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ABSTRACT

A systematic method for selecting from among alternative
routes for chemical synthesis is developed and presented.
Consideration is given not only to making the best decision, but

of reaching that decision with a minimum of experiments.

A method is developed whereby the calculated differences
in process cost due to variations in the levels of such responses
as chemical yield, usage and recovery are displayed graphically.
Such a representation by indicating the potential worth of any
experiment focuses attention on those parts of the synthesis which

have an economic bearing on the ultimate process cost.

The probability of achieving a particular cost is considered
next, Cost functions for each of the .proposed routes are developed
which relate the effects of the process responses to the process
costs., The process responses are in turn related to the settings
of the process variables through regression equations. A second
order experimental design is generated in the important variables.
The data from these design points serve as the basis for the - e
regression equation., The responses to the indicated experiments

are estimated listing both a best guess and the range around the

best guess. As an experiment is run, the experimentally obtained

iv



value replaces the estimated value. The experimentally obtained
result and the remaining estimated results are treated identically,
The variance about the experimentally obtained value is calculated
from experimental error., The variance about the estimated value
is calculated from the range about the guessed response, The
variance for each of the design points is used to weight the

contribution of that point in the analysis.

The results of the analysis are probability distributions for
the costs of each process, It is only when the overlap between the
probability-cost distributions for competing processes is satis-
factorily small that discrimination between routes is achieved.
Only by running experiments and replacing estimated results with
actual results can the variance about the calculated optimum value
be reduced with a concurrent improvement in process discrimination.
However, experiments are run only if improved discrimination is
required., This feature reduces the total number of experiments

required to select preferred routes.

An actual problem is presented in which it is shown how these
techniques lead to a process selection on the basis of very few

experimental runs.
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Chapter 1

INTRODUCTION

The Problem

Since 1957 Research and Development expenditure in the chemical
industry has increased by over 60 percent. Although the increase in
sales lagged only slightly behind these increases in R&D costs, the
profits have risen only half as fast (1). Traditional guide marks,
such as the ratio of R&D expenditure to gross national profit, have
shown an undesirable downward trend. Charles Allen Thomas, Monsanto's
Chairman of the Board, declared two years ago that "R&D is now
stumbling in a morass of projects, sinking in a sea of money, and

is being built on a quicksand of changing objectives" (2).

In 1966 it is estimated that 1.57 billion dollars (3) will be spent
by the chemical and allied industries on research and development. This
represents another 10 percen@ increase over the previous year. There is
growing concern as to whether this money will be spent wisely and
efficiently. The problems exist at two levels -- the management level
where the problems of budget size, budget allocation, and project
selection must be properly resolved to insure that the researcher
deals with meaningful assigmments; and again at the level of fhe re-
searcher where the problems of discovery, process selection and process

optimization must be resolved with a minimum of lost effort.

The research manager is turning more and more to the utilization
of quantitative methods for guidance as to where he can best spend

his research dollar.



Dean and Sengupta (4) describe their activities on behalf of
three major chemical companies which remain unidentified except for the
fact that they all share a long experience in R&D and have grown princi-
pally by the introduction of new and improved projects. The authors
tabulate such parameters as cumulative product research dollars,
cumulative process research dollars, tobal production costs and the
ratios of total sales to old sales and the gross value of the plant to
total sales as functions of time. They then show that the company's
market share could be related to the ratio of R&D expenditure to that
of the sales, administrative and general expenditures. Using these data,
the authors were able to work out an appropriate budget and an optimum
distribution of that budget between product and process research. It is
reported that the results have been more than gratifying to the sponsors.
Freeman (5) developed a stochastic model which can be used to assess the
expected return from research projects, Hess (6) presents a set of
recursive equations which are useful for both project selection and
budget distribution. Hess' model reappears in a paper by Saunders (7)
who reports its modification and utilization by Monsanto. Asher (8)
reports the use by Abbott Laboratories of his linear programming
model for the allocation of R&D efforts. Bobis and Sprague (9)
report an effort to combine the advantages of management experience
with that of mathematical models by having the Research Manager work
directly with the model via a computer programmed in "conversational
mode." This effort is currently being pursued at American Cyanamid.
Horowitz (10) presents a regression equation by which he tries to

understand the influences of current sales levels, profits and the



accumulated previous research expenditure on the size of the annual
research budget and the influences of the size of that budget on future
profits. Approaches such as these hold out the promise of allowing the
manager to make more meaningful decisions as to the appropriéte

expenditure of his resources.

A quantitative approach should also be of use to the research
worker in deciding how he can experiment efficiently. When a choilce
between alternatives exists it is important to find the best choice as
soon as possible and to experiment in such a way that the inadequacy
of any of the alternatives is quickly determined. This work is con-
cerned with the development of a quantitative approach to be used for

early discrimination between alternative routes for chemical synthesis.

A typical problem of selecting between alternatives is shown
in Figure 1-1. Four routes: A, B, C and D are shown as horizontal
lines. The length of any one line is a measure of the dollars spent
to reach that particular stage of the investigation. In each case the
investigation is continued until it either becomes clear that the route
is not feasible at which point it is compared with all other surviving
routes. Since only one routé will ultimately survive, all of the
research effort expended on its competitors is of limited value. The
problem is not one of optimization but rather one of discrimination

and it should be possible to discriminate at suboptimal levels.



Route
A - Optimigzed
B ————— Dropped
C Dropped
D ~  Optimized

Research Dollars

Fig, 1-1
Hypothetical Research on Four Alternates

Continuing experimentation up to the point of optimization for
routes which do not succeed is only part of the problem. The other
is associated with the failure to terminate experimentation which even
if totally successful could no longer have had any bearing on the econ-
omic decisions of continuing with the program. In such cases it would
appear that the experimenter while pursuing his particular interest
often loses sight of the original economic objective ~- even when that
objective is merely the reduction of costs below some stationary bench
mark -- the cost of the present process. His accomplishment, which
always could have been measured against that bench mark, was in fact
so measured only at periodic reviews and not on an experiment-to-
experiment basis. The problems of this experimenter are much greater
in a dynamic situation where his accomplishment must be compared
against the moving bench mark -- the case where several other

experimenters are simultaneously pursulng competitive routes.



What is needed is some technique that will keep the experimenter
continually informed as to the economic aspects of his problem and
the:status of all related approaches, while at the same time highlight-
ing those areas of the problem where additional research would be
beneficial. In Chapter 2 a graphical representation of the effect of
changes in the process responses on the process coste is developed.

The graph which can be drawn prior to any experimentation can be used
to assess the economic potential of each experiment. The rest of the

thesis i1s devoted to resolving the companion problem of determining

the probability that the economic potential will be realized.

The techniques to be discussed represent a formalized approach to
the problem of selecting between alternative routes. The methodology
employed in the resolution of these problems was designed to be used
with a minimum ~- and in fact in the abeence ~-- of experimental evidence.
For this reason, decisions concerning the continuance or discontinuance
of work on an alternative route can be made at the earliest

possible moment.

Background

The basis for this work derived primarily from the science of
experimental design, founded by Sir Ronald Fisher, which deals mainly
with problems of estimating constants and estimating the differences
resulting from treatments in comparative experiments. Finney (11)
indicates that what 1s meant by design of experiments is:

(1) The specification of the response or the measurements

to be made on each experiment.



(2) The selection of variables whose effect is of concern.
(3) The settings of the levels of those variables.
(4) Determining the combinations of the levels of the

variables at which the experiments will be run.

Prior to 1923, the main concern of the statisticians was that
of analyzing data. At that time, Fisher started to publish a series

of papers which led to his book The Design of Experiments (12).

Two important principles to emerge from this treatment are that

. the design of an experiment in great measure

determines the form of statistical analysis appropriate to

the results ... the success of an experiment in answering

the questions that interest the experimenter without

excessive expenditure of time and resources depends

largely on the choice of design. -

Fisher at this time was interested in the problems of agronomy.
The earliest designs, therefore, catered to the specific needs of the
agricultural experimenter. Primary among these were problems of soil
variation and the elapsed time between planting and harvesting. For
this reason, these designs placed heavy emphasis on redundancy,
randomization and the simultaneous inclusion of a large number of
treatments. The Latin square design first described by Euler in 1782
was recognized by Fisher as having properties that would satisfy the
agriculturists' demands. In these designs, the experimental labora-
tory which was an open field was treated as a 2-way table of rows

and columns. Protection against confounding the effects of treatments

with that of soil heterogeneity was accomplished by insuring that each



treatment appeared in a random position in each row and column.
Discussion and analysis of these designs are given in several

references (13, 1L).

A class of designs of even greater utility is the factorial
design. In these the treatments consist of the combinations of levels
of two or more different variables. If m levels of n variables are to
be included, the design will be described as an m factorial. Fisher
states the advantages of these designs are:

Every trial supplies information about each of the main

guestions that the experiment is designed to examine ...

In addition to being able to measure the effects of each

of the variables with the same precision, as though the

whole of the experiment 1s devoted to each of them, it

measures all possible interactions between these
ingredients with the same precision.

Despite the power of these designs, the large number of
experiments that result when either "m" or "n" is large, militated
against its use. Fisher recognized this drawback and discussed the
concept of confounding or fractional replication. He points out that
if there is sufficient reason to doubt the existence of the highest
order interactions, other variables can be run at the levels which

would have been used to calculate those interactions. A treatment

of confounding is given by Davies (15).

Often an experimental program can be subdivided into a series of
blocks by setting the block contrast equal to higher order interactions,

thus eliminating the necessity of performing all the experiments in an



identical environment, which adds to the flexibility of the factorial

designs. Finney (16) provides the necessary mathematics.

Despite the body of knowledge generated by Fisher and his peers,
workers in fields other than agriculture, and particularly those in

- the chemical industry, did not take advantage of this technology.

Failure on the part of the chemical researcher to exploit these
accomplishments can be attributed to the nature of the two experimental
problems. The agronomist runs his experiments simultaneously; the
chemical researcher runs his sequentially. The agronomist is concerned
most often with qualitative variables and is thus looking for optimum
combinations of variables. The chemical researcher is most often con-
cerned with quantitative variables and thus is looking for optimum
settings of these variables. The agronomist operates in the face of
nature and his ability to reduce his error is limited. He invests
his resources effectively by running redundant experiments. The
chemical researcher creates his own environmeﬁt which is insulated
against nature, so that he spends his resources effectively if he

invests in control.

In 1951, Box and Wilson (17) published a paper in which they
demonstrated that Fisher's designs could be effectively utilized
and serve the specific needs of the chemical worker. They proposed
a sequential approach to the problem of optimization. Using the
method of steepest ascent, they described the appropriate design

strategies for an experimental region which was remote from the



optimum area and then presented another strategy to be used when the
experimental region was in proximity to the optimum. Their basic
strategy was to fit a regression equation to the results of a small
experimental design and then to differentiate the resulting equations
with respect to the variables and thereby find the direction in which
the optimum lay. The experimenter continues to experiment along a line
in the indicated direction until the response falls off. Then a new
design is constructed and the process is repeated until a maximum

is found.

The criterion for the best design for fitting a regression
equation is that the coefficients in the model be separately estimated
with minimum variance. In 1952, Box (18) showed that for models linear
in the variables this criterion is satisfied when thevdesign is so
chosen that each effect may be independently estimated. Designs with
this property are said to be orthogonal. Two level factorials and

their fractional replicates are examples of this class of designs.

In selecting designs to fit polynomials of a higher degree,
Box and Hunter (19) introduced the concept of rotatability. Designs
of this class have the property that the estimated response has a
constant variance at all points which are the same distance from the
center of the design. The designs for fitting second order poly-
nomials consist of a two level factorial augmented with runs at the
center and with two equiradial points outside the factorial for each

of the variables.



10

Although the form of this design is fixed the scale of the
design in the space of the variables and the number of center points
can be varied. Box and Draper (20, 21) have shown how to choose the
values for these two parameters of the design so that the polynomial
best describes the response over a given region of interest, even if
a polynomial of higher degree would describe the surface more

accurately.

In a development which was directed at the chemical experimenter's
needs to experiment sequentially statisticians suggested designs utiliz-
ing small blocks of experiments. Box (22) offered a paper on the
integration of techniques in which he stated his philosophy concern-
ing the growth of knowledge through a continuous iteration between
hypothesis, design, analysis and hypothesis. The concept of running
experiments in small blocks which could be augmented with additional
runs, or supplanted by an entirely new str@tegy, without having

sacrificed too many experiments, was stressed.

In two papers in 1961, Box and Hunter (23, 24) presented the P
designs in which they emphasized designs of Resolution V. These are
fractionated designs which permitted independent estimates of main
effects and two factor interactions. For example, five variables
could be studied with a Resolution V design with 16 runs. DeBaun (25)
also discussed blocking strategies for rotatable designs. The satur-
ated designs of Plackett and Berman (26) utilized a basic block size

3-1

of four. Such designs as the 2 were a great attraction to chemists
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since the confounded interactions could often be interpreted from

either physical relationships or merely by the size of the main

effects. Daniel (27) offered a method for clarifying confounded
interactions by running two experiments in which the effect appeared

at opposite levels of the contrast. Hunter (28) presented a mathe-
matical formula which alloWed clarification of such confounding with

the addition of only a single experiment. This strategy allows the
experimenter to run his basic block and then continue his experimentation

by adding one experiment at a time.

An attempt is made in this dissertation to provide the experimenter
with a design which minimizes his commitment to the number of experiments.
The basic structure of the designs that will be discussed will either be
central composite or rotatable designs, yet the experimenter will be
free to revise his strategy as the results of each experiment become
known. The experimenter will be asked to provide estimates of the
results of indicated experiments which will be used in the analysis
along with experimentally obtained values. Second order response

surfaces will then be fitted.

The experimenter 1s called on to augment the experimental results
with subjective judgment. 1In a review of subjective judgment reported
by Cohen (29), he illustrates sevefal studies which show that the sub-
Jjective judgment of an individual increases as he becomes familiar

with the situation that he is Jjudging.
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Savage (30) states that the analysis of most problems can be
aided by subjective Jjudgment, and that when faced Withjﬁroblems of
uncertainty it is often his only recourse. Dean (31l) states that

Adjustments to allow for uncertainty may be challenged

as nothing more than guesses. Perhaps they are, but

even so they are guesses that must be made and will be

made either explicitly or implicitly.

Hertz (31) in a discussion on risk analysis shows the necessity for
employing subjective probability by pointing to the serious shortcomings
that occur in any economic analysis in which such estimates are omitted.
In discussing estimates of unknown factors, Hertz states that

... the range is relatively easy to estimate; 1f a guess

has to be made -- as it often does -- it is easier to

guess with some accuracy a range rather than a specific

value.... the ranges are directly related to the degree

of confidence that the estimator has in his estimate.

It is the author's contention that subjective probability can
be used in areas of experimentation. The experimenter gains more
knowledge by running experiments and as he does so, his ability to
make accurate estimates will increase and his stated range about those
estimates will decrease. Early discrimination between alternate chemical
routes will rely heavily on both the concepts of experimental design

and of subjective probability.

The background presented here has been general in nature.

Specific detail about techniques utilized in the work are presented

within the body of the text.



