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ABSTRACT

A method is  presented fo r the exact determination of absolute 

and re la tiv e  s ta b i l i ty  of lin ea r feedback control systems containing 

transport or d is trib u ted  lag. All re su lts  are in terms of two variab le  

system parameters. The method u t i l iz e s  an extension of modem parameter 

plane techniques th a t allows fo r the inclusion of transcendental 

functions in the system c h a ra c te r is tic  equation. The design of 

con tro lle rs  in lin ear systems containing transport lag is  then considered. 

A design technique is  proposed th a t allows fo r the system atic determina­

tion  of two variable c o n tro lle r  parameters in order to  meet frequency 

or time domain design sp ec ifica tio n s .

The design technique is  formulated in terms of the fam ilia r 

"dominant root" concept fo r systems th a t do not contain tran spo rt lag.

The proposed design technique gives the system designer " a t  lea s t"  as 

much control over the system response as conventional design procedures 

for systems without transport lag.

The investigation  of absolute and re la tiv e  s ta b i l i ty ,  as w ell as 

the proposed method fo r c o n tro lle r  design, is  no more complicated for 

multiloop feedback control systems than fo r single loop systems. This 

is  because the c h a ra c te r is tic  equation of the closed-loop system tran s­

fe r  function is  u t i l iz e d  ra th e r  than the conventional open-loop methods. 

Further, i f  a d ig ita l  computer is  used, high-order systems are dealt 

with as easily  as low-order systems.



A method of constructing the roo t-locus of systems containing 

tran sp o rt lag is  then proposed so th a t th is  fam ilia r engineering tool 

can be u t i l iz e d  in  conjunction with the proposed analysis and design 

technique.

F in a lly , nonlinear systems containing transport lag aTe considered 

where describing function analysis is  app licab le. I t  is  shown tha t the 

amplitude and frequency of lim it cycles can be predicted  where the 

describing function is  real and i s  dependent upon the amplitude of the 

input signal to  the non linearity .
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CHAPTER 1

THE PARAMETER PLANE

1.1 Introduction

The object of th is  work is  to  develop a system atic design and 

analysis technique fo r feedback control systems whose tra n s fe r  func­

tions contain transcendental functions. Transcendental functions 

appear in a l l  feedback control systems th a t ,  fo r  one reason o r another,

exh ib it the phenomenon of a pure time lag somewhere between the input
-sTand the output of the system. The transcendental function, e in the 

case of tran spo rt lag and e fo r d is tr ib u ted  lag , generates an in f i ­

n ite  number of roots in  the c h a rac te ris tic  equation of the system 

tra n s fe r  function thereby making i t  extremely unwieldy to  analyze. An 

analog sinu la tion  of the system is  d if f ic u lt  since the transcendental 

function can, a t best,on ly  be approximated by using a Pad£ approxima­

tion  or some analogous represen tation . Frequency domain approaches 

v ia  the Nyquist c r ite r io n  are one parameter techniques and only in fo r­

mation with respect to  absolute s ta b i l i ty  i s  obtained.

Work has been performed by many researchers [3 , 21, 23, 27] in 

connection with the absolute s ta b i l i ty  of second-order and th ird -o rder 

control systems with transport lags fo r  systems containing one free 

parameter. Y. Chu [2 ] has presented a phase-angle loci method th a t 

can be used on systems with one free  parameter, usually  the gain, as 

in  the normal root-locus method. However, Chu's method becomes
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increasingly  d i f f ic u l t  fo r higher order systems, as do a l l  root-locus 

methods, since the determination of the root-locus i s  accomplished by 

f i r s t  determining the phase-angle loci fo r a l l  angles, not merely for 

the angle -180°.

In th is  work a method is  presented fo r analyzing systems with 

transport lag or d is trib u ted  lag in terms of two free  parameters where 

higfr-order systems are dealt with as easily  as low-order systems. This 

two parameter method is  f i r s t  used to formulate a system atic technique 

for the investiga tion  of re la tive  s ta b i l i ty  as well as absolute s ta ­

b i l i ty  of lin e a r  feedback control systems. Next a formal technique fo r 

the design of co n tro lle rs  is  proposed. The method is  then used to  

y ie ld  a new method fo r determining the root-locus fo r  systems containing 

transport lag. F ina lly , the existence of lim it cycles in nonlinear 

systems i s  examined where describing function analysis is  applicable.

The basic  approach is  the parameter plane represen tation  of the 

c h a ra c te r is tic  equation of the system tra n s fe r  function as introduced 

by M itrovic [16] and generalized by S iljak  [25, 26], This method 

deviates from S il ja k 's  by representing the co effic ien ts  of the charac­

t e r i s t i c  equation in  a new manner in order to  incorporate transcenden­

ta l  functions in to  the equation. The re su lt is  a useful technique fo r 

the investigation  of lin ear and nonlinear feedback systems containing 

tran sp o rt or d is tr ib u ted  lag.
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1.2 H isto rica l Development of the Parameter Plane

A general and straightforw ard method fo r  fac to ring  polynomials 

has been long recognized as a cen tra l problem in  feedback control 

theory. This is  true  since an in te rp re ta tio n  of con tro l systems 

design as an adjustment of the root locations of the relevan t charac­

t e r i s t i c  equations permits the designer to  read ily  obtain information 

about, and contro l over, the system s ta b i l i ty  and other pe rtinen t 

c h a rac te ris tic s  of the system responses. However, in  a l l  but the 

sim plest systems, d if f ic u l t ie s  a rise  due to  the absence of an e x p lic it  

co rre la tion  between the root locations and the ad justable parameters 

th a t appear in the co effic ien ts  of the c h a ra c te r is tic  equation.

From the c la s s ic a l point of view, a cen tra l problem of linear 

feedback control theory could be id en tified  as the s ta b i l i ty  problem. 

Numerous c r i t e r ia  C9, 12, 16, 18, 19, 2 0 , 24, Z5J have been developed 

fo r investiga tions of absolute , as well as r e la t iv e , s ta b i l i ty  of 

linear control systems. On the basis of these c r i t e r i a ,  i t  i s  possible 

to  design contro l systems fo r dynamic performance specified  by a 

certa in  degree of s ta b i l i ty .  However, the s ta b i l i ty  c r i t e r i a  do not 

co n stitu te  a complete and sa tis fac to ry  theory fo r the design of 

control systems. This is  because in a wide v a rie ty  of control prob­

lems, the designer is  in te res ted  not only in  the s ta b i l i ty  of the 

system, but a lso  in  numerous other e sse n tia l fea tu res of the system 

response. Thus, in control theory there has been a strong emphasis on 

the development o f refined  techniques fo r the analysis and synthesis



of control systems in  terms of the system response to  ty p ica l or t e s t  

input signa ls .

In general, there  are three approaches to  the  synthesis and 

analysis o f lin ea r control systems: frequency c h a ra c te r is tic s , alge­

braic domain, and in teg ra l c r i te r ia .  In synthesizing con tro l systems 

each of these approaches has ce rta in  advantages and disadvantages, and 

the proper approach should be chosen depending upon the nature of the 

control problem and spec ifica tions which must be s a t is f ie d . Thus, the 

in tegral c r i te r ia  ["29] are p a rticu la rly  su itab le  fo r investigations of 

the s ta t i s t i c a l  p roperties  of control systems, while the  frequency and 

algebraic domain approaches are  more convenient fo r  the synthesis of 

control systems excited  by determ inistic  input signals.

The frequency domain approach which is  based upon the work of 

Nyquist [20], Bode [1 ] , and Nichols [29], permits the designer to  modify, 

in a simple manner, the open-loop system in order to obtain appropriate 

closed-loop frequency c h a ra c te r is tic s . However, a t  the very outset of 

the design, the complex variable  s is  replaced by i t s  imaginary p a rt jw, 

and the en tire  s-plane i s ,  in e ffe c t, reduced to the imaginary ax is . 

Therefore, only unwieldy rela tionsh ips ex is t between th e  frequency and 

tran sien t responses. For example, the time-domain c h a ra c te r is tic s  such 

as the overshoot, the r is e  tim e, the se t tl in g  time, e t c . ,  can hardly be 

recognized from frequency ch a rac te ris tic s  such as the bandwidth, the 

zero frequency behavior, e tc . Moreover, the frequency response tech-



niques are  not su itab le  fo r the  design of multiloop control systems, 

p a rtic u la rly  in  the cases when a system has more than one adjustab le  

parameter.

Since the co rre la tio n  between the frequency and tra n s ie n t re ­

sponses is  abso lu te ly  e sse n tia l in the vast m ajority of control systems, 

the Laplace transform with the concept of complex frequency s has 

become a powerful mathematical too l in the analysis and synthesis o f 

feedback con tro ls . One d irec t consequence of the Laplace transform  

applications has been a strong e ffo rt on the development of synthesis 

techniques in the algebraic domain where the c h a ra c te r is tic s  of both 

the tran s ie n t and the frequency responses are evident.

The term "algebraic domain" is  fundamentally the modem "pole- 

zero" approach to  lin e a r  automatic control systems. However, a p e r t i ­

nent d is tin c tio n  should be made between the voluminous works produced 

in th is  country, where root-locus techniques are generally  employed, and 

the European investigations where a s lig h tly  d iffe ren t approach has been 

largely  u til iz e d  in the investigation  of parameter v a ria tio n s . The 

root-locus method is  b asica lly  a one parameter v a ria tio n  method where 

the open-loop system is  the basis for analysis and synthesis. In 

eastern  Europe the  alosed-loop system is  the basic s tru c tu re  where one 

or two variab le  parameters may appear in many or a l l  of the c o e ffic ien ts . 

That i s ,  the emphasis has been upon the investigation  of the character­

i s t i c  equation o f the alosed-loop system with respect to  parameter 

v a ria tio n s .



The idea of investiga ting  the tran s ien t response of feedback con­

tro l  systems in the closed-loop algebraic domain was f i r s t  introduced 

by Vishnegradski C30U. Vishnegradski assumed th a t the two middle coef­

f ic ie n ts  of the c h a ra c te r is tic  equation of a th ird -o rd e r system could be 

considered as v a riab le s . In the plane of the variab le  c o e ff ic ien ts , a 

diagram was p lo tted  which enabled the determination of these co effic ien ts  

with respect to  both the s ta b i l i ty  and the nature of the system tran s ie n t 

response.

An extension of Vishnegradski*s work was presented in 1948 by 

Neimark [18] in h is  D -partition  method for the s ta b i l i ty  analysis of 

control systems. By u til iz in g  th is  procedure, the designer may assume 

two system param eters, which appear lin early  in the co e ffic ien ts  of the
i .  r

n order c h a ra c te r is tic  equation, to  be variab les. Then, the mapping 

of the imaginary axis of the s-plane onto the plane of the variable  

parameters (or the parameter plane) permits the designer to  determine the 

number of left-hand-plane roots of the c h a ra c te ris tic  equation. Attempts 

to  apply the D -partition  method to  the design of control systems in terms 

of tran sien t response generate d i f f ic u lt ie s  since the method e sse n tia lly  

belongs to  frequency response techniques. By applying the  D -partition 

method, the designer is  unable to  obtain information about, or control 

over, the root locations of the ch a rac te ris tic  equation. See Polack [22'] 

fo r a comprehensive discussion and proof of th is  technique.

In 1948, Evans C7D presented h is  root-locus technique fo r the 

synthesis of control systems in the s-plane. The root-locus technique 

read ily  provides information about a l l  the roots of the c h a ra c te r is tic



equation and permits a simple numerical evaluation of these roots fo r 

d iffe ren t values of the open-loop gain and, usually  less simply, fo r 

o ther single variab le  parameters. Applying the fu l l  p o ten tia l of the 

Laplace Transform, the procedure proposed by Evans admits control over 

both the time-domain and the frequency domain c h a ra c te r is tic s . How­

ever, the root-locus method has two s ig n ifican t lim ita tions: F ir s t ,

i t  is  b asica lly  a one parameter method, and second, i t  makes the 

synthesis of m ulti loop systems inconvenient in much the same manner as 

do the frequency response techniques. Thus the root-locus method 

su ffers from the same d if f ic u lt ie s  experienced in  applying frequency 

response techniques to  the design of multiloop stru c tu res  with more 

than one adjustab le  parameter.

The algebraic problem of control system synthesis was p a r t ia l ly  

solved by Mitrovic [16] in 1958. M itrovic's method designates tha t 

the f i r s t  two co effic ien ts  of an n ^  order c h a rac te ris tic  equation may 

be considered as v ariab les . Then, by a proposed graphical procedure, 

which u t i l iz e s  the concept of a parameter plane, the variab le  c o e ff i­

c ien ts are chosen so th a t the c h a rac te ris tic  equation has prescribed 

root values. Hence, th is  method permits the design to  be guided by 

the behavior of both tran s ien t and frequency responses. Lim itations 

of the method a rise  due to  the fac t th a t only the f i r s t  two coeffic ien ts  

representing two parameters may be considered as v a riab le s . Unfortu­

na te ly , the adjustable system parameters frequently appear in more than 

two co effic ien ts  of the ch a rac te ris tic  equation. In such cases, by



applying M itrovic 's method, i t  is  not possible to  ad just the system 

parameters without the applications of approximations, lim ita tions 

and transform ations.

In 1964 S iljak  C25H generalized M itrovic's method to  the point 

where two variab le  parameters could appear linearly  in  any two c o e ff i­

c ien ts of the c h a ra c te r is tic  equation. A second generalized M itrovic 's 

method was proposed by S iljak  in 1964 [26] that g rea tly  increased the 

effectiveness of the parameter plane techniques. This second gener­

alized  method allows two variab le  system parameters to  appear lin early  

in a l l  the co e ffic ien ts  of an n^ 1 order c h a rac te ris tic  equation, e lim i­

nating a fundamental disadvantage in M itrovic 's method. Further, the 

introduction of Chebyshev functions in th is  work greatly  sim plifies 

the proposed procedure and makes simulation more convenient on both 

analog and d ig ita l  computers.



CHAPTER 2

REVIEW OF PARAMETER PLANE METHODS

2.1 Vishnegradski Curve

A deta iled  discussion of the concept of the parameter plane 

log ica lly  begins with the work of Vishnegradski. I .  A. Vishnegradski 

[30] considered the general th ird  order ch a rac te ris tic  equation of the 

form Z3 + aZ2 + BZ + 1 = 0, and, in the co-ordinate system of the 

parameters a and 6 , p lo tted  curves which divide the plane in to  s tab le  

and unstable regions. The parameters a and 8 are functions of the 

coeffic ien ts  of the equation and are known as the Vishnegradski 

parameters and the curves mentioned above are called  the Vishnegradski 

curves. In general, a cubic equation can be reduced to  a form in  which 

i t  depends on the parameters a and 8 . This is  shown as follows, 

consider a th ird  order equation,

F(s) = a0s 3 + ajS 2 + a2s + a3 = 0 (2 . 1 . 1)

Dividing the whole equation by a 3 and introducing the no tation ,

a0 a^ a 2
bo = , bi = , b 2 =

a 3 a 3 a 3

( 2 . 1 . 2)

gives,

F(s) = b0s 3 + b 3s 2 + b2s + 1 = 0 (2.1.3)

Carrying out the following su b s titu tio n  of va riab les,
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z
3 ^ (2.1 .4)

gives

F(Z) -  Z3 +  Z2 +  Z + 1 * 0bl „  b2 (2 .1 .5 )

Defining

bj b2
( 2 . 1 . 6)

and su b s titu tin g  (2.1.6) in to  (2 .1 .5 ) gives the Vishnegradski form

I f  a > 0 and 8 > 0, the Routh-Hurwitz c rite rio n  gives the s ta ­

b i l i t y  conditions fo r equation (2.1.7) to  be

The equation of the s ta b i l i ty  boundary i s  obtained i f ,  in stead  of the 

inequality  sign in (2 . 1 . 8 ) ,  the  equality  sign is  introduced, whence

This is  the equation o f a hyperbola, which divides the a- 8 plane 

in to  the stab le  and unstable regions, and was the s ta r tin g  poin t fo r the 

parameter plane concept. The Vishnegradski curve is  shown in  Figure 

2 . 1 . 1 , where the regions of s ta b i l i ty  and in s ta b il i ty  are e a s ily  d e te r­

mined from the inequality  o f equation (2 . 1 . 8 ) .

F(Z) = Z3 ♦ aZ2 + BZ + 1 (2.1.7)

aB -  1 > 0 (2 . 1 . 8)

aB = 1 (2.1.9)



2.2 D1-P a rtitio n  Boundaries

TTie concept of D -partition  boundaries was formulated by Neimark 

[18] and, as w ill be seen, is  the basis fo r modem parameter plane 

techniques. Consider the general c h a ra c te r is tic  equation.

F(s) = a^s11 + an_^sn~̂  + . . . + a ^  + a0 = 0 (2 .2 .1)

The aggregate of values a0, a l t  a2 , . • • , afi may be in terp reted  

geom etrically as a point in an (n+1)-dimensional space. To each point 

of th is  space there correspond d e fin ite  values of the co effic ien ts  and 

consequently d e fin ite  values of the roots S j, s 2 , s 3, . . . , s^ of the 

c h a ra c te r is tic  equation. Thus, i f  a region, R, ex is ts  in  th is  space 

such th a t a l l  the roots of (2 . 2 . 1 ) l ie  to  the le f t  of the imaginary 

axis in the s-plane, then the hypersurface bounding R is  called  the 

boundary o f  the region o f  s ta b i l i t y . When there are only two indepen­

dent co e ff ic ien ts , th is  region is  bounded by a plane; when there are 

th ree , by a three-dimensional su rface , e tc .

Since the c o e ff ic ien ts , a^, are functions of the system parameters, 

such as gains and time constan ts, s ta b i l i ty  regions can be p lo tted  in 

terms of these system param eters. For example, consider a character­

i s t i c  equation in which a l l  the co effic ien ts  except a0 and an are known. 

Suppose th a t fo r some d e fin ite  values of a 0 and an the c h a ra c te r is tic

iThe symbol D represents the usual operational notation  of 
d if fe re n tia l  equations, i . e . ,  d /d t or s .
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equation has k roots lying to  the le f t  and n-k roots lying to  the rig h t 

o f the imaginary axis in the s-plane (see Figure 2 .2 .1 a). I t  follows 

th a t  there is  a curve on the plane th a t bounds a region in which

each point defines a polynomial also having k roots lying to  the le f t  

and n-k roots to  the rig h t of the imaginary axis (see Figure 2 .2 .1b). 

Neimark denoted th is  region by D(k,n-k) where, fo r example, i f  (2 .2 .1) 

is  of th ird  order (n=3), then in general the regions D(0,3), D(1,2), 

D(2,1) and D(3,0) can be found in the plane. The region P(3,0)

is  the region of s ta b i l i ty  in the ag-a^ plane. The p a r t i t io n  of the 

aQ-an plane of (2 . 2 . 1) in to  regions corresponding to  the same number of 

roots lying to  the le f t  of the imaginary axis is  ca lled  the D -partition .

I t  is  obvious th a t the imaginary axis of the s-plane is  the 

re flec tio n  of the boundary of the D -partition , and the crossing of the 

la t t e r  in the aQ-an plane is  represented by the roots in the s-plane 

crossing the imaginary ax is . This suggests the method for determining 

the D -partition boundary: i t s  equation is  found in param etric form by re

placing s by jw in the given polynomial (where w is  the v a riab le ). From 

th is  equation the boundary may be constructed by varying w from -® to  

+ * .

2.2.1 The construction of s ta b i l i ty  regions in the plane of one 

parameter—Neimark * s technique. Define a to  be a complex parameter 

whose value is  varied in  order to  investigate  s ta b i l i ty  and assume th a t 

the c h a rac te ris tic  equation can be reduced to  the form



Thus, fo r example, in the case of the equation

s 2 + s + a = 0 (2.2.3)

i t  follows th a t

Q(s) = s 2 + s , R(s) = 1 (2.2.4)

Only real values of a have any p ra c tic a l value. However, fo r now 

assume tha t a is  complex and transform  the imaginary axis in the s- 

plane in to  the a-plane. To do th is  se t soja> in (2 .2 .2) giving

By giving cu values from -°° to  a curve is  constructed which is  the 

transform ation of the imaginary axis of the s-plane on the a-plane, 

i . e .  the boundary of the D -partition  in the a-plane.

If  u) varies from -® to  +<» in  the s-plane (Figure 2.2.2a) then the 

region of s t a b i l i ty  w ill always be on the le f t  (the shaded side of 

Figure 2 .2 .2 a ). Since the mapping is  conformal, the region to  the le f t  

in the s-plane maps in to  the region in the a-plane th a t is  to  the le f t  

of the D -partition  when to varies from -» to  +®. Thus, proceeding along

(2.2.5)

Separating rea l and imaginary p a rts  gives

a ( ju j )  = u (w )  + jv (a i ) (2 . 2 . 6)
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the boundary curve of the  D -partition  from the point corresponding to  

tii — —co to  the point corresponding to  u * +*, the curve is  shaded on the  

le f t  (Figure 2 .2 .2b). I f  a takes on a series of values such th a t the 

boundary of the D -partition  in  the a-plane is  crossed from the shaded 

to  the unshaded side , then in the s-plane one root has crossed the 

imaginary ax is , passing from the left-hand plane to  the right-hand 

plane.

Thus i t  is  su ff ic ie n t to  know the d is trib u tio n  of the  roots 

re la tiv e  to  the imaginary axis fo r any one a rb itra ry  value of a (a is  

usually se t to  zero fo r  th is  determination) in order to  determine the 

d is trib u tio n  fo r any o ther value of a.

2.2.2 The construction of s ta b i l i ty  regions in the plane of 

two parameters—Neimark's Technique. Neimark extended h is  technique 

discussed in the  previous section to  account fo r the varia tio n  of 

two system parameters C13D. Since th is  is  basica lly  an extension of 

Vishnegradski's method, the resu ltin g  curves are called  the  generalized 

Vishnegradski diagrams. A Vishnegradski diagram is  a plane of any two 

rea l parameters o f a system in which the lines separating the region 

of s ta b i l i ty  are p lo tted . The Vishnegradski diagram may thus be 

obtained by constructing  the D -partition of the plane o f two parameters.

