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A B ST R A C T

A sy ste m a tic  m ethod  for s e le c t in g  fr o m  am ong a lter n a tiv e  

r o u te s  for c h e m ic a l sy n th e s is  i s  d ev e lo p ed  and p resen ted .  

C o n sid era tio n  is  g iv en  not on ly  to m ak ing  the b e s t  d e c is io n , but 

o f rea ch in g  that d e c is io n  w ith  a m in im u m  o f e x p e r im e n ts .

A  m ethod  i s  d ev e lo p ed  w h ereb y  the ca lc u la te d  d if fe r e n c e s  

in  p r o c e s s  c o s t  due to  v a r ia tio n s  in  the le v e ls  o f such r e s p o n se s  

a s  c h e m ic a l y ie ld , u sa g e  and r e c o v e r y  a r e  d isp la y ed  g ra p h ica lly . 

Such a r e p r e se n ta tio n  by in d ica tin g  the p o ten tia l w orth o f any  

ex p er im en t fo c u s e s  a tten tion  on  th o se  p a r ts  o f the sy n th e s is  w hich  

have an eco n o m ic  b ea r in g  on th e u lt im a te  p r o c e s s  c o s t .

T he p rob ab ility  o f a c h ie v in g  a p a r tic u la r  c o s t  i s  c o n s id e r e d  

n ex t. C ost fu n ction s for e a c h  o f the p ro p o sed  r o u te s  a r e  d ev e lo p ed  

w h ich  r e la te  the e f fe c ts  of th e p r o c e s s  r e s p o n s e s  to  the p r o c e s s  

c o s t s .  The p r o c e s s  r e s p o n s e s  are  in  tu rn  r e la te d  to the se tt in g s  

o f the p r o c e s s  v a r ia b le s  th rou gh  r e g r e s s io n  eq u ation s. A seco n d  

o rd er  ex p er im en ta l d e s ig n  i s  g en era te d  in  the im p ortan t v a r ia b le s .  

The data fro m  th e s e  d e s ig n  p o in ts  s e r v e  a s  the b a s is  for  the  

r e g r e s s io n  equation . The r e s p o n s e s  to  the in d ica ted  e x p e r im e n ts  

a r e  e s t im a te d  l is t in g  both a b e s t  g u e s s  and the range around the  

b e s t  g u e s s . A s an e x p e r im e n t is  run, the ex p e r im e n ta lly  ob ta in ed



va lu e  r e p la c e s  the e s t im a te d  v a lu e . T he e x p e r im e n ta lly  obtained  

r e s u lt  and the rem ain in g  e s t im a te d  r e s u lt s  a r e  tr e a te d  id e n tic a lly .

The v a r ia n c e  about the e x p e r im e n ta lly  ob ta in ed  va lu e  is  c a lcu la ted  

fro m  ex p er im en ta l e r r o r . The v a r ia n c e  about the e s t im a te d  va lue  

i s  ca lcu la ted  from  the range about the g u e s se d  r e sp o n se . The 

v a r ia n c e  for each  of the d e s ig n  p o in ts  i s  u se d  to  w eigh t the 

con trib u tion  o f that point in  the a n a ly s is .

T he r e s u lt s  of the a n a ly s is  a r e  p ro b a b ility  d istr ib u tio n s  for  

the c o s t s  of each  p r o c e s s .  It i s  o n ly  w hen th e o v er la p  b etw een  the 

p r o b a b ility -c o s t  d is tr ib u tio n s  for com p etin g  p r o c e s s e s  is  s a t i s 

fa c to r ily  s m a ll that d isc r im in a tio n  b etw een  r o u te s  is  a ch iev ed .

O nly by running e x p e r im e n ts  and re p la c in g  e s t im a te d  r e s u lt s  w ith  

a ctu a l r e s u lt s  can the v a r ia n c e  about the c a lc u la te d  optim um  value  

be red u ced  w ith  a co n cu rren t im p ro v em en t in  p r o c e s s  d isc r im in a tio n . 

H o w ev er , ex p er im en ts  a re  run  on ly  if  im p ro v ed  d isc r im in a tio n  is  

r eq u ir ed . T h is  fea tu re  r e d u c e s  the to ta l num ber o f e x p er im en ts  

req u ir ed  to s e le c t  p r e fe r r e d  r o u te s .

An a ctu a l p ro b lem  i s  p r e se n te d  in w hich  it  i s  show n how th e se  

tech n iq u es  le a d  to a p r o c e s s  s e le c t io n  on the b a s is  o f v e r y  few  

ex p e r im e n ta l ru n s.
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Chapter 1 
INTRODUCTION

The Problem
Since 1957 Research and Development expenditure in the chemical 

industry has increased by over 60 percent. Although the increase in 
sales lagged only slightly behind these increases in R&D costs, the 
profits have risen only half as fast (l). Traditional guide marks, 
such as the ratio of R&D expenditure to gross national profit, have 
shown an undesirable downward trend. Charles Allen Thomas, Monsanto's 
Chairman of the Board, declared two years ago that "R&D is now 
stumbling in a morass of projects, sinking in a sea of money, and 
is being built on a quicksand of changing objectives" (2).

In 1966 it is estimated that 1.57 billion dollars (3) will be spent 
by the chemical and allied industries on research and development. This 
represents another 10 percent increase over the previous year. There is 
growing concern as to whether this money will be spent wisely and 
efficiently. The problems exist at two levels —  the management level 
where the problems of budget size, budget allocation, and project 
selection must be properly resolved to insure that the researcher 
deals with meaningful assignments; and again at the level of the re
searcher where the problems of discovery, process selection and process 
optimization must be resolved with a minimum of lost effort.

The research manager is turning more and more to the utilization 
of quantitative methods for guidance as to where he can best spend 
his research dollar.
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Dean and Sengupta (̂ ) describe their activities on behalf of 
three major chemical companies which remain unidentified except for the 
fact that they all share a long experience in R&D and have grown princi
pally by the introduction of new and improved projects. The authors 
tabulate such parameters as cumulative product research dollars, 
cumulative process research dollars, total production costs and the 
ratios of total sales to old sales and the gross value of the plant to 
total sales as functions of time. They then show that the company's 
market share could be related to the ratio of R&D expenditure to that 
of the sales, administrative and general expenditures. Using these data, 
the authors were able to work out an appropriate budget and an optimum 
distribution of that budget between product and process research. It is 
reported that the results have been more than gratifying to the sponsors. 
Freeman (5) developed a stochastic model which can be used to assess the 
expected return from research projects, Hess (6) presents a set of 
recursive equations which are useful for both project selection and 
budget distribution. Hess' model reappears in a paper by Saunders (7) 
who reports its modification and utilization by Monsanto. Asher (8) 
reports the use by Abbott Laboratories of his linear programming 
model for the allocation of R&D efforts. Bobis and Sprague (9) 
report an effort to combine the advantages of management experience 
with that of mathematical models by having the Research Manager work 
directly with the model via a computer programmed in "conversational 
mode." This effort is currently being pursued at American Cyanamid. 
Horowitz (10) presents a regression equation by which he tries to 
understand the influences of current sales levels, profits and the
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accumulated previous research expenditure on the size of the annual 
research budget and the influences of the size of that budget on future 
profits. Approaches such as these hold out the promise of allowing the

t.manager to make more meaningful decisions as to the appropriate 
expenditure of his resources.

A quantitative approach should also be of use to the research 
worker in deciding how he can experiment efficiently. When a choice 
between alternatives exists it is important to find the best choice as 
soon as possible and to experiment in such a way that the inadequacy 
of any of the alternatives is quickly determined. This work is con
cerned with the development of a quantitative approach to be used for 
early discrimination between alternative routes for chemical synthesis.

A typical problem of selecting between alternatives is shown 
in Figure 1-1. Four routes: A, B, C and D are shown as horizontal 
lines. The length of any one line is a measure of the dollars spent 
to reach that particular stage of the investigation. In each case the 
investigation is continued until it either becomes clear that the route 
is not feasible at which point it is compared with all other surviving 
routes. Since only one route will ultimately survive, all of the 
research effort expended on its competitors is of limited value. The 
problem is not one of optimization but rather one of discrimination 
and it should be possible to discriminate at suboptimal levels.
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Route

A Optimized
B Dropped
C Dropped
D Optimized

Research Dollars

Fig. 1-1
Hypothetical Research on Four Alternates

Continuing experimentation up to the point of optimization for 
routes which do not succeed is only part of the problem. The other 
is associated with the failure to terminate experimentation which even 
if totally successful could no longer have had any bearing on the econ
omic decisions of continuing with the program. In such cases it would 
appear that the experimenter while pursuing his particular interest 
often loses sight of the original economic objective —  even when that 
objective is merely the reduction of costs below some stationary bench 
mark —  the cost of the present process. His accomplishment, which 
always could have been measured against that bench mark, was in fact 
so measured only at periodic reviews and not on an experiment-to- 
experiment basis. The problems of this experimenter are much greater 
in a dynamic situation where his accomplishment must be compared 
against the moving bench mark —  the case where several other 
experimenters are simultaneously pursuing competitive routes.
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What is needed is some technique that will keep the experimenter 
continually informed as to the economic aspects of his problem and 
the status of all related approaches, while at the same time highlight
ing those areas of the problem where additional research would be 
beneficial. In Chapter 2 a graphical representation of the effect of 
changes in the process responses on the process costs is developed.
The graph which can be drawn prior to any experimentation can be used 
to assess the economic potential of each experiment. The rest of the 
thesis is devoted to resolving the companion problem of determining 
the probability that the economic potential will be realized.

The techniques to be discussed represent a formalized approach to 
the problem of selecting between alternative routes. The methodology 
employed in the resolution of these problems was designed to be used 
with a minimum —  and in fact in the absence —  of experimental evidence. 
For this reason, decisions concerning the continuance or discontinuance 
of work on an alternative route can be made at the earliest 
possible moment.

Background
The basis for this work derived primarily from the science of 

experimental design, founded by Sir Ronald Fisher, which deals mainly 
with problems of estimating constants and estimating the differences 
resulting from treatments in comparative experiments. Finney (ll) 
indicates that what is meant by design of experiments is:

(l) The specification of the response or the measurements 
to be made on each experiment.
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(2) The selection of variables whose effect is of concern.
(3) The settings of the levels of those variables.
(U) Determining the combinations of the levels of the

variables at which the experiments will be run.

Prior to 1923> the main concern of the statisticians was that 
of analyzing data. At that time, Fisher started to publish a series 
of papers which led to his book The Design of Experiments (12).
Two important principles to emerge from this treatment are that

... the design of an experiment in great measure 
determines the form of statistical analysis appropriate to 
the results ... the success of an experiment in answering 
the questions that interest the experimenter without 
excessive expenditure of time and resources depends 
largely on the choice of design. —

Fisher at this time was interested in the problems of agronomy. 
The earliest designs, therefore, catered to the specific needs of the 
agricultural experimenter. Primary among these were problems of soil 
variation and the elapsed time between planting and harvesting. For 
this reason, these designs placed heavy emphasis on redundancy, 
randomization and the simultaneous inclusion of a large number of 
treatments. The Latin square design first described by Euler in 1782 
was recognized by Fisher as having properties that would satisfy the 
agriculturists' demands. In these designs, the experimental labora
tory which was an open field was treated as a 2-way table of rows 
and columns. Protection against confounding the effects of treatments 
with that of soil heterogeneity was accomplished by insuring that each
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treatment appeared in a random position in each row and column. 
Discussion and analysis of these designs are given in several 
references (13, 1^).

A class of designs of even greater utility is the factorial 
design. In these the treatments consist of the combinations of levels 
of two or more different variables. If m levels of n variables are to 
be included, the design will be described as an mn factorial. Fisher 
states the advantages of these designs are:

Every trial supplies information about each of the main 
questions that the experiment is designed to examine ...
In addition to being able to measure the effects of each 
of the variables with the same precision, as though the 
whole of the experiment is devoted to each of them, it 
measures all possible interactions between these 
ingredients with the same precision.