Chapter 2

THE VALUE OF THE EXPERIMENT

In any research, process development or process improvement
project, there is a period between the time that the decision to invest
in technical effort has been made, and the time that actual experimenta-
tion begins, when the experimenter attémpts to decide which of several
alternate routes should be investigated and in which order they should
be investigated. The experimenter would hopefully choose that alterna-
tive that would allow him to fill his objective at maximum gain and to

order his work so that the most critical areas are studied first.

The technique is here developed to aid the experimenter in
reaching these decisions. The key to the technique is the recognition
that while it is impossible to compute the process cost accurately
early in a research project, it is usually possible to compute accurate
differential costs. As a result, the possible effect of uncertainties
about raw material costs and utilization, yields, recoveries, labor
utilization and capital requirements on the overall project economics
can be assessed and most important, the assessment can be made before

any experimentation has started.

Several examples can be cited. An experimenter looking at a
particular reaction step in one route believes that the results of
the literature search shows that his yield might be as low as 70% or
as high as 90%. Although he does not know what his ultimate yield

willl be, he certainly can calculate the value of the increase in yield.



14

He may know from experience that he will recover somewhere between
95 and 99% of the solvent, and although he does not know how much he

will actually recover, he can compute the worth of the additional L4%.

Similar questions arise as to labor utilization and capital cost,
but in the present treatment, attentlon is focused only on raw material
costs which d& in fact comprise a large portion of the total

manufacturing cost.

If the differential cost is calculated for all the areas of
uncertainty within each route, the experimenter will know how many
significant economic levers there are inside each route. He can then
use his judgment to decide upon the amount of time that should be
devoted to finding optimum settings of these levers. He can, of
course, introduce his notions of the probability of success into his

general assessment.

Development of Cost Equation

That portion of the raw material cost contributed by the chemicals

which participate stoichiometrically is given by:

n
>_, LYM T Y™ TM i i
iTl b Y P

Where: Mi is the equivalent weight of the participating chemical
M is the molecular weight of the product
Y is the chemical yield of this reaction step

R, 1is the recovery of the particular chemical
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Ci is the cost of the particular chemical
Ei is the ratio of the input level of the participating

chemical to 1ts equivalent weight

Only the values Mi and Mp are constant, whereas the other parameters,

Ri’ Y, Ci and Ei can take on a range of reasonable levels. The term in

E.M, M.
the brackets YlMl - 'ME \ is the difference between the quantity
D i

of material charged per pound of product formed and the amount of that
material that ends up in a pound of product. In an ideal case, this
represents the amount of material available for recovery. However,
most often owing to byproduct formation, something less than this
quantity is available for recovery. Since this is only an estimate,
the uncertainty as to the amount of reactant consumed in byproduct
formation can be expressed by a compensatory adjustment of Ri' If this
is not satisfactory, a more exact equation of the following form can be

used in which the concept of conversion is introduced.

n

= / EM, ] / E,M, ) M, X, \R \:c oo
: XYM - XYM XYM /i, 71
= i"'p i 7p i"p

e

5

Where: Xi is the fraction of reactant which is converted

Y is the fraction of converted material that goes to product

Although expression 2-2 is a more exact representation of the

actual situation, it introduces an additional variable, conversion
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which must also be estimated. It has been found that generally the

simpler expression is preferred.

The cost contributed by solvents, surfactants, catalysts and
buffers can be calculated from the estimates of the ratio of the charge
of these chemicals to that of one of the chemicals participating in

the stoichiometry. Relationship 2-3 is used.

E.U, (1-R.)C. 2-
J l( J) J 3

np~ s

el

Where: Cj is the cost of the particular solvent catalyst or buffer

E., is the ratio of the weight of the particular solvent,
catalyst or buffer to the weight of Reactant 1

Ul is the usage of Reactant 1 calculated from expression 1-1

R. 1s the recovery of the particular chemical

Credit for byproduct formation can be calculated from the

expression:
i
= E
) ( "%ME ) Cy 2-k

Where: Ek is a factor which explains the stoichiometric excess
or deficiency of the byproduct

C,. 1is the credit for the byproduct
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The cost of any intermediate chemical or product can now be
calculated from the summation of expressions 2-1, 2-3, and 2-4 and

this ig given in expression 2-5.

1
YYMOTM O i
D

e}

n
= , E.M EM, M :
i1 /i i\ \
Cost L(Ym‘ R, 'C
4 P

n n

. N

L EJ.Ul(l-RJ.)CJ. -)_J S G 2-5
J=1 k=1 P

These equations can readily be used to calculate the anticipated cost
of any particular settings of the variables Y, C, R, and E. There are
so many areas of the research in which the estimates are not firm, the
effects of changes in the levels of the estimated parameters often must
be considered in combination, and many of the effects are not linear;
so that a graphical output becomes a practical means of assessing the
results. The complexity and tediousness of plotting the cost as func-
tions of the many parameters particularly in multistep proceségs leads
to the necessity of developing a computer routine which will serve the
dual purpose of performing the calculations and plotting the results.
A program that utilizes the equations that have just been presented

is shown in Appendix A. It is a 1620 program written in Fortran II.
The curve plotting routine is shown in Appendix B. This, too, is a
Fortran II program written for the 1620; the plots are completed on
an IBM 870 autoplotter that uses the cards generated from the

1620 program.
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A One-step Process

For a given set of Ci’ Ri and Ei’ expressions 2-1 and 2-3 can be

reduced to the form:

Cost = ?i + K 2-6

Where: Kl and K2 are arbitrary constants associated with those

chemicals that participate stoichiometrically.

The byproduct expression at a fixed value of Ek and Ck is reduced to
a constant. Therefore, at fixed levels of all the R's, C's and E's,
equation 2-5 maintains the general form and can now be represented as
Cost = Q%ﬁ + CAI 2=7
Where: CAS and CAI are arbitrary constants associated with the sum

total of reactants, solvents and byproducts.

The cost is shown to vary linearly with l/Y. Alternatively, once

the values of the constants are established, the cost can then be
calculated for any value of Y and a curve relating cost to yield

could be plotted. If the cost of A is known at two different yields

of A, the costs may be designated CSTAI and CSTA2 and the yields YAL
and YA2. The constants in equation 2-7 can be calculated from equations

2-8 and 2-9.
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CAS

(CSTA2 - CSTAL)/(1/YA2 - 1/YA1) 2-8

CAT

CSTAL - CAS/YAl 2-9

With CAS and CAI established, the lines can now be computed and
plotted for each combination of the E's, C's and R's. The final

cost need merely be known at any two yield levels for each of the

combinations involved.

The difference between the resulting lines measures the economic

effects of changes in these process parameters.

Multistep Process

For a multistep process, the procedure is more complex since the
cost of any successive step depends not only on the conditions of the
particular step, but also on the cost of the chemical produced in the
previous step. The cost of the particular step (Step B) must be
devined not only at some yield level of that step and settings of the
E's, C's and R's but must also be defined in terms of the conditions of

the prior step (Step A). The cost of B is shown in Equation 2-10.

CostB=/ElMl-/ElMi-ﬁ\R Voo
LYM T YM M . 1.1
2 P P

n . . .

B = N - R R TR 2-10
,, T 2

)

o)
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The equation is simplified in that the contribution of solvents and
byproducts is not included; however, the general form of the equation

still applies.

The term to the'left of the plus sign in equation 2-10 refers to
the chemical made in the previous step, while the term to the right of
the plus sign pertains to all the other chemicals introduced in Step B.
By the same logic developed for the one~step process for fixed Ei’ Ri
and Ci’ and in this case at fixed levels of Y, equation 2-11 would result.
BIS

+ BSI) Cost A + 922 + CIT 2-11

BSS

COStB=(Y—B—

Where BSS and BSI are constant for fixed El and Rl’ and BIS and BII

are constants for fixed Ei’ Ri and Ci .

The cost of A is shown as a variable to indicate that it is a
function of the conditions of Step A. Therefore, at a fixed value

of YB, one obtains the straight line relationship 2-12.
Cost B = S1(COSTA) + Il 2-12

where Il and Sl are arbitrary constants calculated at a particular
value for ¥YB. It is now possible to calculate the values of the
constants in 2-12 if the cost of B is known at two different costs of A.

Call the costs of A, CSTAL and CSTA2 and those for B, CSTBlL and CSTB2.
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S1L = (CSTB2 - CSTBL)/(CSTA2 - CSTAL) 2-13

IT1 = [CSTBL - S1(CSTAL)] 2-1kL
Equations 2-13 and 2-1k can be used to solve for the constants in
Equation 2-12. If the costs of B are known for the same two costs
of A at another level of the yield of B, the constants for another

straight line could be calculated.

S2

(CSTB4 - CSTB3)/(CSTA2 - CSTAL) 2-15

I2

CSTB3 - S2(CSTAL) 2-16

The purpose is, of course, to express the cost of B as a
continuous function of the yleld of B, This can now be done by

establishing the relationship between the constants S and I and ¥YB.

Since the cost of B for a fixed cost of A can be expressed as a
linear function of"i/Y, the two constants S and I can be separately

expressed as functions

S = BSS/Y + BSI 2-17
I = BIS/Y + BII 2-18
Where BSS = (82 - S1)/(1/YB2 - 1/YB1)

BIS = (I2 - I1)/(1/¥yB2 - 1/YBl)
BSI = S1 - BSS/YBl
BII = Il - BIS/YBl



22

These values can now be directly substituted in equation 2-11.
Additional steps can be added in similar fashion.

The plot for the cost of a multistep process can be generated from
a knowledge of the cost of the last step at two different yield levels
of that step and two different costs of the intermediate produced in the
previous step. The same information must be available for all of the
previous steps. These results depend on the settings of the Ci's,
Ei's and Ri's and new constants must be used if changes in those settings

are to be evaluated.

The phase of the work can be most useful in determining
experimental priorities and the extent of the research commitment.
When changes in the parameter levels are plotted against cost, the
output regembles a sensitivity analysis, where the approximate slope
of the various lines is a measure of the importance of the particular
parameter (33). There are, however, two major distinctions between
this analysis and a sensitivity analysis.

(1) The sensitivity of the cost to changes of the parameters
is used to establish experimental priority rather than
merely to ﬁndicate the resultant variation in the response.

(2) An attempt is made to force the values of the parameters
toward the high side of the range by experimentation

rather than to try to reduce the range by improved

sampling.
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An illustration of how the graphical cost analysis can be used
is provided by the following example. The equations and curve plotting
routine just described were used to process information supplied by
experimenters at the American Cyanamid Company. The decisions which
were reached by the experimenters are, of course, their own. The
graphical analysis which was developed in this dissertation provided

the basis for those decisions.

An Example

The example comes from a cost reduction program. As in the case
of all the examples, the data will be coded. Two routes, I and II, were
considered. Route I involved a two-step synthesis, both steps of which
were relatively uncomplicated and extensive literature references to
similar reactions allowed the experimenter to make estimates of the
possible range in the yields of the individual steps. In addition to
the uncertainty about the yield, there was uncertainty about the ability
to recover a byproduct and uncertainty as to whether the company could
develop a lower cost process for one of the purchased raw materials.
The cost analysis utilizing the equations just developed is shown in
Figure 2-1. The yleld for the formation of the intermediate product
is shown along the abscissa. The yields for the second reaction are
shown by the dashed and solid lines. There are three lines in each
group -- each one representing a different estimate. The topmost
line‘refers to the use of raw material (T) at its purchased price.
The middle line is based on an estimate that this raw material could

be manufactured internally at a reduced cost. The lowest line is
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based on an assumption that in addition to making T internally,

90 percent of the low cost byproduct could be recovered.

The very earliest experiments resulted in a yileld for the first
step of about 81 percent and.a second-step yield of about 86 percent.
This result is located on the figure by the letter a. At this point
a decision had to be made as to what was the best way to continue

with the research.

Analysis of Figure 2-1 indicated that the preferred strategy was
to try to optimize the yield of the second step as this offered a
potential savings of about 30 cents per pound (a to ¢), while optimiza-
tion of the first step wouldAoﬁLy have been worth 15 cents per pound
(2 to B). This work was in fact successful and yields of better than

95 percent were obtained.

At this point the decision between optimizing Step 1 or
investigating an alternative synthesis of chemical T had to be faced.
Since the potential gain for both choices was compara?}e, the decision
was based on the experimenter's belief that the optimization of Step 1
could be accomplished with a lesser effort. Again he was successful

and yields of 93 percent were realized.

Experimentation through the path E.E.é insured that the critical
areas of the work were investigated sequentially. This was particularly
important since competitive routes were also under consideration,

Failure to increase the yields of the first step would not have been



25

Differential Cost Analysis of a Route

Containing Four Responses of Interest

160
RM Cost
(8/1b)
- Second
140 Step
- Yield (%)
85
120
100 50 %
70
Yield of A (%)
Fig.2-1 |
By-product
T Recovery

(M@ (%)

34 0 =————-

17 0
.1 7 90 LI LY L L DL Ll




26

decisive ingsofar as terminating work on route I, whereas failure to

increase the second step yields up to optimum levels would have been.

Figure 2-2 shows the cost analysis for the competitive route II.
This was also a two-step synthesis, requiring the formation of B and
subsequent reaction of B in the second step. It was expected that some
unreacted B could be recovered. In the figure, the finished raw
material cost is plotted on the coordinate axis and the cost of the
product made in the first step is shown on the abscissa. It is interest-
ing to note that the cost of B rather than the yield of B was the
parameter which was plotted. A separate analysis for the intermediate
step had shown that efficient solvent recovery and utilization of by-
product material was as important as yield; and thus, the cost was a

much more convenient parameter to use.

The experimenter found literature references to two reactions which
were similar to that of the second step -- one reporting a yield of 52
percent and the other a yield of 81 percent. These values are plotted
in the graph. The 67 percent figure shown in the graph is about in the
middle of these two and aids in the interpolation. Similar reasoning
permitted the selection of the 30-75 cent range for the manufacturing
cost of the intermediate and the 50 percent recovery of unreacted B was

the best that the experimenters hoped to obtain.

It is necessary to specify the levels of all the parameters at which
the effects of a single parameter is computed as a result of the

interactions between the variables. An interaction can be recognized



27

easily because of the non-parallelism of lines and can, of course,

have a strong influence on the experimental strategy. One can read

from the graph that the yield increase from 52 to 81 percent would be
worth about 70 cents per pound when the cost of B 1s 30 cents per

pound and it would then be worth better than one dollar when the cost

of B is 75 cents per pound. The reduction in the cost of B from 75 cents
to 30 cents per pound is worth about 4O cents at the 81 percent yield
levél and about 50 cents at the 52 percent yield level. Also, at the

81 percent yield level the recovery is worth only 3 cents per pound;
whereas, at the 52 percent level it could be worth as much as 30 cents

per pound. This point will be referred to again later.