Suppose th a t the co effic ien ts  of the c h a ra c te r is tic  equation

(2.2.1) of the system depend on two parameters, a and B, and fu rth er 

assume th a t the  parameters en ter in to  the equation lin e a rly , so th a t



th is  equation can be reduced to  the form

aQ(s) + 0P(s) + R(s) = 0 

For example, the equation

(as + 1)(5s + 1) + 30 = 0 

can be reduced to  the form

a(5s2 + s) + 30 + (5s + 1) = 0 

So th a t in th is  case

Q(s) = 5s2 + s 

P(s) = 3 

R(s) = 5s + 1

Further, su b s titu tin g  s = jw in to  (2.2.7) gives

aQ(jw) + BP(ju>) + R (j to) = 0

Now denoting

Q ( »  = Q^w) + jQ2 0 )

p( j “0 = Pj(w) + jP2

R(ja)) = R^uj) + jR2 (co)

equation (2 . 2 . 1 1 ) can be w ritten  in  the following form

CaQj (ai) + B P ^ w )  + R ^ w ) ]  + j [ a Q 2 (aj) + 0p 2 (tu) + R2 ( ui)D  =

(2 .2 .7)

(2 . 2 . 8)

(2 .2 .9)

(2 . 2 . 10)

(2 . 2 . 11)

( 2 . 2 . 12)

0 (2.2.13)
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This y ie ld s two equations fo r the determination of a and B which s a t­

is fy  equation ( 2 . 2 . 1 1 ) ,  namely,

aQjfto) + BP^io) + R̂ Cai) = 0

(2.2.14)
aQ2 (w) + BP2 (ii>) + R2 (u) = 0 

Solving equations (2.2.14) fo r  a and 8 , g ives , 2

- R ^ ) Q ^ t o ) - R ^ u )

- R 2 («) P 2 (u>) Qz O ) - R 2 (« )

Q j Cw) P j ( « )
B =

Qx («-) P j C-)

Q » p 2 C») Q2 («) P2 (»)

Equations (2.2.14) are v a lid  only fo r those values of w a t which 

equations (2.2.14) remain lin ea rly  independent and compatible. See 

Reference 13 fo r a complete discussion of th is  po in t. The shading ru le  

now involves the following procedure. For a l l  u> values, a t which:

A =
Q i O )  Pj M 
Q2 (u>) P2 (uj)

> 0 (2.2.16)

the left-hand side of the boundary is  shaded; when A < 0  the right-hand 

side of the boundary i s  shaded [13U. Hence, i f  a or B takes on a

2I t  w ill become obvious th a t th is  manner of representing the 
variab le  parameters motivated much of the work of D. D. S iljak  to  be 
discussed below.
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se rie s  of values such th a t the boundary of the D -partition in  the a - 8  

plane is  crossed from a shaded side to  an unshaded sid e , then in  the 

s-plane one3 root has crossed the imaginary axis from the left-hand- 

plane to  the right-hand-plane. See Figure 4.3.2 fo r an example of an 

a - 8  plane.

Having obtained regions with an equal number of roots to  the 

le f t  of the imaginary ax is , i t  is  then necessary to  estab lish  whether a 

region of s ta b i l i ty  does or does not e x is t. This is  accomplished by 

choosing an a rb itra ry  point in a region and verifying the s ta b i l i ty  of 

the o rig in a l equation in which the co-ordinates of the chosen points 

have been su b stitu ted  fo r a and B. This s ta b il i ty  v e rif ic a tio n  can be 

performed by using any one of the standard s ta b i l i ty  te s ts .

2.3 M itrovic 's Method

Mitrovic u til iz e d  the general concept of the parameter plane and 

the basic theorem of Cauchy. His contribution was to  depart from the 

ju> axis and move out in to  the e n tire  s-plane. The method is  explained 

as follow s . 4 Consider the equation

3In most p ra c tic a l systems the a-f? p lo t fo r negative values of w 
w ill l ie  d ire c tly  over the p lo t fo r positive  values of w. However, the 
sign of A w ill usually  be such th a t the shading of the p lo t w ill always 
be on the same sid e . The re su lt  is  a doubly shaded p lo t ind icating  th a t 
two roots leave the left-hand s-plane when the D -partition is  crossed 
from a shaded side to  an unshaded sid e . This is  the case when, fo r 
example, a p a ir  of complex conjugate roots crosses the imaginary axis in 
the s-plane.

4This section  follows T haler's in te rp re ta tio n  of M itroviS 's work 
as presented in Chapter 10 of Reference 28.
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F(s) = a sn + a i sn“  ̂ + . . . + a_s2 + a s  + 3 = 0  (2.3.1)' n n -l  ̂ l o

which may be considered the c h a ra c te r is tic  equation of a closed-loop 

system. Assume th a t a l l  the roots are in the left-hand h a lf of the 

s-plane so th a t equation (2.3.1) may he factored to  give

F(s) = an (s + r x)(s  + r 2) ( s  + r 3) . . . (s + rn) = 0 (2.3.2)

Figure 2.3.1 shows a few of these roo ts p lo tted  on the s-plane and 

ind icates the vectors which represent the fac to rs of equation (2 .3 .2 ). 

Note th a t in (2.3.2) the angle associated with F(s) is  the sum of the 

angles of a l l  the fac to rs and is  therefo re  the algebraic sum of a l l  the 

angles associated with the vectors in Figure 2 .3 .1 .

I t  is  apparent th a t i f  the poin t s is  allowed to  move along any 

se lec ted  path , the angles of a ll  the vectors w ill change as s moves. If  

any path is  selected which is  a closed path enclosing a ll  the ro o ts , 

then each of the vectors makes a complete revolution as s traverses 

th is  path . Assume counterclockwise movement of s along such a closed 

path; then the vectors ro ta te  counterclockwise and the angle of F(s) 

goes through a to ta l  positive  angle of n (2 i t) , where n is  the number of 

roots encircled . In order to  check absolute s ta b i l i ty  the se lec ted  

contour of the s-plane must encirc le  the e n tire  left-hand plane. Since 

the order of the equation is  known to  be n , the number of roots is  also 

known to  be n and the F(s) curve on the F(s) plane must encirc le  the 

o rig in  n times i f  a l l  the roots are enclosed by the contour. I f  there 

are fewer than n encirclem ents, some roots l ie  outside the contour,
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which means they are in the right-hand ha lf-p lane , and the system is  

therefore absolutely unstable.

In a like  manner the contour on the s-plane may follow a locus of 

constant c /  0 (rad ia l lines on Figure 2.3.1) and close with a c irc u la r  

arc of very large radius (often in f in i ty ) . Note th a t when the contour 

is  the imaginary axis the value of c is  zero. A constant  ̂ j* 0 contour 

does not enclose the en tire  le f t  h a lf  of the s-p lane, but may enclose 

a l l  the ro o ts , in which case the number of encirclements by the F(s) 

curve is  once again the number n. In addition , i f  a l l  the roots are 

thus enclosed, i t  guarantees th a t no roots have a value of r, less than 

the value specified  by the mapping contour. I f  the selected  contour on 

the s-plane passes through a roo t, then fo r th a t p a rticu la r value of s , 

F(s) = 0 .  This means th a t the po lar p lo t on the F(s) plane must pass 

through the orig in  for such values. I t  should be noted th a t the contour 

on the s-plane fo r c = 1 . 0  is  the negative rea l axis and must pass 

through a l l  the negative rea l roots of F (s).

The concept of mapping constant c lines is  the basic contribution

of M itrovic 's method and the algebraic manipulations a ris ing  out of th is

method are as follows. Let the contours se lec ted  fo r mapping be rad ia l

s tra ig h t lines in the left-hand s-plane fo r any and a l l  values of 0 <

S < 1. Since the rad ia l distance from the orig in  to  any point on such

a rad ia l line  is  u , then the values of s which are to be substitu ted  n ’
in F(s) in the process of mapping are given by
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s = -u^ sine + ju^ cose = + ju>n/1 - s 2 (2.3.3)

where e i s  the angle of the line C = constant (see Figure 2.3.1) and 

the  values of s are in the second quadrant. Substitu ting  equation

(2.3 .3) in equation (2 .3 .1 ), F(s) can he w ritten  in the  following form.

F(s) = a ^ ^ - s  + j / f  - s2) n + an_1uinn_1( - t  + j A  - c2 ) n " 1 + . . .

+ a2wn2( - t  + i A  - s2 ) 2 + a 1<̂n ( “  ̂ + j A  - s z) + a0 = 0 (2.3.4)

M itrovic designates th a t coeffic ien ts  a.x and a0 be considered variables 

where by d e fin itio n  a t is  the a and aQ is  the 8 of Section 2 .1 .2 .

I f ,  fo r example, the c h a rac te ris tic  equation is  of s ix th -o rder, 

equation (2.3.4) can be w ritten as two simultaneous equations since the 

summation of the rea ls  and imaginaries must go to  zero independently. 

Solving these two equations for a and 8 gives

a = a2un (2s) + a 3ain2(1 - 4s2) + a t4t»Jn 3 (-4s + 8 s 3)

+ a 5wn ‘+( - 1  + 12s2 - 16s4) + a ^ ^ s  - 32s3 + 32s5)

(2.3.5)

8 = a^ 2 + a 3wn 3 (-2s) + al<ain 4 ( - 1  + 4s2) + a 5uin 5 (4s - 8 s 3)

+ a6oin6(1 - 12s2 + 16s4) (2.3.6)

The functions which appear in the co e ffic ien ts  do not depend on the 

order of the  equation; i . e . ,  fo r a fourth -order equation merely d is ­

card a l l  the  terms above the a, term s, e tc . This means th a t these
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co effic ien ts  may be computed and tabulated fo r se lec ted  values of c; 

then the tab les  are used when applying th is  method. Furthermore, a 

general formula may be obtained fo r each co effic ien t so th a t  the 

co effic ien ts  of high-order terms are read ily  obtained as needed. To 

obtain the formula fo r the c o e ff ic ien ts , i t  is  f i r s t  desirab le  to  

rearrange (2 .3 .6) by factoring  out

B = -u>n2 Ca2 ( - 1) + 3 3 ^ ( 2 ?;) + a^w^O " 4c2)

+ a 5ain 3 (-4c + 8 c3) ♦ agu^C -l + 12c2 -  16c1*) (2.3.7)

Conparison of equation (2.3.7) with (2.3.5) shows th a t id en tica l 

C functions appear in both. Thus i t  is  convenient to  define

♦0(O = 0 , ^ ( c )  = - 1  , *2 (C) = 2 c

»3 (c) = 1 - 4c2 , *„(?) = -4c + 8 c; ) (2.3.8)

4>,(c) » - 1  + 1 2 C2 _ 16c

From equation (2.3.8) i t  is  read ily  seen th a t each successive <t>(c) may 

be obtained from the two preceding <t>(c)'s, according to  the  general 

formula

♦k(c) = “ C2 c<t>k_i (c) + fo r  k > 2 (2.3.9)

The equations fo r a and B fo r application to  any order equation are 

then:
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a = + a 3ajn2 <j>3 ( 0  + a l4a)n 3<)»u ( 0  + . . . + a n ^ '^ C c )

(2.3.10)

6 = - u ^ C a ^ U )  + a 3uin $ 2 ( 0  + al<u)n2 <t. 3 ( 0  + . . . + V ^ ” 2 *n _1

(2.3.11)

Equations (2.3.10) are the fundamental to o ls  in M itrovic 's method. 

The c h a ra c te r is tic  equation to  be analyzed is  used only to read o ff the 

values of i t s  c o e ff ic ie n ts , which are then substitu ted  in to  equations

(2.3.10) and (2 .3 .11). The value of r, is  se lec ted  as desired; ^ ( O  

values are read from a previously tabulated tab le  of 4>, (c) functions
K

and su b stitu ted  in to  the equations. Thus a l l  values in  the equations 

are defined numerically except a, g and so i t  is  a simple m atter 

to  in se r t a sequence of values of wn and p lo t a curve of a versus g.

The points of the a-g curve define regions o f absolute and re la tiv e  

s ta b i l i ty  in  the a-g plane corresponding to  regions of absolute and 

re la tiv e  s ta b i l i ty  in  the s-plane. Figure 2.3.2 shows a ty p ica l region 

of absolute s ta b i l i ty  fo r a given c h a rac te ris tic  equation.

2.4 The Generalized M itrovic 's M ethod-Siljak's Method

In 1964, D. D. S ilja k 5 extended Mitrovi6 's  method so th a t the 

variab le  parameters a and g could appear as co effic ien ts  of any two 

terms of the system c h a ra c te r is tic  equation [25]. Thus, the lim ita ­

tion  th a t only the co effic ien ts  aQ and aj of the c h a ra c te r is tic

5This section follows the derivation presented by S iljak  in 
References 25 and 26.



equation be variab le  was removed. This work was then generalized once 

again by S iljak  C26D in  1964 by developing a method whereby the two 

variable  parameters a and 6 could appear linearly  in  a l l  the c o e ff i­

c ien ts of the c h a ra c te r is tic  equation, i . e . ,  for example in the form,

F(s) = (abQ + Bcq + dQ) + (al^ + fcj + d ^ s  + . . . + (abn + + d ^ s 11'

(2.4.1)

The f i r s t  generalization  proceeds as follows. Consider the 

c h a ra c te ris tic  equation

n kF(s) = U s  = 0  (2.4.2)
k= 0  K

Let s in the above equation be expressed as

sk = u>kCRk U) + j I k (OH , k = 0 ,1 ,2 , . . . , n (2.4.3)

where Rk(c) and Ik ( d  are functions of Then, by applying the condi­

tions th a t the summation of rea ls  and summation of imaginaries must go 

to  zero independently, the c h a rac te ris tic  equation may be rew ritten  as 

two simultaneous equations



As shown in Reference 25, both the functions Rk(C) and Ik (c) can be 

expressed by the M itrov if 's  functions as follows

Rk ( 0  = +

(2.4 .5)
Ik ( 0  = ~/l ~ t,1 4>k U)

Substitu ting (2.4.5) in to  (2 .4 .4 ) , gives

J „ a k"nkC* k - l ( c) * c *k<c^  "  0
K—U

(2 .4 .6)

n k
I ak^n ^ ( 0  = 0

k= 0  K 

Combining the above equations gives

(2.4.7)

n  k
I aku)n ^ ( 0  = 0 

k=0

These equations allow an arbitrary  p a ir  of coeffic ien ts  to  be 

considered variab le . Now, se lec t two coeffic ien ts a^ and a^ (n > p > 

q > 0) and rew rite the equations (2.4.7) as
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V n Py °  + V n N ( 0  = ~ J 0 ak“nk ^ C?)
k?«p,q

Considering the coeffic ien ts  and a^ in  the above equations (2.4.8) 

as variab les a and f? resp ec tiv e ly , there remain two equations in two 

unknowns which may be solved fo r a and 6 . (Note the s im ila rity  between 

the lin e a r  simultaneous equations (2 .4 .8) and the equations (2.2.14) 

proposed by Neimark in h is  D -partition  method.) Solving equations

(2.4.8) fo r a and 6 gives

The equations (2.4.9) may be fu rth e r sim plified . I f  the  M itrovic 's 

functions 4 ^ ( 0  are defined fo r negative values of subscript k as

k-p ♦ k ^ q - 1 ^  ~ ♦k-lCO+kfo)
1 <^q(t)4p_ i ( 0  - 4>q_-|(0<J>p(0

k?*p

(2.4.9)

4p(c)4>q-l (c) - 4q(c)4p_-,(0k^q

♦-fc( 0  = " ^ ( 0 (2.4.10)

i t  can be proven th a t (see Reference 25)

4>i (c)4>j- 1  (^) - ♦ i - i ( 0 * j ( 0  = 4>i-j(0 (2.4.11)

fo r any in teger values of i  and j .  The equations (2.4.9) may then be
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rew ritten  as

a -
<f> (O k=0  
Q-P k/p

(2.4.12)

r k -q . f 
I ak“n V p (?)—n  *

The generalized equations (2.4.12) represent the loci of points in the 

a-B plane with constant £-or in the same sense as do the fundamental 

equations (2.3.5) fo r the sp ec ific  case aj = a and aQ = B. P lo tting  of 

the aforementioned loci corresponding to  the generalized case is  sim i­

la r  to  the p lo ttin g  of the loci corresponding to  the o rig ina l M itrovic 's 

method. Further, the application  of the generalized method is  the same 

as the application  of M itrovic’s method.

In 1964, S iljak  fu rther generalized M itrovic 's method (the second 

generalized method) by showing th a t (2 .4 .3) could be expressed as [262

The Tk(c) and Uk( 0  are Chebyshev functions of the f i r s t  and the second 

kind, respec tive ly . The argument z, o f these functions is  0 < |s |  < 1, 

but fo r stab le  systems 0 < z, < 1. The functions Tk( 0  and 1 ^ (0  may be

sk _
nk[Tk ( - o  + j / r ^ u k( - o 3 (2.4.13)

where

Tk ( - 0  = ( - 1 ) \ ( 0  and Uk ( - 0  = (-1 )k+1Uk ( 0  (2.4.14)
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obtained by applying the recurrence formulae

W r t  -  2 trk W  + Tk - i ^  = 0

(2.4.15)
U k+ i ( 0  " 2 W O  + ’J k - l C O  = 0

with T0(O = 1. TjCO = t ,  U0(O = 0 , and 1 ^ (0  = 1 . Since the 

functions T^CO and 1 1 ^ ( 0  play an important ro le  in fu ture  develop­

ments, th e ir  numerical values fo r pe rtin en t values of t are given in 

Appendix I. Substitu ting  (2.4.13) in to  (2 .4 .2 ) , and then applying 

the condition th a t the summation of the rea ls  and the summation of 

the imaginaries must go to  zero independently, gives

l  V ‘nkTkC- 0  * 0 'k=0
(2.4.16)

I ak“nkl,k("^^ = 0 
k=0

Now, consider the co effic ien ts  to  be lin ear functions of 

variab le  system parameters a and 8 as follows

a^ = ab^ + Bc  ̂ + dj. (2.4.17)

Then equations (2.4.16) may be rew ritten  as

a R ^ r ,,^ )  + g C ^ s ,^ )  + = 0

(2.4.18)

aR2 (C»Wn) + B C ^C ,^) + n2 (t,u>n) = 0
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where (om itting the arguments

Equations (2.4.18) are simultaneous equation in  two unknowns, a and 0 , 

which may be solved thus:

The application of the second generalized method is  id en tica l to  

the o rig in a l M itrovic 's method. The second generaliza tion , however, 

is  the most useful since the variable  parameters, a and 0 , can appear 

in the co effic ien ts  of the c h a rac te r is tic  equation in the lea s t 

r e s t r ic t iv e  manner (see equation (2 .4 .17 )).

(2.4.20)R
RlC2 - BjCj



STABLE REGION

Fig. 2.1.1 Vishnegradski Curve.
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Fig. 2.3.1 Representation of the C harac te ris tic  Equation on
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STABLE REGION

Fig. 2 .3 .2  a-p  Curve for £ * 0  Where F(s) » + 5s2  + as + p .
(From Fig. 9 in Ref. 16.)



CHAPTER 3

TRANSPORT LAG—CONVENTIONAL SOLUTIONS

3.1 Introduction

In order to  introduce the phenomenon of transport lag, which is  

sometimes referred  to  as "dead-time or d istance-velocity  lag ,"  a 

p ra c tic a l example is  given. Consider a person contro lling  the tempera­

tu re  of the hot water fo r a shower. Because of the flow time between 

the valve and the person (a transport la g ) , a change in valve se ttin g  

is  not immediately sensed, and the user does not know how much change 

he has made. After waiting u n til  the change is  sensed, he then t r ie s  

another "blind" adjustment. I f  he is  in a hurry, the sequence of 

adjustments may become o sc illa to ry , with unfortunate re s u lts . I t  is  

obvious th a t high gain in a control loop with a transport lag can be 

unstable. In th is  instance the man is  the co n tro lle r and the difference 

in the temperature of the water from the desired temperature is  the 

e rro r upon which the man a c ts . The transport lag is  the time taken 

fo r the water to  flow from the valve to  the man. I f  the man turns the 

valve too quickly and too much in  one d irec tio n , implying a large gain 

within the control loop, he w ill overcompensate and eventually e ith e r  

scald or freeze.

An important point to  be made fo r systems with transport lag is  

th a t the output of the device producing the lag is  id en tica l to  the 

input except fo r the fac t th a t i t  is  delayed in  time. This constant
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time delay can be read ily  incorporated in to  the mathematical formula­

tio n  of the system tran sfe r function. For example, consider th a t the 

output from the fixed delay component is  equal to  the input delayed by 

T sec. Mathematically th is  can be expressed as follows

Taking the Laplace transform of both sides and dividing by C^(s) 

y ields

Thus the tra n s fe r  function for a constant tran spo rta tion  lag is  the

The phenomenon of transport lag occurs in many areas of engineer­

ing: for example, in certain  types of transm ission lin e s , long pneu­

matic control lin e s , the time of motion of a relay  armature in an on- 

o ff servomechanism, the flow of chemicals through p ipes, e tc . In order 

to  exemplify the existence of transport lag in an e le c tr ic a l system, 

consider a transmission line th a t is  term inated in i t s  c h a rac te ris tic  

impedance (see Figure 3 .1 .1a). The ra t io  of the output voltage to  the 

input voltage is  ["2 1 ]

where TL is  the transport lag which i s  a re su lt of the f in i te  propaga-

c0 (t) = ct ( t  - T) (3.1.1)

transcendental function e-sT

(3.1.3)
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tio n  velocity  u = of the voltage wave along the transmission

lin e . The transport lag time thus depends on the length I and the 

ve loc ity  u. Or

Figure 3.1.2 shows a typical block diagram representation of a feed­

back control system containing a tran sp o rt lag in the forward path.

A second type of lag th a t a lso occurs in engineering systems, 

though less frequently , is  the so ca lled  d is trib u ted  lag. For 

example, d is trib u ted  lag occurs in ce rta in  types of transmission 

lin e s , in thermal heat flow through so lid s  and in acoustic lines with 

a large ra t io  of acoustic capacity to  inductance T27]. The tran s­

mission line  shown in Figure 3.1.1b exh ib its the property of d is trib u ted  

lag. The ra t io  of the output voltage to  the input voltage is  ["21H

V s) - / s f 7
 = e L (3 .1 .5 )
Vi(s)

where T^ = RQc0*2.

The following sections of th is  chapter w ill review some of the 

more popular techniques u ti l iz e d  in analyzing feedback control systems 

containing transport lag. Further, since systems containing d is trib u ted  

lag are less common than systems containing transport lag, the emphasis 

in what follows w ill he on the la t t e r .  However, reference to  d is tr ib u te d
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lag systems w ill be made where app licab le.

