circuit) the magnitude of the impedance of this circuit
becomes very large at the resonant frequency and thus its
Taylor's series may not converge. The investigation of

situations such as these should prove quite worth while.

At the present stage of development of the techniques
formulated in this research, algebra has posed a serious
problem. In particular, 1t was noted that while in
principle the variance of a system of any complexity can
be minimized; in practice it was found that for a system
of more than three or four parameters the amount of algebra
become prohibitive, There are a number of possible solu-
tions to this problem. One solution would be to reduce
the number of parameters with respect to which the
variance is to be minimized. Another solution is to
divide the system into a number of subsystems, as was done

in the case of the single loop feedback amplifier. The
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use of a digital computer to perform the minimization of
a function of a large number of variables should be explor-

ed.

A comparison of the sensitivity method of designing
electronic systems with the techniques developed in this
research should prove to be worth while. The sensiti-
vity method is useful when the initial performance
criteria of one or only a few units of a system are in-
volved, for example, the performance criteria of a missile
system. By contrast, while the methods formulated in
this dissertation consider time variations, they are
restricted to systems which are mass produced. In this
latter situation, even though the probability of the system
operating properly should be high, a few failures can
generally be tolerated. In a missile system, however,
even one failure can result in disaster. In view of the
above remarks, it would be desirable to apply the techniques
developed in this research to a system designed by use of

the sensitivity method.

11-3 The Need for More Component Data

This work shows the need for making availlable toc the
designer component parameter data which are generally
withheld or not requested. Up to now it has been cus-

tomary that this information not be available since



135

designers did not consider statistical reliability

characteristics.

To design for reliability the following data is of
importance:
1. The initial distributions of the system parameters.

2. The distributions of the coefficients describing the

drift of the system parameters,

3. The correlation among the system parameters and the

coefficients describing their drift.
It should be ehphasized that this information must include
data for all types of components used in electronic systems.
Most of the data which igs now available pertains to resis-
tors, a fact which restricted much of the work of this

dissertation to resistive circuitsg.

As a result of these observations it appears useful
to present the following proposals: First the designer
must be impressed with the importance of the above data
so that he will request it. 3econdly, specifications for
complete parameter information should be written into every
contract for components. Finally, improved techniques
for obtaining drift data must be developed. This latter
task must necessarily be a cooperative effort between the

manufacturer and the system designer,
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APPENDIX A: MINIMIZATION OF THE VARIANCE OF A

LINEAR FUNCTION OF n UNCORRELATED RANDOM VARIABLES

The purpose of this appendix 1s to discuss the
detalls of the varlance minimization in Sec, 5-4,
Both the necessary and the sufficlent condltions for

a minimum will be derived,

For convenlience Eq. (5-15) may be rewritten as:

n-| n-i
a oAy 2 a
0y = ba‘(cﬁcn)/"’g-ach/l)'zbéu’%
=l y=i ‘
(A-1)
n-2  n-i
a 2 2
+aAC, b}bxﬂ)ﬁ}lxx*‘cn/uy
=Y =g

If this expression 1s differentiated wilth respect to

the varlables e A derivatives of the fol-
1

Xo n-1
lowlng type result:
n-|
30y b ") ~acdb Y, 42D D by U (A-2)
a/uxsﬁl j,(cf’c“ /uX&' n 4/'()' n Y 174

A=
A%}
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If each of these derivatives 1s set equal to zero,

n-1 equations are obtalned. The Jth equation is

3
Gy = beh fy + b Mo+ === +bj () Uy, (A-3)

a
-+ bn-lch //lxn-l

Solviﬁg these equations simultaneously for Ky ylelds

J
by
= — A-4
where
b (¢A+ ) gg?———-~4:py~——-—¢m§;
: N
RN ) e I b
A a . L 2 (A-5)

b|<n bacn ——— =0 /u)’ “““““ n—)(n

a2

blcnz bacna“"‘"_‘Cﬂ/uY_"'"‘—bn-l(cﬂ"LC")

and
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2
biCn b (< +C:)——‘—b3 == ———bp,Cn
A= ., (A-6)
b,cy byC~ ———b, (¢ +¢y )= - bpaC
2
b\c':\l bg_cna - - —‘b& Cn;l - _bn-l (Cf\-« +(g)