In Figure 2-3 routes I and II are shown side by side on a graph
in which the abscissa for route I is the yield of A as shown before
and that for II is the cost for B as previously shown. The ordinate
is common for both and is the finished product raw material cost in
dollars per pound. Because this graph was available before any experi-
mentation was done, the experimenters were in a position to choose that
route which should receive the major attention and the portions of that
route which should be studied first. Route II appeared to have the
better overall potential and was assigned a higher priority. The high
priority of route II existed only as long as the cost of intermediate
B could be maintained below 60 cents per pound. Early experimentation
showed this not to be the case and work was immediately abandoned and
the emphasis was shifted to route I. Note now, that any effort expended

on recovering the unreacted intermediate would only be of value when
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Differential Cost Analysis of a Route Containing

Three Responses of Interest
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Comparative Analysis of the Two Routes
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the cost of B was high and the yield low. At these conditions
route I would be the route of choice, no matter how successful the
work was.

The graphs provide information as to the value of an experiment
were it to be successful. The remainder of the dissertation treats
the problem of quantitatively defining the probability that the

experiment will be a success.
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Chapter 3

THE PROBABILITY OF SUCCESS

Any attempt to assign a quantitative statement of the
probability of success to the objectives within a chemical route must
begin with the experimenter or experimental team who, through their com-
bined background reading and experience, become the best source of
information regarding the particular synthesis. It is expected that
the experimenter will exercise sound judgment in planning his experiments
and reporting on the status of the project; such judgments include
assessment as to whether the program should continue or should be
terminated which is, in fact, a statement as to the probability of
success. The conviction of the experimenter develops as he analyzes
the accumulated experimental information, but this does not say that -
he is without conviction in the absence of complete data. Rather, he
approaches each experiment with some prior thoughts as to what the
results might be, If not, why did he choose that particular experi-
ment at that particular time? He questions the validity of each
experimental result often using as his frame of reference his prior
thoughts of what the results should have been. Laboratory notebooks
universely attest to his proclivity as experiments are repeated,
not for the purpose of determining the experimental error, but because
the experimental result failed his anticipation, and he is convinced
this represents an error in procedure. This situation can be repre-
sented graphically by Figure 3-1. Figure 3-la is a representation of

_ the anticipated value of the response. There is a most likely value
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Prior Distribution and Sample
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Fig. 3-1a

Fig. 3-1b
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Fig. 3-1c
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to which the highest probability has been assigned. Other values

are less likely Fo occur and the probability falls off on either

side of the most likely value. Two curves are shown in Figure 3-1b.

The broad curve which is repeated from Figure 3-la and the other much
tighter curve which represents the actual experimental result. The
value of highest probability is assigned to the actual experimental
result, but since both analytical and experimental error are recognized,
other values must be admggted and thus the probability distribution
results. In Figure 3-1b there is little conflict between the anti-
cipated and experimental results and the experimental value is accepted.
In Figure 3-lc, the conflict is shown. The experimenter rationalizes
this by either revising his prior estimate of the possible response in
light of the experiment or he modifies his estimate of the experimental
and analytical error. In the latter case, the experiment is often

repeated,

Since the experimenter does have an image of his response, it
would be useful if he would enunciate his views in such a form that
values can be assigned to his subjective probabilities. Many authors
have suggested a series of questions (34, 35) which lead to the eluci-
dation of these distributions. The usual technigue involves equating
a particular result with betting odds. Although many authors have
found this to be satisfactory, the usefulness in this application is
rather limited since so many areas of uncertainty exist that such a

laborious procedure would become unduly burdensome.
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In PERT and CPM analysis (36) estimates of the range and most
likely values have provided sufficient data to make meaningful pre-
dictions of time distributions. In this case, it has been found that
the experimenter could reproducibly state: +the most likely result,
and the highest and lowest values that he would accept before repeating
the experiment. As in PERT no distribution is calculated about the
particular estimate; rather the high and low values are assumed to be
separated by a fixed number of standard deviations. The value that is
assigned to the experimenter's estimate of the upper and lower bound
is equivalent to the 95 percent confidence limits and therefore the

range is assumed to be four standard deviations apart.

The experimenter will provide information that can be used to
establish the variation about the response of a particular experiment;
however, this is not t@e ultimate answer. The experimenter does not
think in terms of a single experiment but rather of a series of experi-
ments by which he moves progressively toward his objective. He does
not despair if a particular experiment falls on the low side of his
expected distribution, but rather this stimulates him to think in
terms of conditions for the next experiment. The probability distri-
bution of a single experimental result is of less concern than the
probability distribution for the eventual result of the entire series
of experiments. To paraphrase, a statement that the yield for a
particular experiment should be between 60 and 95 percent ié of less
interest than a statement placing the eventual result of the total

experimental program somewhere between 85 and 95 percent.
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The fact that the particular experiment fell outside the range
of the eventual expectation is not disturbing, since there are a
large number of experiments that still can be run. However, unless
some strategy is adopted which takes advantage of each experimental
result in the ultimate probability assessment, the desire for "just
one more run" will not be eliminated. That is, the failure of a
particular run to reach the expectation must somehow be related to
the ultimate estimate of the probability of reaching that expectation.
The experimenter can manipulate many variables in an effort to improve
his results. If he believes, for example, that temperature, concen-
tration and pH are such variables and if his last run was at an adjusted
temperature, failure to get improved results says something about the
use of temperature as an appropriate variable and also something about
his ultimate probability of reaching his expected values. If he in
turn finds that neither changes in concentration or pH are effective
in raising his yield, he ig, of course, forced to modify his expecta-
tion of the eventual result. He is free to introduce new variables as
they occur to him but the probability of success becomes more remote

as the efficacy of each variable is disproved.

What is needed, then, is not a probability statement about the
eventual results of a series of experiments, but estimates of the
effect on each of the variables to be included in the study on the
process regponse, It is known that the response can be fitted by an

expression which is linear in the coefficients of the following form:
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.b x2 + b x 3-1

Y="50b, + blxl + b2x2 . b12x1X2 R ST an¥n
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It is required that the experimenter
(1) describe the process variables that are important,
(2) indicate the range of levels for these variables
over which he plans to experiment, and
(3) estimate in advance the effects of the variation

in these levels.

It is not unusual that the experimenter will provide information
about the variables and ranges of operation. This is the usual
procedure in setting up an experimental design. Andersen (37) in
a review of the subject references several such-applications. It is
unusual to expect the experimenter to predict the effects in advance
of the experimentation but it should be noted that good design strategy
requires estimates as to the size of the expected effects, the linearity
of the expected effects and indication of those variables which may

possibly interact (38).

The experimenter cannot be expected to be able to estimate the
most likely value for the coefficients in equation 3-1, yet he is
capable of providing estimates of experimental results at various levels
of the variables. If the combination of conditions at which the experi-
menter is asked to make these estimates are well chosen, the coefficients
can be calculated from these values. The experimenter is being asked
to set up an experimental design and estimate the results of the

experiments in advance of their being run. Figure 3-2 shows a central
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composite design for three variables. The estimated results are
indicated at the design points. Estimates of the range about the most
likely value is included in Table 3-1. The three variables: temperature,
concentration and mole ratio were varied over the coded ranges. The
standard coding of using a plus for the high level of the variable and

a minus for the low level of the variable is shown. Hinchon (34) and
Harrington (4O) use this technique and report correspondence between

the estimated and experimentally obtained results.

The estimates of the range about the most likely value is used to
determine the variance about each point. The variance is used to appro-
priately weight the contribution of each of the points in the determination
of the coefficients in a regression equation. This is the key to enabling

the experimenter to combine estimated results with experimental results.
For each v; in Table 3-1, an equation in the form of 3-2 can
be written.

o °
=b_ + + . ... + -
¥; = bg *byxy +box, by % %5 bygXy) * b Xy 3-2

This series of equations can be represented in matrix form by
Y = XB 3-3

Where: Y is an (n by 1) vector
X is an (n by m) matrix

B is a (1 by m) vector
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Central Composite Design for Three Variables
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Table 3-1

Matrix Representaﬂion of Estimated Yield

Current Mole Estimated
Temperature Ratio Ratio Yield
No. (xl')' ' (x2)' ‘ '(x'3') Y
1 - - - 20
2 + - - 95
3 - + - 91
)_,_ + + - 96
5 - - + 93
6 + - + 99
7 - + + ol
8 + + 99
9 0 0 96
10 -1.h 0 0 91
11 1.4 0 0 98
12 0 -1l.k 0 95
13 0 1.k 0 97
1k 0 0 -1.4 ol
15 0 0 1.4 96
Example of Coding
Temperature
ok
90
80
T0
66

Yield

80-96
94-98
82-96
95-98
89-97
98-99
91-97
98-99
92-96
83-95
97-98
90-96
9k-97
85-96
96-98

Code

39

Estimated
Range of
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m is the number of coefficients in the model

n is the number of experimental runs

The maximum likelihood estimates (41) of B which is in fact equivalent

in this case to the least squares estimates is calculated from equation

B=[xx 1t xTy 3-4

In the case when estimated values are being considered, it is unlikely
that the variance about each experimental point would be equal. In
such case greater reliance should be placed on those values which are
known with higher confidence. Weighting the estimates in proportion
to the confidence is accomplished by creating the diagonal (n by n)
weighting matrix V (42) where the diagonal elements are the variances

associated with each of the estimated points.

B can now be calculated from Equation 3-5.

B=[xvx 1t xvly 3-5

The diagonal elements of the V matrix based on the ranges shown
in Table 3-1 are:

16, 1, 12.25, .56, 4, .63, 2.25, .63, 1, 9, 1, 2.25, .56, 1h.6, 25.

The greatest variance is assoclated with the estimate of
experiment one. Since the V matrix is inverted, this point carries

the least weight in the estimates of the coefficients.

o
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The mechanism has now been developed by which a prediction
equation for a particular response can be calculated in advance of ex-
perimentation. Either partial differentiation or direct search tech-

niques can now be used to find those xi's that optimize the response.

The variance estimate about the optimum value can be calculated

from Equation 3-6.
Var = x* [ X7 % 17wt 3-6

where X* is a (1 by m) column vector each element corresponding
sequentially to the linear, interactive and quadratic terms in the

prediction model, and locates the optimum condition.

This procedure can, of course, be applied at any stage of the
experimental program. As data are accumulated, the ability of the ex-
perimenter to assess the response from experiments yet to be run increases,
or said another way, his ignorance about the experiment decreases as he
looks at more and more data. His ignorance about any of the points that
were actually run is reduced to that of the experimental and analytical

error.

The design strategy should now be clear. Experiments will be
run only when necessary. The estimates of the remaining experiments
will be incorporated in the calculation of the regression coefficients.
The estimated values and the experimental values are treated
identically. If the response of interest is yield,—the regression

equation can be directly substituted into eguation 2-5. The levels

of the Xﬁ's that minimize the cost can then be computed. The
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variation in Y at these particular xi's can be calculated from
Equation 3-6. A probability distribution about the minimum cost due
to a variation in Y can be estimated through a Monte Carlo stimulation
employing Equation 2-5. The spread in this distribution is a measure
of how well the minimum cost is known. This spread can be reduced by
replacing estimates with observations obtained from experimental runs.
The best knowledge is derived from an experimentally obtained value
but additional runs need only be made when better discriminating

power is required.

Figure 3-3 is useful in describing what is meant by discriminating
power, In Figure 3-3a two processes are shown in which very little is
known about the cost. One might be reluctant to select a route on the
basis of this information. The probability cost functions can be des-
cribed as having poor discriminating power. 1In Figure 3-3b the same
two processes are shown but here, since several experiments have been
run, the probability cost distributions are now better known. One
process is clearly favored. These probablility cost distributions

can be said to have strong discriminating power.

The strategy employed in this paper is based on the use of
fractional blocks of central composite designs. The following departure
from classical use of design theory is made: a response _for each of the
design point is always included in the determination of the coeffi-
cients for a full second-order regression equation. Thus, as the
experimentation proceeds through the fractions of the design, the prior
information coupled with the observed responses always provides

estimates of all the coefficients.



43

Probability-Cost Distributions for Competing Alternates

Probability

Fig. 3-3a

. Cost
Fig. 3-3b
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Such an approach allows the experimenter to employ designed
experiments much earlier in the development than heretofore possible.
Even though he is trying to fit the surface with a second order poly-
nomial, the commitment on the part of the experimenter to a large
number of experiments is minimized. If the sample of experiments that
have been run, in conjunction with the modified estimates of the other
design points, indicate that a route is unprofitable, the route is
abandoned at that point. Further, this approach cén allow the experi-
menter to study wider ranges in the levels of his variables. (The
strategy employed here was that of setting the star points of the design

at levels close to the natural constraints of the problem.)

The desired result is a continuous decrease in the variance about
the optimum point with the addition of each experiment resulting in an
increase in the discriminating power of the model. This is not always
the case as the variance which is calculated from Equation 3-6 is
based on both the location vector X*T and the weighting matrix V.

It has been shown that V will continually get smaller as experimental
values replace the estimated values and the experimenter's confidence
grows. However, should the initial estimate be in grave error, the
location vector X*T will move. The most troublesome case occurs
when X¥ moves drastically away from the center of the design. This
effect may be sufficient to overwhelm the decrease in V, resulting in
a diverging rather than a converging confidence interval about the
minimum cost. The discriminating power of the model will therefore

decrease.
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Under these circumstances it would appear that the experimental
design region should be shifted to encompass the new location of the
X¥* vector. The regression equation would then contain correlated
estimates of the coefficients. This condition can be redressed by
throwing away some of the original postulated results (or even all of
them if the shift in space is very large). Even in this situation,
the regions of uncertainty will be somewhat better than they would
have been in the original location since the observed results from the
original design, which may or may not be discarded, continue to give
the experimenter greater confidence in guessing responses in the new
region. The strategy, therefore, continues to be effective; the
original experiments indicated to the experimenter that his original
design was poorly placed and that the experimentation could best be

performed in some other region of the factor space.

Another difficulty that this problem seems to present is that
of discriminating between routes when the discriminating power has
been overestimated. This will occur when the experimenter erroneously
predicts an optimum near the center of the design, or predicts the
experimental results to fall within an unrealistically narrow region.
Such predictions would lead to an underestimate of X* and V both of
which would contribute to unduly narrow cost distributions.
Certainly, whenever the experimenter believes that the information -
provided by the design is sufficient to enable him to select a route,
the route should be checked by running experiments at the anticipated

optimum.



Consideration must also be given to the failure of the regression
equation to adequately represent the surface given by the predicted
and experimental values. The residual sum of squares or lack of fit

can be calculated from Equation 3-7.

Residual Sum of Squares = YV 'Y - BIXVY 3-7

When the predominant portion of the design is filled by estimated
responses, these values supply the largest source of variance, which'
is calculated using the variance covariance matrix XTV-lX . As more
experiments are added, the variance calculated from XTV-lX is reduced
while the residual sum of squares may or may not change. Replacing
estimated points with experimental values will increase the ability
to detect lack of fit. If better models prove to be needed,
transformations of the independent variable given by Box and
Tidwell (43) or of the dependent variable given by Box and Cox (Lk)
should be considered. The strategy of establishing a new design in

the region of the expected optimum should also be useful.

It is, however, anticipated that discrimination between alternate
routes can be made without it becoming necessary to reduce the lack of

fit. BSuch was the case in the example which is presented in Chapter 5.



Chapter 4

FINDING THE OPTIMUM VALUE

In the previous chapter, a method for associating an individual
response objective with levels of probability was described and an

overall experimental strategy was discussed.