Despite the power of these designs, the large number of 
experiments that result when either "m" or "n" is large, militated 
against its use. Fisher recognized this drawback and discussed the 
concept of confounding or fractional replication. He points out that 
if there is sufficient reason to doubt the existence of the highest 
order interactions, other variables can be run at the levels which 
would have been used to calculate those interactions. A treatment 
of confounding is given by Davies (15).

Often an experimental program can be subdivided into a series of 
blocks by setting the block contrast equal to higher order interactions, 
thus eliminating the necessity of performing all the experiments in an
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identical environment, which adds to the flexibility of the factorial 
designs. Finney (l6) provides the necessary mathematics.

Despite the body of knowledge generated by Fisher and his peers, 
workers in fields other than agriculture, and particularly those in 
the chemical industry, did not take advantage of this technology.

Failure on the part of the chemical researcher to exploit these 
accomplishments can be attributed to the nature of the two experimental 
problems. The agronomist runs his experiments simultaneously; the 
chemical researcher runs his sequentially. The agronomist is concerned 
most often with qualitative variables and is thus looking for optimum 
combinations of variables. The chemical researcher is most often con
cerned with quantitative variables and thus is looking for optimum 
settings of these variables. The agronomist operates in the face of 
nature and his ability to reduce his error is limited. He invests 
his resources effectively by running redundant experiments. The 
chemical researcher creates his own environment which is insulated 
against nature, so that he spends his resources effectively if he 
invests in control.

In 1951, Box and Wilson (17) published a paper in which they 
demonstrated that Fisher's designs could be effectively utilized 
and serve the specific needs of the chemical worker. They proposed 
a sequential approach to the problem of optimization. Using the 
method of steepest ascent, they described the appropriate design 
strategies for an experimental region which was remote from the
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optimum area and then presented another strategy to be used when the 
experimental region was in proximity to the optimum. Their basic 
strategy was to fit a regression equation to the results of a small 
experimental design and then to differentiate the resulting equations 
with respect to the variables and thereby find the direction in which 
the optimum lay. The experimenter continues to experiment along a line 
in the indicated direction until the response falls off. Then a new 
design is constructed and the process is repeated until a maximum 
is found.

The criterion for the best design for fitting a regression 
equation is that the coefficients in the model be separately estimated 
with minimum variance. In 1952, Box (18) showed that for models linear 
in the variables this criterion is satisfied when the design is so 
chosen that each effect may be independently estimated. Designs with 
this property are said to be orthogonal. Two level factorials and 
their fractional replicates are examples of this class of designs.

In selecting designs to fit polynomials of a higher degree,
Box and Hunter (19) introduced the concept of rotatability. Designs 
of this class have the property that the estimated response has a 
constant variance at all points which are the same distance from the 
center of the design. The designs for fitting second order poly
nomials consist of a two level factorial augmented with runs at the 
center and with two equiradial points outside the factorial for each 
of the variables.
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Although the form of this design is fixed the scale of the 
design in the space of the variables and the number of center points 
can be varied. Box and Draper (20, 21) have shown how to choose the 
values for these two parameters of the design so that the polynomial 
best describes the response over a given region of interest, even if 
a polynomial of higher degree would describe the surface more 
accurately.

In a development which was directed at the chemical experimenter's 
needs to experiment sequentially statisticians suggested designs utiliz
ing small blocks of experiments. Box (22) offered a paper on the 
integration of techniques in which he stated his philosophy concern
ing the growth of knowledge through a continuous iteration between 
hypothesis, design, analysis and hypothesis. The concept of running 
experiments in small blocks which could be augmented with additional 
runs, or supplanted by an entirely new strategy, without having 
sacrificed too many experiments, was stressed.

1C
In two papers in 1961, Box and Hunter (23, 2̂ ) presented the 2 

designs in which they emphasized designs of Resolution V. These are 
fractionated designs which permitted independent estimates of main 
effects and two factor interactions. For example, five variables 
could be studied with a Resolution V design with 16 runs. DeBaun (25) 
also discussed blocking strategies for rotatable designs. The satur
ated designs of Plackett and Berman (26) utilized a basic block size

3-1of four. Such designs as the 2 were a great attraction to chemists
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since the confounded interactions could often be interpreted from 
either physical relationships or merely by the size of the main 
effects. Daniel (27) offered a method for clarifying confounded 
interactions by running two experiments in which the effect appeared 
at opposite levels of the contrast. Hunter (28) presented a mathe
matical formula which allowed clarification of such confounding with 
the addition of only a single experiment. This strategy allows the 
experimenter to run his basic block and then continue his experimentation 
by adding one experiment at a time.

An attempt is made in this dissertation to provide the experimenter 
with a design which minimizes his commitment to the number of experiments. 
The basic structure of the designs that will be discussed will either be 
central composite or rotatable designs, yet the experimenter will be 
free to revise his strategy as the results of each experiment become 
known. The experimenter will be asked to provide estimates of the 
results of indicated experiments which will be used in the analysis 
along with experimentally obtained values. Second order response 
surfaces will then be fitted.

The experimenter is called on to augment the experimental results 
with subjective judgment. In a review of subjective judgment reported 
by Cohen (29); he illustrates several studies which show that the sub
jective judgment of an individual increases as he becomes familiar 
with the situation that he is judging.
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Savage (30) states that the analysis of most problems can be 
aided by subjective judgment, and that when faced with problems of 
uncertainty it is often his only recourse. Dean (31) states that

Adjustments to allow for uncertainty may be challenged 
as nothing more than guesses. Perhaps they are, but 
even so they are guesses that must be made and will be 
made either explicitly or implicitly.

Hertz (31) in a discussion on risk analysis shows the necessity for 
employing subjective probability by pointing to the serious shortcomings 
that occur in any economic analysis in which such estimates are omitted. 
In discussing estimates of unknown factors, Hertz states that

... the range is relatively easy to estimate; if a guess 
has to be made —  as it often does —  it is easier to 
guess with some accuracy a range rather than a specific 
value.... the ranges are directly related to the degree 
of confidence that the estimator has in his estimate.

It is the author's contention that subjective probability can 
be used in areas of experimentation. The experimenter gains more 
knowledge by running experiments and as he does so, his ability to 
make accurate estimates will increase and his stated range about those 
estimates will decrease. Early discrimination between alternate chemical 
routes will rely heavily on both the concepts of experimental design 
and of subjective probability.

The background presented here has been general in nature.
Specific detail about techniques utilized in the work are presented 
within the body of the text.



Chapter 2 
THE VALUE OF THE EXPERIMENT

In any research, process development or process improvement 
project, there is a period between the time that the decision to invest 
in technical effort has been made, and the time that actual experimenta
tion begins, when the experimenter attempts to decide which of several 
alternate routes should be investigated and in which order they should 
be investigated. The experimenter would hopefully choose that alterna
tive that would allow him to fill his objective at maximum gain and to 
order his work so that the most critical areas are studied first.

The technique is here developed to aid the experimenter in 
reaching these decisions. The key to the technique is the recognition 
that while it is impossible to compute the process cost accurately 
early in a research project, it is usually possible to compute accurate 
differential costs. As a result, the possible effect of uncertainties 
about raw material costs and utilization, yields, recoveries, labor 
utilization and capital requirements on the overall project economics 
can be assessed and most important, the assessment can be made before 
any experimentation has started.

Several examples can be cited. An experimenter looking at a 
particular reaction step in one route believes that the results of 
the literature search shows that his yield might be as low as 70% or 
as high as 90%. Although he does not know what his ultimate yield 
will be, he certainly can calculate the value of the increase in yield.
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He may know from experience that he will recover somewhere between 
95 and 99$ of the solvent, and although he does not know how much he 
will actually recover, he can compute the worth of the additional h°]o.

Similar questions arise as to labor utilization and capital cost, 
but in the present treatment, attention is focused only on raw material 
costs which do in fact comprise a large portion of the total 
manufacturing cost.

If the differential cost is calculated for all the areas of 
uncertainty within each route, the experimenter will know how many 
significant economic levers there are inside each route. He can then 
use his judgment to decide upon the amount of time that should be 
devoted to finding optimum settings of these levers. He can, of 
course, introduce his notions of the probability of success into his 
general assessment.

Development of Cost Equation
That portion of the raw material cost contributed by the chemicals 

which participate stoichiometrically is given by:

C.1 2-1

Where: ML is the equivalent weight of the participating chemical
Mp is the molecular weight of the product
Y is the chemical yield of this reaction step
Ih is the recovery of the particular chemical
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Ch is the cost of the particular chemical 
E^ is the ratio of the input level of the participating 

chemical to its equivalent weight

Only the values and are constant, whereas the other parameters,
Ri, Y, C. and E^ can take on a range of reasonable levels. The term in

, E.Mi M± v
the brackets ( - tt- ; is the difference between the quantityY M M i jP P '
of material charged per pound of product formed and the amount of that 
material that ends up in a pound of product. In an ideal case, this 
represents the amount of material available for recovery. However, 
most often owing to byproduct formation, something less than this 
quantity is available for recovery. Since this is only an estimate, 
the uncertainty as to the amount of reactant consumed in byproduct 
formation can be expressed by a compensatory adjustment of R^. If this 
is not satisfactory, a more exact equation of the following form can be 
used in which the concept of conversion is introduced.

2-2
/ E.M. / E.M. M.X. N v 

\ ( 1 1 f 1 1 i i I -D V/, X.Y M “ ' X.Y M X.Y M J i j i
1 P 1 P 1 P

Where: X. is the fraction of reactant which is convertedi
Y is the fraction of converted material that goes to product

Although expression 2-2 is a more exact representation of the 
actual situation, it introduces an additional variable, conversion
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which must also be estimated. It has been found that generally the 
simpler expression is preferred.

The cost contributed by solvents, surfactants, catalysts and 
buffers can be calculated from the estimates of the ratio of the charge 
of these chemicals to that of one of the chemicals participating in 
the stoichiometry. Relationship 2-3 is used.

Where: Ê. is a factor which explains the stoichiometric excess

n
2-3

Where: C. is the cost of the particular solvent catalyst or bufferJ
E. is the ratio of the weight of the particular solvent,
3

catalyst or buffer to the weight of Reactant 1
is the usage of Reactant 1 calculated from expression 1-1 

R. is the recovery of the particular chemical

Credit for byproduct formation can be calculated from the
expression:

C.'k 2-k

or deficiency of the byproduct
Ĉ. is the credit for the byproduct
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The cost of any intermediate chemical or product can now be 
calculated from the summation of expressions 2-1, 2-3, and 2-k and 
this is given in expression 2-5.

These equations can readily be used to calculate the anticipated cost 
of any particular settings of the variables Y, 0, R, and E. There are 
so many areas of the research in which the estimates are not firm, the 
effects of changes in the levels of the estimated parameters often must 
be considered in combination, and many of the effects are not linear; 
so that a graphical output becomes a practical means of assessing the 
results. The complexity and tediousness of plotting the cost as func
tions of the many parameters particularly in multistep processes leads 
to the necessity of developing a computer routine which will serve the 
dual purpose of performing the calculations and plotting the results.
A program that utilizes the equations that have just been presented 
is shown in Appendix A. It is a 1620 program written in Fortran II.
The curve plotting routine is shown in Appendix B. This, too, is a 
Fortran II program written for the 1620; the plots are completed on 
an IBM 870 autoplotter that uses the cards generated from the 
1620 program.

n
Cost

j-j- k=i
2-5
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A One-step Process
For a given set of CL, IL and E^, expressions 2-1 and 2-3 can be 

reduced to the form:

K1Cost = y= + Kg 2-6

Where: and Kg are arbitrary constants associated with those
chemicals that participate stoichiometrically.

The byproduct expression at a fixed value of Ê . and is reduced to 
a constant. Therefore, at fixed levels of all the R's, C's and E's, 
equation 2-5 maintains the general form and can now be represented as

CARCost = + CAI 2-7

Where: CAS and CAI are arbitrary constants associated with the sum
total of reactants, solvents and byproducts.