3.2 Approximation Techniques

The open-loop tran sfe r function of Figure 3.1.2 i s  given by

where G(s) is  an algebraic ra tio n a l function. Equation (3.2.1) contains

popular analy tica l procedure is  to  convert the transcendental tra n s fe r  

function in to  a ra tional function by approximating the exponential term 

by a polynomial or ra tio  of polynomials in s ,  and then the usual tech­

niques of analysis can be applied. For example, suppose the G(s) of 

Figure 3.1.2 is

and the absolute s ta b i l i ty  of the system is  to  be examined in terms of 

the d ire c t transmission gain, K, the time constan ts, and t2, and the 

time delay, T. The c h a rac te ris tic  equation fo r th is  system is  given by

(3.2.1)

-sTthe transcendental lag term, e , so th a t analysis is  d i f f ic u l t .  A

= S(1 + Tis ) ( l  + t 2 s ) (3.2.2)

1 + = 0 (3.2.3)
s (1 + T jS) (1 + t 2 s )

The Routh c rite r io n  is the standard te s t  fo r the absolute s ta b i l i ty  

o f lin e a r  systems, but i t  only applies to  f in i te  polynomials in s . Since
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the transcendental term , e"sT, is  an in f in i te  polynomial in  s ,  i t  is  

approximated fo r small T, and low frequency, by

e~ST f 1 - sT (3.2.4)

Thus the c h a ra c te r is tic  equation becomes

T j T j S 3 +  ( t j  +  t 2 ) s 2  + (1 - KT)s + K = 0 (3.2.5)

This is  a cubic equation so the Routh c r ite r io n  gives the condition for 

absolute s ta b i l i ty  in terms of the co effic ien ts  as (assuming th a t a l l  the 

co effic ien ts  are positive)

(1 - K T ) ( t 1 +  t 2 )  > K t j T 2 (3.2.6)

Rearranging (3.2.6) y ie lds the condition fo r s ta in l i ty  as

K < t i t 2 / ,  , + T (3.2.7)
/  ( t j  + t2)

The boundary between s ta b i l i ty  and in s ta b i l i ty  occurs when

-1

(3.2.8)
K = + T

Equation (3.2.8) is  graphed in Figure 3 .2 .1 , where K is  p lo tted  

versus T fo r constant and t2. For any given value of transport lag 

the system is  s tab le  i f  the gain K lie s  below the c r i t ic a l  curve and 

unstable i f  K lie s  above i t .  The c loser K l ie s  to  the curve, the more
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lik e ly  the system is  to  become unstable fo r any unfavorable v a ria tions 

of the time constants, t and t2. I t  must be emphasized th a t the 

s ta b i l i ty  condition of (3.2.8) depends upon the accuracy of the approxi­

mation of (3 .2 .4 ) . I f  the exponential is  expanded to  include more 

terms of the se rie s  and the Routh c rite r io n  is  then applied, a more 

exact statement of the s ta b i l i ty  condition is  obtained.

Another approximation to  the transcendental function i s  sometimes 

obtained from the fac t tha t

I f  a f in i te  value of n is  used, the transcendental function is  approxi­

mated by a pole of order n located a t -n/T on the negative rea l axis in 

the s-p lane. For example, an n of 3 y ields

The impulse response of the actual function and th a t of the approxima­

tion  are sketched in Figure 3 .2 .2 . The approximation is  not p a rticu ­

la rly  good, with the maximum value of the impulse response occurring at 

2T/3.

A th ird  approach to  the approximation of the exponential function 

is  to  u t i l iz e  a ra tio n a l algebraic function approximation. One such 

function is  the Pad£ approximant. The Pade approximation is  a ra tio n a l 

a lgebraic function , with numerator polynomial of degree n and denominator

(3.2.9)

-sT I i 3 e = — !----- (3.2.10)
1 +  —

3 I
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of degree m, such th a t the maximum number of terms in  the Maclaurin

expansion of the approximating function agree with s im ila r terms in
-sTthe expansion of the exponential function. Thus i f  e is  to  be 

approximated by the ra t io  of cubic to  quadratic polynomials, there are 

six  co effic ien ts  which can be selected a rb itra r i ly :

1 + a ,s  + a ,s 2 + a , s 3 
-sT  I I L _ (3.2.11)

bQ + b ts + b2s 2

These six  co effic ien ts  can be chosen such tha t a t leas t the f i r s t  

six  terms are equal in the two Maclaurin expansions. In th is  sp ec ific  

example, the appropriate ra tio n a l algebraic function i s 1

c t  1 - i Ts + m j2s2e' sT = ------------- ---- -----r—-22------- (3.2.12)
1 + £Ts + —T2s 2 5 20

The Maclaurin expansion of the frac tion  is

I
1 - Ts + -T2s2 - 1t 3S3 + JLt^S1* - J -T 5 S5 + ' _L_t6S6 _ +

2 6 24 120 1 800
(3.2.13)

-sTThe f i r s t  s ix  terms are simply those of the expansion of e ; the la s t 

term given is  the f i r s t  one to  d if fe r .  The Pade approximant technique, 

although b e tte r  than the two previously mentioned techniques, is  s t i l l  

an approximation and therefore  lim ited in i t s  app lication .

R eference 5 shows a general method fo r constructing Pade 
approximants.
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3.3 Nyquist Diagrams

Because of the disadvantages associated with approximations to  

the transcendental function , a graphical procedure often provides a 

much simpler approach to  problems involving tran spo rta tion  lags. I f  

the su b s titu tio n  s * jw i s  made, the transcendental term of the tra n s ­

fe r  function becomes e and is  readily  in te rp re ted  in  terms of e ith e r  

the Nyquist diagram or the Bode p lo t. In th is  instance no approximation 

is  necessary, but the  re su lt is  a frequency response analysis of the 

system with a l l  the lim ita tions thereof. In e ith e r  the Nyquist p lo ts  

or the Bode p lo ts , m ultip lication  of a tran sfe r function by 

represents merely a phase s h if t  varying lin early  with frequency. This 

is  because

e-jwT = I / - w T  = 1 /^wT rad. (3.3.1)

In terms of the Nyquist diagram, each poin t on the diagram is  

ro tated  through an angle of -wT ra d ., where w is  the angular frequency 

corresponding to  the  point on the o rig inal locus. For example, in  the 

system of Figure 3 .1 .2 , the tra n s fe r  function G(s) is  given by

G(S) = ------------
s(s + 1)

The Nyquist p lo ts  fo r the open-loop tran sfe r function of the system fo r 

various values of time lag (T = 0, 0 .5 , 1.0, 1.5 sec .) and K = 1 are 

constructed in  Figure 3 .3 .1 . From th is  p lo t i t  is  seen th a t the closed- 

loop system i s  always s tab le  when the tim e-lag is  zero, but the s ta b i l i ty
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de te rio ra tes as the tim e-lag is  increased, and fo r large values of lag 

the system is  unstable since the (-1 .0 , 0) point is  encircled .

The m u ltip lica tion  of G(s) by simply ro ta te s  each poin t on

the G(s) curve by an angle of u>T rad. in the clockwise d irec tio n  (see 

Figure 3 .3 .1 ). Therefore, in th is  case, the Nyquist p lo ts  of the system 

with transporta tion  lag sp ira l towards the orig in  as the frequency to 

approaches in f in i ty . From the p lo ts  in Figure 3.3.1 i t  appears th a t the 

marginal value o f T fo r s ta b i l i ty  l ie s  somewhere between 1.0 and 1.5 sec. 

The exact value of T th a t w ill make the Nyquist p lo t go through the 

point (-1, 0) can be determined by t r i a l  and e rro r or a lgeb ra ica lly .

3.4 Bode P lots

The Bode p lo t ,  or the logarithmic gain and phase p lo ts , permit a 

convenient method of analysis of the closed-loop system with a tra n s ­

portation  lag. The gain curve is  unchanged by the introduction of the

lag fa c to r , but the phase lag is  increased proportional to  frequency.
-sTFigure 3.4.1 presents the change caused by the in troduction of the e

tr
fac to r in the ----- ------ tra n s fe r  function considered previously. The

s (s  + 1)
allowable gain, K, fo r  a stab le  system is  rap id ly  determined. The gain

of the ----- ------ plo t a t the frequency a t which the phase s h i f t  of the
s(s  + 1)

to ta l  open-loop tran s fe r  function is  -180° is  - 1 .1db. ,  i f  T is  1 sec.

K can then be as high as +1.1db. or 1.14. The desirab le  c h a ra c te r is tic  

of th is  approach to  the problem of transporta tion  lag is  th a t  the s i tu ­

ation  is  not p a r tic u la r ly  complicated by increased complexity in  the 

re s t  of the open-loop tra n s fe r  function.
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3.5 Root-Locus

The popular root-locus technique can he applied to  contro l 

systems exhib iting  tran sp o rt lag. In order to  appreciate the concept 

as applied to  systems with tran spo rt lag , a b r ie f  discussion of the 

conventional root-locus technique is  f i r s t  given. In the root-locus 

method the locus of the roots of the c h a ra c te r is tic  equation of a 

feedback system are p lo tte d , the gain usually  being the variab le  

parameter. Thus the locus gives a representation  of these roots simul­

taneously with th e ir  corresponding values of gain. T ransient so lu tions 

can be worked out once these roots are determined.

Consider again the feedback control system shown in  Figure 3.1.2 

where, i f  T * o» the system reduces to  a conventional feedback control 

system without transport lag. The c h a ra c te ris tic  equation of th is  

system can be expressed as

This equation is  conplex and may be rew ritten  as two equations by 

equating magnitudes and phase angles on both sides of (3 .5 .1) to  each 

o ther. Thus, the magnitude equation is

G(s) = -1 (3.5.1)

|G (s)| = 1 (3.5.2)

and the phase angle equation is

/G(s) = *180 degrees (fo r the p rincipal plane) (3.5.3)



The p lo t fo r the phase angle equation i s  called  the root-locus (since 

the roots of the  c h a ra c te r is tic  equation are po in ts on the locus), 

while the magnitude equation gives the value of the gain on each point 

of the locus. Figure 3.5.1 i l lu s t r a te s  the root-locus fo r the tra n s fe r  

function

G(s) = (3.5.4)
s 2

This p a rtic u la r  tra n s fe r  function w ill be used as an example in  la te r  

work so the discussion of th is  function w ill be given in d e ta il .  Note 

th a t the locus i s  symmetrical with respect to  the rea l ax is . Equation 

(3.5.3) ind icates th a t  the root-locus is  a curve on which every point 

has a phase angle of *180 degrees.

This concept has been generalized by Chu2 by considering loci with 

other values of phase angle. Equation (3.5.3) is  then expressed as 

/G(s) = <t» where <<> is  a constant phase angle. Thus, a family of loci can 

be p lo tted  fo r various values of <j>. Figure 3.5.2 i l lu s t r a te s  a family 

of constant phase-angle root loci fo r the tran s fe r  function G(s) of 

equation (3 .5 .4 ) . Such a family of curves fo r a given tra n s fe r  function 

is  called  "the phase-angle lo c i ."  Since the locus with phase angle $ 

is  symmetrical to  th a t  with phase angle (-$) with respect to  the rea l 

ax is , only the loci on the upper h a lf  plane are shown. I f  the feedback 

control system contains a transport lag e , then the c h a ra c te r is tic

2This section follows the derivation presented by Chu in  Reference 2.
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equation i s  (see Figure 3.1.2)

G(s)e~sT = -1 (3.5.5)

The phase angle equation i s  accordingly

/G(s) + / e~s^ = ±180 degrees (3.5.6)

where the phase angle equation can be s in p lif ie d  in to

/G(s) - u>T = t 180 degrees (3.5.7)

The technique fo r constructing the root-locus fo r a feedback con­

t r o l  system with tran spo rt lag is  based on (3 .5 .7 ). F irs t  the family 

of ro o t-lo c i (or phase-angle loci) are constructed for

/G(s) = ♦j (3.5.8)

Next, another family of ro o t-lo c i is  constructed fo r the transport lag 

term of (3 .5 .7 ) , (sometimes referred  to  as the transport lag phase-angle 

loci) from the re la tio n

- ojT = <f>2 (3.5.9)

Then by superimposing these two fam ilies of lo c i, the poin ts of in te r ­

section of the corresponding curves where the sum of phase angles $ f 

and <f>2 equal to  *180 degrees are the points of the locus required. The 

curve drawn through a l l  these points of in te rsec tio n  is  the  required 

roo t-locus. The determination of the gain can then be carried  out by
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the c r ite r io n  used in the conventional root-locus method. The magnitude 

equation i s  from (3.5.2)

K = 1
| G ( s ) e - s T  | (3.5.10)

which w ill give the gain K of any point on the required roo t-locus.

To i l lu s t r a te  th is  method, an example is  se lec ted  with the  tra n s fe r  

function previously discussed, namely

G(s) « (S * ° e " s T  (3.5.11)
s 2

For convenience, i t  is  separated in to  two tra n s fe r  functions

(s + 0.3)
G (s) = ^---------- L , G (s) = e S (3.5.12)

1 s 2 2

where G(s) = G j^ G  (s) and T is  assumed to  be u n ity . By following the

previously mentioned procedure, a family of ro o t- lo c i of the following

equation is  constructed

/G i(s) = ^

This family of ro o t-lo c i has been shown in Figure 3 .5 .2 . Next a family 

of transport lag loci is  constructed from the re la tio n

-<u = $ (3.5.13)

This family o f loci i s  shown in Figure 3 .5 .3 . F ina lly , these two 

fam ilies of loc i are superimposed on the same s-plane. The required
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root-locus is  the points of in te rsec tio n  of every two loc i with the sum 

^  and <t>2 equal to  ±180 degrees as shown in  Figure 3 .5 .4 . The points 

of the required root-locus in the upper h a lf  plane are those with a 

phase angle of -180 degrees. Since the locus is  symmetrical with 

respect to  the rea l ax is , only those in the upper h a lf plane are shown.

As an example, the points on Figure 3.5 .4  which give un ity  gain 

are from equation (3.5.10)

oQ = -0.41, Oj ± j Ul = -0.17 * j l .17 (3.5.14)

The c h a ra c te r is tic  equation has an in f in i te  nuirber of ro o ts , which can 

be obtained by constructing additional branches of the required locus. 

Figure 3.5 .5  shows the second and th ird  branches, as well as the funda­

mental branch. Again a t the points which give the un ity  value of gain, 

the second and th ird  p a irs  of roots are found to  be

°2 * j <*>2 = -2.06 ± j7 .56

o3 * ju>3 = -2.65 * j 13.92 (3.5.15)

In conclusion, the root-locus technique developed by Chu is  per­

haps the most f ru i tfu l  of a l l  techniques when designing feedback control 

systems containing transport lag. The technique, however, is  fraught 

with d if f ic u l t ie s  when considering high-order systems, or systems where 

the variab le  parameter is  not a m ultiplying gain fac to r in  the forward 

loop.
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Fig . 3.2.1 S ta b ili ty  Diagram.(fVom Fig. 8-1 in  Del Toro, V., and 
Parker, S.R., P rincip les o f Control Systems Engineer­
in g . New York: McGraw-Hill Book Company, In c ., I960.)
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CHAPTER 4

ABSOLUTE AND RELATIVE STABILITY OF SYSTEMS WITH TRANSPORT LAG

4.1 Derivation of Parameter Plane Equations

The fundamental equations and concepts of th is  d isse rta tio n  are 

derived in  th is  chapter and are applied here to  the determination of 

the absolute and re la tiv e  s ta b i l i ty  of a linear feedback control 

system with transport or d is tr ib u te d  lag [6 ].

Consider the lin ear un ity  feedback control system with a tra n s ­

port lag in the forward path shown in Figure 4 .1 .1 . The ra t io  of C(s) 

to  R(s) is

C N(s) N(s)
( s ) = ---------=------------- ------------

R F(s) D(s)esT + N(s) (4.1.1)

where T is  a constant time delay in seconds and s is  the complex 

variable

s = -coin + jo^/1 - c* (4.1.2)

Here c is  the dimensionless damping ra t io  and ion is  the undamped 

natu ra l frequency in radians per second (see Figure 4 .1 .2b).

The s ta b i l i ty  of the system is  determined by the locations of 

the roots of the system c h a ra c te r is tic  equation F ( s ) . Setting  F (s) = 0 

gives

F(s) = D(s)esT + N(s) = 0 (4.1.3)
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Note th a t (4.1.3) w ill remain unchanged i f  the transcendental function 

appears in  the feedback path of Figure 4 .1 .1 . Since D(s) and N(s) are 

polynomials in s ,  they can be expressed as

D(s) = I  qRsk , N(s) = { r ksk (4 .1 .4)
k=0 k=0

where q^ and r^ are re a l and j < n fo r a p ra c tic a l system configuration.

Then from (4.1.3)

F(s) = esT I  q ,sk + J rksk = I ak (s)sk = 0 (4.1.5)
k=0 K k=0 k=0

Since the a (s) w ill be a function of es^ fo r T ^ 0 and w ill 
k

contain the system param eters, the ak (s) are defined in the following 

manner in order to  include a l l  possible lin ear combinations of 

param eters.

ak (s) = ab^ + “CkesT + 3dk + 3ekes^ + f k + gkes^ (4.1.6)

where a and 6 are system parameters th a t can be chosen or ad justed , 

i . e .  system gains, time constants, e tc . The cases in which a and 3 

appear non-linearly  as well as lin e a rly , i . e . ,  as a, 3, a3, a2 , e tc . ,  

are not considered.

I f

s = + ju>n /1 - ^

then i t  can be shown th a t (see Reference 26)
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sk « <̂nkCTk (-?) + j / T ^ r  uk ( - 0 ]  (4 .1 .7)

where Tk (- t)  i s  the Chebyshev function of the f i r s t  kind, and Uk(-S) i s  

the Giebyshev function of the second kind. The Qiebyshev functions can 

be constructed by means of the following id e n ti t ie s  and recursion 

formulas.

Tk( - 0  -  C-1)kTk(c) , l^C -0  « (-1)k+1Uk (C) (4.1.8a)

Tk+1( 0  - 2tTk ( 0  + Tk.- ,(0  = 0 (4.1.8b)

uk+1( 0  -  2 ^ ( 0  + U j^ U ) = o (4.1.8c)

where

T0(O = 1 , T ^ O  = C , U0(O = o , U j(0  = 1 (4 .1 .8d)

These functions may a lso  be evaluated by means of the following

trigonom etric de fin itions (see Tables I and II of Appendix I) :

m . ,, - I .  .. , s sin(k cos"1 ?)Tk( 0  = cos(k cos 0  , Uk( 0  = —  Tj— ... . QsK K sm (cos 1 ;) (4.1.9)

Substitu ting  (4.1.6) and (4 .1 .7 ) in to  (4.1.5) and applying (4.1.8a) 

gives

F(<V ^  O + BCiCo^, t)  OH

+ jraB2(oi)n , 0  + 6 0 2 (0^ , e) + ?)] (4.1.10)
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where

Bx -  I ^ [ C - D kTkCc)bk + E_*ck( ( - 1 ) kTk(Ocose - ( - 1 ) k+1^ r ^ F u k ($sine)]  
k-0

Ci= I  û ik [C-DkTk COdk + c“*ek( ( -1 )kTk( t ) c o s e - ( - 1 ) k+1/ r ^ ‘Uk (i;)sine)]

V ^ A ^ k  + ^ ^ ( ( “^ ^ ( O c o s e - ( - l ) k+1/ T ^ l ^ C O s i n e ) ]

(4.1.11)

n
B2 -  [(-1)K" V o  / n ^ F b k

+ e- \ ( ( - 1 ) k+1Uk ( 0 / T ^ c o s e  + (-1)kT (O sine)

,k+1,

C* = j 0“nk [H > k t \ M ' ' r r 1 ? d k

+ e”<,)ek( ( - 1 ) k+1Uk(0»'1 - Czcos0 + ( -1)kTk(Osin0)j

°2 = j 0“nk [(-’>k*1uk ( ^ / r ^ f k

+ E“V ( - O k+luk(O*/r ^ Tcos0 + ( -1)kTk(Osin0)]

In equation (4.1.11) the arguments <un and £ have been omitted fo r 

sim p lic ity , and use has been made of the id en tity

eST = e~^(cos 0 + jsin0)



63

where

* = ?tonT and 0 = u^/1'"- c2' T (4.1.12)

Setting  F(s) = 0 ,  or se ttin g  the rea ls  and imaginaries of 

(4.1.10) to zero, y ie ld s

oB1 + BCj =_D1

aB2 + bC2 = D 2
(4.1.13)

Then1

Ĉ D2 ~ D1C2 
a  = --------   ,

“ D2Bj

S =B,C2 - C,B2 (4.1.14)

Equation (4.1.14) fo r a and 8 are parametric equations in and c,

where wn is  the varying parameter and x, i s  a given constant, or vice 

versa.

The a-B curves are mappings of curves from the s-plane, where 

the c h a rac te ris tic  equation is  the transform ation function, so th a t

iThe following equations are indeterminate fo r ? = *1. See 
Appendix II  fo r a d e ta iled  discussion of th is  po in t.
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care must be taken with respect to  which regions of the s-plane map 

in to  corresponding regions in the a-6 plane. The procedure i s  as 

follows. I f  a curve in the s-plane is  shaded as shown in  Figure 4 .1 .2a, 

then the side to  be shaded in  the a-B plane is  determined by the sign 

of the Jacobian determinant C143

J  =

ax ax
act 33

I I  31
8a 33 (4.1.15)

where the elements of J are the p a r t ia l  derivatives of

X = aB + BC 
1 1

Y = aB + BC 
2 2

Thus from (4.1.15)

J = A = B C -  BC  
1 2  2 1

and i f  A > 0 then the curve in  the a-B plane should be shaded on the

le f t  facing the d irec tion  of increasing wn , and vice versa.

I t  is  inportant to  note tha t when synm etrically enclosing the 

e n tire  le f t -h a lf  s-plane or a region th ere in , i t  is  not necessary to  

compute values of a , B  fo r  < 0. This is  because the  curves generated

in  the a - B  plane fo r  values of < 0 w ill re trace  the curves fo r

wn > 0. Hence, the curves in  the a - B  plane would be doubly shaded on
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the same s id e .2 This assertion  w ill now be proven.

Since a l l  complex roots must appear with conjugates, the rea l 

p a rts  of the conjugate roo ts must be equal. Since ReCsH -  a = -c«n 

i t  follows th a t i f  wn > 0 (uin < 0) then s > 0 (c < 0) in  order th a t 

a = S ubstitu ting  u>n , e; < 0 in to  (4.1.11) and u t i l iz in g  (4.1.8a)

gives the following:

V ~ v  "^  = V v  ^

C j f - V  = C1(wn '  0

0 (-<*>„, - 0  = O

V “V  = "B2K *  0

C2^-U)n» = "C2^wn ’ ^

D (-o)n , - 0  = ~D> „ ,  0

So th a t  from (4.1.14)

* ( " V  =

a (”un * " 0  = 0(“n » 0

0(“V  - 0  = 6(u)n , 0

2The p rac tic a l im plication of th is  statement is  as follows. I f  
a change in  value of a system parameter causes a p a ir  of complex 
conjugate roots to  cross a shaded boundary in  the s-p lane, th is  w ill 
cause the corresponding poin t in  the a-6 plane to  cross a doubly shaded 
boundary.
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Thus when traversing  the s-plane through values of < 0 

the sign of A changes but the values of a and B remain the same. I t  

follows th a t the a-B curve fo r  < 0 f a l l s  d ire c tly  over the curve

obtained fo r u>n ,c > 0 and i s  shaded on the same side . The re s u lt  is  a

doubly shaded a-B curve. This does not lim it the procedure in any way

since a l l  complex roots must appear with conjugates.