The response of ultimate concern is the process cost. This
chapter is devoted to the development of a method for utilizing the
probability information concerning the many individuval areas of

experimentation, to compute a measure of the cost potential.

This problem was resolved by taking advantage of existing techniques.
The method of direct search was used to determine which experimental con-
ditions would lead to a minimum cost and a Monte Carlo simulation was

employed to obtain a probability distribution about that cost.

In the second chapter an equation was presented which could be used
to calculate the cost of any particular step. This was Equation 2-5.
It was important in Chapter 2 to point out that the values ¥, E, R,
and C were not fixed and could be varied over wide ranges. In this
section, estimating procedures for ¥, E, R and C are discussed.
Chapter 3 described a method.for determining a response. This is
of particular value in the determination of the chemical yield, Y,
which is usually the variable of greatest concern in the experimental
program. It was shown that the objective response, Y, could be

related through a quadratic regression equation to the several



process variables. Y could then be replaced in Equation 2-5 with

the appropriate regression equation.

The E's were previously described as the ratios of the
stoichiometric excesses of one chemical over another in the synthesis.
If this ratio was important to the chemical yield, it should appear as
one of the process variables, presumably as a concentration term and
thus for every E which has a value greater than 1, there should exist
an x in the regression equation and the E and the x must be

functionally related.

As an example, consider the case where the experimenter wants to
study the effect of a stoichiometric ratio of one raw material to
the base raw material over the range of 1 to 9. If he chooses to
investigate these at the coded levels of -2, -1, 0, 1 and 2, the appro-
priate coding for x would be (E-S)/é = x, so0 that E could always be
expressed as a function of the midrange and the range. A more general

expression is shown in Equation 4-2.
E=rx +mnm h-2

Where: m 1is the midrange
r 1s the analytical difference in the uncoded levels

at the settings -1 and 1.

The maximization of Y does not necessarily correspond to a minimization

of cost, since the raw material charges must be considered.
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In the previous section it was indicated that the settings of
the xi's that maximize the yields could be found by partial differ-
entiation of the regression equation. The problem of cost minimization
cannot be so readily resolved since the regression equation appears in
the denominator of the cost eguation and some of the xi's also appear
in the numerator. The method for finding the settings of the xi's
that minimize cost will be discussed later in this chapter. It will
now be congidered that such a method is available and the value of

the xi‘s that minimize the cost are known.

Several techniques for representing the values R's (the recovery
of the unreacted chemicals or the recovery of solvents) are possible.
They, too, can be described by regression equations if the experi-
menter feels that the recovery will vary with the settings of the process
variables. Development would be similar to that shown for the yield,
and it should be noted that an entirely different set of variables from

those that affect the yield may be involved.

In the case of solvents, the recovery is equal to the difference
between the input and the loss and can often be related to the physical
laws which involve such variables as temperature, pressure and
concentration. Explicit expressions for the loss in these variables

can be substituted for the value of R.

Finally, the recovery of solvents is often known from experience
to vary within narrow limits and a normal probability distribution can

be fitted between the outer extremes of the most likely value of the
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distribution. This is the approach that will be used in the examples

included at the end of this dissertation.

The C's are the response for a one-step process and become the
input for subsequent steps in a multistep process. In the latter
event, the form of the input of the C's is identical to the output

for the preceding step.

The basis for the calculation of the cost distribution is
Equation 2-5. It is here assumed that the following information is
available. The setting of the x's which provide the optimum values
for ¥, Y is distributed normally with an optimum value Y, and vari-

0
ance about Yo calculated from Equation 3-6. The E's are replaced by
a function containing xi's at known levels. The R's are distributed
normally with an expected value RE and a variance calculated from

estimates of the extreme values. The costs for all the input raw

materials are known exactly.

The calculation of the cost distribution for such a situation
is given by Mood (45). This method involves partial differentiation
of the cost equation with respect to Y and R, which assumes that Y and
R are distributed normally. In a one-step process this is the case.
However, a method 1s required that will handle all cases and once the
number of steps in a process is greater than 1, a new variable of
cost, C, 1s introduced. There is no guarantee that this variable

will also be normally distributed.
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Monte Carlo Simulation

Quigley and Hess (U46) describe an approach for calculating
the distribution of variables which are dependent on a complicated
function of non-normally distributed independent variables. Their

approach utilizes the Monte Carlo technique and i1s applicable here.

The Monte Carlo technique is a sampling procedure whereby
complicated expressions involving combinations of probability distri-
butions may be evaluated. The only requirement is that the probability
distribution is known and can be represented numerically. A bibliography
of the Monte Carlo methods is given by Meyer (47). The distribution
about the estimated parameter is developed by taking repeated samples
at random from the known populations of the independent variables.

The distribution of results comes closer to approximating the true

distribution as the sample size is increased.

Since a large number of samples is required, a computer is suited
for this application. Random sampling from a distribution is best
done by either selecting numbers from a random number table or by
internally generating such a series of random digits. The use of
random numbers is so extensive that most computers have random number
generating routines, which become available by calling for a random

number subroutine.

The method used in this dissertation is.an IBM library program (48)
which uses the power residue method. A three digit number is entered

to start the sequence. The three digit number multiplies a ten digit
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prime number. The ten low order digits of this product make up the
random number. This random number is in turn multiplied by the prime
number to generate the next random number. The process is repeated
until the required numbers are obtained. The random numbers so chosen
can now be assigned to fit the characteristics of any particular
distribution. For example, if 10 percent of a distribution has a
particular value, the digits 00000000-09999999 can be assigned to

that value.

The distribution of interest can always be expressed in terms
of a cumulative probability distribution. Such a distribution is
shown in Figure 4-1. The ordinate runs from O to 1. The random number
is used to enter the cumulative probability distribution from the
ordinant. In the figure, the selection of the random digit is 55000000
which is located at .55 on the ordinate axis results in a value of

$.0965 per pound being selected from the cost distribution.

In cases when the selection is from a normal distribution, the
approach is facilitated by recognizing that for a rectangular distri-
bution with limits of O to 1, the mean and variance are .5 and L/l2.
The sum of 12 such random numbers would have an expected value of 6
and a standard deviation of 1. The statistic shown in Equation 4-1

is approximately normally distributed with mean 0 and variance 1.
12
) RN, - 12(.5)
S

S

N1z (/N 12)
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Use of Cumulative Distribution in Monte Carlo Simulation
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Where: RNi is a random number from a rectangular distribution.

Normally distributed random numbers are calculated from L-2:

These normally distributed random numbers can be transformed

to the range of interest by Equation 4-3.
RT. =M + sR, 4.3
i i

Where: M 1is the mean of the parent distribution

s 1s the standard deviation of the parent distribution

The program used here is written for the IBM 1620 and is shown in
Appendix C. The rapld convergence toward the actual shape of the dis-
tribution is shown in Figure 4-3 where a cumulative cost distribution
is drawn after 100, 500 and 5,000 random selections. The curves for
the latter two samples are superimposed. In all other cases calculated
in this dissertation, a selection of 500 was used. Figure L4-3 is the
probability cost distribution calculated for one of the examples

in Chapter 5.

The skewed characteristic results from the necessity of trun-
cating the variable Y against the upper bound of 100%. An optimum
value for Y of 96.5 was calculated with a confidence interval of +5.7.

All values calculated from the random sample that led to values of Y
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*Effect of Increasing the Sample Size in Monte Carlo Simulation
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greater than 100 are set equal to 100. The shape of this cost distri-
bution now becomes the input for the next step. The non-normality of
this distribution necessitated the use of the Monte Carlo approach in

calculating distributions about all subsequent costs.

Direct Search

Direct search is a sophisticated trial and error technigue that
has been applied successfully to many‘problems that have defied solution
by classical methods. It often provides faster solutions for many
problems that are solvable by classical methods. The technique credited
to Hooke and Jeeves (49) has been extensively modified by Wood (50, 51).
It has now reached the point where it is the method of choice for find-
ing the optimum solution for complicated functions subjected to several

constraints. Wilde (52) offers a critique of the method.

The problem of finding the levels for the variables that minimize
the cost is ideally suited for this technique. The strategy is
described in the simplified flow diagram shown in Figure U4-3.

The operations that are marked in the boxes on the flow diagram are:

Initialization - Levels of the variables Xl are selected
randomly and tested to see if they fall within their allowable range.
If so, the value of the function is then computed.

Type I search - A search is performed by moving one variable at
a time by a fixed step size in the direction which produces a reduction
in the values of the function. The variables are moved sequentially.
If, after moving all of the variables, a reduction in the value of

the function has not been obtained, the step size used is reduced
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to the next lowest level and the procedure is repeated. One continues
this way until the smallest acceptable step size producing no further
reduction is found. Successful reduction in the value of the function
resulting from a Type I search initiates the start of a pattern move.

Pattern move - All of the variables are moved in the direction
and by the same incremental amount that produced reduction in the
function when they were individually manipulated during the Type I
search. A Type II search immediately follows the Type I search.

Type II search - The Type II search is essentially identical to
the Type I search, the only difference being that the value of the
function after the pattern move is not computed. Comparison is
always made to the best point that was obtained by the Type I
search which led to the pattern move.

Closure test - The size of the charge in the variables is compared
to a minimum step size. The procedure is successfully terminated when
after failing to achieve an improvement by a Type I search it is found

that the step size used was at the minimum.

In the problem of interest, the calculated values such as yield
and recovery must be constrained to values below 100%. If Y is given

as a function

Y = F(b,
1

’Xi) L-L

The constraint can be handled by creating a slack variable Xn+l

and we can then write Equation 4-5
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CONST = Y - Xn+l

Now agreement with the constraint is insured by trying to minimize

not the cost but a value -- call it SN, which is given by Equation L4-6
SN = COST + P(CONST)Z 4-6

Here P is the number called by Wood a penalty function which multiplies
the constraint squared. Thus a mechanism is provided which drives the
solution away from an area in which the constraint is violated. The

process is continually repeated until the constraint vanishes within

some preset limit.

The routines upon which the optimization program operates are

shown in Appendix D. The program when run on an IBM 7070 converges

within 3 minutes.-



Chapter 5

APPLICATION TO AN ACTUAL PROBLEM

An actual situation was selected to test the theories and
procedures developed in the earlier chapters. It was agreed to by
the Amgrican Cyanamid Company that they would use the techniques on a
problem of route discrimination. The experimental work and the estimates
of the anticipated results from that work was provided by scientists at
the American Cyanamid Company. The experimental strategy employed was
that described in Chapter 3. The analysis was based on the work

presented in Chapters 2-4.

Since the experimentation and program development occurred
simultaneously, it was not possible to perform all of the necessary
mathematical calculations prior to the initiation of each block of
experiments. Rather an experimental design was selected and the experi-
ments were run sequentially with the estimates provided prior to the
inception of each new block of runs. A decision to modify the design
if it had to be made would have been based primarily on the observed
differences between the anticipated and the actual results. In the
two reactions which were studied, a change in strategy was not dictated
since the results reinforced rather than contradicted the experimenter's

prior knowledge.

When the programs were completed it was then possible to treat
the data appropriately and to determine just how much experimentation
was truly required to discriminate between the alternative routes

involved.



61

It was agreed that in the absence of experience with the
technique the test cases should be uncomplicated and the effects of
only important variables were to be investigated. The variable time,
usually affects the process economics by influencing the size and cost
of equipment. Only raw material costs were considered in this example.
Time was therefore not included as a variable in the central composite
design but rather provisions were made either to sample in time until
the maximum yield was obtained or to sample at the appropriate time

when this could be determined by visual observation.

Background

The test problem involved the selection of a new synthesis
route for a high volume organic chemical. The standard process
involved a two-step synthesis with a purification step intermediate
between the two reactions. The purification was not specific for the
elimination of the impurity and as a result some product was lost.
A yield was therefore associated with the purification step. It was
discovered that a change in one of the chemicals involved in the
purification would not only inhibit product loss but would also

enhance the yield of the subsequent step.

Before undertaking this work, an intensive study was made of
other alternatives. One which seemed particularly attractive in-
volved a catalytic reaction of the unpurified product resulting from
the first step. With this single step both reaction and purification

could be completed.



The three alternatives are given below

Present Route

A+B+C - ID
ID + N > PD
PD + Z > B

Where: A, B, C are the reactants in Step 1
ID is the impure product from Step 1
N is the chemical used for purifying ID
PD is the pure product from Step 1
Z is the Step 2 reactant

E is the final product

Alternate Route T

A+B+C > ID
ID + @ » PD
PD + Z » E

Where: Q is the new chemical used in the purification.

Alternate Route II

A+B+C » ID

ID + R E

Where: R is a chemical which selectively reacts with pure D.

62
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Since the first step is common to all three routes, the resulting
product from this step can be treated as a purchased chemical of known
cost. Alternate I then becomes a two-step synthesis and Alternate IT
a one-step synthesis. The cost for the present route is, of course,
known and provides a stationary bench mark against which the other

results must be measured.

Alternate Route I

The graphical analysis discussed in Section I was performed and
is shown in Figure 5-1. Three areas of uncertainty were noted. They
were the yield of the purification step; the yield of the subsequent
reaction and the amount of chemical Z. The effect of increasing the
purification yield from 94 to 100 percent is determined from the differ-
ences between lines one and two and also the difference between lines
three and four. Each one percent increase in yield is worth between
.2 and .3 of a cent per pound. An increase in the yield of the second
step which is shown along the abscissa is worth about .15 cent per pound.
The effect of doubling the usage of Z from the minimum ratio of 1 is
established from the differences between lines one and three and two
and four. The twofold increase in the usage costs about .7 of a cent
per pound. It was realized at this time that the nature of the experi-
ment was such that the amount of Z could never be accurately determined
and would vary with the type of equipment that was used. The usage
could, however, be estimated. This left two areas for study; the

yield of the extraction and the yield of the subsequent step.
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Since this process was a modification of an existing plant process,
experience existed concerning the possible effects of the variables.
Three variables were chosen for the investigation: temperature (Xl),
concentration or amount of water (X2) and the ratio of Q to ID (X3).
The method of purification was essentially an extraction of the pure
material from a residual tar cake. The longer the extraction period
the greater would be the total amount of product extracted; however,
at these extended periods, the dissolution of gsome of the impurity
would also take place. Since this could be visually observed by a
change in the color of solution from clear to yellow, time was not
included as a variable but the experiments were run until the appear-
ance of the slight yellow color. Dr. H. Grethlein who ran the experiments
also made the prior estimates. Dr. G. Goulandris, who was familiar with
the work, provided another independent set of estimates. A central
composite design was selected to study the response surface. The
design is shown in Table 5-1 together with the estimates of both
Grethlein and Goulandris. Grethlein, who was more familiar with the
problem, indicated this better understanding by'selecting relatively
narrow ranges about the estimates. Although Goulandris could not
indicate such conviction and was in general more pessimistic about
the results, both experimenters believed that about a 99% yield could
be obtained and that this would most likely result when both Xl and X3
were at their high levels (lines 6 and 8). In fact, both experimenters
believed that Xl and X, would exert strong positive effects and

3

discounted X2 as being important in the range studied. This thinking

was corroborated by the experimental results which were eventually



TABLE 5-1

Original Estimates

Alternate Route I, Step 1

66

Grethlein Goulandris
Conditions Most Most
Line Xl X2 X3 Likely Range Likely Range Actual

1 - - - 90 80-96 60 Lho- 70 8k.29
2 + - - 95 94-98 75  65- 85 97.50
3 - + - 91 82-96 60 45- 70  85.53
L + + - 96 95-98 80 65- 85 99.Lo
5 - -+ 93 89-97 80  60- 85 97.h9
6 + - + 99 98-99 99 95-100  98.53
7 - + + ok 91-97 8o 60- 90  9k.2k
8 + + + 9 89-99 99 95-100  99.15
9 0 0 0 96 92-96 95 85-100 98.32
10 -1.4 o o 91 83-95 Lo 20- 70

11 1.4 o 0 98 97-98 98 80-100

12 0 -1.4h o 95 90-96 95 70-100

13 o 1.4 o 97 94-97 95 70-100

1l 0 0 -l.h ok 85-96 95 70-100

15 0 o 1.k 96 96-98 98 80-100
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obtained. Grethlein did a much better job of estimating the true
values but it should be recalled that he had had more experience
with the particular route, and further, although Goulandris did a
poorer job of estimating, he so indicated this by providing estimates

with wide ranges.