The cost is shown to vary linearly with l/Y. Alternatively, once 
the values of the constants are established, the cost can then be 
calculated for any value of Y and a curve relating cost to yield 
could be plotted. If the cost of A is known at two different yields 
of A, the costs may be designated CSTAI and CSTA2 and the yields YA1 
and YA2. The constants in equation 2-7 can be calculated from equations 
2-8 and 2-9.
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CAS = (CSTA2 - CSTAl)/(l/YA2 - l/YAl) 2-8

CAI = CSTAl - CAS/YA1 2-9

With CAS and CAI established, the lines can now be computed and 
plotted for each combination of the E's, C's and R's. The final 
cost need merely be known at any two yield levels for each of the 
combinations involved.

The difference between the resulting lines measures the economic 
effects of changes in these process parameters.

Multistep Process
For a multistep process, the procedure is more complex since the 

cost of any successive step depends not only on the conditions of the 
particular step, but also on the cost of the chemical produced in the 
previous step. The cost of the particular step (Step B) must be 
devined not only at some yield level of that step and settings of the 
E's, C's and R's but must also be defined in terms of the conditions of 
the prior step (Step A). The cost of B is shown in Equation 2-10.

Cost B =

Y M ' , Y M ' M i iP P P '
2-10
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The equation is simplified in that the contribution of solvents and 
byproducts is not included; however, the general form of the equation 
still applies.

The term to the left of the plus sign in equation 2-10 refers to 
the chemical made in the previous step, while the term to the right of 
the plus sign pertains to all the other chemicals introduced in Step B.
By the same logic developed for the one-step process for fixed E^, lb 
and Ĉ , and in this case at fixed levels of Y, equation 2-11 would result.

Cost B = ( + BSl) Cost A + | P  + CII 2-11
J . D  J L .D

Where BSS and BSI are constant for fixed and R̂ , and BIS and BII
are constants for fixed E., R. and C. .1 1  l

The cost of A is shown as a variable to indicate that it is a 
function of the conditions of Step A. Therefore, at a fixed value 
of YB, one obtains the straight line relationship 2-12.

Cost B = Sl(COSTA) + II 2-12

where II and SI are arbitrary constants calculated at a particular 
value for YB. It is now possible to calculate the values of the 
constants in 2-12 if the cost of B is known at two different costs of A. 
Call the costs of A, CSTAl and CSTA2 and those for B, CSTB1 and CSTB2.
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51 = (CSTB2 - CSTBl)/(CSTA2 - CSTAl) 2-13

11 = [CSTB1 - Sl(CSTAl)] 2-lk

Equations 2-13 and 2-1^ can be used to solve for the constants in 
Equation 2-12. If the costs of B are known for the same two costs 
of A at another level of the yield of B, the constants for another 
straight line could he calculated.

52 = {CSTBk - CSTB3)/(CSTA2 - CSTAl) 2-15

12 = CSTB3 - S2(CSTAl) 2-l6

The purpose is, of course, to express the cost of B as a 
continuous function of the yield of B. This can now he done hy 
establishing the relationship between the constants S and I and YB.

Since the cost of B for a fixed cost of A can be expressed as a 
linear function of"l/Y, the two constants S and I can be separately 
expressed as functions

S = BSS/Y + BSI 2-17

I = BIS/Y + BII 2-18

Where BSS = (S2 - Sl)/(l/YB2 - l/YBl)
BIS = (12 - II)/(l/YB2 - l/YBl)
BSI = SI - BSS/YB1
BII = II - BIS/YB1
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These values can now he directly substituted in equation 2-11.

Additional steps can be added in similar fashion.

The plot for the cost of a multistep process can be generated from 
a knowledge of the cost of the last step at two different yield levels 
of that step and two different costs of the intermediate produced in the 
previous step. The same information must be available for all of the 
previous steps. These results depend on the settings of the Ch's,
E^'s and IL's and new constants must be used if changes in those settings 
are to be evaluated.

The phase of the work can be most useful in determining 
experimental priorities and the extent of the research commitment.
When changes in the parameter levels are plotted against cost, the 
output resembles a sensitivity analysis, where the approximate slope 
of the various lines is a measure of the importance of the particular 
parameter (33). There are, however, two major distinctions between 
this analysis and a sensitivity analysis.

(1) The sensitivity of the cost to changes of the parameters 
is used to establish experimental priority rather than 
merely to indicate the resultant variation in the response.

(2) An attempt is made to force the values of the parameters 
toward the high side of the range by experimentation 
rather than to try to reduce the range by improved 
sampling.
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An illustration of how the graphical cost analysis can he used 
is provided by the following example. The equations and curve plotting 
routine just described were used to process information supplied by 
experimenters at the American Cyanamid Company. The decisions which 
were reached by the experimenters are, of course, their own. The 
graphical analysis which was developed in this dissertation provided 
the basis for those decisions.

An Example
The example comes from a cost reduction program. As in the case 

of all the examples, the data will be coded. Two routes, I and II, were 
considered. Route I involved a two-step synthesis, both steps of which 
were relatively uncomplicated and extensive literature references to 
similar reactions allowed the experimenter to make estimates of the 
possible range in the yields of the individual steps. In addition to 
the uncertainty about the yield, there was uncertainty about the ability 
to recover a byproduct and uncertainty as to whether the company could 
develop a lower cost process for one of the purchased raw materials.
The cost analysis utilizing the equations just developed is shown in 
Figure 2-1. The yield for the formation of the intermediate product 
is shown along the abscissa. The yields for the second reaction are 
shown by the dashed and solid lines. There are three lines in each 
group —  each one representing a different estimate. The topmost 
line refers to the use of raw material (T) at its purchased price.
The middle line is based on an estimate that this raw material could 
be manufactured internally at a reduced cost. The lowest line is
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based on an assumption that in addition to making T internally,
90 percent of the low cost byproduct could be recovered.

The very earliest experiments resulted in a yield for the first 
step of about 8l percent and a second-step yield of about 86 percent. 
This result is located on the figure by the letter a. At this point 
a decision had to be made as to what was the best way to continue 
with the research.

Analysis of Figure 2-1 indicated that the preferred strategy was 
to try to optimize the yield of the second step as this offered a 
potential savings of about 30 cents per pound (a to £), while optimiza
tion of the first step would only have been worth 15 cents per pound 
(a to b). This work was in fact successful and yields of better than 
95 percent were obtained.

At this point the decision between optimizing Step 1 or 
investigating an alternative synthesis of chemical T had to be faced. 
Since the potential gain for both choices was comparable, the decision 
was based on the experimenter's belief that the optimization of Step 1 
could be accomplished with a lesser effort. Again he was successful 
and yields of 93 percent were realized.

Experimentation through the path a _c d insured that the critical 
areas of the work were investigated sequentially. This was particularly 
important since competitive routes were also under consideration.
Failure to increase the yields of the first step would not have been
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Differential Cost Analysis of a Route 
Containing Four Responses of Interest
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decisive insofar as terminating work on route I, whereas failure to 
increase the second step yields up to optimum levels would have been.

Figure 2-2 shows the cost analysis for the competitive route II.
This was also a two-step synthesis, requiring the formation of B and 
subsequent reaction of B in the second step. It was expected that some 
unreacted B could be recovered. In the figure, the finished raw 
material cost is plotted on the coordinate axis and the cost of the 
product made in the first step is shown on the abscissa. It is interest
ing to note that the cost of B rather than the yield of B was the 
parameter which was plotted. A separate analysis for the intermediate 
step had shown that efficient solvent recovery and utilization of by
product material was as important as yield; and thus, the cost was a 
much more convenient parameter to use.

The experimenter found literature references to two reactions which 
were similar to that of the second step —  one reporting a yield of 52 
percent and the other a yield of 8l percent. These values are plotted 
in the graph. The 67 percent figure shown in the graph is about in the 
middle of these two and aids in the interpolation. Similar reasoning 
permitted the selection of the 30-75 cent range for the manufacturing 
cost of the intermediate and the 50 percent recovery of unreacted B was 
the best that the experimenters hoped to obtain.

It is necessary to specify the levels of all the parameters at which 
the effects of a single parameter is computed as a result of the 
interactions between the variables. An interaction can be recognized
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easily because of the non-parallelism of lines and can, of course, 
have a strong influence on the experimental strategy. One can read 
from the graph that the yield increase from 52 to 81 percent would be 
worth about 70 cents per pound when the cost of B is 30 cents per
pound and it would then be worth better than one dollar when the cost
of B is 75 cents per pound. The reduction in the cost of B from 75 cents 
to 30 cents per pound is worth about 1+0 cents at the 8l percent yield
level and about 50 cents at the 52 percent yield level. Also, at the
8l percent yield level the recovery is worth only 3 cents per pound; 
whereas, at the 52 percent level it could be worth as much as 30 cents 
per pound. This point will be referred to again later.

In Figure 2-3 routes I and II are shown side by side on a graph 
in which the abscissa for route I is the yield of A as shown before 
and that for II is the cost for B as previously shown. The ordinate 
is common for both and is the finished product raw material cost in 
dollars per pound. Because this graph was available before any experi
mentation was done, the experimenters were in a position to choose that 
route which should receive the major attention and the portions of that 
route which should be studied first. Route II appeared to have the 
better overall potential and was assigned a higher priority. The high 
priority of route II existed only as long as the cost of intermediate 
B could be maintained below 60 cents per pound. Early experimentation 
showed this not to be the case and work was immediately abandoned and 
the emphasis was shifted to route I. Note now, that any effort expended 
on recovering the unreacted intermediate would only be of value when
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Differential Cost Analysis of a Route Containing 
Three Responses of Interest
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Comparative Analysis of the Two Routes
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the cost of B was high and the yield low. At these conditions 
route I would be the route of choice, no matter how successful the 
work was.

The graphs provide information as to the value of an experiment 
were it to be successful. The remainder of the dissertation treats 
the problem of quantitatively defining the probability that the 
experiment will be a success.
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Chapter 3 
THE PROBABILITY OF SUCCESS

Any attempt to assign a quantitative statement of the 
probability of success to the objectives within a chemical route must 
begin with the experimenter or experimental team who, through their com
bined background reading and experience, become the best source of 
information regarding the particular synthesis. It is expected that 
the experimenter will exercise sound judgment in planning his experiments 
and reporting on the status of the project; such judgments include 
assessment as to whether the program should continue or should be 
terminated which is, in fact, a statement as to the probability of 
success. The conviction of the experimenter develops as he analyzes 
the accumulated experimental information, but this does not say that ~ 
he is without conviction in the absence of complete data. Rather, he 
approaches each experiment with some prior thoughts as to what the 
results might be. If not, why did he choose that particular experi
ment at that particular time? He questions the validity of each 
experimental result often using as his frame of reference his prior 
thoughts of what the results should have been. Laboratory notebooks 
universely attest to his proclivity as experiments are repeated, 
not for the purpose of determining the experimental error, but because 
the experimental result failed his anticipation, and he is convinced 
this represents an error in procedure. This situation can be repre
sented graphically by Figure 3-1. Figure 3-la is a representation of 
the anticipated value of the response. There is a most likely value
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to which the highest probability has been assigned. Other values 
are less likely to occur and the probability falls off on either 
side of the most likely value. Two curves are shown in Figure 3-lb.
The broad curve which is repeated from Figure 3-la and the other much 
tighter curve which represents the actual experimental result. The 
value of highest probability is assigned to the actual experimental 
result, but since both analytical and experimental error are recognized, 
other values must be admitted and thus the probability distribution 
results. In Figure 3-lh there is little conflict between the anti
cipated and experimental results and the experimental value is accepted. 
In Figure 3-lc, the conflict is shown. The experimenter rationalizes 
this by either revising his prior estimate of the possible response in 
light of the experiment or he modifies his estimate of the experimental 
and analytical error. In the latter case, the experiment is often 
repeated.