4.2 D istributed  Lags

The method described above is  d ire c tly  applicable to  systems 

containing d is trib u ted  lags. Only minor m odifications of the equa- 

'  tions derived are necessary. Consider Figure 4.1.1 and assume th a t 

the lag is  d is tribu ted ; then the lag term becomes e-v^ .  I f

S = -Ciu + j uj /1 - ^  
n n

then

/STm + * ' V ' ]  * * “n2) %
(4.2.1)

Defining Re[/iT] = $ and Infy'sT] = 9 i t  is  only necessary to  su b s titu te  

i  fo r <|> and 0 fo r 6 in a l l  of the  equations of Section 4.1 derived fo r 

the tran sp o rt lag. The ensuing in te rp re ta tio n  of the curves in  the 

a-B plane is  unchanged.

4.3 Example of Absolute and Relative S ta b ili ty  of a Linear Feedback
Control System

An example is  now introduced in  order to  apply the derivation of 

Section 4 .1 , and to  form a basis  fo r  the development of fu rth e r theory.
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Consider the control system3 of Figure 4.3.1 containing a p roportional- 

in te g ra l c o n tro lle r , p lant and constant delay, then

G ( s ) .  m . .  i i
D(s) s 2

For a s ta b i l i ty  investigation  of th is  system form the c h a rac te ris tic  

equation

F(s) = esTs 2 + Ks + Kt = 0

define the adjustable parameters to  be

a = K 

B =  Kt

then

F(s) = esTs 2 + as + B = 0 (4.3.1)

From (4.1.6)

b = 0 ,  c = 0 ,  d = 1 ,  e = 0 ,  f  = 0 ,  g = 0
0 0 0 0 0 0

b = 1 ,  c = 0 ,  d = 0 ,  e = 0 ,  f  = 0 ,  g = 0  (4.3.2)
1 1 1 1 1 1

b = 0 ,  c = 0 ,  d = 0 ,  e = 0 ,  f  = 0 ,  g = 1
2 2 2 2 2 2

3TTiis p a rtic u la r  system was analyzed in  [2 ] fo r  t = 0.3 se c .,
T = 1 sec. The technique used was a root-locus method where the single  
parameter K was varied . Thus, in  th is  example comparisons of data can 
be made fo r t  = 0.3 sec. and T = 1 sec. See Figure 3.5.5 in Chapter 3.
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so th a t from (4.1.11)

C = 1
l

D = <*>n2 e"(J’(C2c2 -  1] cose + 2c/I -  cz s ine)

B = « _ /!  - c2 
2 n

C = 0 
2

D = u> 2e-<l>f-2c/1 - cz cose + (2c2 - 1) sine) 
2 n

S ubstitu ting  (4.3.3) in to  (4.1.14) gives 

- 6

a = ( 2 c / T ^  cose + (1 -  2c2) sine)

(4.3.3)

2
B = f—  f / |  - c2 cose - c sine) (4.3.4)

A =  -u>n / 1  -  C2

The variab les a and 3 are now graphed with e ith e r  or c as the 

running parameter. The various regions of the s-plane to  be mapped 

are shown in Figure 4 .1 .2 .

In order to  determine the lim iting  values of a ,6 fo r absolute 

s ta b i l i ty  i t  is  only necessary to  se t c = 0 in  (4 .3 .4) and le t
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vary from zero to  in f in i ty  (see Figure 4 .1 .2a). Recall th a t values of 

0)n < 0 need not be p lo tte d .

Then from (4 .3 .4 ) , se ttin g  x, = 0 gives

a = co sin  a) T n n

0 = u>n2cos tonT (4.3.5)

A graph of (4 .3 .5) is  shown in Figure 4.3.2 where T = 1 sec. was chosen

as the time delay. I f ,  fo r example, t = 0.3 sec. then

0 = Kt *  0 . 3 K  = 0 . 3 a

The above equation is  a s tra ig h t line which is  a lso  shown in

Figure 4 .3 .2 . I t  follows th a t the in f in ite  se t of frequencies, , 

u ^ ,  , . . . , a t which the complex roots cross the imaginary axis

are determined by the in te rsec tions of the a - B  curve and the s tra ig h t 

line  B = ia . Further, dropping a perpendicular from the poin ts labeled 

, cuj^, cî j , . . . , to  the a  axis gives the gains a t which the complex 

roots cross the imaginary ax is . Because the c h a ra c te r is tic  equation con­

ta in s  a transcendental term there  w ill be an in f in i te  number of such 

points corresponding to  the in f in ite  number of roots of the c h a ra c te ris tic  

equation.

The in te rp re ta tio n  given above is  deduced from the fac t th a t the 

e n tire  imaginary axis of the s-plane of Figure 4 .1 .2a has been mapped 

in to  the a-B locus shown in Figure 4 .3 .2 . The e n tire  left-hand  s-plane 

has been mapped within the indicated doubly shaded region. Note th a t
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in th is  example i t  is  always tru e  th a t A = ~ ^  < s i nce

0 < C < 1 and tô  > 0, so th a t the a-B curve is  shaded on the r ig h t 

facing the d irec tio n  of increasing  wn .

The axes of the f i r s t  quadrant of the a-B plane are singly shaded 

to include th is  quadrant since from a p ra c tic a l point of view, a and 

B > 0 . This divides the f i r s t  quadrant in to  regions Rj, R2, R3, • • • » 

R̂  where Rx R2 3)R3 }  • • • 3 Ra>' values of a and B chosen in

Rj w ill render the system absolutely s ta b le .1* This is  because crossing 

from a shaded region to  an unshaded region in the s-plane has the same 

meaning in the a-B plane, and vice versa. Thus, moving from Rj to  R2 

implies th a t a p a ir  of complex roots has migrated from the le f t-h a lf  

s-plane in to  the r ig h t-h a lf-p lan e  and so on for R2 to  R3, e tc . Thus, 

only R1can contain a l l  the roots since i t  is  completely closed and 

contains no subregions.

For example, i f  a working point M(alf Bj) i s  chosen in  R2, a l l  

the roots of F(s) w ill be in the le ft-h a lf-p lan e  except fo r one p a ir  

th a t has migrated to  the rig h t -half-p lane a t some frequency w . In 

th is  instance the f i r s t  two conjugate roo ts can leave RL a t =

1.35 ra d ./se c . fo r a system gain of 1.32. Therefore the maxinum gain 

allowable fo r  absolute s ta b i l i ty  is  a = K = 1.32. Note from Figure

4.3.2 th a t since continuously increases along the a-B locus, the 

in te rsec tio n s of the a-B locus and the B = to locus w ill occur a t ever

^The concept of absolute s ta b i l i ty  i s  now s l ig h tly  modified due to  
the r e s tr ic t io n  a and B > 0. However, in  Section 4.7 rea l root boundaries 
are introduced and th is  re s tr ic tio n  can be omitted.
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larger gains. H us continual increase of the a-B locus towards

in f in i ty  with increasing is  e a s ily  p red icted  from (4 .3 .5 ); since

? = 0. = 1 and the <d and w 2 terms of (4 .3 .5) dominate. These’ n n
re su lts  are e a s ily  confirmed by examining the root-locus fo r th is  

system, shown in  Figure 3.5.5 of Chapter 3.

In order to  investigate  the re la tive  s ta b i l i ty  of the system of 

Figure 4.3.1 with respect to  constant t, l in e s , the procedure is  almost 

the same as fo r  absolute s ta b i l i ty  except th a t values fo r c = c of 

Figure 4.1.2b are sub stitu ted  in to  (4 .3 .4 )5. Figure 4 .3 .3  shows the 

a-B curve fo r c, = c = 0 .2 . This figure i s  in te rp re ted  the same way 

as Figure 4.3.2 with respect to  shadings. The figure indicates what 

must be true  of a l l  systems with transport lag under the re la tiv e  

s ta b i l i ty  constra in t o f c = That i s ,  the locus must eventually 

term inate a t the o rig in  due to  the existence of the term as

opposed to  the term ination of the locus a t in f in i ty  fo r c = 0. Thus, 

there  e x is ts  no value of a,B fo r a l l  the roots of the ch a rac te ris tic  

equation of the system to  be within a rb itra ry  ra d ia ls , 5 = 5 ?* 0 , 

since there w ill be no region th a t contains a l l  the roo ts . In Figure 

4 .3 .3 , fo r example, the re la tiv e  positions of the complex roots with 

respect to  ra d ia ls  defined by c = 0 . 2  in  the s-plane is  determined 

as follows.

5Note th a t  i f  values of c = G < 0  and > 0 are substitu ted  
in to  (4 .3 .4) the resu ltin g  a-B curvis y ie ld  information about the 
complex roo ts in  the right-hand s-plane. The right-hand s-plane, 
however, i s  not o f in te re s t  since the absolute s ta b i l i ty  of the system 
with respect to  complex roo ts can be guaranteed.



The line  6 = 0 .3a is  considered to  be a reference line  L. Note

th a t although the a-B locus is  graphed fo r increasing u)n , i t  crosses

L a t frequencies <u = 7.75 > ul. = 0.95 < 01, . =  14.2 r a d ./s e c .,  e tc .
A B C

Next,define the in te rsec tion  of L and the a-6 locus fo r sm allest as

the re la tiv e  position  of the fundamental complex roo ts, the in te rsec tion

of L and the locus fo r the next highest u)̂  as the re la tiv e  position  of

the secondary complex ro o ts , e tc . Now we choose a point on L, say

L = s M(0.9, 0 .3 ), and investigate  the e ffe c t of moving from 
B nB

d iffe ren t poin ts on L to  L with p a rtic u la r  emphasis on the crossings
B

of shaded boundaries. Since L was chosen on the c = 0.2 locus, the
B

values a = 0.9 and Bn = 0.3 locate the fundamental complex roots onB B
ra d ia ls  of r, = 0.2 a t a frequency of Wj. = 0.95 rad ./sec . I t  is  easily

B
v e rif ia b le  from Figure 4.1.2b tha t the fundamental complex roots are 

located a t  the po in ts6

s = -cui * ju> A  - (4.3.6)
1 B B

in  the  s-plane.

Now i f  the poin t moves to  i t  must cross a doubly shaded 

boundary from an unshaded side to  a shaded s id e . In the s-plane th is  

means that a p a ir  of complex roots must cross from an unshaded to  a 

shaded side across the boundary c = 0 .2 . Thus, the secondary corrplex

6This is  quite  usefu l as a synthesis technique to  place dominant 
roots a t a predetermined location as w ill be demonstrated la te r .
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roots l ie  below the  ra d ia ls  t. = 0.2 since the reverse crossing must

have occured fo r L to  be in i t s  present po sitio n . I f  the  point L 
A C

moves to  a doubly shaded boundary is  crossed from a shaded side to  

an unshaded sid e . Thus, the secondary complex roots l ie  above the 

rad ia ls  C = 0 .2 . This procedure is  continued u n t i l  the re la tiv e  loca­

tion  of as many complex roo ts as desired is  determined. For v e r if ic a ­

tion  of these re su lts  see Figure 4.3.4 which was taken from C2U.

4.4 Relative S ta b il i ty  with Respect to  F in ite  Sem icircular Regions 

Consider Figure 4.1.2c where the f in i te  in te r io r  o f the shaded 

region in  the left-hand s-plane is  to be mapped onto the a - g  plane.

This mapping is  e a s ily  f a c i l i ta te d  through equations (4 .3 .4) by f i r s t  

se ttin g  s = 0 and allowing to  vary from 0 to  u ^ ',  then holding wn 

fixed a t u> ' and allowing c to  vary between 0 and 1. When ^  s  0 or 

C = 1 the po in ts o = 0 and w ' respectively  are mapped from the s-plane 

onto the a - 6  plane. These s-plane points are the boundaries across 

which rea l roots must cross i f  they are to  leave the f in i te  region 

under d iscussion. These points can be mapped onto the a - g  plane by 

su b s titu tin g  s = -a in to  equation (4.3.1) and then p lo ttin g  the 

re su ltin g  a , g  locus fo r  a = 0 and o = w ' .  The mapping is  singly  

shaded since crossing th is  a - g  curve corresponds to  a sing le  re a l root 

leaving the in te r io r  of the f in i te  s-plane region under consideration. 

The ru les fo r shading (both sing le  and double) the re su ltin g  o-g plane 

curves are unchanged, as are the conditions fo r  < 0.
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Suppose th a t i t  i s  desirable  to  know what values of a,B w ill 

cause the roots th a t l ie  within the sem icircle of radius = 5 

rad ./sec . to  leave th is  region of the s-plane shown in Figure 4 .1 .2c. 

This information can be obtained by superimposing7 the a-B plane 

curves fo r t = 0, the curve obtained by holding u>n fixed a t wn ' = 5  

rad ./sec . and allowing c to  vary between 0 and 1, and the curves 

obtained from (4.3.1) where s = -a = 0 and uin f. The re su ltin g  a-B 

curve is  shown in Figure 4.4.1 and is  in terp reted  as follow s. The 

curve corresponding to  varying c, never in te rsec ts  the 6 = 0.3a lin e , 

consequently there is  no positive  value a or 6 such th a t the ex is ting  

complex roots in the shaded region of the s-plane can leave th is  

region v ia  the locus of points described by the sem icirc le. They can, 

however, leave by crossing the imaginary axis as usual. The singly 

shaded line corresponding to  a = -5 in te rsec ts  the B = 0.3a line  so 

tha t a single rea l root can leave the sem icircle in  the s-plane by 

crossing the poin t a = -5.

Now we extend the sem icircle to  a radius u ' = 10 ra d ./se c .

(see Figure (4 .4 .2 )) . The portion of the a-B curve corresponding to  

a variab le  c now crosses the B = 0.3a line so i t  is  possib le  fo r one 

p a ir  of conplex roots to leave the sem icircle of radius u> ' = 10 

rad ./sec . Further, the singly shaded line corresponding to  o = -10 

in te rse c ts  the B = 0 .3a  line  so th a t a sing le  rea l root can leave the

7In f a c t ,  any of the mappings discussed can be superimposed 
to  form new mappings.
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sem icircle in the s-plane by crossing the point o = -10. The shading 

of the curves fo r varying c, and constant o are as shown in Figures

4.4.1 and 4 .4 .2 , since th is  is  simply a continuation of the varying 

a>n curve with respect to  shading procedures. These re su lts  are c lea rly  

v e rif ied  from the root-locus p lo t of the system shown in  Figure 4 .4 .3 .

Figure 4 .4 .3  shows the fundamental, secondary and rea l ro o t-lo c i 

fo r th is  system where T = 1 sec. and t  = 0.3 se c ., also shown are the

f in i te  sem icircles of radius w ' = 5 and 10 rad ./sec . Note th a t fo r

oijj' = 5 rad ./sec . the fundamental and secondary ro o t-lo c i never in te r ­

sect the sem icircle but the locus of the rea l roots does. When 

u^' * 10 ra d ./se c . the secondary roo t-locus, as well as the rea l roo t- 

locus, does in te rse c t the sem icircle so th a t one p a ir  of complex roots

and one re a l root can leave the sem icircular region.

4.5 Relative S ta b ili ty  with Respect to  Constant S e ttlin g  Time Lines

The mapping of a constant s e t t l in g  time line as shown in 

Figure 4.1.2d can be e ffected  by manipulation of ot and 6 from the 

o rig ina l equations (4 .3 .4 ). In th is  instance the mapping traverses 

a contour of constant a = "*>n » and the dimensionless damping r a t io ,

C, is  va riab le . Thus the equations fo r a and 6 can be rearranged such 

th a t c never appears alone, but only in  the product a = Rearrang­

ing (4.3.4) so th a t  only o and tô  appear as variables gives

-oT   _ ____ _ _ _ _ _ _
a = " " -i — (2o/wnz “ a2 cos/to 2 - a2 T + (to 2 - 2a2) sin/io 2 - a2T)

/ain z -  a z 11 "  11 n

(4.5.1)



6 = - ; -n ~  ~  c o s / ^ '  - ' o ’̂ T -  a s i n / u ^ “ -“ o ^T )

fo r û 2 > a2.

Since the mapping is  fo r 0 < < » there is  a portion of the contour

in Figure 4.1.2d where t̂ 2 < o2 . In th is  case (4.5.1) becomes (see 

Appendix III)

-oT
— ( 2o /0 z - tu^2 cosh/o2 - uĵ  ̂T + C0̂ 2 ~ 2o2) sinh /o2 - 1)e

a  *

2 -oT (4.5.2)
“ n E ________ _ ________ _ ________

B _ -------------  f /a 2 - to ?  cosh/o2  - w 2T - asinh /a2 - w 2  T)

fo r aj 2 < a2, n
The sin g u la rity  occuring when 0  = 0̂  implies tha t 5 = * 1 and i s  removed 

as explained in Appendix I I .

For example, consider the instance where o = -0 .5 . The exponen­

t i a l  terms in (4 .5 .1) and (4.5.2) are fixed a t  a constant value and the 

a - 6 curve must sp ira l out to  in f in ity  and not into the orig in  as in  the 

case of a constant c lin e . Figure 4.5.1 shows the a-B curve obtained 

and is  in te rp re ted  as follow s. The locus of points where the 3 = 0.3a 

line  in te rse c ts  the a - B  curve determines the frequencies and gains 

where the complex roo ts of the  c h a ra c te ris tic  equation (4.1.5) cross 

the constant s e t t l in g  time line  a -  -0 .5 . Since the 3 = 0.3a locus 

does not en ter , the fundamental complex roots l ie  to  the rig h t of
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o = -0 .5 , and cannot cross th is  line  fo r any value of gain (see the 

root-locus p lo t fo r Figure 4 .4 .3 ) . The remaining conplex roots a l l  

l ie  to  the le f t  of a = -0.5 and would cross th is  line a t frequencies 

u> = 7.7, co_ = 14.1 r a d ./s e c . ,  . . . , e tc . fo r values of gain equal
n 2 "  3

to  a2 = 4 .7 , o3 = 8 .5 ...................respec tive ly . Since a constant o < 0

line  can be in terpreted  as a sh if t in g  of the imaginary axis o u n its  to  

the l e f t ,  i t  is  reasonable th a t the a-B curve should closely resemble 

the a-B curve fo r t, -  0. I t  a lso  follows tha t the in te rp re ta tio n  of 

both curves are id en tica l.

4.6 Real Roots

The question of the determination of the real roots of the 

c h a ra c te r is tic  equation (4 .1 .5) i s  now considered. The technique u t i ­

lized  to  resolve th is  question is  a na tu ra l continuation of previous 

re s u lts  since equations (4.1.14) are applicable to any point in  the 

s-p lane. In order to  investiga te  the nature of the rea l roots of the 

c h a ra c te r is tic  equation only the rea l axis is  considered. S ubstitu ting  

s = o + jO into  (4.1.5) gives

n ,

F(o) = I ak (a)o = 0 (4.6.1)
k=0

Then su b stitu tin g  (4.1.6) in to  (4.6.1) gives



Thus, fo r a given value of a , (4 .6 .2) represents a s tra ig h t line in 

the a-B plane. Note tha t since a point in the s-plane maps into a

line  in  the a-B plane the mapping i s  not conformal. For a given

working poin t M(oj, Bj) every value of a th a t s a t is f ie s  (4.6.2) is  a 

rea l root of (4 .1 .5 ). These rea l roots may be determined by graphing

(4.6.2) fo r  d iffe ren t values of o u n t i l  the s tra ig h t line passes

through the point a ^  Bj. The values of a th a t accomplish th is  condition 

are rea l roots of (4 .1 .5 ). Since (4 .6 .2) is  the equation of a s tra ig h t 

line fo r a given o, the graphing i s  not tedious and in terpo la tion  

between curves is  readily  e ffec ted . Figure 4.6.1 shows the curves 

represented by (4.6.2) with various values of a fo r the case of 

Equation (4 .3 .1 ). Thus, when a = 1, B = 0.3 a rea l root is  determined 

to  be a t o = -0.413.

As an aid in determining the re a l ro o ts , an a lte rna te  procedure 

can be employed th a t not only approximately determines the rea l root 

values, but also indicates how many rea l roots e x is t .  The question of 

the number of rea l roots is  not t r iv i a l  since the c h a rac te ris tic  equa­

tio n  has an in f in ite  number of roo ts . The procedure is  as follows: 

construct the a-B curves fo r c = *1 and note the values of frequency, 

wn , on these curves. Then draw s tra ig h t lines through the working 

poin t M(alf Bj) th a t are tangent to the c = *1 curve. The nuntoer of 

roots equals the number of tangent lines th a t can be constructed and 

the values of these rea l roots are equal to  negative values of the 

frequencies, , uin , w ^ , . . . , noted on the t, = +1 curve or the 

positive  values of the frequencies noted on the c, -  -1 curve a t  these
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tangent p o in ts . Proof of th is  statem ent i s  given in  Appendix IV. 

Thus, the values of the re a l roo ts are obtained along with the number 

of rea l roo ts .

Using the procedure of Appendix II  the equations fo r the a-B 

curves fo r x, = +1 become

Figure 4.6.2 shows these a-B curves and i l lu s t r a te s  that there 

is  only one possible s tra ig h t line  th a t i s  tangent to the x, = *1 curve 

from the working point M(1.0, 0 .3 ). The frequency a t th is  tangent 

point i s  u>n = 0.4 rad ./sec . so th a t there  is  a single rea l root of 

approximate value o = -0 .4 . At th is  point i t  is  pe rtinen t to  discuss 

the nature of the curvature of the x, -  *1 curve fo r th is  example. The 

slope of the ? = *1 curve i s  determined, from equations (4.6.3) and 

(4 .6 .4 ), to  be fo r c = +1

a  =  a) e  n -  u^) , B = u^ 2 e “" (1  " a^ ) (4.6.3)

and fo r x, -  -1 the a - B  equations become

a  = ^ e “” (2  -  wn ) , B = uin 2 e t°n (1  + a^ ) (4.6.4)

(4.6.5)

and fo r  x, -  -1
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Thus the slopes of the C = *1 curves increase or decrease mono- 

to n ic a lly  with and i t  is  not possible fo r these curves to  have any 

poin ts of in fle c tio n ; th is  also means th a t the curves are always e ith e r  

concave upward or concave downward with a d iscon tinu ity  a t  the point 

where the curve changes d irec tion . This c le a rly  shows th a t a tangent 

to  the curve cannot e x is t a t  the points where the curve changes d irec ­

tio n , th a t i s ,  a t the t ip s  of the loops in the regions denoted as A 

and A' on Figure 4 .6 .2 . This point is  emphasized since , a t f i r s t  

glance, i t  may not be obvious th a t a tangent lin e  cannot be drawn to 

the curve from the point M(1.0, 0.3) to  the discontinuous8 extreme 

points in  the regions A and A'.