Some of the experimental values fell outside of the ranges given
by the experimenters but in the region where the yield was maximized,

concurrence between the expected and the experimental results was found.

In Table 5-2, three columns of estimates are given; those prior
to any experimentation, those after running the center point and a
half replicate of the design and again after running the full factorial.
The actual experimental results are included in the table and these are

always indicated by the dash given uunder the range.

In general, these estimates which were given by Grethlein showed
remarkable stability. The only major modification to the estimates
was made for lines 14 and 15 where the strong positive effect of X3

was initially underrated.

It is interesting to note how the experimenter's confidence in
his knowledge increased as more experiments were added. The variances
calculated from the ranges are given in lines 16 and 17. Three vari-

ances are shown: & % , which is a pooled average of the center points

and all the points of the face of the cube, & iI

average of all the points which extend beyond the face of the cube,

which is a pooled

called star points, and & E , the estimated experimental error.
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TABLE 5-2a

Modification of Estimates with Experimentation

No Expt. 5 Expts. 9 Expts.
Most Most Most

Line Xl X2 X3 Likely BRange Likely Range Likely Range

1 - - - 90 80-96 91 83- 92 8h4.29 -

2 + - - 95 9498 97.50 - 97.50 -

3 - + - o1 82-96 85.53 - 85.53

L o - %  95-98 95 93- 98 99.k0 -

5 - - + 93 89-97 97.k9 - 97.49 -

6 - 99  98-99 99.5 98-100 98.53 -

7 - + - ok 91-97 95 93- 97 9h.2h -

8 + + + 99 98-99  99.15 - 99.15 -

9 0 0 0 96 92-96 98.32 - 98.32 -

10 -1.h o 0 oL 83-95 88 85- 95 93 90- 97
11 1.4h o 0 98 97-98 99.5 98-100 99.5 98-100
12 0 -1.k o 95  90-96 9% 93- 98 98 97- 99
13 0 1Lk o 97 9k-97 97 - 99 98 97- 99
1k 0 0 -1.4 ol 85-96 91 85- 95 90 88- 9L
15 0 0 1.4 96 96-98 99.5 98-100 99 98-100

TABLE 5-2b
Variances

Line Source No Expts. 5 Expts. 9 Expts.
16 & ° 4.1 1.7 .

17 e 2 3.3 3.3 7
18 82 .25 .25

E
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In other work, it was found that E;i is generally lower than & iI .
In this case the experimenter felt less certain about the results from
experiments in which both Xl and Xé were simultaneously set at the low
level (lines 1 and 3) than at the star points where the effect of only

a single variable had to be assessed.

After five runs the new value for & i was 1.7 and that for & iI
was 3.3 which is a change in the expected direction. The four runs at
the corners of the cube provided sufficient information about the
corner points to allow some contraction in the range of the estimates.
After 9 runs, & iI is also reduced in this case to a value of 0.7.
Table 5-3 indicates the excellent correspondence between the initial
and final estimates. The direction and magnitude of the linear
coefficients were estimates extremely well. The slight changes in the

optimum settings of the variables and the imperceptible changes in

cost reflect the stability of the system.

Figure 5-2 shows the probability cost distributions for the first
step of this route. These freguency distributions will serve as input
for the next step. The improvement in knowledge resulting from addi-
tional experimentation is reflected by the reduction in the range of
these cost distributions. The figures are based on 500 Monte Carlo
selections. The data and all other similar data are presented in

Appendix E; the curves shown are smoothed by eye.



TABLE 5-3

Coefficients

No. Expt. 6 Expts. 9 Expts.
B, 95.97 98. 25 98.31
By 2.51 2.98 4.10
B, 0.58 -0.01 0.06
B3 1.39 2.82 2.84
By, -0.02 0.62 0.57
313 0.34 -1.40 -2.64
323 -0.05 0.k -0.72
Byq -0.02 -1.40 -1.93
B,y 0.08 -0.74 -0.15
333 -0.08 -1.1k -1.72

Optimum Variable Setting
X 1.38 1.ko 1.40
X, 1.06 0.97 0.67
X3 -0.01 0.12 0.40
Yield 100% 100% 100%

Cost 0.08845 0.08852 0.08854
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Frequency-Cost Distribution - Route I, Step 1
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The Second Step - Alternate T

The second process step involved the reaction of the purified
intermediate with the chemical reagent Z to produce the final product.
The medium in which the reaction takes place now contained Q rather
than N. A single experiment was run in the new medium at what were
the optimum variable settings for the standard process. A yield of
96% was obtained. Since a good understanding of the factor space was
available from the experience with the standard process, fairly tight
estimates of the points in a designated experiment were obtained.
Experience had shown that the only two variables of importance were
pH and temperature., Table 5-4 lists the estimated guesses based on

a single run at the center of that design.

As neither of the variables contributed to the cost in any way
other than through their influence on yield, the regression model
calculated from these estimates could in this case be differentiated

to establish the minimum step cost.

One other area of uncertainty involved the utilization of Z, a gas.
It was anticipated that the usage of this chemical could be reduced by
better design. The vagaries of scale-up were such that there was
reluctance to state the usage with any more certainty than that it
should be no greater than the present stoichiometric excess of 1.5

and certainly not much lower than a ratio of 1.1.
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TABLE 5-L4

Estimates of Alternate Route I, Step 2

(After a Run at the Anticipated Optimum)

Most
Xl X Likely

- - 90
+ - 93
80
85
96
-1.h 70
1.k 75
0 -1.4 9L
0 1.4 88

(@]
o O O + +

Range

87-95
91-97
76-8L4
81-88
66-75
70-81
90-97
85-93
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The three areas of uncertainty that existed in this route are
defined below:

(1) The yield of the purification step for which the
estimates in Table 5-1 were made.

(2) The yield of the final step for which a single run
had been made, which is included with the estimates
in Table 5-U4.

(3) Variation in the utilization of Z which was expected

not to be lower than 1.1 nor greater than 1.5.

The cost distribution calculated from these data and those for
the purification step are given in Figure 5-3. Three curves are shown;
they represent the case where only a single run was pérformed on Step 2,
the case when five runs of Step 1 were added and the case where nine
runs of Step 1 were added. The gain in information is seen to be
small. The data for these distributions were also obtained from a

Monte Carlo sample of 500.

The distributions are graphic evidence that experimentation
added little to the existing knowledge and that one or two experiments
were all that were necessary to define the situation. This should not
have been entirely unexpected. The route was similar to the present
route and the excellent information available concerning the present
route could and was translated through the experimenter's estimates

of the experimental results.
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Alternate ITI

This route represented a completely new approach to the
synthesis of E. ID was taken up in a solvent where in the presence
of a catalyst a selective reaction took place between'D and Z leaving
the impurities behind in the mother liquor. Several experiments were
run in which different classes of solvents and catalysts were tried.
This work which involved solvents and catalysts that were tooiexpensive
to be considered in a commercialization of the process provided the basic
information which led to the selection of a low cost solvent catalyst
gystem and provided a basis for the estimates of the response surface
when the lowér priced catalyst solvent system was used. The experimental
work was carried out by Dr. H. Merlin and the author. Both men partici-
pated in the planning and running of the experiment, but so as not to
bias the purpose of this paper, Dr. Merlin alone provided the estimates

of the results.

The graphical analysis shown in Figure 5-L4 indicated three areas

of concernj; the yield, solvent usage, and catalyst usage.

The large contribution that the solvent adds to the cost 1s
apparent from the figure. The usage is affected by both the initial
charge and eventual recovery. The effect on cost of a reduction in the
ratio of solvent to ID of from ten to five can be computed from the
difference between lines one and two. Complete elimination of the
solvent cost 1s shown on line three where 100 percent recovery

was assumed.
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Conversely, the contribution of the catalyst to the cost is

small as indicated by the difference between lines three and four.

A one percent increase in yield is worth from .05 to .2 cent

per pound, depending upon the yield level and solvént requirements.

As the solvent and catalyst usages were in part affected by the
level required to provide adequate yields, an experimental program,
investigating the effect of the important variables on yield, was
in order. It was expected that for a particular solvent catalyst system,
four variables would be important: temperature (Xl), ratio of solvent to
reactant (X2), ratio of catalyst to reactant (X3) and time which was
studied by withdrawing samples from the reactor at wvarious intervals.

The response of interest was the maximum yield.

A central composite design was chosen as the basis for the
experimental program. The limits of temperature were set by natural
constraints as was the lower level of the solvent. The upper level for
solvent and catalyst were, of course, limited by economics. An upper

bound was selected which set reasonable limits on the concentrations.

Merlin's estimates are shown in Table 5-5. Despite the initially

P) 2
7 and & 17

for the two routes, his only poor estimates were for Experiments 2,

wide ranges suggested, as shown by a comparison of &

3 and 9. As the experimentation progressed, the expected reduction
in & i and & iI occurred. After six runs, good estimates for
Runs 2 and 3 were obtained. Since Experiment 9 was the center point

and was run first, this estimate could never be corrected.
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The coefficients which are given in Table 5-6 show that the
original estimates of large positive temperature and solvent effects
prevailed as runs were added, but the estimate of the catalyst effect
was revised downward. These coefficients will allow estimates of the
optimum yield and indicate the appropriate settings for the initial
catalyst and solvent charge. This, however, will not completely define
the usages of these two chemicals since both can be recovered. It is
expected that the solvent can be recovered through distillation.
Engineers, experienced in building recovery systems for this particular
solvent, suggested that a recovery between 94 and 98 percent was possible.
The catalyst could, in a sense, be recovered also as the solution could
be recycled with only limited replacement. The graphical analysis had
indicated that with the low levels of usage required, accurate deter-
mination of the recovery of the catalyst was unnecessary and rather
than run additional experiments, Merlin merely estimated that re-
coveries between 40 and 80 percent were possible. Figure 5-4 is the
probability cost distribution for this route. The range is consider-
ably wider than that for Route I and it is only through experimentation
that clear understanding of the process costs can be had. The four
curves shown correspond to the cases of no experimentation, two
-experiments, six experiments and nine experiments. The additional
increase in knowledge between six and nine experiments leads one to
wonder whether the additional experiments were really necessary.

Once again, satisfactory understanding of the process route was

available with limited experimentation.
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Estimates for Route II After Each Block of Experiments

0 Expt. 2 Expts. 6 Expts. 9 Expts.
Conditions Most Most Most Most
Line Xl X2 X3 Likely Range Likely Range Likely Range Likely Range

1 - - - 60 25- 75 60 25- 75 64 - i -

2 + - - 75 60- 85 77 65- 87 85 83- 87 87.5 -

3 -+ - 85 T79- 98 85 T79- 97 98 96-99 98 -

L + o+ - 9k -90- 99 97 9k- 99 96 - 96 -

5 - - F 65 55- 78 65 55- 78 59 58- 62 an -

6 + -+ 90 85- 95 87.5 - 87.5 - 87.5 -

7 -+ o+ 92 88- 98 gk 90- 98 98 - 98 -

8 + o+ 98 96- 99 98 96- 99 96 95- 99 96 -

9 0 0 © 80 92- 95 95 - 95 - 95 -
10 -1.b 0 0 75 68- 88 75 68- 88 75 T70- 80 75  T70-80
11 1. o o 93 90- 98 93 90- 98 95 92- 98 95  92-98
12 0 -1.4 0 60 20- 68 60 20- 68 30 20~ L5 35 20-45
13 0 1.4 0 100 95-100 100 95-100 98 96-100 98  95-99
1k 0 0-1.kh 76 70-92 76 70- 92 95 92- 98 98  93-99
15 0 0 1.4 96 92- 99 96 92- 99 95 92- 98 98  93-99

TABLE 5-5b
Variance
Line Source No Expts. 2 Expts. 6 Expts. 9 Expts.
16 = i 32.7 3L.5 .8 -
17 & §I 38.7 34,5 8.8 8.8
18 S 2 .25 .25 .25
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TABLE 5-6

Estimates of Coefficients

Coefficient O Expt. 2 Expts. 6 Expts. 9 Expts.
By 96. 47 9L.90 9k.69 ok.0oL
B, 7.61 7.43 5.63 5.35
B, 11.17 11.22 11.4 11.09
By 5.60 4.98 0.37 0.19
Bio -4.93 -3. 4k -6.77 -6.38
B3 -0.54 -1.72 0.71 0.0
Byq -2.60 -2.5k4 0.23 0.0
Byy -2.18 -5.24 -3.3 ~0.65
By, -1.13 -5.02 -6.4 -7.45
337 -1.35 -2.63 0.8 0.22

Optimum Variable Settings

X 0.627 0.605 -0.512 -1.400
x2 1.400 1.388 1.398 1.333
x3 -1.1L S=1.145 -1.398 -1.400
Yield 0.965 0.965 1.00 0.989

Cost 0.0974 0.0974 0.0929 0.0939
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Figure 5-5 is a comparison of the probability cost distribution
for both routes. Here Figures 5-3 and 5-4 are combined at the appro-
priate level of cost. The coding for the lines used in Figures 5-3

and 5-4 applies.

Alternate Route IT is shown here as being the preferred route,
the mean cost is about $0.093 per pound where that of Alternate Route I
is $0.102 per pound. Yet there is a definite probability that Alter-
nate Route II may in fact result in a more costly process. This is a
result of the uncertainty associated with the cost estimate and is
shown by the overlap of the probability distribution of Alternate II,
with that of Alternate Route I. The reduction in the overlap that
results from running two experiments can be noted. After five experi-
ments it is virtually certain that Alternate Route II will result in a
process with the lower raw material cost. The additional experiments
did nothing to improve the discrimination between the routes. These
runs merely serve to reduce the variation about the suspected optimum.
One should consider whether this experimentation is well invested.
Further, it is also clear that any experimentation on Alternate
Route I other than the single experiment which was the only experiment

used to develop the distribution for the route was unnecessary.