A, can be simplifled by factoring out the quanti-
J
2
l,b2———bj_l, bJ+l——--bn_l and cn “y and then

subtracting the Jth row from each of the other rows.

tles Db

A . thus becomes
J

2 Omm e O ——— o
o e O—m —mm o
-1
l ——————————————— -
_ A-
AJ_C“}JYI bm a L U (A-7)
Ch <n —Cn
m=1
megj |-~ —-—-——-——" T T
a
© O—-—=--- —0--—-—-—Cp,

Expansion of this determinant by the method of mlnors

shows that
n-1

b= iy , lbmc; (A-8)

m:
mx

138
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Now consider the determinant A given by Eq. (A-6).
In order to .simplify this determinant, the quantities

b,,Db b

1°°2° """ "n-1
first column may be considered as belng made up of

may be factored out. In addition, the

the following binomials:

(b/c/;"‘élcna)) (b/('-h2 t O)) -~ —(élcﬂaf O)

Thus & may be written as the sum of two determinants

(Ref. 49):
cn CF - —
a a
G ()
T
Azl l ‘Dx +
4. -2 a
2= cd Cp == ——(c +cq)———¢5
a & a
G g ()
L
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:
oL
c? cf—~—————-Cf—-——~Cn
o (F+c})-m--—Clome—cd
. , (A-9)
a
o et == —(¢j ¥ )G
2 a &
o h —_"——Cn_'—(cn-l+ch)

The first determlnant in thls equation can be evaluated
by subtracting the first column from each of the other
columns and then expanding by the method of minors.

Thls result 1s

n-l n
A = ‘\ b, l‘ cﬁ + A (A-10)
f=1 m=a

where Al 1s the second determinant in Eq. (A-9).

A1 can be evaluated by continuing the process used 1n
obtaining Eq. (A-9). For example, the next step 1s to
conslder the second column of Al as consisting of

binomial elements., Thus Al may be written as the sum - --

of two determinants, the first of which 18 equal to
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n

|l.1
Cm

m=|{
m%a

"Thils procedure results in the following expression

for A:
n-1 n n n n-1
- - m=1 mz} -
=1 m=3 M3 3 m=1
or
n
n-i n
&£
A= bi | ‘ CI’Y\ (A"‘l?)
= =l

Finally, substitution of Egs. (A-8Z) and (A-12)

into Eq. (A-4) gives

n

l l a
Cm

m=i
mxy

n n
- by g [T
m=l

(b:.\ N\X:%

My (A-13)

X
oX
)
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In spite of the fact that Eq. (A-3) involves only

variables w_ thru u,  , Eq. (A-13) applies to b

1 n-1 1

thru My o The truth of thils statement can be seen 1f
n
it 1s noted that in Eq. (5-10) x  has the same status

as all the other variables. The cholce of b, @as the
n

variable to be eliminated in Eq. (5-15) was an

arbitrary one.

Now 1t must be shown that the polnt defined by
Eq. (A-13) satisfles the sufficilent conditions for a
minimum of oyg. In order to accomplish thls, the
determinant of the matrix |G| of Eq. (5-4) must be

obtained. Differentiation of Eq. (A-2) with respect

to ux and ux respectively ylelds
J r
gﬁi 2, a
Yo=ab (G+G) (A-1k4)
YT
P
and
a2
9 0%
— 7= 3¢5 bybye (A-15)
3/U‘>33ﬂx,.

Comparing Egs. (A-14) and (A-15) with Eq. (A-6) shows

that for this problem
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h-1
l6]=@"" TTb,A (8-16)
=1

From Eqs. (A-12) and (A-16) it is seen that |G| 1is
positive for all n > 2., Thls corresponds to saying
that [Glo,lG[l,IGf2,——~lG{n_2 are all positive. Hence
the sufficient conditions for a minumum, as stated in

Sec, 5-3, are met.