4.7 Real Root Boundaries

a-B curves fo r  c = *1 were introduced in the previous section 

where these curves were used to  p red ic t p o sitiv e  and negative rea l 

root locations. I t  w ill be shown th a t " rea l root boundaries" can be 

defined using the c = -1 curve th a t w ill have the same significance 

as complex roo t (double shaded) boundaries. These re a l root boundaries 

can e a s ily  be constructed by noting the regions in the a-B plane from 

which tangent lines to  the ? = -1 curve can be constructed. Namely, 

i f  a tangent line can be drawn to  the t  = -1 curve from M(aj, Bj) then 

a p o sitiv e  re a l root ex is ts  fo r the values a = a 1, B = Bj.

8For an excellen t discussion on the determination of discontinu­
i t i e s  of param etric equations see Chapter 5 of Reference 4.



As an example, consider Figure 4.7.1 which shows the a-B curve
d3fo r t, = -1 . From the slope of the t = -1 curve (rec a ll i t

is  obvious th a t i f  M(al t  Bj) l ie s  in region I rea l positive  roots 

cannot e x is t. This is  because a tangent line  cannot be drawn from 

M(“ i> 6i) to the t  = -1 curve. However, a point M(aj, -Bj) in region 

II w ill generate a rea l positive  root so th a t the a > 0 axis is  singly

shaded.9 Note th a t the slope of the c = -1 curve a t ^  = 0 is
elst — = 10 = 0 so that a tangent line can be constructed from the
da (^=0 n
e n tire  a > 0 ax is . Proceeding in th is  manner i t  is  obvious th a t the 

remaining rea l root boundary is  the ? = -1 curve as shown in Figure 

4 .7 .1 .

Figure 4.7.2 shows the rea l root boundary and the complex root 

boundary fo r absolute s ta b i l i ty  (c = 0) which is  sinply  the super­

position  of Figures 4.7.1 and 4 .3 .2 . Note th a t the re s tr ic tio n  th a t 

a and B be positive  in order to  define regions of s ta b i l i ty  can be 

om itted. Thus, conventional regions of s ta b i l i ty  can be defined. I t  

i s  noted, however, th a t Itj is  s t i l l  the region of absolute s ta b i l i ty  

since the rea l root boundary is  the positive  a axis and the singly 

shaded curve in the second quadrant of Figure 4 .7 .2 .

In conclusion, th is  chapter has presented an exact method for 

determining the absolute and re la tiv e  s ta b i l i ty  of lin ea r feedback

9>nie im plication being tha t crossing a singly shaded boundary in 
the a-B plane causes a single rea l root to  cross the imaginary axis in 
the s-plane.
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control systems containing transport or d is trib u ted  lag. In order to  

accomplish th is  i t  was necessary to  determine the locations of the 

in f in ite  number of roots of the system c h a ra c te ris tic  equation. A 

knowledge of the  root locations a lso  estab lishes the nature of the 

system tra n s ie n t response. Thus, the next log ical step i s  to  apply 

the theory of th is  chapter to  the design of system co n tro lle rs .
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Fig. U.1 .1 Control System With a Transport Lag.
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CHAPTER 5

CONTROLLER DESIGN FOR SYSTEMS WITH TRANSPORT LAG

5.1 Introduction

The parameter plane method applied to  contro l systems containing 

transport lag gives the designer a degree of control over the loca­

tions of the roots of the c h a rac te ris tic  equation. Thus, a deta iled  

discussion of the re la tionsh ip  between the time domain response of a 

lin ear feedback control system and the s-plane root locations is  per­

tin e n t. In the design of a linear feedback control system the de te r­

mination of the co n tro lle r  parameters can be guided by the concept of 

jud iciously  placing the roots and the zeros of the tra n s fe r  function 

in desirab le  s-plane locations. Mulligan [173 has shown the response 

of such a system is  very often dominated by a sing le  p a ir o f complex 

roo ts of the system c h a rac te ris tic  equation. These roots of the 

c h a ra c te r is tic  equation, or poles of the tra n s fe r  function, are termed 

the "dominant roots" of the system. The modem philosophy of contro l­

le r  design is  to  choose co n tro lle r parameters th a t place the dominant 

roots in a desirab le  s-plane location with respect to  the tran sien t 

and steady s ta te  response.

These desirab le  root locations depend upon the applications of 

the control system. Simultaneously with th is ,  an attempt is  made to 

place the remaining roots ( i f  there are any) in  positions such tha t 

the desired dominant roots are indeed dominant. That i s ,  the
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remaining roo ts are placed in  regions of the s-plane where they w ill 

have minimal e ffe c t on the system response. The location of the 

dominant roo ts with respect to  the remaining roots and zeros of the 

system tra n s fe r  function should be guided by the following 

considerations:

1 . The fu rth er to  the le f t  in  the s-plane the non-dominant 

roots are as compared to  the dominant p a ir ,  the b e tte r  w ill be the 

dominant root approximation.

2. The c loser to  the re a l axis the dominant roots are with 

respect to  the non-dominant roo ts , the b e tte r  w ill be the dominant 

root approximation.

3. There should be no complex zeros too close to  the dominant

ro o ts .

Thus the design of con tro lle rs  for a desired time domain 

response depends upon a convenient and accurate an a ly tica l re la tio n ­

ship between the roots of the tran s fe r  function and the tran s ie n t 

response. With th is  re la tio n sh ip , the tran s ie n t response can be 

quickly evaluated without actual computation of the tra n s ie n t so lu tion . 

In the design of c o n tro lle rs , the input and output are sp ec ified , and 

certa in  parameters o f the system transfer function , re la ted  to  the 

open-loop tra n s fe r  function by the root loca tions, must be found. 

Therefore, i t  i s  necessary to  estab lish  a te s t  input and a resu ltin g  

output, regarded as known.
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Because of the various choices of the  accepted input and the 

desired output, there  are d iffe re n t methods of design. In th is  work, 

a u n it step function is  se lec ted  as the input. Such an input is  a 

convenient and widely used t e s t  signal fo r lin ear systems because 

many other inputs can be c losely  approximated by a combination of 

step inputs. For the desired output, a response with a s lig h t o sc il­

la tion  and s lig h t overshoot, as shown in Figure 5 .1 .1 , i s  se lec ted .

The actual desired number of o sc illa tio n s  and actual desired amount of 

overshoot w ill be le f t  to  be decided in each p a rticu la r  app lica tion .

Such a desired output i s  a lso  widely accepted and used.

The desired response, as shown in Figure 5 .1 .1 , requ ires the 

existence of a p a ir  of dominant complex roots in the system function, 

as can be c lea rly  shown on the s-plane. Figure 5.1.2 shows such a 

plane, where the p a ir  of dominant complex roots are indicated . Thus, 

the roots should be chosen through some design method such th a t th e ir  

configuration is  of the p a tte rn  shown in Figure 5 .1 .2 . I f  the  design 

method does not o ffe r any p o ss ib ili ty  o f such a p a tte rn , such a desired 

response is  unlikely  to  be obtained. A derivation of the ana ly tica l 

re la tionsh ips between the s-plane root locations and the tran s ie n t 

response is  given in Appendix V.

5.2 Controller Design fo r Systems with Transport Lag

In the case of a feedback control system containing a tran spo rt 

lag , the design of co n tro lle rs  is  qu ite  cumbersome and very l i t t l e  

work has been done with respect to  a formal design technique. This
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is  espec ia lly  true  where the design is  d irec ted  towards the concept 

of two free co n tro lle r parameters. The reason fo r the d if f ic u lty  

encountered in dealing with feedback control systems containing tran s­

port lag is  the transcendental nature of the system c h a rac te ris tic  

equation. Thus, the c h a rac te ris tic  equation is  o f in f in ite  order and 

has an in f in ite  number of roo ts. Due to  the in tra c ta b il i ty  of th is  

transcendental function with respect to  c o n tro lle r  parameter values 

and the resu ltin g  root locations, conventional methods of specifying 

dominant roots and insuring th is  dominance have not been developed.

In th is  work the dominant root philosophy is  maintained, and 

the parameter plane concept (as developed here) is  applied to  systems 

containing transport lag. S p ec ifica lly , the dominant roots w ill be 

placed in predetermined locations to  y ie ld  the desired time domain 

tran s ie n t response and simultaneous attempts w ill be made to  locate 

the remaining roots and zeros in s-plane locations th a t tend to  main­

ta in  th is  dominance.

Examples w ill be given f i r s t  in which the output specifica tions 

are given in the frequency domain. Further examples w ill be shown in 

which the specifica tions are given in the time domain. The specific  

examples are chosen to  show th a t th is  method gives the designer at 

lea st  as much control over the system design as would be available i f  

the  system did not contain a transport lag. I f  i t  is  not possible to  

meet the output specifica tions the im plication are th a t

1) A d iffe ren t type o f c o n tro lle r  must be u til iz e d .
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2) The same c o n tro lle r  can possibly be u t i l iz e d  but a more 

complicated s-plane roo t-zero  configuration is  required (without 

c lea rly  dominant roots) and the secondary e ffe c ts  due to  the non­

dominant roots must be taken in to  account.

5.3 In tegral-P roportional C ontroller

An example of the procedure for se lec tin g  the co n tro lle r  para­

meters K and t  of an in teg ral-p roportional c o n tro lle r  is  now given. 

Consider the system shown in Figure 5.3.1 and le t  the design s p e c if i­

cations be fo r T = 1 sec.

1) The dominant roots are to  be located at approximately1 Cj = 0.3 

and = 1 rad ./sec .

2) The co n tro lle r  gain, K, is  to be as large as possib le.

3) The system is  to  be absolutely s tab le , a reasonable specifica tion  

fo r systems containing transport lag.

Since the s ta b i l i ty  of the system was investigated  in Chapter 4, 

the c h a ra c te r is tic  equation, the a-B equations and some a-B curves are 

availab le  there  and w ill be referred to  or repeated in  th is  section  as 

needed.

The design begins by examining the a-B curve fo r z 1 = 0 .3  shown 

in Figure 5.3.2 (see equations (4 .3 .4 )). Only the f i r s t  quadrant of 

these curves are shown here since for a p ra c tic a l system the gain

*It is  assumed th a t the designer is  aware of the response these 
dominant roots w ill y ie ld . Note that the dominant roots re f le c t  the 
presence of the transport lag so the resu ltin g  time domain response 
must begin a t time t  = 1 sec.
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(K = a) and the time constant ( t  = B/a) are both p o sitiv e . The curves 

are labeled (T) to  ind icate  the order in  which they

traverse  the o rig in , th a t i s  in the order of increasing I f  a 

point on the c = 0-3 locus is  chosen on trav e rsa l ©  the frequency 

tun can be chosen to  be 1 r a d ./s e c .,  shown as point M. As w ill be 

shown below, the fac t th a t trav e rsa l (2) in te rse c ts  trav e rsa l ©  near

oj = 1  rad ./sec . w ill be useful in  the design. The choice of ui =

1 rad ./sec . is  qu ite  log ica l since i t  not only s a t is f ie s  the f i r s t

specifica tion  of c = 0.3 and = 1 ra d ./s e c .,  but i t  a lso insures

th a t the remaining complex roots w ill l ie  above the rad ia ls  of t, = 0 .3 .

This is  e asily  estab lished  by drawing the s tra ig h t line  b = to through

the point (c = 0 .3 , o)n = 1 ) ,  which defines a working point M(a,8 ) at

M(0.777, 0.239). As discussed in Section 4 .3 , since the trav e rsa ls

in te rse c t the line  b = ta  to  the le f t  of

M(0.777, 0.239), the secondary and higher complex roots w ill l ie  above

the rad ia ls  q = 0 .3 . This insures th a t a l l  of the non-dominant roots 
l

w ill be well above the dominant roo ts . In contrast to  th is ,  i f

<o = 0 .7  rad ./sec . were chosen, the secondary complex roots would l ie

below the rad ia ls  z, = 0 .3 ,  since trav e rsa l (2) would in te rse c t the
l

B = to line to  the  r ig h t of trav e rsa l © .  The fac t th a t the secondary 

roots l ie  below rad ia ls  of 5 = 0.3 does not necessarily  mean th a t they 

w ill l ie  below the dominant ro o ts , but i t  does mean th a t they w ill be 

closer to  the dominant roo ts in  terms of imaginary p a rt separation.
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Another point in favor of the i n i t i a l  choice of 5 = 0.3 and 

= 1 ra d ./se c . is  th a t the gain is  K = a = 0.777 which is  almost 

the la rgest gain possible fo r c = 0 .3 . For example, i f  were

increased to  approximately 1.3 ra d ./se c . along the c = 0.3 locus, 

the gain could be increased to  0.875. However, th is  would cause the 

slope of the 8 = ia  line to  become excessively small and ensuing 

d if f ic u lt ie s  in synthesizing the c o n tro lle r  fo r such small values of 

t  would follow.

The specifica tion  th a t the system be absolutely  stab le  is  recon­

c iled  next. Figure 5.3.3 shows the f i r s t  trav e rsa l of the a-B curves 

fo r 0 s ? s 1.0, as well as the lin e  b = to . Since the locus of points 

fo r ;; = 0.3 is  completely contained within the region R , which from 

Section 4.3 is  the region of absolute s ta b i l i ty ,  any working point 

M(a,B) chosen on the  ̂ = 0.3 curve fo r trav e rsa l 0  w ill render the 

system absolutely s ta b le . 2 At point M(0.777, 0.239) the value of the 

co n tro lle r  time constant t  is  e as ily  determined to  be

B 0.239 „x -  — = 7r r n  = 0.307 sec.a u . / / /

so th a t the closed loop tra n s fe r  function has a rea l zero a t o = -0.307.

Since values of a and 6 have been te n ta tiv e ly  chosen, the design

is  fixed and the following information is  known. The dominant roots

2Note th a t the maximum gain fo r absolute s ta b i l i ty  i s  a = K = 1.31 
from the in te rsec tion  of the B = ta  line  and the c = 0 curve.
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are located in  the s-plane a t z, = 0 .3 , w = *1 r a d ./s e c . ,  a rea lv l ni
zero is  located a t o = -0.307, and the c o n tro lle r  parameters are 

K = 0.777 and t = 0.307 sec. The numerical values of the dominant 

roots are e a s ily  determined from (4.3.6) which is  repeated below

s -  -z, u> * iu) /1 - c 1 ~ “0.3 * j 0.955 (4.3.6)l l ni m i

I t  is  now necessary to  determine the locations of the rea l roots and 

the secondary and higher order complex roo ts.

The secondary complex roots are determined from (4.3.6) by noting

which constant ? curve, say z, , in te rsec ts  the point M(0.777, 0.239) on
2

trav e rsa l (2) and noting the frequency w of th is  in te rsec tio n . The 

th ird  complex roots are determined from trav e rsa l (3), e tc . I t  should 

be pointed out th a t spec ifica tion  1) implies a secondary yet important 

sp ec ifica tio n . Namely, i f  dominant complex roots are specified , the 

im plication is  th a t the secondary and higher rea l and complex roots 

have rea l p a rts  tha t are from two to  five  times or more g rea ter than 

the rea l p a rts  o f the dominant roots (see Appendix V). This implica­

tio n  was considered in  the choice of the working poin t M(0.777, 0.239) 

and w ill now be explained. The separation between the rea l p a rt of the 

dominant roots and the rea l parts of the remaining complex roots is  not 

as apparent from the a-B curves as the separation along the imaginary 

ax is . However, th is  separation can be determined as follows. The rea l 

part o f the  n ^  p a ir  of complex roots is  given by

a = Re I"s 1 = -z, w
n e  L n J n
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Since i t  is  desirab le  th a t the ra t io  o f the magnitude of the re a l p a rts  

of the higher order complex roots to  the dominant roo ts be as large as 

possib le , the following inequality  is  formed:

O =  - C  0) > >  O =  - c  0)
1 n 1 1 ‘’n nn ' 1 ^  1 S  n i 1 (5 . 3 . 1 )

Note from Figure 5 .3 .2 th a t the working point M(0.777, 0.239) was 

chosen such th a t  tra v e rsa l 0  almost passes through th is  p o in t, in d i­

cating th a t th e  secondary complex roots l ie  nearly along ra d ia ls  of

£ = 0.3. Then equation (5.3.1) reduces to  L  I >> lu I or 7.9 »  1
n2 m

(since  ̂ ? in th is  case) which is  considered to  be a good magnitude
2 1

separation fo r  the rea l p a rts  of the roo ts. A glance a t the a-B curves

and the 8 = to  line  ind icates th a t in  general w = ^

C t  x, the rea l p a rt of the separation between coup lex roo ts w ill not 
2 1

be as large as i t  could be while s t i l l  having the secondary complex 

roots lying well above the dominant roo ts. Then the secondary complex 

roots are located a t

s = -f; w + jo) /1 - c 'l  ~ -2.37 + i 7.15 
2 2 n 2 n 2 2

The th ird  p a ir  of complex roots are determined by noting which

a-B curve passes through M(0.777, 0.239) on trav e rsa l (3). Fran Figure

5.3.5 th is  s itu a tio n  i s  s a t is f ie d  fo r c = 0-2 and w = 14.15 rad ./sec .3 n3
so th a t the rea l p a rt of the complex roots equals = “2.83, which

is  to  the l e f t  of the secondary complex roo ts.
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I t  is  obviously im practical to  continue computing the remaining 

in f in i te  number of complex ro o ts , so the question of how many complex 

roo ts to  compute i s  now of in te re s t .  The ra t io  of the rea l p a rts  of 

the secondary complex roo ts to  the re a l p a rts  o f the dominant roots 

is  7 .9 , and the ra t io  of the rea l p a rt of the th ird  complex roo ts to

th a t of the dominant roo ts is 2.83 = 9.43, so i t  is  obvious th a t the
0.3

e ffec t of the secondary and th ird  complex roots are neg lig ib le  as com­

pared to  the dominant roo ts. The question is  then, do any higher order 

complex roots e x is t ,  the rea l p a rt of which is  less than the rea l p a rt 

of the secondary complex roots? I f  the answer is  in  the a ffirm ative , 

then the dominancy of the "dominant roots" is  destroyed and these high 

frequency complex roo ts have to  be accounted fo r. I f  the answer is  

negative, then i t  is  safe to  neglect the higher order complex roo ts.

To s e t t le  th is  question i t  w ill be proven th a t ,  for th is  system, a l l  

of the complex roots with the exception of the dominant and secondary 

roots have rea l p a rts  th a t are g rea ter in magnitude than the rea l p a rts  

of the secondary roo ts.

Consider the a-B curve, shown in  Figure 5 .3 .6 , of the constant 

s e t t l in g  time contour for a = -2.5 (which is  s lig h tly  g rea ter than the 

rea l pa rt of the secondary roots but less than the re a l p a rt o f the 

th ird  complex ro o ts ) . Since the working point M(0.777, 0.239) l ie s  in

R the in te rp re ta tio n  is  th a t two p a ir  o f complex roots l ie  to  the
3

r ig h t of o = - 2 . 5 , since two doubly shaded boundaries must be crossed

from R to  reach R . Recall from Section 4.3 tha t since i t  contains 
l  3
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no sub-regions, only R can contain a l l  of the complex roo ts . I t  

follows th a t the remaining complex roots (an in f in i te  number of them) 

must be to  the le f t  of a = -2.5 so the proof i s  complete.

The rea l roots are now determined in  the manner developed in  

Section 4 .6 . That is , th e  nuntoer of rea l roots and th e ir  approximate 

values are determined from s tra ig h t lines drawn through the working 

point M(0.777, 0.239) th a t are tangent to  the c = *1 curves. Figure

5 .3 .7  shows the curves fo r s = * 1. Note th a t only one tangent is  

possible to  the c = +1 curve, so there  i s  only one negative rea l roo t.

The value of th is  root is  approximately o = -0.5 since wn s 0.5 ra d ./se c . 

at the point of tangency. Recall from Section 4.6 th a t the t ip s  of the 

x, -  +1 curve are not points of in fle c tio n  and tangent lines from 

M(0.777, 0.239) cannot be drawn to  these t ip s .

A more accurate value of th is  root is  determined from equation

(4.3 .1) of Section 4.3 which i s  repeated here fo r s = -o since i t  is  

already known th a t the single rea l root is  negative.

e~°o2 - ao + B = 0 (4.3.1)

Graphing th is  equation fo r various values of o ind icates th a t when 

a = -0.51 the s tra ig h t line  passes through the point M(0.777, 0.239)

(see Figure 5 .3 .8 ). Thus the value of the sing le  rea l root is  

a = -0.51

Figure 5.3.9 shows the relevant root and zero locations fo r the 

tra n s fe r  function of th is  feedback control system. Note th a t the re a l
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ro o t, although close to  a zero, is  a lso  re la tiv e ly  close to  the real 

p a rt o f the dominant roots and therefo re  should be taken in to  account 

(a magnitude separation of 1 .7). Further, the  rea l p a rts  of the non­

dominant complex roots are re la tiv e ly  f a r  from the re a l p a rt of the 

dominant roo ts .

The zero introduced by the co n tro lle r  is  qu ite  close to  the real 

root and w ill tend to  n u llify  the e ffe c t of the re a l root on the system 

response and tend to  help maintain the dominance of the dominant roots. 

To see the e ffe c t o f the rea l root and the non-dominant roots on the 

system response, the output response, c ( t ) , is  shown in  Figure 5.3.10.

Figure 5.3.10 shows the output response c ( t)  obtained by consid­

ering  the dominant complex roots as well as the single rea l roo t. Also 

shown in th is  figure  is  the exact response c (t)  which was obtained by 

solving the system d if fe re n tia l  equation. The system d if fe re n tia l  

equation was solved by using difference equations. The time in te rv a l, 

At, was chosen such th a t the so lu tion  is  exact to  two decimal p laces.

The d ifference between the exact so lu tion  o f the system d if fe re n tia l 

equation and the response obtained from the dominant root locations is  

due to  the e ffe c t of the non-dominant roo ts of the system. The sa lie n t 

d ifferences between these responses are indicated  on the figure in 

terms of percentages.

5.4 Proportional Controller

An example of the procedure fo r the se lec tion  of the con tro lle r 

gain K of a proportional co n tro lle r i s  now given. Consider the system
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shown in Figure 5.4.1 and le t the design sp ec ifica tio n s be the same 

as fo r the in tegral-proportional c o n tro lle r  feedback system of 

Section 5.3 which are

1) The dominant zeros are to  be located a t approximately c = 0.3 and

to = 1 rad. /sec .
n i

2) The c o n tro lle r  gain K is  to  be as large as possib le .