Since the experimenter does have an image of his response, it 
would be useful if he would enunciate his views in such a form that 
values can be assigned to his subjective probabilities. Many authors 
have suggested a series of questions (3̂ +, 35) which lead to the eluci
dation of these distributions. The usual technique involves equating 
a particular result with betting odds. Although many authors have 
found this to be satisfactory, the usefulness in this application is 
rather limited since so many areas of uncertainty exist that such a 
laborious procedure would become unduly burdensome.
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In PERT and CPM analysis (36) estimates of the range and most 
likely values have provided sufficient data to make meaningful pre
dictions of time distributions. In this case, it has been found that 
the experimenter could reproducibly state: the most likely result,
and the highest and lowest values that he would accept before repeating 
the experiment. As in PERT no distribution is calculated about the 
particular estimate; rather the high and low values are assumed to be 
separated by a fixed number of standard deviations. The value that is 
assigned to the experimenter's estimate of the upper and lower bound 
is equivalent to the 95 percent confidence limits and therefore the 
range is assumed to be four standard deviations apart.

The experimenter will provide information that can be used to 
establish the variation about the response of a particular experiment; 
however, this is not the ultimate answer. The experimenter does not 
think in terms of a single experiment but rather of a series of experi
ments by which he moves progressively toward his objective. He does 
not despair if a particular experiment falls on the low side of his 
expected distribution, but rather this stimulates him to think in 
terms of conditions for the next experiment. The probability distri
bution of a single experimental result is of less concern than the 
probability distribution for the eventual result of the entire series 
of experiments. To paraphrase, a statement that the yield for a 
particular experiment should be between 60 and 95 percent is of less 
interest than a statement placing the eventual result of the total 
experimental program somewhere between 85 and 95 percent.
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The fact that the particular experiment fell outside the range 
of the eventual expectation is not disturbing, since there are a 
large number of experiments that still can be run. However, unless 
some strategy is adopted which takes advantage of each experimental 
result in the ultimate probability assessment, the desire for "just 
one more run" will not be eliminated. That is, the failure of a 
particular run to reach the expectation must somehow be related to 
the ultimate estimate of the probability of reaching that expectation. 
The experimenter can manipulate many variables in an effort to improve 
his results. If he believes, for example, that temperature, concen
tration and pH are such variables and if his last run was at an adjusted 
temperature, failure to get improved results says something about the 
use of temperature as an appropriate variable and also something about 
his ultimate probability of reaching his expected values. If he in 
turn finds that neither changes in concentration or pH are effective 
in raising his yield, he is, of course, forced to modify his expecta
tion of the eventual result. He is free to introduce new variables as 
they occur to him but the probability of success becomes more remote 
as the efficacy of each variable is disproved.

What is needed, then, is not a probability statement about the 
eventual results of a series of experiments, but estimates of the 
effect on each of the variables to be included in the study on the 
process response. It is known that the response can be fitted by an 
expression which is linear in the coefficients of the following form:



It is required that the experimenter
(1) describe the process variables that are important,
(2) indicate the range of levels for these variables

over which he plans to experiment, and
(3) estimate in advance the effects of the variation

in these levels.

It is not unusual that the experimenter will provide information 
about the variables and ranges of operation. This is the usual 
procedure in setting up an experimental design. Andersen (37) in 
a review of the subject references several such-applications. It is 
unusual to expect the experimenter to predict the effects in advance 
of the experimentation but it should be noted that good design strategy 
requires estimates as to the size of the expected effects, the linearity 
of the expected effects and indication of those variables which may 
possibly interact (38).

The experimenter cannot be expected to be able to estimate the 
most likely value for the coefficients in equation 3-1, yet he is 
capable of providing estimates of experimental results at various levels 
of the variables. If the combination of conditions at which the experi
menter is asked to make these estimates are well chosen, the coefficients 
can be calculated from these values. The experimenter is being asked 
to set up an experimental design and estimate the results of the 
experiments in advance of their being run. Figure 3-2 shows a central
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composite design for three variables. The estimated results are 
indicated at the design points. Estimates of the range about the most 
likely value is included in Table 3-1. The three variables: temperature, 
concentration and mole ratio were varied over the coded ranges. The 
standard coding of using a plus for the high level of the variable and 
a minus for the low level of the variable is shown. Hinchon (3̂ +) and 
Harrington (Uo) use this technique and report correspondence between 
the estimated and experimentally obtained results.

The estimates of the range about the most likely value is used to 
determine the variance about each point. The variance is used to appro
priately weight the contribution of each of the points in the determination 
of the coefficients in a regression equation. This is the key to enabling 
the experimenter to combine estimated results with experimental results.

For each y^ in Table 3-l> an equation in the form of 3-2 can 
be written.

yi = b0 + blxl + b2x2 • • • b12xlx2 • • • bllxl + bnnxn 3‘2

This series of equations can be represented in matrix form by 

Y = XB 3-3

Where: Y is an (n by l) vector 
X is an (n by m) matrix 
B is a (l by m) vector
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Central Composite Design for Three Variables
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Table 3-1
Matrix Representation of Estimated Yield

No.

1
2
3
1+

5
6
7
8
9
10
11
12
13
Ih

15

Temperature
(x-jO

Current
Ratio
(x2)

Mole
Ratio
(x3>

+
0

-i.i+
i.k

o 
o 
o 
o

+
+

+
+
0
0
0

-1 .1+
1 .1+
0
0

+
+
+
+
0
0
0
0
0

-1 .1+
1 .1+

Estimated
Yield
Y

90
95
91
96 
93 
99 
9^ 
99
96 
91 
98
95
97 
9b

96

Estimated 
Range of 
Yield

80-96
9I+-98
82-96
95-98
89-97 
98-99
91-97 
98-99
92-96
83-95 
97-98
90-96 
9b-97 
85-96
96-98

Example of Coding

Temperature

9^
90
80
70
66

Code
1 .1+
1
0
-1
-1 .1+



m is the number of coefficients in the model 
n is the number of experimental runs

The maximum likelihood estimates (4l) of B which is in fact equivalent 
in this case to the least squares estimates is calculated from equation

b = [ xTx r 1 XTY 3-h

In the case when estimated values are being considered, it is unlikely 
that the variance about each experimental point would be equal. In 
such case greater reliance should be placed on those values which are 
known with higher confidence. Weighting the estimates in proportion 
to the confidence is accomplished by creating the diagonal (n by n) 
weighting matrix V (̂ +2) where the diagonal elements are the variances 
associated with each of the estimated points.

B can now be calculated from Equation 3-5*

B = [ XTV_1X I-1 XTV_1Y 3-5

The diagonal elements of the V matrix based on the ranges shown 
in Table 3-1 are:

16, 1, 12.25, .56, 4, .63, 2.25, .63, 1, 9, l, 2.25, .56, lk.6, 25.

The greatest variance is associated with the estimate of 
experiment one. Since the V matrix is inverted, this point carries 
the least weight in the estimates of the coefficients.
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The mechanism has now been developed by which a prediction 
equation for a particular response can be calculated in advance of ex
perimentation. Either partial differentiation or direct search tech
niques can now be used to find those x^'s that optimize the response.

The variance estimate about the optimum value can be calculated 
from Equation 3-6.

Var = X* [ XTV_1X ]_1X*T 3-6

where X* is a (l by m) column vector each element corresponding 
sequentially to the linear, interactive and quadratic terms in the 
prediction model, and locates the optimum condition.

This procedure can, of course, be applied at any stage of the 
experimental program. As data are accumulated, the ability of the ex
perimenter to assess the response from experiments yet to be run increases, 
or said another way, his ignorance about the experiment decreases as he 
looks at more and more data. His ignorance about any of the points that 
were actually run is reduced to that of the experimental and analytical 
error.

The design strategy should now be clear. Experiments will be 
run only when necessary. The estimates of the remaining experiments 
will be incorporated in the calculation of the regression coefficients.
The estimated values and the experimental values are treated 
identically. If the response of interest is yield, the regression 
equation can be directly substituted into equation 2-5. The levels 
of the X^'s that minimize the cost can then be computed. The
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variation in Y at these particular x^'s can be calculated from 
Equation 3-6. A probability distribution about the minimum cost due 
to a variation in Y can be estimated through a Monte Carlo stimulation 
employing Equation 2-5. The spread in this distribution is a measure 
of how well the minimum cost is known. This spread can be reduced by 
replacing estimates with observations obtained from experimental runs. 
The best knowledge is derived from an experimentally obtained value 
but additional runs need only be made when better discriminating 
power is required.

Figure 3-3 is useful in describing what is meant by discriminating 
power. In Figure 3-3a two processes are shown in which very little is 
known about the cost. One might be reluctant to select a route on the 
basis of this information. The probability cost functions can be des
cribed as having poor discriminating power. In Figure 3-3b the same 
two processes are shown but here, since several experiments have been 
run, the probability cost distributions are now better known. One 
process is clearly favored. These probability cost distributions 
can be said to have strong discriminating power.

The strategy employed in this paper is based on the use of 
fractional blocks of central composite designs. The following departure 
from classical use of design theory is made: a response_for each of the 
design point is always included in the determination of the coeffi
cients for a full second-order regression equation. Thus, as the 
experimentation proceeds through the fractions of the design, the prior 
information coupled with the observed responses always provides 
estimates of all the coefficients.
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Such an approach allows the experimenter to employ designed 
experiments much earlier in the development than heretofore possible. 
Even though he is trying to fit the surface with a second order poly
nomial, the commitment on the part of the experimenter to a large 
number of experiments is minimized. If the sample of experiments that 
have been run, in conjunction with the modified estimates of the other 
design points, indicate that a route is unprofitable, the route is 
abandoned at that point. Further, this approach can allow the experi
menter to study wider ranges in the levels of his variables. (The 
strategy employed here was that of setting the star points of the design 
at levels close to the natural constraints of the problem.)

The desired result is a continuous decrease in the variance about
the optimum point with the addition of each experiment resulting in an
increase in the discriminating power of the model. This is not always
the case as the variance which is calculated from Equation 3-6 is

Tbased on both the location vector X* and the weighting matrix V.
It has been shown that V will continually get smaller as experimental
values replace the estimated values and the experimenter's confidence
grows. However, should the initial estimate be in grave error, the 

Tlocation vector X* will move. The most troublesome case occurs 
when X* moves drastically away from the center of the design. This 
effect may be sufficient to overwhelm the decrease in V, resulting in 
a diverging rather than a converging confidence interval about the 
minimum cost. The discriminating power of the model will therefore 
decrease.



Under these circumstances it would appear that the experimental 
design region should be shifted to encompass the new location of the 
X* vector. The regression equation would then contain correlated 
estimates of the coefficients. This condition can be redressed by- 
throwing away some of the original postulated results (or even all of 
them if the shift in space is very large). Even in this situation, 
the regions of uncertainty will be somewhat better than they would 
have been in the original location since the observed results from the 
original design, which may or may not be discarded, continue to give 
the experimenter greater confidence in guessing responses in the new 
region. The strategy, therefore, continues to be effective; the 
original experiments indicated to the experimenter that his original 
design was poorly placed and that the experimentation could best be 
performed in some other region of the factor space.

Another difficulty that this problem seems to present is that 
of discriminating between routes when the discriminating power has 
been overestimated. This will occur when the experimenter erroneously 
predicts an optimum near the center of the design, or predicts the 
experimental results to fall within an unrealistically narrow region. 
Such predictions would lead to an underestimate of X* and V both of 
which would contribute to unduly narrow cost distributions.
Certainly, whenever the experimenter believes that the information- 
provided by the design is sufficient to enable him to select a route, 
the route should be checked by running experiments at the anticipated 
optimum.
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Consideration must also be given to the failure of the regression 
equation to adequately represent the surface given by the predicted 
and experimental values. The residual sum of squares or lack of fit 
can be calculated from Equation 3-7*

Residual Sum of Squares = y V ^ S t - BTXTV"1Y 3-7

When the predominant portion of the design is filled by estimated 
responses, these values supply the largest source of variance, which 
is calculated using the variance covariance matrix X^V-^X . As more 
experiments are added, the variance calculated from is reduced
while the residual sum of squares may or may not change. Replacing 
estimated points with experimental values will increase the ability 
to detect lack of fit. If better models prove to be needed, 
transformations of the independent variable given by Box and 
Tidwell (43) or of the dependent variable given by Box and Cox (44) 
should be considered. The strategy of establishing a new design in 
the region of the expected optimum should also be useful.