The minimum value of oy2 can be obtalned by

substituting Eq. (A-13) into Eq. (5-1L):

~ = ﬂ

T i
Py
n Cm
m=|

2 miy :
o= jig% by ¢; T Myl (A-17)

+=) béz T—‘—Lr?\.
m=i

. - 9 m;1 =

This may be rewritten as

O'7 = 3 /Lly (A-18)
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or

(A-19)




APPENDIX B: THE CONDITION FOR FEEDBACK TO REDUCE

THE VARIANCE OF THE GAIN OF AN AMPLIFIER

It has been shown in Sec, 6-5 that feedback with
minimization of the varlance of the overall voltage
galn always reduces the varlance of this gain below
its value without feedback. The conditions under
which feedback without minimization of the varilance
of the overall voltage gain will reduce the variance

of this gain will be investigated in thls appendix.

In performing this analysis, Eq. (6-25) will be
used for the varlance of the overall voltage galn with
feedback, since the constraint that the mean value of .
this gain 1s specified has been 1ncorporated 1in this
equation. The varlance of the voltage galn without
feedback is given by Eq. (6-33). Now referring to
Egs. (6-25) and (6-33), the following inequality must
hold 1f feedback is to reduce the variance of the

voltage gain
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Upon slmplificatlion, this equation becomes

(CAJ, B)(ﬂxv) Cﬁ(ﬂx.,) (c —-CA> o (B-2)

The boundary condlitions where the varilance of the

voltage galn wlth feedback Just equals the variance

of the voltage gailn without feedback can be obtained
by setting the left-hand side of Eq. (B-2) equal to
zero and then using the quadratic formula to solve for

(uK/uA). This procedure shows that if

2 a2
M\ B (B-3)
/L(A C‘alf-CAa

then feedback has no effect on the variance of the

voltage gain.

The range of values of (pK /uA) for which feed-
v

back reduces the variance of the voltage galn can be
obtained by evaluating the derivative of the left-

hand slde of the Eq. (B-2) with respect to (uK /uA)
v

at the points specified by Eq. (B-3). The derivative
of Eq. (B-2) is

___QLY:Q(c:ﬁt C?)(ﬂ'(")—gcl (B-4t)
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where M is deflned as the left-hand side of Eq. (B-2).

When (uKV/uA) = 1, this derivative becomes

_M e (B-5)
e, /4y )

Thus the rate of change of M with respect to (“K ,uA)
v
when (uK /uA) ;.1 1s positive. Hence i1f the inequality
v

of Eq. (B-2) 1s to be satilsfied

(uKV//,(A)<I (B-6)

When (“K /uA) . (c,.2 - CAE)/(Cb2 + CA2) the derivative
v

P
of M with respect to (uK ,uA) is
v

oM - _ac?

< - (B-7)
BLUKHLL%> "

This shows that at this point, the rate of change of
M with respect to (uK /uA) is negative. Thus if the
v

condition of Eq. (B-2) 1s to be met

2 .2
(ﬂKv%UA>>(Cp“CA}@%+c§) (B-8)
The requlrements stated by Egs. (B-6) and (B-8) can be

combined to specify the following range of values of

(qu/uA)=
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a2

ok </’ufv)<t (B-9)
o +C A

B A

Since

Ky /uAl < 1 defines negative feedback,
v

Eq. (B-9) states that feedback will reduce the vari-
ance of the voltage galn only 1f the feedback 1s
negative and within the range specified by this
equation., In many practical situations c 2<< CA2

B
in whlech case the above conditlon becomes

< (’;:V) <) (R-10)