3) The system is  to  be absolutely stab le .

In Section 5.3 the control of a feedback control system with an 

in teg ral-p roportiona l co n tro lle r was investigated . Figure 5.3.1 shows 

a block diagram of th is  system. I f  the c o n tro lle r  time constant t is  

se t to  zero in Figure 5.3.1 the system reduces to  the proportional con­

t ro l  system of th is  section (see Figure 5 .4 .1 ) . Therefore i f  a line 

6 = to = (0)a = 0 is  superimposed on the a - 6 curves of Section 5.3 the 

curves can be used where only the a-ax is, corresponding to  the 6 = 0  

l in e , has meaning. This is  analogous to introducing a dummy variable 

parameter (x) in to  the system tran s fe r  function in order to  u t i l iz e  

the two variab le  parameter method developed in th is  work.

Figure 5 .3 .3  shows the f i r s t  quadrant of the a - 6 curves fo r

trav e rsa l ©  and fo r 0 < c < 1.0. I t  is  immediately evident th a t in

order to  locate the dominant roots a t c, f  0.3 the gain must be equal

to  0.875, since the t, = 0.3 locus in te rse c ts  the 6 = 0 line  a t
l

a = 0.875. The value of the frequency a t th is  point is  wn = 1.6 

ra d ./se c . On the o ther hand, i f  the gain were reduced to  a = 0.37,
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the frequency would be 1 rad ./sec . but the  value fo r t, would be 

C = 1 .0 .  Thus, i t  is  not possible to  simultaneously locate the domi­

nant roots at the  specified  values of c = 0.3 and = 1 ra d ./se c . with 

an adjustment o f only the gain parameter. This i s  a d e fin ite  disadvan­

tage of a proportional c o n tro lle r , in con trast to  the simultaneous con­

t r o l  over both x, and u>n th a t is  possible with a two parameter co n tro lle r.

I f  i t  i s  possible to  locate (exactly or approximately) the domi­

nant roots in the specified  locations, the design proceeds in  a manner 

sim ilar to  the one of the previous section . Note th a t there  i s  very 

l i t t l e  f le x ib i l i ty  with respect to  the assurance th a t the remaining 

non-dominant complex roots w ill l ie  above or below the specified  rad ia ls  

x, -  0 .3 , or assurance th a t the magnitude separation of the re a l p a rts  

be large. With only a sing le  parameter control the designer is  more or 

less forced to  s e t t le  fo r the remaining complex root locations associ­

ated with the specified  dominant roo ts.

In order to  determine the rea l root loca tions, recourse is  made 

to  the s = *1 curves graphed for the in teg ra l-p roportiona l co n tro lle r  

shown in  Figure 5 .3 .7 . That i s ,  a s tra ig h t line  i s  drawn from the 

chosen value of a = o (or from the working poin t M(aj , 0 )) th a t is  

tangent to  the  c = * 1 curves and the rea l root value is  determined as 

usual. A more accurate rea l root value i s  obtained by su b s titu tin g  

s = a in to  the  system c h a rac te ris tic  equation which is  from (4.3.1) 

with t = 0  and T = 1 sec.
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F(o) = ae° + a « 0 (5 .4 .1)

The normal procedure is  to  su b s titu te  values of a in to  th is  

equation u n til  the equality  is  s a t is f ie d . Note th a t th is  procedure i s ,  

in fa c t, the usual graphical technique fo r finding re a l roots of poly­

nomials. This is  because a proportional co n tro lle r has only one v a r i­

able prameter and the  parameter-plane technique degenerates to  standard 

rea l root determination techniques.

5.5 D erivative-Proportional C ontroller

The derivative-proportional con tro lle r is  usually  designed in 

order to  obtain a desirab le  tran s ien t response, such as sm aller over­

shoots, fa s te r  s e t t l in g  tim es, e tc . For purposes of comparison, a 

derivative-proportional co n tro lle r  w ill be designed to  control the p lan t 

and transport lag previously discussed. Figure 5.5.1 shows th is  linear 

feedback control system where the con tro lle r has the following tra n s fe r  

function:

K(1 + T S )

Since there is  a time delay in  the system, the design philosophy 

w ill be to  quicken the output response in order to  overcome the inher­

ent transport lag or delay while s t i l l  maintaining a reasonable tra n ­

sien t response. For th is  type of response the output spec ifica tions 

are most log ica lly  given in  the time domain, as opposed to  the frequency 

domain sp ec ifica tio n s of the la s t  section. Thus, assume th a t the time
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delay T = 1 s e c .,  th a t the t e s t  signal is  a un it s tep , and th a t  the 

output response sp ec ifica tio n s to  occur a fte r  one second a re14:

1) The s e t t l in g  tim e, Tg < 6  sec.

2) The peak overshoot, M < 20%.

3) The peak tim e, T^ < 3 sec.

4) The number o f o sc il la t io n s , N < 2, or one overshoot and one

undershoot.

p
The design begins by forming the system tran s fe r  function ^-(s) 

from Figure 5 .5 .1 . Then

Kt [ s  ♦  1 1
L T J

C N(s)
- ( s )  = -----
R F(s) (Kt + eST)s ♦ K (5.5.1)

The ch a rac te ris tic  equation, F (s), is  fo r a = K, B = K t and T = 1 se c ., 

F(s) = (B + es )s + a = 0 (5.5.2)

The param etric equations fo r a = a fu^ ), 8 = 8 (wn) ,  A = and

? /  1 are determined from (4 .1 .6 ) , (4.1.11) and (4.1.14) to  be

iDne-<̂  sin  0 

a = ^  Vi' - " F ~

e~ ^ ( - / 1  - V2 cos 6 + c s in  0) 
g = ----------------------------------------------  ( 5 . 5 . 3 )

/1 -  ^

A = o j^/1  -  > 0

^See Figure 5 .1 .1  fo r  th e  d e f in itio n s  o f the  follow ing term s.
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When c = 1 the a -6 equations are

n2£- “n, 6 = r un('»n -  1) (5.5.4)

and when t = - 1  the a- 6 equations are

The curves representing (5.5.3) and (5.5.4) are shown in 

Figures 5.5.2 through 5.5.5 where the shading would always be on the 

le f t  in the d irec tion  of increasing frequency, since A > 0. I t  is  now 

assumed th a t values of a and B can be chosen such tha t the sp ec ifica ­

tio n s can be met. This is  analogous to  placing a p a ir of dominant 

roots in a desirab le  s-plane lo ca tio n  w hile  simultaneously placing 

the remaining roots of the c h a ra c te r is tic  equation and zeros of the 

tra n s fe r  function in positions tha t have a minimal e ffec t on these 

dominant roots.

From the specifica tions and the approximate equations of 

Appendix V i t  is  seen th a t from (V.8 )

o * 4 = 1  = 0.667 
6

(5.5.5)

From (V.9)

= tt(0.667) (1.3) _e 1>4 rad . / sec . (5.5.6)
2 2



114
So th a t  from (V.10)

 ̂ = -----------1---------- =  1--------------= 0 .44
1 A  *"(u /a ) 2 A  + (1.37/0.667)2 (5.5.7)ni r

Since the values for u>ni and are only approximate, th e ir

values w ill be selected a f te r  making a quick examination of the a - 8

curves. Figure 5.5.2 shows th a t values o f a and B can be easily

chosen to  y ield  = 1.4 ra d ./se c . Further, since a larger value of

; re su lts  in a smaller value of peak overshoot, a s l ig h tly  larger

value of s is  considered, say t = = 0.5. This s lig h tly  larger

value of c = 0 .5  ra ther than c = 0.44 is  a lso  considered to  help 
l l

o ffse t any secondary e ffec ts  due to  the non-dominant roo ts. Figure

5.5.7 shows the f i r s t  quadrant of the a-B plane fo r the f i r s t  three

trav e rsa ls  of the s = 0.5 locus. I t  is  immediately apparent that i f

C = 0 .5  and w = 1 .4  ra d ./s e c .,  the secondary and higher order 
l n i

complex roots w ill be above the rad ia ls  of <; = 0.5 in the s-plane.

This is  because traversa ls  (2), (3), . . . , of the a-B curve w ill

in te rse c t the B = ta  line  to  the  le f t  o f the point M(a^, 8 ^). A f in a l

consideration is  the absolute s ta b i l i ty  of the system. Figure 5.5.2

also  shows th a t the c = 0.5 locus i s  completely contained within the

C = 0  locus so that the system w ill be absolutely  s tab le  fo r th is

choice of c and w . Thus the  choice of dominant roots is  th a t they 
l n i

are located a t = 1 .4  ra d ./se c . and ? = 0.5. I t  immediately 
ni l

follows th a t the rea l part o f the dominant roots is  c ui = -0 .7 , andr  l ni
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from Figure (5.5.2) the values of a and B are a = 0.752 and 

3 = 0.095.

The remaining roots of the c h a ra c te r is tic  equation and the zeros

of the tra n s fe r  function are now computed. The tra n s fe r  function

(5.5.1) has a rea l zero a t s = and from B = Kt = at the value of 
1 ct 0 752th is  zero i s  -  = § = = 7.92. The number of real roots along witht p 0.095

th e ir  approximate values is  determined by placing a working point

M(0.752, 0.095) on the a-B curves for t  = *1. Figure 5.5.5 shows the

C = *1 curves and i t  is  apparent th a t only one tangent can be drawn to

th is  curve from M. Further, the value o f the frequency noted on the

C = +1 curve a t the point of tangency is  approximately id = 8 rad ./sec .

so th a t the system has a single rea l root located a t approximately

a = -8 .0 . By su b s titu tin g  s = -o in to  (5.5.2) (since i t  is  already

known th a t the single rea l root is  negative) and graphing the s tra ig h t

lines fo r various o, i t  is  seen th a t the s tra ig h t line  for a -  7.92

passes through the working point M(0.752, 0.095) in  the ct-B plane (see

Figure 5 .5 .6 ). Thus an accurate value for the rea l root is  a = -7.92

which is  the same value as the rea l zero determined above. At th is

point i t  would be f ru i tfu l  to  show, in the same manner as th a t of Section

4.6 , th a t the point A on Figure 5.5.5 could not possibly be a tangent

point fo r a lin e  drawn from M(0.752, 0.095) to  the c = +1 curve. From

(5.5.4) the slope of the ? = +1 curve is

dB = 1 
da un

so th a t the curve is  e ith e r  concave upward o r concave downward which
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proves the a sse rtio n .

The secondary complex roots are determined by the  in te rse c tio n  of

the second tra v e rsa l of the a-B locus with M. Figure 5 .5 .3  shows th a t

trav e rsa l (2) in te rse c ts  M a t a frequency o f w = 8.85 ra d ./se c . and
n2

S = 0.25 so th a t the rea l parts  of the secondary roots are  ? w = -2.21. 
2 2 n2

The th ird  p a ir  o f complex roots is  determined by the in te rsec tio n  of the 

th ird  trav e rsa l o f the a-B curve and the M po in t. These roots are found 

to  be a t a) = 15.4 ra d ./se c . and x, -  0.15 so th a t the re a l p a rt o f the
n3 3

th ird  complex roo ts is  c u = -2.31 (see Figure 5 .5 .4 ). In order to
3 n 3

insure th a t the remaining complex roots have re a l p a rts  g rea ter than the 

rea l p a rt of the secondary ro o ts , the a-B curve for a constant s e t t l in g  

time contour of a = -2.25 is  graphed. Figure 5 .5 .8  shows th is  a-B curve 

and since the point a = 0.752, B = 0.095 l ie s  in  region the implica­

tion  is  th a t four complex roots l ie  to  the rig h t of a = -2.25 (the 

dominant and secondary roots) and the remainder to the l e f t .

Figure 5 .5 .9  shows the root-zero  locations and the following 

observations are made: The rea l zero is  well s itu a te d  since i t  l ie s

fa r  to  the le f t  of the dominant roots and fu rth e r i t  a lso  l ie s  on top 

of the rea l root thereby cancelling i t s  e f fe c t . The re a l root is  well 

s itu a ted  since i t  l ie s  fa r  to  the le f t  of the dominant ro o ts , i . e . ,  the 

ra t io  of the magnitude separation of the rea l root and the  re a l p a rt of 

the dominant roo ts is 7.92 
0.7

the rea l p a rts  o f the secondary and th ird  complex roots with respect to

= 11.3. The magnitude separations between 

iry and th ird  complex roots with respecl 

the rea l p a rts  of the dominant roots are 3.14 and 3.3 respec tive ly ,
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which is  considered to  be a reasonable magnitude separation; and as 

proven above, the magnitude separation fo r higher order complex roots 

is  even g rea ter.

In order to  see c lea rly  the e ffe c t of the non-dominant roo ts , 

pertinen t portions o f the output response are now computed based upon 

the root-zero locations of the system. Figure 5.5.9 shows these 

root-zero locations and computations w ill be based upon th is  figure. 

The approximate s e t t l in g  time is  computed f i r s t  from (V.8 )

4  4
Ts s o  * 0 . 7  "  5 - 7  s e c - 

s  1
(5.5.8)

which is  less than the specified  s e t tl in g  time of 6  sec. The number 

of overshoots N is  computed from (V.9)

_= 1.23 (5.5 .9)

which is  within the specified  N < 2. The time for the output to  reach

the peak T  ̂ is  computed next from (V. 1 1 )

due due due to
to  re a l to  re a l secondary 

zero root complex roots
 T7 -----7   7

due to  
th ird  

complex roots

T = 1
T7TT

( - 9 . 5 °  + 9.5°) + (-79° + 81.5°) + (-83.5° + 84°) 
v  +  1 8 0 / i t

Tn = o r
(0) + (2.5) + (0.5)

* +  TSU7i

(5 .5 .10)

= 2.64 sec.
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which is  less than the specified  Tp = 3 sec. Equation (5.5.10) 

exem plifies the increasingly minor e ffe c t of the non-dominant roots 

on the peak tim e. I t  a lso depicts how the proximity of the rea l zero 

to  the rea l root n u l l i f ie s  the e ffe c t of the re a l ro o t. Obviously 

the inclusion of even more complex roo ts w ill have a neg lig ib le  e ffec t 

upon Tp. At th is  point the inequality  (V.7) can be introduced to  te s t  

whether the dominant roots can be considered dominant, and thus to  

show the v a lid ity  of the approximations. Then

T = 2.64 > L .  = 3 = 1.365
P o 771

l

shows the v a lid ity  of the assumption of dominance.

The la s t  specifica tion  to  be examined, and perhaps the most 

important one, is  the peak overshoot M. From (V.16)

due to  due to  due to
rea l secondary th ird
root complex root complex roots

7  >  ^  V

due to  
re a l 
zero

M
8.552 15.427.92

7733 11(7.41)(9.95) H(14.05)(16.55)
7.53
7.92

.-(0 .7)(2 .64)

M =  [ c i  .07) (7 3 7 ^) (2 3 2TT ) ]

= [(1.07) (0.99) (1.025) ' 

M = 0.1605

0.935

0.935

.-1.848

-1.848
(5 .5 .11)

or 16.051 which i s  within the specified  M < 20$. The numerical
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q u an titie s  of (5.5.11) are grouped in  a manner to  point out the e ffe c t 

of the various roo ts and the sing le  zero on the peak overshoot. Once 

again i t  is  obvious th a t the la rger magnitude complex roots have l i t t l e  

e ffec t upon the peak overshoot and i f  more complex roots were included 

th e ir  e ffe c t would be even less noticeable.

The design of the c o n tro lle r  is  now considered to  be complete, 

since the design specifica tions have been met and reasonable co n tro lle r

values of K = 0.752, t = \  -  v ‘-£vy = 0.1265 sec. were chosen.IV U « /SZ

To ind icate  the v a lid ity  of the proposed co n tro lle r  design 

technique, the output response of the system, c ( t ) , is  shown in Figure 

5.5.10. The so lid  response curve was computed from the root-zero  loca­

tio n s o f Figure 5.5.9 where only the dominant complex roots and the 

single rea l root and zero were considered. The dashed response curve, 

on the o ther hand, is the actual output, c ( t ) , which was obtained by 

solving the system d if fe re n tia l  equations. The system d if fe re n tia l  

equation was solved by using difference equations. The time in te rv a l, 

At, was chosen such th a t the solution is  exact to  two decimal p laces.

The difference between the actual and predicted  responses is  

due to  the assumption th a t the e ffe c t of the non-dominant roots of the 

system c h a ra c te r is tic  equation was neg lig ib le . The actual percentage 

difference between the predicted  and actual responses are noted on 

Figure 5.5.10 and, as can be seen, are quite sm all.
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5.6 Tachometric Feedback Control

The e ffec t of output ra te  damping or "tachometric feedback" on 

a lin ear feedback control system with transport lag is  now investigated . 

Tachometric feedback is  introduced as a minor feedback loop around the 

p la n t, resu ltin g  in a m ulti loop feedback system as shown in Figure 

5 .6 .1 . This is  a widely used method of control because the derivative 

action appears in a desirab le  position  with respect to  any noise 

associated with the signa l. The signal noise i s  g reatly  attenuated by 

the low pass f i l t e r  p roperties of the p lan t. I t  should be pointed out 

th a t th is  system is  multiloop and normally would be more d if f ic u l t  to  

design because one of the two free  parameters appears in each loop.

The parameter plane method, however, is  based prim arily  upon the 

system c h a rac te r is tic  equation and the introduction of additional 

feedback loops in no way complicates the problem.

The system sp ec ifica tio n s w ill be the same time domain sp e c if i­

cations as given in Section 5.5 fo r the derivative-proportional con­

t r o l l e r .  These are reasonable spec ifica tions fo r a system containing 

tachometric feedback because th is  type of feedback is  the counterpart 

of the derivative-proportional con tro l. This i s  due to  the fa c t th a t 

the la t t e r  d iffe re n tia te s  the input signal before the p lan t and the 

former d iffe re n tia te s  the output from the p lan t and then feeds the 

output back to  the e rro r  de tec to r. The s im ila rity  between the two 

co n tro lle rs  is  e asily  seen from the tra n s fe r  function ^.(s) fo r the 

system containing tachometric feedback. From Figure 5.6.1



Defining a = Kx and 8 = lCp, the c h a ra c te r is tic  equation fo r T = 1 sec. 

is

F(s) ** (eS + B)s + a = 0 (5.6.2)

Note th a t the c h a rac te ris tic  equations for tachometric feedback (5.6.2) 

and fo r derivative-proportional control (5 .5 .2) are id en tica l. The 

only difference between the two systems is  th a t with derivative- 

proportional con tro l, the tra n s fe r  function (5.5.1) contains a real 

zero located a t s = whereas the tachometric feedback tran sfe r 

function (5.6.1) does not contain any rea l zeros.

As previously mentioned, co n tro lle r design via the parameter 

plane method deals prim arily with the system c h a ra c te r is tic  equation. 

Therefore,since the design specifica tions were s a t is f ie d  fo r the 

c h a ra c te r is tic  equation of th is  system in the previous section , the 

next step  is  to  remove the zero from the roo t-zero  p lo t of Figure

5 .5 .8  and determine whether the specifica tions are s t i l l  sa tis f ie d .

I f  they a re , i t  follows th a t the values o f the tachometric feedback 

co n tro lle r  parameters are a = Kj = 0.752 and b = Kp = 0.095. Upon 

removing the rea l zero from Figure 5 .5 .7  the following i s  noted. 

Equations (5.5.8) and (5.5.9) remain unchanged so th a t the values of 

Tg and N are unchanged. Removing the -9.5° contribution of the rea l
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zero from (5.5.10) re su lts  in  Tp = 2.78 sec. which is  5.04% greater

than the T of the derivative-proportional control system. Thus, the 
P

peak time is  s t i l l  w ithin the specified  < 3 sec. The peak over­

shoot M is  determined from (5.5.11) by removing the term due to  the 

rea l zero and using the new value fo r computed above. This gives 

the re su lt th a t the peak overshoot i s  now M = 15.3% which is  4.05% 

less than the peak overshoot with a derivative-proportional co n tro lle r . 

Thus, the peak overshoot i s  well within the spec ifica tion  of M < 20%.
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o

Fig. 5 .1 .1  The Desired Response.
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D OMINANT COMPLEX R O O T S

X

F ig . 5 .1 .2  Pattern o f  Root-Zero Configuration o f the Desired
Response.
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CONTROLLER PLA N T DELAY

C(s)- s r

F ig . 5 .3 .1  In te g ra l-P r o p o r tio n a l C o n tro ller .
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Fig. 5.3.1* «-p Plot for 0 ^  ^  0 .5 . (Second Traversal.)
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F ig . £ .3 .9  Root Zero L ocations.



134

2 ®.

-  u  ) o  -Lndj.no

fi
g.

 
$.

3.
10

 
Ou

tp
ut

 
Re

sp
on

se
 

C
ur

ve
s.



135

,-S T

Fig. Proportional C ontroller.
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Fig. 5 .5 .9  Root-Zero Locations.
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Fig. 5 .6 .1  Tachometric Feedback Control System.



CHAPTER 6

ROOT-LOCUS FOR SYSTEMS WITH TRANSPORT LAG

6.1 Introduction

The parameter plane approach is  p a rtic u la rly  useful as a means 

fo r constructing the root-locus fo r systems with tran sp o rt or d i s t r ib ­

uted la g .1 This method has the following advantages over Chu's method 

(see Section 3 .5 ).

1. The construction of the root-locus fo r high order control 

systems is  as easy to  perform as fo r low order contro l systems.

2. The root-locus is  e a s ily  constructed fo r e ith e r  one of two 

variab le  parameters in the system.

3. The value of the parameter with respect to  which the roo t- 

locus is  graphed (usually  the gain) is  immediately availab le  without 

ca lcu la tion .

4. I f  a new value of e ith e r  of the two variab le  parameters is  

chosen, the o rig in a l a-g curves are used to  obtain the new root-locus.

5. The root-locus fo r negative values of the system parameters 

is  a lso  availab le  from the o rig ina l a-g curves.

xI t  must be emphasized th a t  the determination of the system 
s ta b i l i ty ,  e ith e r  absolute or re la tiv e , as well as the  technique 
developed fo r  co n tro lle r  design, is  more expeditiously performed with­
out the construction of the root-locus. However, the conventional 
root-locus techniques are well known and th is  chapter is  included in 
order to  more c losely  associate the parameter plane technique with 
conventional techniques.
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6.2 Conplex Root-Locus

As an example of the application of the parameter plane to  the 

construction of the root-locus of a system, consider the system of 

Figure 6 .2 .1 . This system was discussed in Section 5.5 in connection 

with the design of the system c o n tro lle r , so that certa in  curves and 

equations are availab le  and w ill be re fe rred  to or repeated here as 

needed.