If one randomly selects from the distribution of each route and
subtracts the value obtained for Route I from that of Route II, a
distribution of the expected gain due to selecting Route II results.
This distribution is shown in Figure 5-7: The area to the left of

zero represents the potential loss that could result from this decision.
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‘Prequency-Cost Distribution - Route II

Frequency

P~

..._“'--R_
105 1o
Cost (3/lb)
Fig. 5-5
Route Il - 0EXP] e eceeeeemem—
0w = 2EXPT eecee- esescacecss
" - BEXPT ==temmecmmiomce

v - 9EXPT



8k

A Comparison of the Frequency-Cost Distributions
For Routes I and II
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As the definition between the two processes is increased, the
area representing potential loss is reduced. Figure 5-7 is calcu-
lated from the curves shown in Figure 5-6 in which no experiments
were run on Route II and only one was run for Route I. The addition
of experiments increases the discriminating power of the model.

This can be seen in Figure 5-8 which is calculated for the case when
two experiments were run to investigate Route II. The area for a
potential loss is considerably reduced. Figure 5-9 which was
calculated after six experiments were performed on Route I,

already indicates a certain gain.

These curves serve as the basis for decisions concerning the
continuation of work on a particular route. Some decision rules
could have been established but since each case is subject to
different restrictions (size of investment and the effect on profit
of delay in entering the market) only the basic information is pro-

vided and this can be used as the experimenter sees fit.

In the example shown, a single experiment on Alternate Route I
and the exploratory work on Alternate Route II was all that was re-
quired to develop Figure 5-6. The experimenter might well have

chosen to eliminate Route I from consideration at this point.
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Expected Gain From Choice of Route II
(After One Experiment on Route T and One on Route IT)

Frequency
60
. / .-
20
- | - -
-005 0 005 010 015

Gain (%/Ib)
Fig. 5-7
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Expected Gain from Choice of Route II
(After One Experiment on Route I and Two on Route II)

Frequency
60
40 =
20 \
-005 0 005 010 015

Gain (%/b)
Fig. 5-8
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Expected Gain From Choice of Route IT
(After One Experiment on Route I and Six on Route 1T)

Frequency
60 71\
40
20
0 T 005 010 015

Gain ($/1b)
Fig. 5-9



Chapter 6

CONCLUSION AND SUMMARY

A solution to the problem of early discrimination between

competing alternate routes is offered in this dissertation.

In Chapter 2 a graphical method was developed which was used to
assess the effects of changes in the level of the process responses
(yields, recoveries) on the ultimate process cost. This technique
establishes the potential value of each experiment and focuses
attention on the critical areas within a given route. It was
demonstrated through examples that:

(1) The sequence by which the various areas open for

investigation are pursued can have a direct influence
on the length of the experimental program.

(2) Areas of investigation offering wide variations in the

process response may in fact have little bearing on the

ultimate problem of route selection.

The technique, therefore, serves to provide information essential

to the establishment of an efficient research program.

In Chapters 3 and 4 the relationship between the process cost
and the several process responses is extended to a relationship
between the process costs and the process variables. These relation-
ships are used to determine the probability of obtaining the indicated

cost reductions. The inclusion in the analysis of the experimenters'’
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estimates of the results of various combinations of the process

variables, play an intrinsic role in reducing the number of actual

experiments required to define the cost surface.

—_—

In the treatment of an actual problem of route discrimination

it was shown that: -

(1) By incorporating estimated values with experimental

(3)

results, useful second order regression equations can

be developed from runs at only a small fraction of the
design points.

The variance about the calculated optimum is reduced with
the addition of each new experimental run, but the rate
of reduction after completing the first half-replicate

is small.

Discrimination between routes can be based on experimental

results from a small fraction of the design points.

A summary of the method presented in Chapter 3 is outlined by

the following steps:

(1) A second order design is generated with the most

(2)

important variables.

The responses to the indicated experiments are estimated,
listing both a best guess and a range around this best
guess.

The usual regression equations are fitted but in this

case a weighted variance matrix V is included so that
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the precision of the final estimates reflects the
uncertainty in the guessed response.

(4) Using this regression equation as part of a function
describing the process cost, a vector X¥ is established
representing the design point of minimum cost.

(5) The variance around this design point is calculated.

(6) A few experiments in the design are run. The progression
through experiments might be from the original none to a
half-replicate, to a full replicate, to a second order
design. Re-estimation of the remaining experiments,
as well as a thorough analysis, are completed after

each stage.

The procedure provides a structural framework within which the

experimenter can operate with a minimum of constraints. The structure

insures that the data can be sensibly and readily analyzed,.while the
emphasis on reanalysis after small groups of experiments (even one)
satisfies the experimenter's need for flexibility. The approach was
designed so that the experimenter's knowledge would be made an

integral part of the analysis.

The approach must, of course, withstand the natural reluctance
to reach decisions on any information other than that which was won
from controlled experiments. There is nowhere in this dissertation
an advocation to behave otherwise. Certainly no route should be
abandoned until the predicted results are tested at the indicated

optimum conditions. What has been suggested is that through the
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incorporation of prior knowledge a satisfactory representation of the
response surface can be obtained with a reduced number of experiments.
The techniques of experimental design have progressed to the point
where further reductions in experiments can only come from the

inclusion of prior knowledge.

In an interesting exercise, McArthur and Heigl (53) describe a
"black box" process which is affected by five hypothetical variables.
They ask that the optimum settings for the variables be found with as
few experiments as possible. Experience with the black box has shown
that no experimental strategy is particularly effective and the re-
guired number of experiments is inordinately large. "The problem, of
course, is that the perverse surface described by McArthur exists
only in a black box. There are no fundamental relationships that can
be used to explain the results and as such the experimenter's only

recourse is to rely on the dictates of the mathematics.

In real situations fundamental relationships exist., The problems
are pursued by knowledgeable scientists whose professional life is
devoted to trying to understand and apply these relationships. It is
expected that such men can successfully use their knowledge to antici-
pate conditions that will provide favorable experimental results.

It is also realistic to expect that their prior assessment as to the
consequences of these experiments should be most useful in arriving

at a quantitative description of the response surface.
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An experimental strategy has been proposed in which central
composite designs are employed at an early stage in the experimental
program. Available mathematical techniques were utilized to relate
the settings of the process variables fo the ultimate process costs
and to the confidence interval about the calculated optimum cost.
Probability cost distributions -- the variance of which is reduced
by replacing estimated values with experimental data -- serve as

the basis for discrimination.



TABLE OF NOMENCLATURE

English Alphabet:

C

PTH

el l_'C! 2] wwz =

+d

Cost of chemical reactant
Cost of solvent, catalyst, buffer, surfactant
Credit for byproduct

Ratio of the charge of the reactant to its

equivalent weight

Ratio of charge of solvent, catalyst, etec. to

equivalent weight of reactant 1

Factor explaining the stoichiometric excess

or deficiency of the byproduct
Equivalent weight of reactant
Equivalent weight of product
Recovery of reactant

Recovery of solvent, catalyst, etc.
Usage of reactant 1

Fraction of chemical convertor

Chemical yield

Chemical codes in Chapter 5:

A,B,C
E

ID

PD

Reactants in present route
Final product

Impure product of Step 1 in present route
and Alternate Route T

Chemical used to purify ID in present route

Pure ID

Chemical used to purify ID in Alternate Route I

ol
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R Reactant in Alternate Route II

Z Reactant in Step 2 Present Route and Alternate Route I

Matrix Notation:

B A vector of coefficients in the prediction equation
v A weighting matrix
X A matrix describing the settings for the effects

for which the coefficients are to be determined
X¥ A column vector locating the variable settings at minimum cost

Y A vector indicating the responses at the different

experimental conditions

Greek Letters:

6%2 Variance due to experimental error

6&2 Pooled variance calculated from estimates of the range
about the factorial and center points

GEIQ Pooled variance calculated from estimates of the range

about the star points
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Appendix A

COST ANALYSIS

Program 422 is written in Fortran II for an IBM 1620 computer.
Its purpose is to calculate the cost of a chemical at various levels
of yield and usages of all participating chemical reagents. The program
involves separate calculations indicating the contribution to the
cost of:

(l) A1l chemicals participating in the stoichiometric

equation.
(2) All solvents, catalysts, surfactants and buffers.
(3) All byproducts.

The total cost is the sum of the three equations.

The input data include:

NY The number of yield levels at which the calculations
will be performed.

NR The number of chemicals participating in the
stoichiometric relations. )

NS The number of solvents, catalysts, etc.

NB The number of byproducts.

Y(I) The values of the yield at which the calculations

will be performed.

Each chemical that is entered requires the following information:
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XMW The molecular weight

STR The stoichiometric coefficient

XCOSR  The cost of the chemical

XB The ratio of the amount charged to the
stoichiometric requirement

RR The recovery

PR The purity of the chemical (needed if cost is given

on an as is basis)

The entries are similar for the other two classes of chemicals
with the exception that SF replaces XE where:
SF is the ratio of the pounds of solvent or catalyst, etc.

to those of the first chemical read in the previous section.

Other input includes:

XMWP  The molecular weight of the product.

STP The stoichiometric coéfficient for the product.
A1l this information is wtilized in tle calculation section which
begins with statement 39. The calculations are based on Equations 2-1,

2-3, and 2-4,

The program calculates the cost at fixed values for XCOSR, XE,
RR at each level of Y. The program then accepts a change if indicated
in the values XCOSR, XE, RR and runs through that particular

calculation for the indicated yield levels.



___AMERICAN CYANAMID CO,,

BOUND BROOUK, N.J,

~ POL422

"SEARCH T MODIFIED=RAW MATERIALS CosT ANALYSIS

A.H. BUBIS

oo oo

MARCH 10 1964

_DIMENSION DUMMY (16)

DIMENSTON XMWR ( ),s

_DIMENSION XMWS(5),S

DIMENSION XMWB(5),S
FORMAT STATEMENTS

2

¥
T
T

Y(
R{(
S
B(

92
93

94
95

FORMAT(6HSEARCH//)
FORMAT(6OH -

2
8
5
5

)s!
)s
)
).

H

X
X
X

1(3,

COSR
CUSS
CoSB

8)
(85
(5)
(5)

2
B
?

FOURMAT (7HYI1ELD =
FORMAT (1X)

F6e1,8H PERCENT/) SR .
96 FURMAT(9H | J ITEM9X7HCUST/LB5X5HRAT I95X5HRECOVS5X5HUSAGE

97

98

Lo W
— O\

N v

15XLHCOST)

FORMAT (/7HPRGDUCT 11X7HCOST/LB)

FORMAT ( 15H

FORMAT (515)
FORMAT (79X, 1A=)

Lo

READ ORIGINAL DATA
READ 93

..READ 99,NR,NS,NB,NY

NT=NR+NS+NB

,5F10. )
FORMAT (12,12,2AL,A3,6F10.4)

READ 98,Y(1),Y(2),Y(3),Y(&4),Y(5)

INPUT ROUTINE

DG 217 N=1,NT

500
401

NTR=1
READ 301,1,J,H1(1,

o TG (LOT) 40 2,5403),1

XMWR(J) Z1

STR(J) 72
XCOUSR (J)=23
XE (J)=Zk

~RR(J)=Z5

PR(J)=26
GO TO (217,700),NTR

’

Lo2

XMWS (J)=Z1

- STS(J)=72

XCOSS(J)=23

JSF(JI_ZB S

SR(J)=25
PS(J)=76

Lo3

GO TU (217, 700) NTR
XMWB(J)=Z21

STB(J)=22




29

GO TO (217,700),NTR

AXCOJB(JA 73

XB(J)=Z

_BR(J)=Z5

READ 98,XMWP,STP

PB(J)=26
CONT | NUE

PUNCH TATLE AND_BEGIN CALCULATIONS

PUNCH 92
- PUNCH 93

DO 1000 KY=1, NY
PUNCH 311

PUMCH 95
26=100,*Y(KY)+,05

PUNCH 9,76
PUICH 95 I
A_XMWR(1)*YE(1)*STR(1)/PR(1)

TCOSR=0, o

TCHSS=0.

TCOSE=0,

REACTANT SECTION
PUHCH 96

PUNCH 95

I=1

DU 601 N=1,RNR

~ COSR=XUSER*XCOSR (1)

[N e
Ui
— O

) G=XUSER

C=Y (RY )+ (XE (H)=Y (RY ) J# (T =RR ()

XUSER= STR(N)*XMWR(U)/(PR(N)*Y(RY)* MHP*STP)*C

1F(N~-1)52,1050,1057

J=N

"Z3=RR (N}
“Z5=CGLSR+, 00005 T T

ZT=XCOSR ()
22=XE (N)

ZL=XUSER+,00005

GO TH 600

C
601

STATEMENT 600 IS IN THE OQUTPUT ROUTINE
TCOUSR=TCOUSR+COUSR

C
C

914

SOULVENT AND OTHER CHEMICALS SECTION

— TF(NS)52,157,914
1=2

NT=NR+1
NF=NR+NS

DG 602 N=NTNF




. dJ=N=NR e

XUSES=SF (J)*G*(1, =SR(J))
CUSS=XUSES*XCOLSS (J)

Z1= XCOSS(J)
22=SF(J)

Z3=SR (J)

ZL=XUSES+,00005
25=C4SS+, 00005
LT 600

C

STATEMENT 600 IS THE OUTPUT SECTION

. 602 TCUSS=TCOSS+CUSS

e

C

.~ BYPRGUDUCT SECTION
151 IF(NB)52,800,920

..920 1=3

HT=NR+NS+1

NF=NR+NS+NB

DU 603 N=N1,HF

J=N=iR=NS

BPM= (XB (J)*STB(J )*XMWB(J)*BR(J))/(STP*XMWP)

_ _COUBP=BPM*XCOUSB(J) .

Z1=XCOSB(J)

Z2=XB(J)

Z3=BR{J)

zu=-(bPM+ 00005)
5=~(COUBP+,00005)

Go TG 600

.

603 TCHSB=TCLSB+COBP

800 TCOSC=TCOSR+TCLSS~TCOSB+.00005
PUNCH 97

1000 PUNCH_98,TCHSC
CALCULATIONS AND GUTPUT COMPLETED -
GO T 50

kan

OO

STATEMENT 50 1S START GF TRANSFER SECTIG
_ OUTPUT ROUTINE.
600 PUNCH 301,1,J,H1(1, J) H2(T, J) H3(l ,J),21,22,13,74,75
GO TO (601,602,603, |
TRANSFER SECTIGN(TG MODIFY

ol

50 READ 99,NTR, NT

65 19 (ho 51 52),NTR
51 DG 700 L=1

GO TO 500 o

CSTATEMENT 500 IS AN ENTRANCE TO INPUT ROUTINE
700 CONTIHUE

(@}

GO TU 39
STATEMENT 39 IS THE FIRST IN THE CALCULATION SECTION

52 PAUSE
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e GO T0 50 .
END
&
e B
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Appendix B

PLOTTING THE DIFFERENTIAL COST ANALYSIS

Program Number 431B is a 1620 computer program written in
Fortran II. The card output is then fed to an IBM 870:(autoplotter)

which prints graphs of the type shown in Figures 2-1, 2-2, 5-1 and 5-2.