APPENDIX C: COMPUTATION OF THE

COEFFICIENT OF LINEAR CORRELATION

The coefflcient of linear correlatlion between two
random varlables, correlated by a selectlon process,
wlll now be computed for a speclfic numerlcal example.
The computation will include both the equal range and
the equal area processes., It wlll be assumed that the
distributions of both variables are symmetrlically
truncated normal distributlons with the truncatilon

taklng place at x = y,

+ in e se.,
< 36k ach case

The equal range process wlll be considered first.
Since both distributlions are symmetrlcally truncated

to the same degree the following observations can be

made:
iy = g (c-1)

M, = Hx, (c-2)

4= J},f/} (c-3)

b=t (c-4)

S.=S.=S. (c-5)



Eq. (7-15) may thus be rewritten as

- ‘F('éa "'F(éjﬂ X 'F('é —F('é‘n)
Esi{ﬁ[ : ﬁ%}{«n[ J; ;]%}

§=0
Ox X, = .

2 [ f[k) oA A
[»]

—Hi Sy (c-6)

Expansion of the numerator of the first term on the

right-hand slde yields

N S {@, 0. [f0) - £ (4]

) S&Q.
=0
O:(, Xa: "én
a [F(h) A
o
-C(é) - ‘F(Jéw)]
(0 Py + 6, ) 4 5 - A ﬂ)ﬁ}

ity (c-7)
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In view of Egq. (C-4), the middle term of this expansion
becomes zero when the summation 1s carried from j = O
thru J = n-1. Since the last term of the expansion
contains no J's, the summation of the SJ'S and the

integral in the denominator cancel for thils term,

leaving uxluxz. This 1n turn cancels the uxluxe out-

side the summation. Thus for the equal range case
when the distributions are truncated to the same

degree the covarlance may be written as

n-\

E ) - Fl4 ]
Si

&=0

X2 173 ‘én
2 [ fh)dA
o)

Now by use of Eg. (2-12), the variances of the

truncated distributions are found to be

a o AAL ]
XH: 0l /’én

[#A)d4
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and

- -
@} =gt ,_.léﬂﬂiﬁ)__ (C-10)
9

A
[Hk)d4
0

— -l

The coefficlient of llinear correlation between

x, and X, can now be obtained by substltuting Egs.

1
(C-8), (C-9), and (C-10) into Eq. (3-4). The result

n-\ 3
E [FLe)-F(45)]
S
= ¢=0

XX3 £,
2 [ [fk4-4, m’n)}
0

1s

(c-11)

For n == 3, this equation becomes

[~ AT [R6)-FAIT, - F T
So St 52
Sx ]
2| [ALAU-47A)
0
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0
use of Eq. (7-5):

The values of k., and k3 can be obtained as follows by

X~ Ay A= 3% My

= = = = ‘—"'3
'éo /élo ’{?o 0")([ O;(l

PRV B o M L R B
3~ N3~ N3 0 - 0y
{ ~t

Now the width of each cell 1s

A -4 3-(3
A'é: 3nzé = 3 )=¢2

Hence

VA Y N YV ST

,,{75,.{2:4{22:%%34446:' ~ 344 =/

The covarilance thus becomes

[Fea- 0] [Fen-50 0] oy -£ey ]
Q - So ' S ! 5—1

XI){;

3
2| [f(Adé-3F3)
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Since f(k) = f£(-k) this equation can be written as

-]
R s

RuZ 73
Y e h)db-35)

Use of a unlt normal distribution table (Ref. 2 )
ylelds
[0.0044- 0 rfooj2
0./5 74
0#987-3(0-0044)

= 0.73¢

X\Xa

Similar computations can be performed for varlous
values of n, The results for n rangling from C thru 10

are given in the table at the end of thils appendix,

Eq. (C-8) may also be used to compute the coeffi-
cient of linear correlatlion for the equal area process.
In this case SJ is, by definition of the process,
equal to the same value for each cell, Thils area and

the cell boundarles can be obtalned as follows from

Eq. (7-6):

4

3
Si= 5 [FR)dA= | H4)24 (c-12)
-3 46\



Use of a unlt normal distribution

S.. 099730 0332
i~ 3 = 0.3347

tab e

Now choosing the boundarles vetwee:r *he

Eq. (C-12) 1s satisfled results 1t-

ky = -0.430, k, -

Eq. (C-11) glves

0.430, and x

EC(—B% £(- o,*fao):]'2 __[l{(_f"?") »(

0.3324% 0.3334

Ry s
2l [fbdh s

K

Since f(k) f(-k), this eguat!i :

Eld)‘i{~6v3c/j‘

Rty
Jak)db-314
o

Use of the unit normal distribu<!