It is, however, anticipated that discrimination between alternate 
routes can be made without it becoming necessary to reduce the lack of 
fit. Such was the case in the example which is presented in Chapter 5.



Chapter 4 
FINDING THE OPTIMUM VALUE

In the previous chapter, a method for associating an individual 
response objective with levels of probability was described and an 
overall experimental strategy was discussed.

The response of ultimate concern is the process cost. This 
chapter is devoted to the development of a method for utilizing the 
probability information concerning the many individual areas of 
experimentation, to compute a measure of the cost potential.

This problem was resolved by taking advantage of existing techniques 
The method of direct search was used to determine which experimental con
ditions would lead to a minimum cost and a Monte Carlo simulation was 
employed to obtain a probability distribution about that cost.

In the second chapter an equation was presented which could be used 
to calculate the cost of any particular step. This was Equation 2-5.
It was important in Chapter 2 to point out that the values Y, E, R, 
and C were not fixed and could be varied over wide ranges. In this 
section, estimating procedures for Y, E, R and C are discussed.
Chapter 3 described a method for determining a response. This is 
of particular value in the determination of the chemical yield, Y, 
which is usually the variable of greatest concern in the experimental 
program. It was shown that the objective response, Y, could be 
related through a quadratic regression equation to the several
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process variables. Y could then be replaced in Equation 2-5 with 
the appropriate regression equation.

The E's were previously described as the ratios of the 
stoichiometric excesses of one chemical over another in the synthesis.
If this ratio was important to the chemical yield, it should appear as 
one of the process variables, presumably as a concentration term and 
thus for every E which has a value greater than 1, there should exist 
an x in the regression equation and the E and the x must be 
functionally related.

As an example, consider the case where the experimenter wants to 
study the effect of a stoichiometric ratio of one raw material to 
the base raw material over the range of 1 to 9- If he chooses to 
investigate these at the coded levels of -2, -1, 0, 1 and 2, the appro
priate coding for x would be (E-5)/2 = x, so that E could always be
expressed as a function of the midrange and the range. A more general 
expression is shown in Equation k-2.

E = rx + m 1+-2

Where: m is the midrange
r is the analytical difference in the uncoded levels

at the settings -1 and 1.

The maximization of Y does not necessarily correspond to a minimization 
of cost, since the raw material charges must be considered.



In the previous section it was indicated that the settings of 
the x^'s that maximize the yields could be found by partial differ
entiation of the regression equation. The problem of cost minimization 
cannot be so readily resolved since the regression equation appears in 
the denominator of the cost equation and some of the x^'s also appear 
in the numerator. The method for finding the settings of the x^'s 
that minimize cost will be discussed later in this chapter. It will 
now be considered that such a method is available and the value of 
the x^'s that minimize the cost are known.

Several techniques for representing the values R* s (the recovery 
of the unreacted chemicals or the recovery of solvents) are possible. 
They, too, can be described by regression equations if the experi
menter feels that the recovery will vary with the settings of the process 
variables. Development would be similar to that shown for the yield, 
and it should be noted that an entirely different set of variables from 
those that affect the yield may be involved.

In the case of solvents, the recovery is equal to the difference 
between the input and the loss and can often be related to the physical 
laws which involve such variables as temperature, pressure and 
concentration. Explicit expressions for the loss in these variables 
can be substituted for the value of R.

Finally, the recovery of solvents is often known from experience 
to vary within narrow limits and a normal probability distribution can 
be fitted between the outer extremes of the most likely value of the
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distribution. This is the approach that will be used in the examples 
included at the end of this dissertation.

The C's are the response for a one-step process and become the 
input for subsequent steps in a multistep process. In the latter 
event, the form of the input of the C's is identical to the output 
for the preceding step.

The basis for the calculation of the cost distribution is 
Equation 2-5. It is here assumed that the following information is 
available. The setting of the x's which provide the optimum values 
for Y, Y is distributed normally with an optimum value Yq and vari
ance about Yq calculated from Equation 3-6. The E's are replaced by 
a function containing x^'s at known levels. The R's are distributed 
normally with an expected value Rg and a variance calculated from 
estimates of the extreme values. The costs for all the input raw 
materials are known exactly.

The calculation of the cost distribution for such a situation 
is given by Mood (i+5) • This method involves partial differentiation 
of the cost equation with respect to Y and R, which assumes that Y and 
R are distributed normally. In a one-step process this is the case. 
However, a method is required that will handle all cases and once the 
number of steps in a process is greater than 1, a new variable of 
cost, C, is introduced. There is no guarantee that this variable 
will also be normally distributed.



51

Monte Carlo Simulation
Quigley and Hess (1+6) describe an approach for calculating 

the distribution of variables which are dependent on a complicated 
function of non-normally distributed independent variables. Their 
approach utilizes the Monte Carlo technique and is applicable here.

The Monte Carlo technique is a sampling procedure whereby 
complicated expressions involving combinations of probability distri
butions may be evaluated. The only requirement is that the probability 
distribution is known and can be represented numerically. A bibliography 
of the Monte Carlo methods is given by Meyer (1+7). The distribution 
about the estimated parameter is developed by taking repeated samples 
at random from the known populations of the independent variables.
The distribution of results comes closer to approximating the true 
distribution as the sample size is increased.

Since a large number of samples is required, a computer is suited 
for this application. Random sampling from a distribution is best 
done by either selecting numbers from a random number table or by 
internally generating such a series of random digits. The use of 
random numbers is so extensive that most computers have random number 
generating routines, which become available by calling for a random 
number subroutine.

The method used in this dissertation is an IBM library program (1+8) 
which uses the power residue method. A three digit number is entered 
to start the sequence. The three digit number multiplies a ten digit
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prime number. The ten low order digits of this product make up the 
random number. This random number is in turn multiplied by the prime 
number to generate the next random number. The process is repeated 
until the required numbers are obtained. The random numbers so chosen 
can now be assigned to fit the characteristics of any particular 
distribution. For example, if 10 percent of a distribution has a 
particular value, the digits 00000000-09999999 can be assigned to 
that value.

The distribution of interest can always be expressed in terms 
of a cumulative probability distribution. Such a distribution is 
shown in Figure 4-1. The ordinate runs from 0 to 1. The random number 
is used to enter the cumulative probability distribution from the 
ordinant. In the figure, the selection of the random digit is 55000000 
which is located at .55 on the ordinate axis results in a value of 
$.0965 per pound being selected from the cost distribution.

In cases when the selection is from a normal distribution, the 
approach is facilitated by recognizing that for a rectangular distri
bution with limits of 0 to 1, the mean and variance are .5 and l/l2.
The sum of 12 such random numbers would have an expected value of 6 
and a standard deviation of 1. The statistic shown in Equation 4-1
is approximately normally distributed with mean 0 and variance 1.

12
^  m ± - 12(.5) 

s  ---------------  4-1
•f 12 (1/nr 12)



Use of Cumulative Distribution in Monte Carlo Simulation
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Where: KDL is a random number from a rectangular distribution.

Normally distributed random numbers are calculated from b-2\

12
— 1

E. = ) BN.-6 b-21 1
i=l

These normally distributed random numbers can be transformed 
to the range of interest by Equation ^-3.

ET. = M + sE. l*-31 1

Where: M is the mean of the parent distribution
s is the standard deviation of the parent distribution

The program used here is written for the IBM 1620 and is shown in
Appendix C. The rapid convergence toward the actual shape of the dis
tribution is shown in Figure U-3 where a cumulative cost distribution 
is drawn after 100, 500 and 5,000 random selections. The curves for 
the latter two samples are superimposed. In all other cases calculated 
in this dissertation, a selection of 500 was used. Figure k-3 is the 
probability cost distribution calculated for one of the examples 
in Chapter 5.

The skewed characteristic results from the necessity of trun
cating the variable Y against the upper bound of 100%. An optimum 
value for Y of 96.5 was calculated with a confidence interval of + 5 "7- 
All values calculated from the random sample that led to values of Y
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'Effect of Increasing the Sample Size in Monte Carlo Simulation
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greater than 100 are set equal to 100. The shape of this cost distri
bution now becomes the input for the next step. The non-normality of 
this distribution necessitated the use of the Monte Carlo approach in 
calculating distributions about all subsequent costs.

Direct Search
Direct search is a sophisticated trial and error technique that 

has been applied successfully to many problems that have defied solution 
by classical methods. It often provides faster solutions for many 
problems that are solvable by classical methods. The technique credited 
to Hooke and Jeeves (4-9) has been extensively modified by Wood (50, 51)* 
It has now reached the point where it is the method of choice for find
ing the optimum solution for complicated functions subjected to several 
constraints. Wilde (52) offers a critique of the method.

The problem of finding the levels for the variables that minimize 
the cost is ideally suited for this technique. The strategy is 
described in the simplified flow diagram shown in Figure 4-3.
The operations that are marked in the boxes on the flow diagram are:

Initialization - Levels of the variables are selected 
randomly and tested to see if they fall within their allowable range.
If so, the value of the function is then computed.

Type I search - A search is performed by moving one variable at 
a time by a fixed step size in the direction which produces a reduction 
in the values of the function. The variables are moved sequentially.
If, after moving all of the variables, a reduction in the value of 
the function has not been obtained, the step size used is reduced
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Flow Diagram for Direct Search
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to the next lowest level and the procedure is repeated. One continues 
this way until the smallest acceptable step size producing no further
reduction is found. Successful reduction in the value of the function
resulting from a Type I search initiates the start of a pattern move.

Pattern move - All of the variables are moved in the direction
and by the same incremental amount that produced reduction in the 
function when they were individually manipulated during the Type I 
search. A Type II search immediately follows the lype I search.

Type II search - The Type H  search is essentially identical to 
the Type I search, the only difference being that the value of the 
function after the pattern move is not computed. Comparison is 
always made to the best point that was obtained by the Type I 
search which led to the pattern move.

Closure test - The size of the charge in the variables is compared
to a minimum step size. The procedure is successfully terminated when 
after failing to achieve an improvement by a Type I search it is found
that the step size used was at the minimum.

In the problem of interest, the calculated values such as yield 
and recovery must be constrained to values below 100%. If Y is given 
as a function

Y = F(b.,x.) k-h

The constraint can be handled by creating a slack variable Xn+^ 

and we can then write Equation U-5
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CONST = Y - X ,- n+1

0 < X ^  < 1  — n+1 —
^-5

Now agreement with the constraint is insured by trying to minimize 
not the cost but a value —  call it SN, which is given by Equation k-6

SN = COST + P(CONST)2 h-6

Here P is the number called by Wood a penalty function which multiplies 
the constraint squared. Thus a mechanism is provided which drives the 
solution away from an area in which the constraint is violated. The 
process is continually repeated until the constraint vanishes within 
some preset limit.

The routines upon which the optimization program operates are 
shown in Appendix D. The program when run on an IBM 7070 converges 
within 3 minutes.-



Chapter 5 
APPLICATION TO AN ACTUAL PROBLEM

An actual situation was selected to test the theories and 
procedures developed in the earlier chapters. It was agreed to by 
the American Cyanamid Company that they would use the techniques on a 
problem of route discrimination. The experimental work and the estimates 
of the anticipated results from that work was provided by scientists at 
the American Cyanamid Company. The experimental strategy employed was 
that described in Chapter 3. The analysis was based on the work 
presented in Chapters 2-k.

Since the experimentation and program development occurred 
simultaneously, it was not possible to perform all of the necessary 
mathematical calculations prior to the initiation of each block of 
experiments. Rather an experimental design was selected and the experi
ments were run sequentially with the estimates provided prior to the 
inception of each new block of runs. A decision to modify the design 
if it had to be made would have been based primarily on the observed 
differences between the anticipated and the actual results. In the 
two reactions which were studied, a change in strategy was not dictated 
since the results reinforced rather than contradicted the experimenter's 
prior knowledge.