The ra t io  of output to  input for th is  system is

C Kf1 + t s )
— (s) = 'T ----------—
R v esTs + K + Kts (6 .2 .1)

defining a = K, 6 = Kt, and se ttin g  T = 1 sec. the c h a ra c te r is tic  

equation is

F(s) ■ (B + es)s  + a = 0 (6.2.2)

The parametric equations (see Section 4.1) for ct(u>n, c) and 6 (1*^, 0  

a re , fo r c j4 1 ,

- 4  .ti^e sme

(6 .2 .3 )

g ~ ^ ( - / 1  -  ^  cose + t, sine)
B =

fo r  5 = +1
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a  = i*>n 2 e  ^  ,  B = e  ^ ( - l  +  uijj) ( 6 . 2 . 4 )

and fo r 5 * - 1

a = i^2E“n , B = -e“n(1 + 1̂ )  (6.2.5)

To determine the locus of the complex ro o ts , equations (6.2.3) are 

graphed fo r values of 0 < |c | < 0 .95  where wn is  the running parameter. 

Since the root-locus w ill be determined from the locus of points de­

scribed by the constant c curves (the a-B cu rves), i t  is  a lso  necessary 

to  graph equations (6.2.3) fo r values of c < 0. This is  because the 

complex root locations in the r ig h t-h a lf  s-plane are characterized by 

negative values of c(see Figure 4 .1 .2b). For example, Figures 6.2.2 

and 6 .2 .3  show the a-B curves fo r c = +0.35 and c = -0.35 respectively . 

Note the curve fo r <; = +0.35 sp ira ls  in to  the o rig in  as usual, and fo r

t, -  -0.35 the curve sp ira ls  towards in f in ity  since the exponent of the
+ C<*V> . . .exponential terms, e " , of equations (6.2.3) are now positive .

I f  only positive  values of gain and time constant are considered, 

i t  is  necessary to  graph only positive  values of a and B. Figures 6 .2 .4  

through 6 .2 .7  show the f i r s t  quadrants of the f i r s t  two trav e rsa ls  of 

the a-B curves fo r 0 < |c | < 0 .9 5 . When the root-locus is  to  be d e te r­

mined fo r a given value of t  in  (6.2.1) the system gain w ill be the 

running parameter on the roo t-locus. I f  t is  chosen to  be equal to  say 

0.5 sec, then

B = Kt = 0.5K = 0 .5 a  (6 .2 .6)
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The s tra ig h t line  (6 .2 .6) is  then superimposed on Figures 6 .2 .4  through 

6 .2 .7  where the in te rsec tio n  of th is  line  and the a-B curves y ields the 

necessary information to  construct the f i r s t  two ro o t- lo c i fo r complex 

roo ts lying in  the upper portion of the s-plane. For example, the point 

M1 in Figure 6 .2 .4  ind icates the existence of a p a ir  of complex roots at 

Z = 0 .6 , = *0.3 rad ./sec . (reca ll th a t the ro o t-lo c i are symmetrical

with respect to  the imaginary ax is). A gain of a = 0.418 is  obtained 

by dropping a perpendicular from Mj to  the a -ax is . Figure 6 .2 .8  shows 

the two complex ro o t-lo c i obtained in th is  manner. This procedure is  

continued u n t i l  the desired number of ro o t-lo c i are obtained.

I f  a new value of t  is  considered, say t  = t 2  = 0.3 se c ., only the 

slope of the B = xa line  is  changed and the procedure developed above is  

again performed. This la s t  feature is  a d is tin c t advantage over the con­

ventional root-locus technique, since i t  would normally be necessary to  

re-graph a l l  o f the curves for any change in a parameter value. This 

la t te r  point is  so s ig n ifican t that in instances where the root-locus is  

desired fo r feedback control systems th a t do not contain transport lag 

i t  may well be advantageous to  apply the parameter plane technique to  

determine the roo t-locus. This is  e as ily  accomplished by se ttin g  

c k = e^ = gĵ  = 0 in equation (4.1.6) of Chapter 4, since th is  w ill e lim i­

nate the e ffe c t of the transport lag term es^ in a l l  ensuing equations.

The root-locus fo r negative values of a or B are determined from 

the same a-B curves where the second, th ird  and fourth quadrants are now 

u ti l iz e d . For example, fo r a < 0 and B > 0 the B = - t o  line  is  drawn in
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the second quadrant and the root-locus is  constructed from the second 

quadrant in the manner described above. Further, fo r  a < 0 and B < 0 

the th ird  quadrant is  u t i l iz e d  and fo r a > 0 and B < 0 the fourth quad­

ran t is  u t i l iz e d .

In th is  exanple the parameter t was held fixed while the system 

gain a = K was the variab le  parameter with respect to  which the roo t- 

locus was constructed. I f  i t  is  desired to  construct the root-locus fo r 

a fixed value of gain a *  K , in which case t  is  the running parameter, 

then the B * ta  line  i s  replaced by the v e rtica l line  a = Kj and the 

root-locus is  constructed as usual.

6.3 Real Root-Locus

In order to  construct the locus of the rea l roo ts recourse is  

made to  the a-B curves fo r c = *1 shown in Figure 6 .3 .1 . The s tra ig h t 

line B = 0.5a is  superimposed on the t, = *1 curves, and the rea l root 

locations fo r varying a are determined from s tra ig h t lines emanating 

from points M(a, B) on the B = 0.5a line th a t are tangent to  the c = *1 

curves. The negative value of the frequency indicated on the c = +1 

curve at the point o f tangency is  the value of a rea l root; and the 

value of the frequency up indicated on the ? = -1 curve a t th is  point 

is  the value of a re a l roo t. The value of the gains producing these 

rea l root locations are determined by dropping a perpendicular from the 

points M(a, B) to  the  a -ax is . In th is  case the re a l root locus is  from 

s = 0, corresponding to  the point M(0, 0) to  s = -2. The re a l roo t- 

locus is  a lso  shown on Figure 6 .2 .3 . Note th a t i t  is  only possib le fo r



one tangent to  the x, -  +1 curve to  e x is t fo r  any point MCc ,̂ 6 ) so 

th a t only one re a l root can e x is t fo r a given value of gain. Recall 

from Section 5.6 th a t the point A on Figure 6.3.1 is  not a po in t of 

in flec tio n .

The method discussed above y ields the rea l roots only approxi­

mately, because the method is  hased on a graphical construction of a 

tangent line to  a curve. The o rig in  and term ination of the root locus, 

however, can easily  be exactly  determined fo r th is  example in  the 

following manner. The orig in  of the locus is  exactly s = 0 since a 

line  drawn from M(0, 0) is  tangent to  the x, -  *1 curve a t wn = 0, the 

point where the x, = *1 curve o rig in a tes . Further, the locus must 

term inate at a zero of the open-loop tra n s fe r  function which in th is



c o n t r o l l e r
P L A N T  L A G

-S T

Fig. 6.2.1 Feedback Control System.
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CHAPTER 7

NONLINEAR SYSTEMS

7.1 Introduction

In the preceding chapters, the analysis and design techniques 

discussed were re s tr ic te d  to  linear feedback contro l systems. However,

a l l  p ra c tic a l systems are nonlinear to  some ex ten t; most physical

systems can be considered to  be lin ear only w ithin a lim ited range of

operation. I f  a feedback control system is  designed according to

lin ear theory and methods, i t  is  e ssen tia l th a t the components used in 

the system operate in linear fashions under various operating conditions. 

I f ,  under ce rta in  circumstances, the components are driven in to  the 

region of nonlinear c h a ra c te r is tic s , linear design theory may describe 

only approximately, or quite  often may give a completely erroneous 

pred ic tion  of the system performance. For systems in  which the lin e a r ity  

assumption is  not v a lid , nonlinear d if fe re n tia l  equations must be used to  

describe system behavior.

The study of nonlinear control systems is  d i f f ic u l t  because most 

of the commonly used techniques fo r lin ear systems are no longer v a lid . 

The tra n s fe r  function concept of linear systems becomes inapplicable fo r 

systems with nonlinear elements; poles and zeros have l i t t l e  meaning in 

characteriz ing  nonlinear systems. Furthermore, the root-locus diagrams 

which are so convenient fo r the study of lin ea r systems are meaningless 

fo r nonlinear systems, simply because the c h a ra c te r is tic  equation is  not 

defined.
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7.2 Describing Functions

One of the  popular techniques used in analyzing the absolute 

s ta b i l i ty  of a c lass of nonlinear systems is  the describing function 

technique as developed by Goldfarb [8] and Kochenburger D03* The 

basic philosophy of th is  approach is  to  attempt to  approximate a non- 

l in e a r ity  by a lin e a r  function and, in th is  way, extend the tra n s fe r  

function concepts to  nonlinear systems. Therefore, the describing 

function concept su ffe rs  from the immediate lim ita tions associated 

with a l l  approximate techniques. However, in  may p ra c tic a l s itu a tio n s  

the re s u lts , in  terms of absolute system s ta b i l i ty ,  are qu ite  accurate. 

Thus, the  concept of the tra n s fe r  function of a system, along with the 

system c h a ra c te r is tic  equation, has been re-introduced. I t  follows 

th a t the theory developed in th is  work can be applied to  nonlinear 

systems tha t can be characterized by describing functions.

The describing function method is  based on the following assumptions 

and considerations:

(1) The control system contains only one nonlinear element n; a 

typ ica l form of the nonlinear system under consideration is  shown in 

Figure 7 .3.1a.

(2) The input to  the nonlinear element n is  assumed to  be 

sinusoidal. The output of the nonlinear element i s ,  in general, not a 

sinusoidal wave; nevertheless, i t  is  a periodic function, and can be 

represented by a Fourier se r ie s . The describing function analysis 

assumes th a t only the fundamental component of the output is  s ig n if ic an t



when fed back to the input. A ctually, i f  the input to  n is  considered 

to  be sinuso idal, the output of n contains components a t the fundamental 

frequency, and, in general, a t a l l  higher harmonic frequencies. I t  can 

be shown (Page 567 of Reference 2y) th a t the harmonics in the outputs 

of most of the common types of n o n lin earitie s  in servo systems are 

often of smaller amplitudes than the amplitudes of the fundamental 

components. Furthermore, most servo systems act as low pass f i l t e r s ,  

so th a t the higher harmonics in the output of the nonlinear elements are 

attenuated when compared to  the fundamental component.

When the basic assumptions l is te d  above are s a t is f ie d , the non­

lin ear element n can be represented by an equivalent tran sfe r function 

called  the describing function, which is  defined as the ra tio  of the 

fundamental component of the output to  the (sinusoidal) amplitude of 

the inpu t. Therefore,

Describing function N =

Fundamental component of output from Fourier analysis 
Amplitude of the sinusoidal input signal

(7.2.1)

Although the describing function is  defined as the ra tio  of 

amplitudes of two sinusoidal signals of the same frequency, i t  is  not 

a lin ea r tra n s fe r  function. I t  w ill be shown th a t ,  in general, N may 

be a function of the amplitude or the frequency, or both, of the input 

signal to  n. For instance, the describing functions of simple
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am plifier sa tu ra tio n  and on-off relays without h y ste res is  are functions 

only of the amplitude of the input sinusoid; the describing functions 

of f r ic t io n  and in e rtia -co n tro lle d  gear backlash depend not only on the 

amplitude but also  on the frequency of the input signa l. In addition 

to  the above-mentioned p ro p ertie s , N may be a rea l nunfcer, as in the 

case of simple am plifier sa tu ra tio n , or ideal re lay ; or N may be a 

complex number, as in the case of a relay  with h y s te res is .

For the notation of Figure 7 .3 .1 , i f  the input to  the nonlinear 

element n is  assumed to  be

x (t)  « X sin  at (7.2.2)

the output of the nonlinear element y (t)  is  a periodic function, and 

may be represented by the Fourier se ries  

00

y (t)  55 I (Ap cos noit + Bn sin  noit) , n = 1 ,2 ,3 , . . . (7.2.3) 
n=1

where

* n = i t  i l  y f t ) c o s  nwt dwt

(7.2.4)

Bn = 1  /* y (t)  s in  noit doit

The constant term in the Fourier se r ie s  has been omitted due to  the 

assumption th a t the average value of y (t)  is  zero; th is  is  true  pro­

vided th a t the nonlinear element possesses symmetrical c h a ra c te ris tic s .
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According to  the assumptions of the describing function, a l l  higher 

terms in the Fourier se rie s  of equation (7.2.3) may be om itted, leaving

only the fundamental component. Thus,

y (t)  = y .( t )  = A,cos wt + B.sin mt
1 1 (7.2.5)

= A j 2 + sin((ut + y) * Y^sinfut + y)

where y * ta n -1(^M and Yj * /A ^ + B^
' Bi l

The describing function is  then defined according to  equation (7 .2 .1) as

N(X,w) = (7.2.6)
X

Therefore, N is  a complex quantity when y is  nonzero. I t  is  a function 

of input amplitude, X, and of frequency, o>, i f  Y and/or y is  a function 

of frequency.

7.3 Systems Containing a Single Nonlinearity with a Real Amplitude 
Dependent Describing Function

Consider the nonlinear feedback control system with transport 

lag in  Figure 7.3.1a where the non linearity  contains sa tu ra tion  and a 

dead zone as shown in Figure 7.3.1b. The describing function fo r th is  

type of non linearity  is  purely real and dependent only upon the amplitude 

of the input signal to  the non lin e a r ity . Thus, N appears in the 

c h a ra c te r is tic  equation as a gain varying with the amplitude of the 

input to  n (see page 569 of Reference 29).



As an example, the tra n s fe r  function G(s) in Figure 7.3.1a is  

assumed to  be the same one analyzed in Section 5.6 of Chapter 5. This 

is  convenient since the a-B curve fo r C = 0 is  read ily  availab le and 

can be u ti l iz e d  with minor m odifications. The c h a ra c te r is tic  equation 

fo r th is  system is  then

c ,  ̂ T NKM ♦ st)
R = (1ST + flKT) s + (7.3.1)

Defining

a * KN , 8 * KtN (7.3.2)

The system c h a ra c te r is tic  equation becomes

F(s) = (esT + 8)s + a = 0 (7.3.3)

which is  id en tica l to  the c h a rac te ris tic  equation of Section 5.5 (see

(5 .5 .2)) with the exception of the defin itions of a and 8. Thus the a-B 

curves of Section 5.5 can be used where the ordinate and the abcissa are 

properly relabeled.

Figure 7.3.2 shows the f i r s t  quadrant of the a-B curve fo r e = 0 

where K = 1 and the two variab le  parameters are N and t .  Only the f i r s t

th ree trav e rsa ls  are shown where the remaining in f in ite  number of

trav e rsa ls  would l ie  above trav e rsa l (3) and in te rsec t the point 8 = t N  =

1. Also shown on Figure 7.3.2 are two 8 = to loci fo r t = 0.227 and

0.1314. Superimposed on each 8 = to locus are the ra tio s  of the ampli- 

tudes to  the dead zone, jj, fo r corresponding values of the magnitude of N.
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Other pertinen t information re la tin g  to  the nonlinearity  c h a rac te ris tic s  

are shown on Figure 7 .3 .2 . The data to  p lo t the describing function was 

obtained from standard curves in Reference 29, page 574.

By examining the position  of the describing function loci with 

respect to  stab le  and unstable regions in the a-e plane of Figure 7.3.2 

the following p roperties of the feedback system are evident.

1. When t  = 0.227: I f  the system is  a t  r e s t ,  disturbances th a t
X

re s u lt  in a magnitude of jy < 2.25 to  the input of the non linearity  do

not lead to  in s ta b i l i ty .  I f  the disturbance is  of a magnitude such
X Xth a t jy B 2.25 sustained o sc illa tio n s  of amplitude ^ * 2.25 and ui *

X
2 rad ./sec . occur. A s lig h tly  larger disturbance, say 2.25 < -  < 8, 

re su lts  in a loop gain g rea ter than unity  and the o sc illa tio n s  increase
X

u n til  q = 8 is  reached, a t which time equilibrium  again e x is ts  and
Xsustained o sc illa tio n s  of anplitude ^ * 8 and frequency to * 2 rad ./sec .

X
occur. A s t i l l  larger disturbance of magnitude j y  > 8 re su lts  in  a

X
stab le  system, with a decay of o sc illa tio n  amplitude back to  jy = 8.

Thus, the two in te rsec tio n s of the B = 0.227a locus and the t, = 0 locus,
X x

at amplitudes of jy = 2.25 and — * 8, represent unstable and stab le  

equilibrium conditions, respectively .

2. When t  = 0.1314: I f  the system is  a t r e s t ,  disturbances a t the
Y

input to  the non linearity  th a t re su lt in  a magnitude of jy < 10 do not

lead to  in s ta b i l i ty .  I f  the disturbance is  of a magnitude such th a t 
X X— = 10, sustained o sc illa tio n s  of amplitude — = 10 and u> = 1.8 rad ./sec . 

occur. A s lig h tly  la rger disturbance re su lts  in a loop gain g rea ter
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X
than un ity  and the o sc illa tio n s  increase towards -  * ■ a t a frequency

id * 1.8 ra d ./s e c . Thus, the in te rsec tio n  of the B = 0.1314a locus and
X

the c = 0 locus, a t an amplitude of ~ = 10, represents an unstable 

equilibrium  condition.

In order to  verify  these re su lts  the inverse Nyquist p lo t and the 

negative describing function locus of the system are p lo tted  in Figure 

7 .3 .3 . That i s ,  consider the open loop tra n s fe r  function of Figure 

7 .3 .1a. The lim iting values fo r system s ta b i l i ty  occur when s = ji» and 

when

G (s)e 'sTN = -1 (7.3.4)

or when

sT
Gls) = "N (7.3.5)

Setting  s = juj yields

jtoT

(7.3.6)

Figures 7.3.3 and 7.3.4 show Re vs. Im p lo ts  of equation (7.3.6)

for t = 0.227 and 0.1314 respec tive ly . Note th a t these polar p lo ts  both

continually  encircle  the o rig in  due to  the existence of the transport

lag which contributes an in f in i te  amount of phase lag as to -*■ « .  By
Ju T

noting the in te rsections of the P^o t “N p lo t i t  can be
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seen th a t the in te rp re ta tio n  of system s ta b i l i ty  given above is  v e rif ied .

For example, in Figure 7 .3 .3  the -N locus in te rse c ts  the .. locus a t
G(ju>T

the frequency <*> * 2 ra d ./se c . fo r values of g-equal to  2.25 and 8 as 

predicted from the a -6 p lo t and -N locus of Figure 7 .3 .2 . S im ilarly , 

the c r i t ic a l  point of Figure 7.3.4 corresponds to  the in te rsec tion  of 

the 6 = 0.1314a locus and the c 3 0 locus shown on Figure 7 .3 .2 .

In order to  fu rther v e rify  the re s u lts  predicted  above, the con­

t r o l  system of Figure 7.3.1 was simulated on a d ig ita l  computer. The 

system d if fe re n tia l  equation was solved by using f in i te  differences and 

a l l  re su lts  are accurate to  one decimal p lace. Figure 7.3.5 shows the 

input waveform to  the nonlinearity  for i  = 0.227 and — = 1.5, which is
Y

less than the c r i t ic a l  value of — = 2.25. From Figure 7.3.5 i t  is  seen

th a t the system is  s tab le . Figure 7 .3 .6  shows the steady s ta te  input
X Xwaveform to  the nonlinearity  fo r ^ equal to  3 and 10. The values jy =

X
3 and 10 both re su lt in o sc illa tio n s  of amplitude — = 8.6 and frequency 

a) = 2 rad ./sec . Tbe percentage difference between the predicted and 

actual amplitudes and frequencies fo r t = 0.227 are noted on Figure 7.3.6 

and, as can be seen are quite  small.

When the system was simulated fo r t = 0.1314 the re su lt was a
Xstab le  system when the input to  the non linearity  was — < 10. For values

of — > 10 o sc illa tio n s  were noted a t a frequency of u> = 1.84 rad ./sec .
D

(a difference of 2.18% from the predicted value) th a t increased in d efi-
X

n ite ly  in amplitude. I t  was fu rth e r determined th a t the value of -
Xa t the unstable equilibrium  point is  between 9.65 < jy < 9.67 since the



waveform decayed fo r ^ = 9.65 and increased in amplitude towards in f in ity  

fo r = 9.67. The difference is  then approximately 3.4$ from the p re­

d icted  amplitude o f o sc illa tio n s .

Thus, the d ig ita l  computer simulation fu rth er v e r if ie s  the predicted 

re su lts  obtained from the a-B plane. The percentage d ifferences in both 

cases ( t  = 0.227 and 0.1314) can be a ttr ib u te d  to  the e rro r  inherent in 

the approximations associated with the concept of describing functions.
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(a)
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(b)

Fig. 7.3.1 A Nonlinear Feedback Control System With Transport Lag.
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CHAPTER 8

CONCLUSIONS

A method is  presented fo r the exact determination of absolute and 

re la tiv e  s ta b i l i ty  of l in e a r  feedback control systems containing tra n s ­

port or d is trib u ted  lag . All re su lts  are in terms of two variab le  

system parameters, whereas contemporary techniques determine only 

absolute s ta b i l i ty  with respect to  only one variable system parameter. 

The method u t i l iz e s  an extension of parameter plane techniques as 

developed by Vishnegradski [303, Neimark [18], Mitrovic [16], and 

S iljak  [263.

The method is  then applied to  the design of con tro lle rs  in  linear 

systems containing transport lag. A design technique is  proposed th a t 

allows for the system atic determination of two variable co n tro lle r 

parameters in order to  meet frequency or time domain design sp e c if i ­

cations. The design technique is  formulated in terms of the fam ilia r 

"dominant root" concept. The proposed design technique gives the 

system designer "a t lea s t"  as much control over the system response as 

he obtains with conventional design procedures for systems without 

transport lag.

The investigation  of absolute and re la tiv e  s ta b i l i ty ,  as well as 

the proposed method fo r c o n tro lle r  design, is  no more complicated fo r 

multiloop feedback contro l systems than fo r single loop systems. This
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is  because the c h a rac te ris tic  equation of the  closed-loop system tran s­

f e r  function is  u t i l iz e d  ra th e r than the  conventional open-loop methods. 

F urther, i f  a d ig ita l  computer is  used, high-order systems are dealt 

with as e a s ily  as low-order systems.

A method fo r constructing the  root-locus o f systems containing 

transport lag is  then proposed so th a t th is  fam iliar engineering tool 

can be used in  conjunction with the proposed analysis and design 

technique. The root-locus technique proposed here has the following 

advantages over the conventional method of Chu [21.