The program is written for a three step process and is designed
to develop the following curves:
(1) Cost of any step versus the yield of any step in which
the yield of the other steps are treated as parameters.
(2) Cost of the first step versus the overall yield.
(3) The final cost versus the cost of step L, with the yields
of steps 2 and 3 treated as parameters.
(4) The final cost versus the cost of step 2, with the yield
of step 3 treated as a parameter.
For any given line the raw material cost, excess and recoveries

are fixed. Equations 2-7 to 2-18 :provide the necessary mathematics.

The input, besides that described in Chapter 2, includes information
about.the secaling of the two axis and the line density. Each line is
indicated with a black or red dot or cross. The deéired symbol is
under the users control. The cost is calculated at increments fixed
by the desired line denéity. A card is punched which contains the
values of the coordinates. These cards are fed to the 870 and are

the basis for the graphs.
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Appendix C

MONTE CARLO SIMULATION

Program 598A is written in Fortran II for an IEM 1620 computer.
The program calculates the raw material costs for a particular chemical
step based on Equation 2-5. The values used in the calculation for
the chemical yield, raw material cost, stoichiometric excess and
chemical recoveries are randomly selected from probability distribu-
tions defined by a mean and standard deviation. The calculation is
repeated until a representative probability for the raw material cost

of the particular process step is obtained.

The input to the program include:

N The number of chemicals that participate in the
stoichiometric equation.

M The number of solvents, catalysts, etc.

LOOP The total number of costs that are to be calculated.

NC The number of classes used to define the probability
cost distribution.

™ The mean yield.

YSD The standard deviation for the yield distribution

P The molecular weight of the product.

ARG The input to start the random number series.
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cM(T) The mean cost for chemical I.
¢sp(1) The standard deviation for the cost distribution.
RM(T) The mean recovery for chemical I.
RSD(T) The standard deviation for the recovery distribution.
E(I) The ratio of the initial charge to the stoichiometric
requirement for chemical I.

wM(T) The molecular weight for chemical T.

As the problem of interest did not involve byproducts, the program

was not generalized to handle that situation.

Since the random number routine is time consuming, the program
checks each standard deviation to determine whether or not it is zero
and calculates the random number for only the non-zero entries. The
normalized random numbers for yield and recovery were truncated at

the upper bound of 100 percent.

500 cost calculations were completed for each case. The highest
and lowest values obtained are subtracted and divided by the number
of classes to establish the class size. The difference between any
value and the minimum value is then divided by the class size for

the purposes of assigning that cost to a particular class.

Program 0598B uses as input the accumulated frequency-cost
distribution generated by program 0598A. By dividing each entry
in the accumulated distribution by the number of values used in its
generation, the distribution is scaled from zero to one. Numbers

randomly selected from a uniform distribution are then used to enter
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the accumulated distribution as shown in Figure 4-2. This entry
determines the cost of the raw material to be used in a particular

calculation.

The rest of the program is essentially the same as 0598A.

The additional entries are:
CMIN The minimum value of the frequency distribution
generated through the use of 0598A.

CLSZE The class size of that distribution.



- AMERICAN CYANAMID CO,, BOUND BRUOK, N.J. — PROUGRAM.NU. 0598A

~ A HPUT_ SUMMAT LD _ PARAMETER, NUMBER OF COST VALUES, AND.

99

MUNTE-CARLD COUST ANALYSIS PROUGRAM STEP 1
NUMBER OF CLASSES

CAH, BUBIS L
NOVEMBER 8 1965
DIMENSION CM(3),CSD(3),RM(3),RSD(3.),E(3),WM(3),C(3),R(3)y
1CGST(500) KF(20)

READ 100, N, M.LDOP,HC_M

READ 101,YM,YSD,P,ARG

- PUNCH 200

10

~ COMPUTE INPUT CosTS

DG 10 1=1,

READ 101 CM(l) CSD (1) ,RM(1),RSD(1),E (1) ,WM(1)
DO 30 NT—1 LQJP

DO 20 I=1,

IF(CSD(1))1,2,1 e
C(l)=CM(T)
GO To 3 e
C(1)=RAND (~ARG )#*CSD(1)+CM{1)

COMPUTE RECOVERIES

T Dzl))u 5,k

RV (l

RA

)

R
R o
R (1)=RAHD (~ARG )wRSD(l)+RM(l) S
IF(R(1)-1.00)20,20, 15

1)=1.00

RS
e
70 6
)=
R(
)=

"GD T’ g T e

O
F’
(
J
¢
F
(

ONTTNUE
OMPUTE YlELD S
IF(YSD)7 |

R
C
C

Y=RAHD (ARG )#*YSD+YM

8
7
9
6 Y=.00001
7
2

F(Y)16,16,17

|F$Y-1.00)27,27,25
.Y= _090 e e

COMPUTE C4STS OF VHTERMEDTATE PRODUCT

TEMP=0,

J=N=-M
DO 28 1=1,J

TEMP= (E (1)# (T 2R (T Y/Y+R (1) )%C (T J%WM( 1) +TEMP
IF(M)31,30,31

31

J= N=M+1
DO 29 1=J,N

29

TEMPZC (1) *E (1) (E( TV WM (1) 7Y=(E (T)FWH(T) /Y=WM(T) J*R (1) )%
1(1.=R(1))+ TEMP

30

COST(UTY=TEMP/P
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L

- COMPUTE MIN_AND MAX COST OF INTERMEDILATE. _PROUDUCT

CM [ H= COST(T)
CMAX=CHM]

C

C

C
C

4O
.50
60
.10

30

___CLSZE= (CMAX~GMIN) ZFNC.__

- IF(COST(NT)-CMAX)87,85,95

85

g

90

Do 70 NT—T LOOP
IF(COST(NT) CMIH)40,50,50

CMIN=COST (NT)
|F(COST(HT)~CMAX)70,70,60.
CMAX=COST (NT)

CONTIMUE

CLEAR KF ARRAY FOR FREQUENCY COUNT
DO 80 |~1 e .
KF(1)=0

FiNC= HC

COMPUTE SIZE OF CLASSES

COUNT NUMBER 1H EACH CLASS
7 90 HT=1,L00P.
A—(CDST(NT) LMIN)/CLSZL

I=A
GO 1990

f=A+1,
KF(1)=KF (1)+1

DUTPUT MIH AND MAX COSTS, CLASS SIZE AND FREQUEMNCY

DISTRIBUTION

PUNCH 102, CMIN,CMAX,CLSZE
_PUNCH__103_

25
200

160

PUHCH 10%L, (l hF(I) =1, NC)
PUNCH 105 ,

U TO 99
CALL EXIT

FORMAT (33HMOUNTE~CARLS COST ANALYSIS STEP 1%)

FOURMAT (415)

._702,FORMAT(QUQMJNw—,FJQ,G,EX,@HQMAlﬂEJFIQJQJSXJ7HCL§ZE =,
1F10,7,1H)

101

103

104
105

FORMAT (7F 10 .4}

FORMAT(]HS/SHCLASS 5X, TOHFREQUENCYS/IHS)

FORMAT (14,7%,15, 1H8)
FORMAT (1H%) .~

END
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YOO OO0

. = PROGRAM NG, 05988

AMERICAN CYANAMID CO., BDUND. BROUGK, Had
MONTE-CARLD COST ANALYSIS - STEP 2

TH1S PRGGRAM USES FUNCTIGN RN FOR GETTING RANDGM NUMBERS
FROM A HORMAL DISTRIBUTIUN

A Hoe BUBIS

) JVEMbER 22 1965
DIMENSION CM{3), CSD(B
2C0ST(500) RF(ZO) »ESD(

%3 M(3),RSD(3),E(3),WM(3),C(3),R(3),

99 READ

108, i,M,L50P,HC

- READ

READ
DU 1
1 READ
DO 2

101, CMIN,CLSZE

101 YM Y3D,P, ARG

|=1,

101 RM(I) RSD(1),E (1), WM(T)
1=2.1

L)

2 READ
READ
READ

D5 10 1= 2

101, CM( |) CSD(1)
I FREQ DISTRIBUI[QN,FRQMHSIEEMJWMMN“_“
100 (KFQI),I=1,HC)

NC o

10 KF(1)=KF (T=1)+KF (1)

o

CLODP=LOOP

D5 30 Hi=1,L00P

CQMPUTE,STQJCHIQMETRJCHRAIJQSW

DL 13 1=1,

lF(tsDum,w 7
(1)=RN(ARG)#ESD {1)+E (1)

13 CONTINUE

COMPUTE RECOVERlES
DL 3 1=1,
IF(RSD(I))M 5,4

5 R{1V)=RM(1)

3
N(ARG)*RSD (| )+RM( 1)

W o W
wa—xm

|

O QY Tl C\r
e R
— g~ O —{

o
()

1,00)3,3,9

mol
:O

)
0

12,11

I wic =1l Il ]
O f—lZ’—‘—-IJ
|I’T1

311
)
1

)=RN
TINU

zNéARG)*CSD(I)+CM(|)~

N
MPUTE YTELD
(
Y

YSD)2k, 25,24

Y
GO TO. 26 o
Y=RN(ARG)*YSD+YM




C

_MZ§MLE(X)15115,1§,”"“W,,M_N,_M” e

15 Y=.00001
16 JF(¥=1.00)17,17,18

18 Y=1

COMPUTE_RANDOMMJRDJNAIE,FROM”EREQ,DlSIRlBUTlDNMEROMWSIEEmlmmM

FOR INPUT COST C(1)
17 KOFC=RAND (ARG)#CLOLGP .
DG 20 J=1, NC
|F(KFL“) KoEC)20,35,35

C

35 CK=J

1F (J-1)32,34,32
34 DEN=KF (1)

GO TO 33"
32 DEN=KF (J)=KF(J=1)
_33_DJF=KF (J)=KOFC_

DIF=CLSZE*DIF/DEN
GO TO 21
20 CONTINUE
21 C(1)=CMIN+CK*CLSZE-DIF
EMPUTE COST OF FIMAL PRUDUCT
TEMP=0

S J=N-M
Dy 28 1=1,J

28 TEMP= (E(1)%(1, -R(l))/Y+R(l))*C(l)9WM(|)4TEMPM“'““’““W

30 COUST(NT)=TEMP/P -
COMPUTE MIN AND MAX FINAL COSTS
CMIN=COST (1) o

CMAX=CMIN
DU 70 WI=2,LU0P .
|F (COST(NT)~CMIN)40,50,50

40 CMIN=COST (NT)

50 IF(COST(NT)-CMAX)7O 70,60

60_CMAX=COST (NT)

- C

e

70 CONTINUE
, CLEAR KF ARRAY FOR FREQUENCY COUNT . ..
5 80 |=1,NC

80 KF(I) =0 .

COMPUTE CLASS SIZE
FNC=NC

~ CLSZE=(CMAX~CMIN)/FHNC
COUNT WNUMBER [N EACH CLASS

DG 90 NT=1,LG0P
A= (COST(NTJ=CMIN) /CLSZE

IF(COUST(NT)-CMAX)87,85,85
85 I=A

90 KF(I) KF(I)+1




100
101
104
108

OUTPUT FREWUE LY DLTR

PULCH ]U“’\‘v“r\‘/,\z"

FIND MEAL OF 540 Cion.
] ;,.‘:

DY 9¢ 1=2,
bQST\|)1CQST\0— LT
DUTPUT Mos . Ur 2w wu
PUICH 10T, (03T L., e
GO TO 89

F” RMAT\1’(,1‘I
FQRMATqu "
FORMAT(MIA

£k



OUTPUT FREQUENCY DISTRIBUTION e

PUNCH 1Ok, (1,KF(1),1=1,NC)

FIND_MEAN OF EACH CLASS,__L_J_S_E_LAI.*NC__\LLJBD_S__JE-_C_.LSI_ARRAY___

CLST 1) CMIN+CLSZE/2
- DO &€ 2,MC e
96 COST(I) COST 1=1)+CLSZE
¢ 70 CUTPUT MEAN SF EACH GLASS o
PUNCH 101, (COST(I),I=1,NC)
B} GO T4 99 ~
100 FORMAT(TTX, 14)
101 FGRMAT(5F10,k4) e
104 FORMAT(14 7K, 1)
108 FORMAT (L415) o e
END
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Appendix D

DIRECT- SEARCH MAIN ROUTINE

The calculation of the minimum cost is based on modifications
by Wood of the Hooke and Jeeves method of Direct Search. Wood pro-
vides the requisite optimization procedure which can be regarded as
a huge subroutine which operates on a particular problem, or set of
equations. A specific program for each problem is required. This
should not cause concern as the basic equations are easily programmed.
To illustrate this point the main routine written for calculating the
cost of Alternate Route I step 1 is provided. ‘It consists of any

necessary regression equations and the cost Equation 2-5.

The second order regression equation for the yield of the step
is converted to a constraint equation by subtracting a slack variable Xh'
The cost is calculated from the following input data:

XC(I) The cost of the first raw material.

XM(I) Its molecular weight.

E(I) Its excess ratio.

XMP The molecular weight of the product.

XC(2) The cost of the second raw material.
The excess of the second raw material is given by: .025(x(3)) + 1.05,
an expression similar to Equation 4-2 in the text. X3 is one of the

variables whose setting the technique attempts to optimize.



Y S

C

A.H. BUBLS

’t““é”‘GCTBBEﬁ”TQ“Tééé“ T -

}0 _COUNST(1) = BO + B1?X(1) + B2*X(2) +B3*X(3) +B12%X(1)*
T+ B13%X(1)%X(3) + 23*X(2)+X(3) + b11*X(1)**2 + BZZ*X(Z)

C2%%2 4 B33%X(3)*%2 = X(4) . e

Y=CONST(1)4X (&)
YAXMP. = Y#%XMP. o
19331ME XC(1)%XM(1)*E (1)/YAXMP + XC{2)#XM(2)% (. ,025%X (3)+1,05)
SN=COST+PEN(1)*CONST (1) +*2
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Appendix E

QUTPUT FROM MONTE CARLO SIMULATION

The results of the Monte Carlo simulations are given in
Chapter 5 as smoothed curves. The raw data are presented in this
Appendix. In all cases the 500 trials are partitioned among 20 classes.