When the programs were completed it was then possible to treat 
the data appropriately and to determine just how much experimentation 
was truly required to discriminate between the alternative routes 
involved.
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It was agreed that in the absence of experience with the 
technique the test cases should be uncomplicated and the effects of 
only important variables were to be investigated. The variable time, 
usually affects the process economics by influencing the size and cost 
of equipment. Only raw material costs were considered in this example. 
Time was therefore not included as a variable in the central composite 
design but rather provisions were made either to sample in time until 
the maximum yield was obtained or to sample at the appropriate time 
when this could be determined by visual observation.

Background
The test problem involved the selection of a new synthesis 

route for a high volume organic chemical. The standard process 
involved a two-step synthesis with a purification step intermediate 
between the two reactions. The purification was not specific for the 
elimination of the impurity and as a result some product was lost.
A yield was therefore associated with the purification step. It was 
discovered that a change in one of the chemicals involved in the ' 
purification would not only inhibit product loss but would also 
enhance the yield of the subsequent step.

Before undertaking this work, an intensive study was made of 
other alternatives. One which seemed particularly attractive in
volved a catalytic reaction of the unpurified product resulting from 
the first step. With this single step both reaction and purification 
could be completed.
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The three alternatives are given below

Present Route
A + B + C --------------> ID
ID + N  » PD
PD + Z  > E

Where: A, B, C are the reactants in Step 1
ID is the impure product from Step 1 
H is the chemical used for purifying ID 
PD is the pure product from Step 1 
Z is the Step 2 reactant 
E is the final product

Alternate Route I
A + B + C ---------------» ID
ID + Q------------------- > PD
PD + Z ----------------- > E

Where: Q is the new chemical used in the purification.

Alternate Route II
A + B + C ---------------» ID
ID + R------------------- > E

Where: R is a chemical which selectively reacts with pure D.
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Since the first step is common to all three routes, the resulting 
product from this step can be treated as a purchased chemical of known 
cost. Alternate I then becomes a two-step synthesis and Alternate II 
a one-step synthesis. The cost for the present route is, of course, 
known and provides a stationary bench mark against which the other 
results must be measured.

Alternate Route I
The graphical analysis discussed in Section I was performed and 

is shown in Figure 5-1- Three areas of uncertainty were noted. They 
were the yield of the purification step; the yield of the subsequent 
reaction and the amount of chemical Z. The effect of increasing the 
purification yield from to 100 percent is determined from the differ
ences between lines one and two and also the difference between lines 
three and four. Each one percent increase in yield is worth between 
.2 and .3 of a cent per pound. An increase in the yield of the second 
step which is shown along the abscissa is worth about .15 cent per pound. 
The effect of doubling the usage of Z from the minimum ratio of 1 is 
established from the differences between lines one and three and two 
and four. The twofold increase in the usage costs about .7 of a cent 
per pound. It was realized at this time that the nature of the experi
ment was such that the amount of Z could never be accurately determined 
and would vary with the type of equipment that was used. The usage 
could, however, be estimated. This left two areas for study; the 
yield of the extraction and the yield of the subsequent step.
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Since this process was a modification of an existing plant process, 
experience existed concerning the possible effects of the variables.
Three variables were chosen for the investigation: temperature (X^), 
concentration or amount of water (Xg) and the ratio of Q, to ID (X2).
The method of purification was essentially an extraction of the pure
material from a residual tar cake. The longer the extraction period 
the greater would be the total amount of product extracted; however, 
at these extended periods, the dissolution of some of the impurity 
would also take place. Since this could be visually observed by a 
change in the color of solution from clear to yellow, time was not 
included as a variable but the experiments were run until the appear
ance of the slight yellow color. Dr. H. Grethlein who ran the experiments 
also made the prior estimates. Dr. G. Goulandris, who was familiar with 
the work, provided another independent set of estimates. A central 
composite design was selected to study the response surface. The 
design is shown in Table 5-1 together with the estimates of both
Grethlein and Goulandris. Grethlein, who was more familiar with the
problem, indicated this better understanding by selecting relatively 
narrow ranges about the estimates. Although Goulandris could not 
indicate such conviction and was in general more pessimistic about 
the results, both experimenters believed that about a 99$ yield could 
be obtained and that this would most likely result when both X^ and X^ 
were at their high levels (lines 6 and 8). In fact, both experimenters 
believed that X^ and X^ would exert strong positive effects and 
discounted Xg as being important in the range studied. This thinking 
was corroborated by the experimental results which were eventually
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TABLE 5-1
Original Estimates 

Alternate Route I, Step 1

Grethlein Goulandris
Conditions Most Most

*1 X2 x3 Likely Range Likely Range Actua]

. . 90 80-96 60 4o- 70 84.29
+ - - 95 94-98 75 65- 85 97.50
- + - 91 82-96 60 45- 70 85.53
+ + - 96 95-98 80 65- 85 99.40
- - + 93 89-97 80 60- 85 97.49
+ - + 99 98-99 99 95-100 98.53
- + + 94 91-97 80 60- 90 94.24
+ + + 99 89-99 99 95-100 99.15
0 0 0 96 92-96 95 85-100 98.32

-1.4 0 0 91 83-95 4o 20- 70
1.4 0 0 98 97-98 98 80-100
0 -1.4 0 95 90-96 95 70-100
0 1.4 0 97 94-97 95 70-100
0 0 -1.4 94 85-96 95 70-100
0 0 1.4 96 96-98 98 80-100
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obtained. Grethlein did a much better job of estimating the true 
values but it should be recalled that he had had more experience 
with the particular route, and further, although Goulandris did a 
poorer job of estimating, he so indicated this by providing estimates 
with wide ranges.

Some of the experimental values fell outside of the ranges given 
by the experimenters but in the region where the yield was maximized, 
concurrence between the expected and the experimental results was found.

In Table 5-2, three columns of estimates are given; those prior 
to any experimentation, those after running the center point and a 
half replicate of the design and again after running the full factorial. 
The actual experimental results are included in the table and these are 
always indicated by the dash given under the range.

In general, these estimates which were given by Grethlein showed 
remarkable stability. The only major modification to the estimates 
was made for lines lU and 15 where the strong positive effect of 
was initially underrated.

It is interesting to note how the experimenter's confidence in
his knowledge increased as more experiments were added. The variances
calculated from the ranges are given in lines 16 and 17. Three vari-
ances are shown: €  ̂  , which is a pooled average of the center points

2and all the points of the face of the cube, ^  which is a pooled
average of all the points which extend beyond the face of the cube,

2called star points, and ©  E , the estimated experimental error.
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TABLE 2a
Modification of Estimates with Experimentation

X1 X2 x3 :

No Expt. 
Most
Likely Range

5 Expts.
Most 
Likely Range

9 Expts.
Most 
Likely Range

- - - 90 80-96 91 83- 92 84.29 _

+ - - 95 94-98 97-50 - 97-50 -
- + - 91 82-96 85.53 - 85.53
+ + - 96 95-98 95 93- 98 99.40 -
- - + 93 89-97 97.49 - 97.49 -
+ - + 99 98-99 99-5 98-100 98.53 -
- + - 94 91-97 95 93- 97 94.24 -
+ + + 99 98-99 99.15 - 99.15 -
0 0 0 96 92-96 98.32 - 98.32 -

-1.4 0 0 91 83-95 88 85- 95 93 90- 97
1.4 0 0 98 97-98 99.5 98-IOO 99.5 98-IOO
0 -1.4 0 95 90-96 96 93- 98 98 97- 99
0 1.4 0 97 94-97 97 90- 99 98 97- 99
0 o -■1.4 94 85-96 91 85- 95 90

-=)■o\1COCO

0 0 1.4 96 96-98 99.5 98-100 99 98-100

TABLE 5-2b

Variances
Source No Expts. 5 Expts. c3 Expts.

2
I 4.1 1-7 -
2
II 3.3 3.3 • 7

& 2
E • 25 .25
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2 2 In other work, it was found that &  ̂  is generally lower than <3 ^  .
In this case the experimenter felt less certain about the results from
experiments in which both and were simultaneously set at the low
level (lines 1 and 3) than at the star points where the effect of only
a single variable had to be assessed.

2 2 After five runs the new value for &  ^ was 1.7 and that for &
was 3.3 which is a change in the expected direction. The four runs at
the corners of the cube provided sufficient information about the
corner points to allow some contraction in the range of the estimates. 

2After 9 runs, <=> ^  is also reduced in this case to a value of 0.7. 
Table 5-3 indicates the excellent correspondence between the initial 
and final estimates. The direction and magnitude of the linear 
coefficients were estimates extremely well. The slight changes in the 
optimum settings of the variables and the imperceptible changes in 
cost reflect the stability of the system.

Figure 5-2 shows the probability cost distributions for the first 
step of this route. These frequency distributions will serve as input 
for the next step. The improvement in knowledge resulting from addi
tional experimentation is reflected by the reduction in the range of 
these cost distributions. The figures are based on 50.0 Monte Carlo 
selections. The data and all other similar data are presented in 
Appendix E; the curves shown are smoothed by eye.



TABLE 5-3
Coefficients

Wo. Expt. 6 Exffts. 9 Expts.

B0
B1
B2
B3
B12
B13
B23
B11
B22
B33

95.97 98.25 98.31
2.51 2.98 1+.10
0.58 -0.01 0.06
1.39 2.82 2.81*
-0.02 0.62 0.57
0.31+ -1.1+0 -2.61*
-0.05 0.1+1 -0.72
-0.02 -1.1+0 -1.93
0.08 -0.71+ -0.15
-0.08 -l.il* -1.72

Optimum Variable Setting

X1 1.38 1.1*0 1.1+0
X2 1.06 0.97 0.67
X3 -0.01 0.12 0.1*0

Yield H O O 100$ 100$
Cost 0.0881+5 0.08852 0.0885I+
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Frequency-Cost Distribution - Route I, Step 1
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The Second Step - Alternate I
The second process step involved the reaction of the purified 

intermediate with the chemical reagent Z to produce the final product. 
The medium in which the reaction takes place now contained Q, rather 
than N. A single experiment was run in the new medium at what were 
the optimum variable settings for the standard process. A yield of 
96$ was obtained. Since a good understanding of the factor space was 
available from the experience with the standard process, fairly tight 
estimates of the points in a designated experiment were obtained. 
Experience had shown that the only two variables of importance were 
pH and temperature. Table lists the estimated guesses based on 
a single run at the center of that design.

As neither of the variables contributed to the cost in any way 
other than through their influence on yield, the regression model 
calculated from these estimates could in this case be differentiated 
to establish the minimum step cost.

One other area of uncertainty involved the utilization of Z, a gas. 
It was anticipated that the usage of this chemical could be reduced by 
better design. The vagaries of scale-up were such that there was 
reluctance to state the usage with any more certainty than that it 
should be no greater than the present stoichiometric excess of 1.5 
and certainly not much lower than a ratio of 1.1.
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TABLE 5-4
Estimates of Alternate Route I, Step 2 
(After a Run at the Anticipated Optimum)

Most
Lne

h
Likely Range

1 - - 90 87-95
2 + - 93 91-97
3 - + 80 76-84
4 + + 85 81-88
5 0 0 96 -

6 -1.4 0 70 66-75
7 l.k 0 75 70-81
8 0 -1.4 94 90-97
9 0 1.4 88 85-93
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The three areas of uncertainty that existed in this route are 
defined below:

(1) The yield of the purification step for which the
estimates in Table 5-1 were made.

(2) The yield of the final step for which a single run
had been made, which is included with the estimates 
in Table 5-̂ -

(3) Variation in the utilization of Z which was expected
not to be lower than 1.1 nor greater than 1.5*

The cost distribution calculated from these data and those for 
the purification step are given in Figure 5-3. Three curves are shown; 
they represent the case where only a single run was performed on Step 2, 
the case when five runs of Step 1 were added and the case where nine 
runs of Step 1 were added. The gain in information is seen to be 
small. The data for these distributions were also obtained from a 
Monte Carlo sample of 500.