1) The locus can easily  be constructed from the parameter plane curves 

fo r e ith e r  one of two variable system param eters. Further, the value 

of the variab le  parameter is  immediately availab le  without computation.

2) The system can he multiloop and i f  a d ig ita l  computer is  u tiliz e d  

the order of the system does not complicate the root-locus construction.

F ina lly , the method is  applied to  nonlinear systems containing 

transport lag where describing function analysis is  applicable. I t  is  

shown th a t the amplitude and frequency of lim it cycles can be predicted 

where the describing function is  rea l and is  dependent upon the ampli­

tude of the input signal to  the non linearity .
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CHAPTER 9

SUGGESTIONS FOR FUTURE INVESTIGATION

A fu rth er area of investiga tion  i s  the app lication  of the theory 

developed in  th is  d isse rta tio n  to the " id en tific a tio n "  of high-order 

lin ear systems. A d e fin ite  c h a ra c te ris tic  of high-order stab le  system 

responses is  the re la tiv e ly  long time required to  reach a peak value, 

followed by periodic v a ria tio n s . Such a response can be approximated 

by the response of a low-order system (say second-order) containing a 

transport lag. Figure 9.1 shows a typ ical response of a high-order 

system and the suggested approximation by the response of a second- 

order system with transport lag.

Another area of investigation  that should prove f ru i t f u l  is  the 

fu rther app lication  of th is  theory to  nonlinear systems with transport 

lag. The success o f th is  investigation  would probably depend upon the 

specific  type of non linearity  involved. The author has in i t ia te d  fu rther 

work in th is  area fo r the cases where the describing function can be

1. complex and dependent upon amplitude

2. rea l and dependent upon amplitude and frequency

3. a combination of two rea l amplitude-dependent describing functions. 

The re su lts  have been encouraging and fu rther work in  th is  area is  contem­

plated .

The concept of "root location se n s itiv ity "  with respect to  parameter 

va ria tions fo r systems with transport lag seems fea s ib le . This question
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can possibly  be resolved by studying the parameter plane se n s itiv ity  

re la tionsh ips previously developed by Kokotovic and S iljak  [113.

F ina lly , problems re la ted  to  the "p red ic to r method" of compensa­

tio n  of lin ea r systems with tran spo rt lag can be investigated  through 

parameter plane techniques. The p red ic to r method [273 u t i l iz e s  the 

feedback arrangement shown in Figure 9 .2 . The purpose is  to  make the

input to  the co n tro lle r appear as i f  the system had no transport lag.
-sT sTI f  the co n tro lle r  lag, e  , is  id en tica l to  the actual lag, I , thena

the system tra n s fe r  function is

C G } ( s ) G 2 ( s )

R (S) = 1 ♦  G 1 ( s ) G 2 ( s )

which is  independent of the transport lag . Since i t  is  not possible
-sTto  p erfec tly  synthesize e in the c o n tro lle r , p e rfec t cancellation ofct

e 1 in the p lan t is  not possib le. However, e& can be approximated and
_ S T

the resu ltin g  system tra n s fe r  function, although s t i l l  in terms of e  ,  

is  amenable to  parameter plane methods of analysis and design. The 

author has done some prelim inary work in  th is  area and the re su lts  are 

encouraging.
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APPENDIX II

g-g Curves fo r 5 35 *1

As mentioned in Section 4 .1 , care must be exercised when computing 

values of a and 3 fo r c — * 1• I f  t  = *1 is  su b stitu ted  in to  (4.1.14) 

the re su ltin g  equations are indeterm inate. S p ec ifica lly , substitu tion  

of  ̂ = *1 in to  (4.1.11) gives

-  j 0 H ) V ( bk ♦ c, “"Tck )Tk ( . i )

Ci ( ” ’“n) '  j „ H ) k "nk ( dk * c I “nTek ) Tk (* , >

K”U

B2(*1>Un) -  C2(*1,wn) = D2( t1 fUn) = 0

Thus, from (4 .1 .14), the a-B curves are indeterminate due to  a 

sin g u la rity  fo r c = *1. To remove th is  s in g u la rity  define

i 2 =

c 2 = c 2 ( * i , u ( i i . i )

62 = D2( M , u * ) / / r ^

Further define



S u b stitu tin g  ( I I .  1) in to  ( I I . 2) gives

0 ^ 2  - 0 ^ 2  - DjC2

BiC2 " CjB2 ” ^1B2

_ Bj B2 ■ D2B, D[B2 — D2Bj
g  s  s    a  g

B1^2 ” C1B2 B1C2 " C1B2

so th a t a = a  and 6 * B, and i t  remains to  show th a t the s in g u la rity  

can be removed by using B2, C2, D2. Note th a t

B2( i1 »fc>n) , ( ^ (M ,^ )  , D2(*1,a)n)

reduce to

= I M ) k+W ( * 1 ) ( b k  ♦ F " Tck) +
k-0

e; ^ T  f  ( - 1 ) kc k . nkTk ( M )

/ r = ^ s r  k«o

C2( * W  “ |  (-1 )k+\ kUk(t1)(dk + e?tanTek) + 
k-0

s i n ^ / T ^  T 5 k k_
y r r ^ r  k=o

D2(‘ 1,«n) = |  (-1 )k+1unkUk(*1)(fk + e,WnTgk) + 
k—0

I  (-1) V n  Tk (M) ( I1 '

4 ^ T  sinoi /1 - x?- T V /’ i'»k/r kTr*i"» s " n_________ L (_1) gkun Tk (±1)
/ r ^ 7  k=0
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Attention is  now focused on the singular term of ( I I . 3) when x, = *1. 

Namely, consider

lim f(c) = lim sintop^l - T
C-*-M c-*-*1 ^  ( I I . 4)

and make the substitu tion  x = /I - so tha t

lim f ( 0  = lim s ^nt>>nTx = oi T
l+t 1 x-*0 x

which is  easily  v e rif ied  by taking a Taylor se ries  expansion of ( I I . 4).

Thus equations ( I I . 3) become

B2(* ifUh) = li  ( -D k+lo.nkuk (M )(bk ♦ r nTck) ♦ 
k=0

“nT^ “nTj n( ' 1)kck“nkTk(*l)k=0

5 k+1 k ♦“nTC2(*1>Un) = I (-1 )k \  Uk (M )(dk + e ek) +
k=0

n k+1 k t ^ T
D z C '.V  -  Z (-1) W * D ( f k + £ lfk) ♦ 

wnTe+Wn

and the s ingu larity  has been removed. Thus, the a-B equations for

( I I . 5)
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S = *1 are determined from (4.1.14) where B2, C2 and D2 are replaced by 

B2(*1>Un) , C2(*!,«„) and D2(t1 ,« n) of ( I I . 3).

v%
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CONSTANT SETTLING TIME LINES

To show that the algebraic manipulations re su ltin g  in  (4.5.1) and 

(4.5.2) can always be e ffec ted , a formal derivation  i s  offered th a t 

y ields e x p lic it  equations fo r a fc r ,^ 2) and 6 (0 , u^2).

Since the contour of Figure 4.1.2c is  mapped for a given value of 

o = -coip as varies from zero to  in f in i ty ,  t  is  a variab le  fo r th is  

contour, but the product o = is no t. Thus rew rite from (4.1.12)

4 = f > nT = oT

0 = a ^ / 1  -  c 2 T = / i ^ 2 -  o2 T

/ n ^ =  — w  - 0-2 -

Since the Chebyshev functions are functions of s they are rew ritten as

P ^ o , ^ 2 ) = ( - 1 ) \ k Tk ( 0

Qk(° ,wn2) = H ) k + 1u>nk" \ ( 0

Where the Pk and may be obtained from the following recursion 

formulae [26"]

Pk+1 »î n2) + 2 oPk (o, a^2) + u^2 F̂ _ 1  ( a , ^ 2) = 0

Q k + l ( ° » “n 2) + 2 0 ^ ( 0 , u^2) + aip2 Q ^ - i C o , ^ 2 ) = 0
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Where

p o = 1 . p i = * Qo -  0 » Qi -  1

Equations (4.1.11) can now be expressed as , for uin2 > o2

Bi(o ,^ n2) = k^ Pkbk + e~^(pkckcos0 “ /wn^ '  Qkcksin6)]

C iO .^r,2) = j j j V k  + e ^ ^ k e k 0050 '  / “niJ “ a *  Qkeksin 6 ]̂

Di(°»“n2) * j J V k  + E' V kgkcose '  /un2 “ °Z ^ k ^ 110)]
( I I I .1 )

B z^ .o ^ 2) = I [Qkbk /wn2 “ ^  + E"*(0kck/V  " ° l  COS0 + Pkcksin0)] k—0

n
C g to ,^ 2) = I [Qkdk /a>n2 -~aY + e"^(Qkek/ain2 '  al cose + pkeksin0)]

k=0

n
D2(°»“n2) = k^0 [^kfk^“nz - o2 + e_lJ>(Qkgk/wn  ̂ " cose + pkgksin0 ]̂

Equations ( I I I . 1) are va lid  fo r wn2 > a2 ; however, the mapping of

constant s e t t l in g  time contours is  fo r 0 < a>n < ® so th a t there  are

values of a)n and a where i^ 2 < a2. Thus

/up2 -  o2 = j/ci2 -  û 2

In th is  instance ( I I I .1) becomes, upon using the id e n ti tie s

cos j/o 2 - oin2 = cosh/o2 -  u^2
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sin  j * j sinh/o'2 - u^2

fo r a) 2 < a2 n

Bi (° = I fpkt>k + e"^(Pkck cosh A 2 - T +
k=0L

/o2 - o^2 Q^c sinh /a2 - ŵ 2 T)j

c i(o,a.n2) = kIo [pkdk + G" ^ Pkek cosh/a2 - u^2 T + 

/a2 - un'2 Qĵ eĵ  sinh /o2" - a^2 T)J

D jfo ,^ 2) = I [pk£k + E"^(PkRk cosh/a2 - T +
K-U

’/°2 - O^2 Qkgk sinh /o2 - T)j

M 0 ’^ 2) = I [Qkbk + e * ^ ck cosh/o’2 - a^2 T
lv"“0

pkck
s inti ■/a1 - T .

T  '  J/o^ -

CzCo,^2) = I [ w  * ^"*(Qkek cosh^o2 - ^  T + 
k-0

sinh /o2 - a^2 T . 

PkCk /o_r “ ilT"2’ ^

( I I I . 2)



D20>Wn2)

where

B2(o,Wn2)

Recall from Appendix II th a t introducing B2, C2 and D2 in to  

(4.1.14) does not a l t e r  these equations. Further, the s in g u la r itie s  

th a t appear in ( I I I . 2) when o2 * u^2 are easily  removed as shown in 

Appendix I I .

j J V k  + e~*CQkSk cosh/o2 - <on2T
k=0

sinh /o2 - oj 2 T . 

n

, e tc .
j /o 2 - Wn2



APPENDIX IV

REAL ROOT DETERMINATION

I t  w ill now be shown th a t the number of re a l roots equals the 

number of s tra ig h t lines drawn through a working point M (aj,6i) th a t are 

tangent to  the t = +1 a-B curve; and th a t the values of these rea l roots 

equals the negative of the frequencies, . . . , a t the

tangent points on the c * +1 curve. The argument is  the following: 

any value of o th a t s a t is f ie s  (4 .6 .2) fo r a given value of o s Oj and 

B = Bj is  a rea l roo t. Then i f  the slope of the c = +1 curve is  the 

same as the slope of (4 .6 .2 ), the value of the slope of the c = +1 

curve where i t  i s  tangent to (4 .6 .2) is  a lso  a rea l roo t. Consider

(4 .6 .2 ) , which is  the equation fo r the mapping of the rea l ax is , and 

determine i t s  slope fo r a point on the negative rea l ax is , i . e . ,  sub­

s t i tu te  s = -a in to  (4 .6 .2 ). Then,

n k k -oT £ k k _crT
a I ( - 1 )  a (b. ♦ ckc ) + B I ( - 1 )  a (dk + e.e ) + 
k=0 K k=0 K

I (-1)k°k (fk + g)ce °T) = 0 
k=0 k

The slope fo r a given working point M(a1,B1) is

dBj k=0
r , 1Ak k,, , -aT.
L (-1) 0 Cbk + S  e )=n k K

= '  9 k k  - oTn
I (-1) o (dk + ek G )

k=0 K
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Now consider (4 .1 .14) which are the parametric equations fo r a and
s

Band determine

d3 ‘
HoT c = +1

Note that when t = +1 (which corresponds to  the negative rea l axis) 

s = [-cu>n + jwn*'! - \  = +1 = “«n = 0

and the rea l root equals the negative of the frequency on the c ~ +1 

curve. Then from (4.1.14) and ( I I . 1)

a f  - c (b, c2 - ♦ b2d; -  52b; - b^ j -

(DjR2 - + C2B; - CjB2 - B2C ; ) ] /4 2

and

da -
&  = CCBjCjj.

(CxD2 -

C.B ) ( CD + DC -  n,C, -  C D )  -
1 2 1 2 2 1  1 2  2 V

DjCjXBjC' + c2b ; -  CjB2 -  b2c ; ) 3 / a2

where Blf B2, . . . , e tc . denotes d ifferen tion  with respect to  a. I t  

can be shown a fte r  some manipulation tha t

Bj = -aB2 , C: = -oC2 , Dj = - oD2

so that dB/da reduces to

dB

da

fdB

da

da \ B,

da i

i k q D i - D ^ j)  + C'(D2B1 - 0^2) + D^C^JJ “ BtC2)

b ' ( d2ci -  DjC2) + c2(B2D1 - W + " c i B2)
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or

I H ) k°k (bk + cke"°T)
dB _ k̂ O____________________

^  Cl I ("1)kok (dk + eke“oT)
k=0

Thus, the slope a t any point on the a-B curve fo r c = +1 is  the 

slope fo r the s tra ig h t line obtained when mapping a point on the 

negative rea l axis (see equation IV .1). In order to  prove the proposi­

tio n  fo r t  = -1 , the argument is  the same except c = -1 is  substitu ted  

in the above derivation . I f  the working point is  chosen on the

x, = *1 curve a double rea l root ex is ts  of magnitude denoted on the

curve. This is  because the x, = *1 lin e  in the s-plane is  the lim iting 

case of complex conjugate roots coalescing on the rea l root axis as



APPENDIX V

RELATIONSHIPS BETWEEN ROOT LOCATIONS AND SYSTEM RESPONSE

The desired output estab lished  in Section 5.1 can be represented in 

the s-plane by the configuration of roots and zeros of the system function 

as shown in Figure 5 .1 .2 . The next step in the process of estab lish ing  

the necessary re la tionsh ip s is  to  re la te  q u an tita tiv e ly  th is  configura­

tio n  with the tra n s ie n t response. This re la tio n  is  the general tran s ie n t 

so lu tion . Because of the complexity of th is  general so lu tio n , approxi­

mating re la tio n s  have been formulated by Chu1. TTiese approximating r e la ­

tions along with th e ir  significance are the subject of th is  appendix.

For a given lin ear feedback control system without transport lag
r

(Figure 4.1.1 with T=0) the system tra n s fe r  function (s) is

C [s, ,  . £■ (§.!- = K m .
R {-S) 1 + G(s) K F(s) (V.1)

where

m n
N(s) = n (s - z.:) , F(s) = n ( s - q k) 

j-1 3 k=1 *

In th is  expression i t  is  assumed no m ultiple roots e x is t and the order 

of N(s) is  sm aller than th a t of F (s). These two assumptions are tru e  in 

most app lica tions, and in the case of systems with transport lag in  the

lrrhe m aterial contained in th is  appendix is  a s lig h tly  modified 
version of a portion of a derivation  contained in  Reference 3.



forward loop the existence of the term es^ in F(s) (see equation 4.1.1) 

guarantees th a t the order of N(s) is  sm aller than th a t of F (s). Further, 

since the designer has control over the s-plane root locations i t  is  a 

simple m atter to  ensure the existence of no m ultiple roo ts.

The values of Zj and may e ith e r  be rea l or complex. By using 

the Laplace inverse transform ation, the tra n s ie n t so lu tion  of (V.1) fo r 

a un it step  input with zero i n i t i a l  conditions may be expressed as

This is  the general transien t solution within the lim its  of the assumptions 

(note th a t fo r a system with transport lag equation (V.3) has an in f in ite  

number of terms). The output response i s  the summation of a l l  rea l modes 

due to  the rea l roots and of a l l  complex modes due to  complex roots in 

addition to  a constant term. The following assumption is  now made in 

order to  reach a simple but p rac tic a l re s u lt:  I t  i s  assumed a l l  the modes

of (V.3) may be neglected except the f i r s t  constant term and those due to

(V.2)

I f  the complex roots are combined, i t  may be w ritten  as

qjc=real

qk=ok+j qkF ' Cqk)
I ? |KNW  | e°k tcos [ y  + / N(qk)- / q k - /F '(qk

(V.3)



198

the p a ir  of dominant roo ts . With such an assumption, equation (V.3) 

becomes approximately

:(t) K + 2 KS jF 'fS ^ cos Jiojt + /N (S t) - / S l - / F f (S^) J

(V.4)

where Sj = -Oj * jwj are the dominant roo ts. By d iffe re n tia tin g  the 

output with respect to  time and equating the re su lt  to  zero, the time 

to  reach the peak of the f i r s t  overshoot, called  Tp, is  found to  be

rp (peak time) -  -1  |jL - /N fS ^ (V. 5)

The amount of the f i r s t  overshoot, M, is

M (peak overshoot) = KN(Sj)
Oj + Uj F ' (S j )

(V.6)

obtained from the difference between the output a t Tp and the steady

s ta te  value of the output. F.quations (V.5) and (V.6) are two approximate

equations to  be discussed below.

The accuracy of the assumption resu lting  in these two approximate 

equations can be estim ated read ily . A certa in  simple mode K2e is  

considered from the exact so lu tion , equation (V.3). This mode w ill 

decay to  5 per cent of i t s  i n i t i a l  value when t  is  equal to  3/o2 . I f

Tp is  larger than th is  value, th a t is

3 3
T > — or o2 >P - - Tr (V.7)

the e ffe c t of th is  simple mode is  small even though K2 may be reasonably
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large. I t  has been shown T291) th a t the value of the  coeffic ien t K2 is  

small i f  th is  root s = -a2 is  not too close to  the other roo ts , i f  no 

zero very close to  the orig in  on the s-plane e x is ts ,  or i f  a rea l zero is  

very close to th is  ro o t. Thus, equation (V.7) shows the minimum value 

above which the approximate equations w ill give qu ite  accurate re s u lts .

I t  also may be applied to  the case o f a complex mode, where a2 is  then 

the rea l part of the complex roo ts . In case a certa in  mode must be 

accounted fo r , the magnitude o f th is  mode at T can be evaluated from the 

proper term of the general equation (V.3) and can be added to  the re s u lt  

of equation (V.6) as a second approximation.

Simple yet accurate re la tionsh ip s between the tran sien t response 

and the chosen roots are now developed. The desired response (as shown 

in Figure 5.1.1) is  specified  by the following four quan titie s:

1) The se ttl in g  tim e, T , the time at which the response reaches 

a certa in  percentage of i t s  f in a l value. A commonly accepted value fo r 

Tp i s  2 per cen t.

2) The number of o sc illa t io n s , N, for the in te rval up to  the 

se t tl in g  time.

3) The peak time, T , the time to  reach the peak of the f i r s t  

overshoot.

4) The peak overshoot, M, the  amount of the f i r s t  overshoot. 

With these four q u a n titie s , together with the pa ttern  of the chosen
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root-configuration  (Figure 5 .1 .2 ), the desired response is  v ir tu a lly  

known without i t s  actual calcu lations. The f i r s t  two q u a n titie s , Tg , 

and N, can be computed from the dominant p a ir  of ro o ts , which are 

-a, nw , = -Cia) * /1 - . The s e t t l in g  time i s  from (V.4)i j i 1 nj n^

T = -  = 4
S ° l t  “ (V.8)

1 n l

fo r a 2% deviation from the steady s ta te  value. The number of o s c i l la ­

tions may be calculated  approximately as follows

se ttl in g  time ___ = 2u)i = 2 /1 - (V.9)
N = period of damped o sc illa tio n s  ” ^o“  ~ u z

l l

Solving for Cj from the two rig h t hand re la tionsh ip s above y ie lds the 

useful re su lt  tha t

The th ird  quan tity , T^, the time to  reach the peak of the f i r s t  

overshoot, is  calcu lated  from the approximate equation (V.5). This can 

be expressed in the  following form

T = w fn^2 ” (sum of angles from zeros to  the dominant root 
P

-OJ+ joij) + (sum of angles from the o ther roots to  the 

dominant root (V.11)

Thus, i t  may be concluded th a t zeros decrease Tp and additional roots 

increase T . I f  the system is  known to  be approximately second order
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and without any zeros, then the peak time from equation (V.11) is

T = — (V.12)p  «o

Because of the re la tio n  w, = u)_ A  - , another conclusion fromi rlj a '
equation (V.11) is  the peak time is  inversely proportional to  the undamped 

natu ra l frequency u>n  ̂ of the dominant roo ts.

The la s t quan tity , M, the amount of the f i r s t  overshoot, is  calcu­

lated  from the approximate equation (V.6). I t  is  the product of the 

following two terms

_  -J*

(a) e 0l P (th is  quan tity  is  always less than

unity  as Oj and are positive) (V.13)

(b) (product of distances from zeros to the
K x dominant root -°i + j^ i)_________________

k (product o f distiance f  rom a l l  roots to  (V. 14)
1 the dominant root -° i + jwj excluding the

distance between the two dominant roots)

I t  is  obvious from the f i r s t  term (a) th a t the sm aller the Tp the larger 

the M; thus the choice of Tp and M requires a compromise. The e ffe c t of 

the second term (b) on the magnitude of M depends on K, usually  a con­

t r o l l e r  parameter to  be chosen. For a zero displacement e rro r  system,

K must have the following value (from equation (V.1)). 

n
» qkk=1 _ (product of distances from a l l  roots to  the o rig in 1
m ” (product of d istances from a l l  zeros to  the o rig in) (V.15)



This i s  due to  the fac t th a t the output is  equal to  the input a t steady 

s ta te  fo r  a step input in  such a system. By su b s titu tin g  equations 

(V.15) and (V.14) in to  (V.6), the re su lt is

(product of distances from a l l  roots to  the o rig in  
excluding distances from the two dominant roots to
the orig in) _________  _ x

(product of distances from a l l  roots to  the dominant 
root -° i * excluding the distance between the 
dominant roots)

(V.16)

(product of distances from zeros to  the dominant
root ~Qi +   x -0 iTp

(product of distance from a l l  zeros to  orig in) e ^
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