XX 0H987- 3(05644)

S 3y

- 08

e
e
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Use of a unlt normal distribution table then shows that

0977 30
Sf —3 = 0.332%
Now choosing the boundarles between the cells so that
Eq. (C-12) is satisfied results in kg = -3,
ky = -0.430, k, = 0.430, and k3 = 3, Substituting in

Eq. (C-11) gives

2
[F£3)- £(-0.430) ]Q [fl-o430)-Flo#39)]  [Flo#30) _;(3)]7L
0.3324 * 0.3334 + 0.332%

172

3
a| [thdb-376)

Since f(k) = £(-k), thls equation becomes

[F)-sto 4§a)j 2

0,3324

Q™

3
SR I4- 3F4)

Use of the unit normal distribution table ylelds

[0.0044 - 03637 |
o - 033
XX2  0H4987- 3(5,00%)

= 0 800
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These computations have also been performed for various
other values of n, The results are given in the follow-

lng table:

Table of the Coeffilclents of Linear
Correlation Between Two Random Variables
Correlated by a Selection Process

Number Equal ranges Equal areas
of cells ko = =33 k3 = 3 ko = =35 k3 = 3

1 0 h 0

2 0.643 0.643

3 0.739 0.800

4 0.837 0.868

5 0.889 0.903

6 0.921 0.924

7 0.941 ' 0.942

8 0.954 \0.951

9 0.964 0.960

10 0.969 0.964




APPENDIX D: LIST OF SYMBOLS

A list of the symbols used in this dissertation is
given below. Since it 1s impractical to list every sym-
bol, in some instances only a representative type of symbol
is given. For example, My indicates the method of speci-

fying the mean value of a quantity.

Unless otherwise noted, it will be assumed that the
MKS system of units is to be used. One exception to this
rule is that drift rates are generally given on a per hour

basis.

gain of single loop feedback system when
A feedback is removed

random variable whose mean value is unity
Qo a whose variance is initial variance of
J parameter

) drift rate of jth parameter
a. d¥ﬁft rate of Jth parameter associated with
% power of ¢t
constant used as coefficient of jth parameter
b; in linear function
c. standard deviation to mean ratio of jth
¢ parameter
E(Y) expected value of y

£(x) probability density function of x
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function of x

short circuit forward-current transfer ratio
of common emitter configuration

short circuit input impedance of common emitter
configuration

open circuit output admittance of common
emitter configuration

open circuit reverse-voltage transfer ratio
of common emitter configuration

ac component of base current
ac component of collector current
current gain

voltage gain

voltage gain of the jth stage of a cascade

amplifier

normally distributed random variable whose
mean value 1is zero and whose standard
deviation 1s unity

number of variables, also number of stages
in cascade system
total series resistance

th

the j resistance 'in series circuit

load resistance
voltage divider resistances

area under f(xl) corresponding to jth

cell
time

ac component of base voltage with respect to
emitter

ac component of collector voltage with respect
to base
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The
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initial1 value of the jth random variable

value of jth random variable at timé &

Rth value of jth random variable

jth function of random variables

forward-transfer impedance of common emitter
configuration with input open-circuited

fraction of output of single loop feedback
system which is fedback

initial mean value of x.
mean value of xj at time t©

coefficient of linear correlation between
xj and X

initial value of standard deviation of x.
initial value of wvariance of xj.

covarlance between x. and:@

(0)" is included only when it is necessary to

differeniate between x_.(0) and x.(t).
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