The distributions are graphic evidence that experimentation 
added little to the existing knowledge and that one or two experiments 
were all that were necessary to define the situation. This should not 
have been entirely unexpected. The route was similar to the present 
route and the excellent information available concerning the present 
route could and was translated through the experimenter's estimates 
of the experimental results.
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Frequency-Cost Distribution - Route I
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Alternate II
This route represented a completely new approach to the 

synthesis of E. ID was taken up in a solvent where in the presence 
of a catalyst a selective reaction took place between D and Z leaving 
the impurities behind in the mother liquor. Several experiments were 
run in which different classes of solvents and catalysts were tried.
This work which involved solvents and catalysts that were too expensive 
to be considered in a commercialization of the process provided the basic 
information which led to the selection of a low cost solvent catalyst 
system and provided a basis for the estimates of the response surface 
when the lower priced catalyst solvent system was used. The experimental 
work was carried out by Dr. H. Merlin and the author. Both men partici
pated in the planning and running of the experiment, but so as not to 
bias the purpose of this paper, Dr. Merlin alone provided the estimates 
of the results.

The graphical analysis shown in Figure 5-4 indicated three areas 
of concern; the yield, solvent usage, and catalyst usage.

The large contribution that the solvent adds to the cost is 
apparent from the figure. The usage is affected by both the initial 
charge and eventual recovery. The effect on cost of a reduction in the 
ratio of solvent to ID of from ten to five can be computed from the 
difference between lines one and two. Complete elimination of the 
solvent cost is shown on line three where 100 percent recovery 
was assumed.
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Conversely, the contribution of the catalyst to the cost is 
small as indicated by the difference between lines three and four.

A one percent increase in yield is worth from .05 to .2 cent 
per pound, depending upon the yield level and solvent requirements.

As the solvent and catalyst usages were in part affected by the 
level required to provide adequate yields, an experimental program, 
investigating the effect of the important variables on yield, was 
in order. It was expected that for a particular solvent catalyst system, 
four variables would be important: temperature (X^), ratio of solvent to 
reactant (X2), ratio of catalyst to reactant (X^) and time which was 
studied by withdrawing samples from the reactor at various intervals.
The response of interest was the maximum yield.

A  central composite design was chosen as the basis for the 
experimental program. The limits of temperature were set by natural 
constraints as was the lower level of the solvent. The upper level for 
solvent and catalyst were, of course, limited by economics. An upper 
bound was selected which set reasonable limits on the concentrations.

Merlin's estimates are shown in Table 5-5- Despite the initially
2 2wide ranges suggested, as shown by a comparison of & ^ and £> ^

for the two routes, his only poor estimates were for Experiments 2,
3 and 9- As the experimentation progressed, the expected reduction 

2 2in S  ^ and ^  occurred. After six runs, good estimates for 
Runs 2 and 3 were obtained. Since Experiment 9 was the center point 
and was run first, this estimate could never be corrected.
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Differential-Cost Analysis - Route II

.12

Route IIRM Cost 
(S/lb)

10

.09

90 95 100
Yield (%)

Fig. 5 -4

Solv./ID Cat./ID Solv. Cat. 
Ratio Ratio Recov.C/o) Recov.C/o)

1 10 .1 95 50
2 5 .1 95 50
3 5 .1 100 50
U 5 .1 100 100
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The coefficients which are given in Table 5-6 show that the 
original estimates of large positive temperature and solvent effects 
prevailed as runs were added, but the estimate of the catalyst effect 
was revised downward. These coefficients will allow estimates of the 
optimum yield and indicate the appropriate settings for the initial 
catalyst and solvent charge. This, however, will not completely define 
the usages of these two chemicals since both can be recovered. It is 
expected that the solvent can be recovered through distillation.
Engineers, experienced in building recovery systems for this particular 
solvent, suggested that a recovery between 9^ and 98 percent was possible. 
The catalyst could, in a sense, be recovered also as the solution could 
be recycled with only limited replacement. The graphical analysis had 
indicated that with the low levels of usage required, accurate deter
mination of the recovery of the catalyst was unnecessary and rather 
than run additional experiments, Merlin merely estimated that re
coveries between 40 and 80 percent were possible. Figure 5-̂ + is the 
probability cost distribution for this route. The range is consider
ably wider than that for Route I and it is only through experimentation 
that clear understanding of the process costs can be had. The four 
curves shown correspond to the cases of no experimentation, two 
experiments, six experiments and nine experiments. The additional 
increase in knowledge between six and nine experiments leads one to 
wonder whether the additional experiments were really necessary.
Once again, satisfactory understanding of the process route was 
available with limited experimentation.
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TABLE 5-5a
Estimates for Route II After Each Block of Experiments

0 Expt. 2 Expts. 6 Expts. 9 Expts.
Conditions Most Most Most Most

Line X2 X^ Likely Range Likely Range Likely Range Likely Range

1 - - - 6o 25- 75 60 25- 75 6k - 6k -
2 + - - 75 60- 85 77 65- 87 85 1OOOO 87 87.5 -
3 - + - 85 79- 98 85 79- 97 98 96- 99 98 -
it- + + - 9k ■90- 99 97 9k- 99 96 - 96 -
5 - - + 65 55- 78 65 55- 78 59 58- 62 6it- -
6 + - + 90 85- 95 87. 5 - 87. 5 - 87.5 -
7 - + + 92 88- 98 9k 90- 98 98 - 98 -
8 + + + 98 96- 99 98 96- 99 96 95- 99 96 -
9 0 0 0 80 92- 95 95 - 95 - 95 -
10 -l.it- 0 0 75 68- 88 75 68- 88 75 70- 80 75 70-80
11 l.it- 0 0 93 90- 98 93 90- 98 95 92- 98 95 92-98
12 0 -■1.1+ 0 60 20- 68 60 20- 68 30 20- k5 35 20-it-5
13 0 l.i+ 0 100 95-100 100 95-100 98 96-100 98 95-99
ik 0 0 --l.it- 76 70- 92 76 70- 92 95 92- 98 98 93-99
15 0 0 l.k 96 92- 99 96 92- 99 95 92- 98 98 93-99

TABLE 5-5b 
Variance

Line Source Ho E:?q?ts. 2 Expts. 6 Expts. 9 E:;q?ts.
16 6  32.7 31.5 .8
17 <S ^ 38.7 3^.5 8.8 8.8
18 £  jjj .25 .25 .25
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TABLE 5-6
Estimates of Coefficients

Coefficient 0 Expt. 2 Expts. 6 Expts. 9 Expts.

Bo 96.^7 94.90 94.69 94.01
B1 7.61 7-43 5.63 5-35
B2 11.17 11.22 ii.4o 11.09
B3 5.60 4.98 0.37 0.19
B12 -4.93 -3.44 -6.77 -6.38
B13 -0.54 -1.72 0.71 0.0
B23 -2.60 -2.54 0.23 0.0
B11 -2.18 -5.24 -3.3 -0.65
B22 -1.13 -5.02 -6.4 -7-4-5
B37 -1.35 -2.63 0.8 0.22

Optimum Variable Settings

X1 0.627 0.605 -0.512 -i.4oo
X2 1.400 1.388 1.398 1.333
*3 -1.14 -1.145 -1.398 -1.400

Yield O.965 0.965 1.00 O.989
Cost 0.0974 0.0974 0.0929 0.0939
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Figure 5-5 is a comparison of the probability cost distribution 
for both routes. Here Figures 5-3 and 5-̂ + are combined at the appro
priate level of cost. The coding for the lines used in Figures 5-3 
and 5-*+ applies.

Alternate Route II is shown here as being the preferred route, 
the mean cost is about $0,093 per pound where that of Alternate Route I 
is $0,102 per pound. Yet there is a definite probability that Alter
nate Route II may in fact result in a more costly process. This is a 
result of the uncertainty associated with the cost estimate and is 
shown by the overlap of the probability distribution of Alternate II, 
with that of Alternate Route I. The reduction in the overlap that 
results from running two experiments can be noted. After five experi
ments it is virtually certain that Alternate Route II will result in a 
process with the lower raw material cost. The additional experiments 
did nothing to improve the discrimination between the routes. These 
runs merely serve to reduce the variation about the suspected optimum. 
One should consider whether this experimentation is well invested. 
Further, it is also clear that any experimentation on Alternate 
Route I other than the single experiment which was the only experiment 
used to develop the distribution for the route was unnecessary.

If one randomly selects from the distribution of each route and 
subtracts the value obtained for Route I from that of Route II, a 
distribution of the expected gain due to selecting Route II results.
This distribution is shown in Figure 5-7v The area to the left of 
zero represents the potential loss that could result from this decision.
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Frequency-Cost Distribution - Route II
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A  Comparison of the Frequency-Cost Distributions 
For Routes I and II
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As the definition between the two processes is increased, the 
area representing potential loss is reduced. Figure 5-7 is calcu
lated from the curves shown in Figure 5-6 in which no experiments 
were run on Route II and only one was run for Route I. The addition 
of experiments increases the discriminating power of the model.
This can be seen in Figure 5-8 which is calculated for the case when 
two experiments were run to investigate Route II. The area for a 
potential loss is considerably reduced. Figure 5-9 which was 
calculated after six experiments were performed on Route I, 
already indicates a certain gain.

These curves serve as the basis for decisions concerning the 
continuation of work on a particular route. Some decision rules 
could have been established but since each case is subject to 
different restrictions (size of investment and the effect on profit 
of delay in entering the market) only the basic information is pro
vided and this can be used as the experimenter sees fit.

In the example shown, a single experiment on Alternate Route I 
and the exploratory work on Alternate Route II was all that was re
quired to develop Figure 5-6. The experimenter might well have 
chosen to eliminate Route I from consideration at this point.
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Expected Gain From Choice of Route II
(After One Experiment on Route I and One on Route II)
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Fig. 5-7
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Expected .Gain from Choice of Route II
(After One Experiment on Route I and Two on Route II)
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Expected Gain From Choice of Route IX
(After One Experiment on Route I and Six on Route II)
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Chapter 6 
CONCLUSION AND SUMMARY

A solution to the problem of early discrimination between 
competing alternate routes is offered in this dissertation.

In Chapter 2 a graphical method was developed which was used to 
assess the effects of changes in the level of the process responses 
(yields, recoveries) on the ultimate process cost. This technique 
establishes the potential value of each experiment and focuses 
attention on the critical areas within a given route. It was 
demonstrated through examples that:

(1) The sequence by which the various areas open for 
investigation are pursued can have a direct influence 
on the length of the experimental program.

(2) Areas of investigation offering wide variations in the 
process response may in fact have little bearing on the 
ultimate problem of route selection.

The technique, therefore, serves to provide information essential 
to the establishment of an efficient research program.

In Chapters 3 and U the relationship between the process cost 
and the several process responses is extended to a relationship 
between the process costs and the process variables. These relation
ships are used to determine the probability of obtaining the indicated 
cost reductions. The inclusion in the analysis of the experimenters'
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estimates of the results of various combinations of the process 
variables, play an intrinsic role in reducing the number of actual 
experiments required to define the cost surface.

In the treatment of an actual problem of route discrimination 
it was shown that: —

(1) By incorporating estimated values with experimental 
results, useful second order regression equations can 
be developed from runs at only a small fraction of the 
design points.

(2) The variance about the calculated optimum is reduced with 
the addition of each new experimental run, but the rate 
of reduction after completing the first half-replicate
is small.

(3) Discrimination between routes can be based on experimental 
results from a small fraction of the design points.

A summary of the method presented in Chapter 3 is outlined by 
the following steps:

(1) A second order design is generated with the most 
important variables.

(2) The responses to the indicated experiments are estimated, 
listing both a best guess and a range around this best 
guess.

(3) The usual regression equations are fitted but in this 
case a weighted variance matrix V is included so that
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the precision of the final estimates reflects the 
uncertainty in the guessed response.