The form of the output for the several cases differ as the programs

were continually modified.
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TABLE E-1

12-9-65
MONTE CARLO COST ANALYSIS ROUTE 1 STEP 1
0 EXPTS

CMIN « 0885 CMAX 0918
CLSZE 4000166

CLASS FREQUENCY
1 254
-2 35
3 26
4 24
5 22
6 24
7 20
g 22
9 20
10 12
11 7
12 7
13 10
14 3
15 4
16 3
17 3
18 0
19 3
20 1




12-9-65

MONTE CARLO COST ANALYSIS ROUTE 1 STEP 1

5 EXPTS

CMIN
CLSZE

CLASS

O 00~ O Ut &N

«0885 CMAX
«000082

FREQUZNCY

277
35
21
33
20
26
21
11
10
14
18
11

O CONFNW

«0901



12-9-65

MONTE CARLC COST ANALYSIS ROUTE 1 STEP 1

9 EXPTS

CMIN
CLLSZE

CLASS

N

LC oot bW

.0885 CMAX
«C00052

FREQUENCY

266
19
32
23
30
13
19
17
14
16

N W N E G N U O

«0896

21



MONTE CARLO COST ANALYSIS RQUTE 1 STEP 2

¢ EXPT STEP 1

CMIN
CcLSZe

CLASS

Nolre o BN IR NI NS JREN I O

I e e =
OWLO O PHVLNNEEO

« 0997
00199

TABLE E-2

12-20-65

1 EXPT

CMAX

FREQUENCY

2

7
15
19
55
45
63
70
64
57
40
22

—
[e3]

1

SR LW PO

5TEP

1095

2

122



12-20~65
MONTE CARLO COST ANALYSIS ROUTE 1
5 EXPT STEP 1 1 EXPT STEP 2
CMIN 40998 CMAX «1078

CLSZE .001785

CLASS FREQUENCY
1 2
2 4
3 8
4 11
5 35
6 43
7 66
8 638
9 48

10 73
11 41
12 40
13 20
14 17
15 13
16 2
17 4
18 2
19 2
20 1

STEP 2



lek

12=-20-65%
MONTE CARLGC COST AMALY3SIS ROUTE 1 STLP 2
9 EXPT STEP 1 1 EXPT STEP 2

CMIN 40996 CMAX 1074
CLSZE «00165

CLASS FREQUENCY

1 1

2 3

3 7

4 11

5 &

6 33

7 37 -
8 43

9 82

10 70

11 51 .
12 46

13 43

14 26

15 14

16 8

17 7

18 3

19 0

20 2



MONTE CARLO COST AWALYSIS ROUTE 2

0 EXPTS

CMIN
- CLSZE

CLASS

«0892
« 00102

CMAX

FREQUENCY

3

8
13
22
35
49
61
50
53
50
47
33
27
12
18

7

[l S SR

01095

125



126 .

1-5-66
MONTE CARLO COST AMALYSIS ROUTE 2
2 EXPTS

CMIN <0912 CMAX #1062
CLSZE «00075

CLASS FREQUEMNCY
1 10
2 5
3 14
4 28
8 23
6 45
7 51
8 46
9 53

10 48
11 56
12 36
13 26
14 20
15 13
16 10
17 3
18 0
19 2
20 1



1-5-66

MONTE CARLO COST ANALYSIS

6 EXPTS

CMIN
CLSZE

CLASS

(oRe BEN N RV ) IRN SN CVRE AN I ol

$0384
«00051

CHMAX #0987

FREQUENCY

3
)
9
19
15
27
45
55
&7
43
47
46
36
24
36
14
11

9

3

5

ROUTE 2
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1-5~-66
MONTE CARLC COST ANALYSIS ROUTE 2
9 EXPTS

CMIN #0891 CMAX 100798
CLSZE «00058

CLASS FREZQUENCY
1 5
2 7
3 14
4 25
5 35
6 56
7 45
8 50
g 46

1C 58
11 56 T
12 34
13 24
14 23
15 13
16 3
17 2
18 3
19 0
20 1




TABLE E-4

MONTE CARLO ANALYSIS EXPECTEDL GAIN
CHOICE OF ROUTE 2 OVER ROUTE 1
ROUTE 1 ROUTE 2

STEP 1 O=-EXPTS 0-EXPTS
STEP 2 1-EXPTS

CLASS FREQUEMCY MEAN
1 3 -+ 0047
2 2 -+ 0036
3 11 -+ 0025
4 8 -+ 0014
5 14 -« 0004
6 24 « 0006
7 30 « 0017
8 35 «0028
9 40 « 0039

10 54 «0050
11 61 « 0061
12 52 « 0071
13 62 «0082
14 42 « 0093
15 29 «N1NG
16 15 «0113
17 - Q «0126
18 6 «0136
19 1 « 0147
20 2 «0158



MONTE CARLO ANALYSIS EXPECTEUDL GAIN

CHOICE OF ROUTE 2

ROUTE
STEP
STEP

CLASS

—
OO N0 W s W

N = = D b b s
O Vo O U B W

1
1

2

G-EXPT
1-EXPT

FREQUENCY

[ O NN S

23

49
49
54
49
54
42
44
31
18
10

OVER ROUTF 1

ROUTE 2
2-EXPT

MEAN

-«0029
~+0020
"00012
"00003
« 0004
«0013
« 0022
« 0030
«0N039
« 0047
« 0056
<0064
« 0073
« 0081
« 0090
«+ 0098
« 0107
eN116
«012¢4
«0133



MONTE CARLO ANALYSIS

CHOICE 0Or

ROUTE
sTEP
STEP

CLASS

oSO W

N = B et b el b e b
OV oWV IDWwWwNEFO

1
19
21

EXPECTED GAIN

ROUTE 2 OVER ROUTE 1
RCUTE 2
-EXPT 6-EXPT
—EXPT
FREQUENCY ME AN
2 « 0034
3 « 0041
5 0047
11 « 0054
15 + 0060
26 Q066
28 + 0073
41 « 0079
56 + 0086
39 0092
63 « 0099
57 « 0105
57 «0111
34 «0118
19 0124
17 «0131
11 « 0137
10 «0143
4 «0150
3 «0156

131
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Appendix F

LACK OF FIT

The effectiveness of the prediction equations to represent the
surface of experimental and estimated results is given by presenting

the difference between the given and predicted values.

A good fit is obtained. The single exception 1s for run 13
Route II where the second order model fails to predict the expected
low result given by the estimated value 30. The resulting weighted
residual sum of squares would indicate a serious lack of fit. However,
the variable setting for the particular case is so far removed from
the region of interest that it does not influence the optimization

procedure.



LACK OF FIT ROUTE 1 STEP 1

0 EXPTS

RUN

NoResaEN IOANRVI BN SRR CVI OIS

TABLE F-1

DATA

«9C00
« 3500

~«5100

« 9600
« 9300
« 9900
« 5400
«9900
e 5600
«9100
« 9800
« 2500
«9700
e 9400
«96C0

2-17-66

PRED

« 9172
+9611
92302
« 9734
09392
e 3966
« 593202
1.0069
09596
«9240
09944
+ 9530
e 9693
« 9385
9774

DIFF

-+0172
—+0111
—e0202
-~ 0134
-+0092
“00066
~«0102
~+0169

« 0004
-+0140
-e 0144
-~¢0030

« 0007

«0015
=e0Ll74

2133



LACK OF FIT

5 EXPTS

RUN

D@~V P WN

DATA

« 3100
« 9750
« 8553
« G200
« 9749
e 9950
+ 9500
«9915
e 9832
« 8800
« 9950
« 9600
« 9700
« 9100
« 9950

2-17-66

ROUTE 1 STEP

PRED

« 38887
« 9639
e 8659
« G659
9637
«9829
¢ 9614
1.0054
e 9824
« 9135
« 9970
¢ 9680
« 9678
¢ 9200
1.0002

1

DIFF

«0212
«0110
~¢0106
—«0159
«011l1
«0120
—+0114
-¢0139
« 0006
~e0335
-+0020
~«(0080
«0021
-«0100
-+0052

13k



LACK OF FIT ROUTE 1 STEP 1

9 EXPTS

RUN

DO W

DATA

« 8429
5750
«8553
e 9540
e 9749
«9853
9424
+ 9915
09832
+ 9300
«5950
«9E00
« 9800
« 3000
e 99500

2~-17-66

PRED

e 8471
« 3706
« 8514
« 9976
e 9712
e 5891
e 9467
e 9872
» 2831
8879
le 0027
e 9794
«9810
e 9095
e 9891

DIFF

- 0042
« 0043
«0038

~«¢0036
« 0026

-+0038

~¢0043
« 0042
«0001
« 0420

—-«0077
« 0005

-+0010

-+0095
« 0008

135



LACK OF FIT

0 EXPTS

RUN

—
OOV ONOoU WA

I
[N

13

=
Ul

TABLE F-2
2-17-66
ROUTE 2

DATA PRED
« 6000 ¢5024
« 7500 e 7440
«8500 « 8563
«5400 ¢« 9408
«6500 56770
«9G00 e 8971
«9200 «9270
«9800 « G900
«8000 0 8647
« 7500 e 7154
«9300 « 9286
+6000 e 6837
10000 « 9965
« 7600 e 7597
«9600 v 5165

+ 0975
« 0059
-+0063
-«0008
-+0270
«0028
-+0070
-.0100
~e 0647
« 0345
+ 0013
—+0837
« 0034
« 0002
e 0434



2-17-66—

LACK OF FIT ROUTE 2

2 EXPTS

RUN

VoOoOJdJouvtpuwun -

DATA

+6000
« 7700
«8500
9700
«6500
«8750
«9400
«9800
« 9500
« 7500
9300
«6000
1. 0000
« 7600
9600

PRED

«5067
e 7586
+ 8506
¢ 9648
«6915
« 8744
¢ 9339
e 9791
9489
e 7422
e9502
«6934
1.0074
« 8276
¢ 9670

DIFF

« 0932
«0113
-+0006
«0051
~e0415
« 0005
« 0060
« 0008
«0010
+ 0077
~+0202
-e¢0934
~e 0074
-e 0676
-+0070



2-17-66

LACK OF FIT ROUTE 2

6 EXPTS

RUN

[NoNo ol B TR U1 B © S UV INAN B ool

o e e
LN E O

DATA

« 6400
+ 8500
«9800
« 9600
+5900
« 8750
«59800
« 9600
«9500
« 7500
« 9500
+3000
9800
+9500
«3500

PRED

e 6326
e 8661
« 9914
» 9543
«5063
« 8683
e 9744
+ 9658
e 9469
« 8027
« 9601
«6609
«9803
+ 9685
«9581

138

DIFF

« 00753



2-17-66

LACK OF FIT ROUTE 2

9 EXPTS

RUN
1

O N W P wN

I I i ]
Ut S~ N= O

DATA
«6400
« 8700
9800
« 9600
+« 56400
8750
« 9800
« 9600
«9500
« 7500
«9500
«3500
«9800
«8500
«95G0

PRED
«6313
« 8657
« 2806
« 9600
«6349
¢ 8694
e 9843
¢ 9637
+ 9401
« 8526

1e0022
« 0387
09493
e 9417
e 9469

DIFF
«0086
« 0042
-+0006
0«0000
«0050
«0055
—+0043
~«0037
« 0098
-+1026
-¢0522
—e2887
« 0306
—+0917
«0030

S 139



APPENDIX G

SAMPLE CALCULATION

The frequency-cost distribution can be calculated at any point
in the analysis. As an example a sample calculation is shown in
which the information consists entirely of estimated results. A
fictitious example is presented, which utilizes the estimates given

in Chapter 5 for Route II.

The following reaction is considered:

C
A —s% B + byproducts

The pertinent data for the chemicals are summarized in Table G-1.

TABLE G-1
DATA POR SAMPLE CALCULATION
Molec- Stoichio- -
ular metric
Weight Cost Excess Recovery
Chemical Purpose M; C; E; Ry

A Reactant 60 0.17 1 0.0

C Catalyst 1 0.066 Variable 0.8

S Solvent 1 0.090 Variable 0.96

B Product 40 1 1.0
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The only process response in this one-step synthesis is the
yield. It is believed that the only three variables of interest are
the temperature (x)), the amount of catalyst (x;) and the amount

of solvent (x3).

A central composite design is developed and estimates of the
most likely and the best and worst possible results are made.
These estimates are shown in Table G-2,

TABLE G-2

ESTIMATES FOR SAMPLE CALCULATION

Conditions Most
Run x] xp X3 Likely Range
1 - - - 60 25-75
2 + - - 77 60-85
3 - + - 85 79-98
4 + + - 97 90-99
5 - - + 65 55-78
6 + - + 87 85-95
7 - + + 94 88-98
8 + + + 98 96-99
9 0 0 0 95 92-95
10 -1.4 0 0 75 68-88
11 1.4 0 0 93 90-98
12 0 -1.4 0 60 20-68
13 0 1.4 0 100 95-100
14 0 0 -1.4 76 70-92

15 0 0 1.4 96 92-99
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I

where: Xy at+ =100°C.; X at - = 80°C,

xp at + = 0,01 1b, /1b. A; x2 at - = 0.001 1b, /1b. A

i

x3 at + = 10 1b. /1b, A; x3 at - = 51b, /lb. A

The diagonal elements <‘)f the weighting matrix V can be
calculated from the estimates of the range. Assuming the range
to be four standard deviations apart, the variance for each of the
points is computed. The diagonal elements for the sample

problem are
156, 39.2,22.6, 5.1, 33, 6.3, 6.3, 0.6, 0.6, 25, 4, 144, 1.6, 30.2, 3.1
Y is next set equal to the quadratic expression G-1,

Y =bg + b1x; + bpxp + b3yx3z + byax1xp + by3x1x3 + ba3xpxs + by 1x12
- bzzxzz + b33X32 G-1

The values for the coefficients are calculated with the use of
equation G-2.

-1
B=/xTv1lx7 xTv-ly G-2

The solution to G-2 for the sample problem is given in Table G-3.
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TABLE G-3

COEFFICIENTS FOR SAMPLE CALCULATION

by 0.865
by 0.076
by 0.112
b3 0.056
by, -0.039
by 3 -0. 005
b23 -0.026
by 0.0z
by, -0.012
bss -0.013

Equation 2-5 is then expanded to the form given in Equation G-3,

Cost = 0.17 Uj '+ 0.066 E U; (1-0.8) + 0.09 E3U; (1-0.96) G-3

_ 60
Ul = m G-3b
E, = [10(0-5(%27-0.5)7 14-2 G-3c
E3=2.5%3+ 7.5 G-3d

Equation G-2 replaces Y and the coefficients given in Table G-3

are employed.
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The direct search program is then used to compute the

settings for the variables x; that minimize the cost.

The result of this computation is:

x] = 0,648
x2 =1.4
X3 = -1.143

Minimum Cost = $0. 2904

The yield at the minimum cost = 96.5%

The variance about the minimum cost is then calculated with the

use of Equation G-4,
x+T rxTy-l1x7 -l xxe? G-4
where X is

1.000
0.‘648
- 1.400
-1.143
0.907
-0.740
-1.600
0.420
2.000
1.307

and @2 is 1 x 104,
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The variance calculated from this expression is 8.52 x 10'4.

The Monte Carlo cost simulation program for a one-step
process (program 0598A) is then used to determine the frequency-

cost distribution about the indicated optimum.

The data in Table G-1 apply. The standard deviation about
the optimum yield is 2.92 x 102, The standard deviation about
the estimated catalyst and solvent recoveries are 0.1 and 0.01,

respectively.

The frequency-cost distribution developed from these data

is shown in Table G-4,
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TABLE G-4

FREQUENCY-COST DISTRIBUTION FOR SAMPLE PROBLEM

Class
Mean
$/Lb. Frequency
0.2675 3
0.2705 3
0.2735 11
0.2765 31
0.2795 38
0.2825 46
0.2855 62
0.2885 54
0.2915 46
0.2945 - 57
0.2975 34
0.3005 39
0.3035 20
0. 3065 o 23
— 0.3095 9
0.3125 15
0.3155 4
0.3185 2
0.3215 0

0.3245 3
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