(1)-) Using this regression equation as part of a function
describing the process cost, a vector X* is established 
representing the design point of minimum cost.

(5) The variance around this design point is calculated.
(6) A few experiments in the design are run. The progression 

through experiments might be from the original none to a 
half-replicate, to a full replicate, to a second order 
design. Re-estimation of the remaining experiments,
as well as a thorough analysis, are completed after 
each stage.

The procedure provides a structural framework within which the 
experimenter can operate with a minimum of constraints. The structure 
insures that the data can be sensibly and readily analyzed, while the 
emphasis on reanalysis after small groups of experiments (even one) 
satisfies the experimenter's need for flexibility. The approach was 
designed so that the experimenter's knowledge would be made an 
integral part of the analysis.

The approach must, of course, withstand the natural reluctance 
to reach decisions on any information other than that which was won 
from controlled experiments. There is nowhere in this dissertation 
an advocation to behave otherwise. Certainly no route should be 
abandoned until the predicted results are tested at the indicated 
optimum conditions. What has been suggested is that through the
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incorporation of prior knowledge a satisfactory representation of the 
response surface can be obtained with a reduced number of experiments. 
The techniques of experimental design have progressed to the point 
where further reductions in experiments can only come from the 
inclusion of prior knowledge.

In an interesting exercise, McArthur and Heigl (53) describe a 
"black box" process which is affected by five hypothetical variables. 
They ask that the optimum settings for the variables be found with as 
few experiments as possible. Experience with the black box has shown 
that no experimental strategy is particularly effective and the re
quired number of experiments is inordinately large. The problem, of 
course, is that the perverse surface described by McArthur exists 
only in a black box. There are no fundamental relationships that can 
be used to explain the results and as such the experimenter's only 
recourse is to rely on the dictates of the mathematics.

In real situations fundamental relationships exist. The problems 
are pursued by knowledgeable scientists whose professional life is 
devoted to trying to understand and apply these relationships. It is 
expected that such men can successfully use their knowledge to antici
pate conditions that will provide favorable experimental results.
It is also realistic to expect that their prior assessment as to the 
consequences of these experiments should be most useful in arriving 
at a quantitative description of the response surface.
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An experimental strategy has been proposed in which central 
composite designs are employed at an early stage in the experimental 
program. Available mathematical techniques were utilized to relate 
the settings of the process variables to the ultimate process costs 
and to the confidence interval about the calculated optimum cost. 
Probability cost distributions —  the variance of which is reduced 
by replacing estimated values with experimental data —  serve as 
the basis for discrimination.
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TABLE OF NOMENCLATURE

English Alphabet:
C. Cost of chemical reactant1

C . Cost of solvent, catalyst, buffer, surfactant
tJ
C, Credit for byproduct
E^ Ratio of the charge of the reactant to its

equivalent weight
E. Ratio of charge of solvent, catalyst, etc. to

equivalent weight of reactant 1
E^ Factor explaining the stoichiometric excess

or deficiency of the byproduct
RL Equivalent weight of reactant

Equivalent weight of product
R^ Recovery of reactant
R. Recovery of solvent, catalyst, etc.
U^ Usage of reactant 1
X± Fraction of chemical convertor
Y Chemical yield

Chemical codes in Chapter 5:
A, B,C Reactants in present route 
E Final product
ID Impure product of Step 1 in present route

and Alternate Route I
N Chemical used to purify ID in present route
PD Pure ID
Q, Chemical used to purify ID in Alternate Route I
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R Reactant in Alternate Route II
Z Reactant in Step 2 Present Route and Alternate Route I

Matrix Rotation:
B A vector of coefficients in the prediction equation
V A weighting matrix
X A matrix describing the settings for the effects

for which the coefficients are to he determined
X* A column vector locating the variable settings at minimum cost
Y A vector indicating the responses at the different

experimental conditions

Greek Letters:
2 Variance due to experimental error
2CT. Pooled variance calculated from estimates of the range

about the factorial and center points
2 Pooled variance calculated from estimates of the range 

about the star points
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Appendix A 
COST ANALYSIS

Program k22 is written in Fortran II for an IBM 1620 computer.
Its purpose is to calculate the cost of a chemical at various levels 
of yield and usages of all participating chemical reagents. The program 
involves separate calculations indicating the contribution to the 
cost of:

(1) All cheMcals participating in the stoichiometric 

equation.
(2) All solvents, catalysts, surfactants and buffers.
(3) All byproducts.

The total cost is the sum of the three equations.

The input data include:
NY The number of yield levels at which the calculations 

will be performed.
NR The number of chemicals participating in the 

stoichiometric relations.
NS The number of solvents, catalysts, etc.
NB The number of byproducts.
Y(l) The values of the yield at which the calculations 

will be performed.

Each chemical that is entered requires the following information:
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XMW The molecular weight
STR The stoichiometric coefficient
XCOSR The cost of the chemical
XE The ratio of the amount charged to the

stoichiometric requirement
RR The recovery
PR The purity of the chemical (needed if cost is given

on an as is basis)

The entries are similar for the other two classes of chemicals 
with the exception that SF replaces XE where:

SF is the ratio of the pounds of solvent or catalyst, etc.
to those of the first chemical read in the previous section.

Other input includes:
XMWP The molecular weight of the product.
STP The stoichiometric coefficient for the product.

All this information is utilized in the calculation section which 
begins with statement 39* The calculations are based on Equations 2-1, 

2-3, and 2-k.

The program calculates the cost at fixed values for XCOSR, XE,
RR at each level of Y. The program then accepts a change if indicated 
in the values XCOSR, XE, RR and runs through that particular 
calculation for the indicated yield levels.
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XCOSB (J)=Z3  -. . . . . . . . . . . .. . . ..
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800 TCOSCaTCOSR+TCOSS-TCOSB*.00005PUNCH 97 1000 PUNCH 9_8,TCOSC C CALCULATIONS AND OUTPUT COMPLETED_G0 T0_50___  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _C STATEMENT 50 IS START OF TRANSFER SECTIONC OUTPUT ROUTINE600 PUNCH 3 0 1 , I,J ,H 1 ( I,J ),H 2 ( I,J ),H 3 (i,J ),Z 1,1 1,Z3,ZA,Z5GO TO (601,602,603), I _ _ _ _ _ _ _ _ _ _C TRANSFER SECT I ON(TO MODIFYC_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _' 50 READ 99,NTR,NT 'GO JO (40^31,52),MTR51 DO 700 L = 1,N T . . . .GO TO 500C STATEMENT 500 IS AN ENTRANCE TO INPUT ROUTINE700 CONTINUE_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

GO TO 39C STATEMENT 39 IS THE FIRST IN THE CALCULATION SECTION52 PAUSE "
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Appendix B 
PLOTTING THE DIFFERENTIAL COST ANALYSIS

Program Number 431B is a 1620 computer program written in 
Fortran II. The card output is then fed to an IBM 87OO(autoplotter) 
which prints graphs of the type shown in Figures 2-1, 2-2, 5-1 and 5-2.

The program is written for a three step process and is designed 
to develop the following curves:

(1) Cost of any step versus the yield of any step in which 
the yield of the other steps are treated as parameters.

(2) Cost of the first step versus the overall yield.
(3) The final cost versus the cost of step 1, with the yields 

of steps 2 and 3 treated as parameters.
(4) The final cost versus the cost of step 2, with the yield 

of step 3 treated as a parameter.
For any given line the raw material cost, excess and recoveries 
are fixed. Equations 2-7 to 2-18 ^provide the necessary mathematics.

The input, besides that described in Chapter 2, includes information 
about.the scaling of the two axis and the line density. Each line is 
indicated with a black or red dot or cross. The desired symbol is 
under the users control. The cost is calculated at increments fixed 
by the desired line density. A card is punched which contains the 
values of the coordinates. These cards are fed to the 870 and are 
the basis for the graphs.
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Appendix C 
MONTE CARLO SIMULATION

Program 598A is written in Fortran II for an IBM 1620 computer.
The program calculates the raw material costs for a particular chemical 
step based on Equation 2-5. The values used in the calculation for 
the chemical yield, raw material cost, stoichiometric excess and 
chemical recoveries are randomly selected from probability distribu
tions defined by a mean and standard deviation. The calculation is 
repeated until a representative probability for the raw material cost 
of the particular process step is obtained.

The input to the program include:
ET The number of chemicals that participate in the 

stoichiometric equation.
M The number of solvents, catalysts, etc.
LOOP The total number of costs that are to be calculated.
NC The number of classes used to define the probability 

cost distribution.
YM The mean yield.
YSD The standard deviation for the yield distribution
P The molecular weight of the product.
ARG The input to start the random' number series.
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CM(l) The mean cost for chemical I.
CSD(l) The standard deviation for the cost distribution.
RM(l) The mean recovery for chemical I.
RSD(l) The standard deviation for the recovery distribution.
E(l) The ratio of the initial charge to the stoichiometric

requirement for chemical I.
WM(l) The molecular weight for chemical I.

As the problem of interest did not involve byproducts, the program 
was not generalized to handle that situation.

Since the random number routine is time consuming, the program 
checks each standard deviation to determine whether or not it is zero 
and calculates the random number for only the non-zero entries. The 
normalized random numbers for yield and recovery were truncated at 
the upper bound of 100 percent.

500 cost calculations were completed for each case. The highest 
and lowest values obtained are subtracted and divided by the number 
of classes to establish the class size. The difference between any 
value and the minimum value is then divided by the class size for 
the purposes of assigning that cost to a particular class.

Program 0598® uses as input the accumulated frequency-cost 
distribution generated by program 0598A. By dividing each entry 
in the accumulated distribution by the number of values used in its 
generation, the distribution is scaled from zero to one. Numbers 
randomly selected from a uniform distribution are then used to enter
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the accumulated distribution as shown in Figure ^-2. This entry 
determines the cost of the raw material to be used in a particular 
calculation.

The rest of the program is essentially the same as 0598A.

The additional entries are:
CMUT The minimum value of the frequency distribution 

generated through the use of 0598A.
CLSZE The class size of that distribution.



AMER I CAN CY AN AM ID CO.., BOUND BROOK, .N.J.,. - PROGRAM... NO.. 05.9.8 A .MONTE-CARLO COST ANALYSIS PROGRAM STEP 1.  IJNPJJJLSU MM ALLO.N_ PARAME_IER_,_J!lLlMB.ER.Jj.E._COiS_LJ/jAL]J£.S^_AMD_______NUMBER OF CLASSES A.H. BOB IS NOVEMBER 8 1965
DIMENSION C M ( 3 ) ,C S D (3),RM(3j,RSD(3), E (3),WM(3) , C (3), R (3),_ _ _ _1 C O S T (500) K F (20)99__r e a d  j o o ^  n ,m j l o o p ,n c  ...____ _ _ _ _ _ _ _ _ _ _ _ ___ _ _ _ _ _ _ _ _ _ _READ 101,Y M , Y S D ,P,ARC PUNCH 200 DO 10 1=1,N10 READ 101,CM( I),C S D ( I) ,RM(I)* R S D ( I),E ( IJ *WM(I)DO 30 NT= 1, LOOP DO 20 U 1 . N COMPUTE INPUT COSTSIF(C S D ( I))1.2.12 C( l ) = C M ( l )GO TO 3r  C( I ) t=R AMD (-ARG )*CSD ( I )+CM( I)COMPUTE RECOVERIES

3 ir(RSD(T))T|--,5',^5 R( I)=RM(I) GO TO 6 . . . . . . . . . . . . . . . . . . . . . . . . .    '.  '
k R ( I)=RAND(-ARG )*R SD(I)+RM( I)6 IF(R ( I)-1.00)20,20,15 ..15 R ( I)=1.00 20 CONTINUECOMPUTE YIELD 

I F(YSD)7,8,78 Y=YM
 GO TO 9    '7 Y=RAND(-ARG )*YSD+YM9 I F ( Y J i h , 16,1716 Y=.00001
17 IFTY-1.00)27,27,25 25 Y = 1.00COMPUTE C O S T S O F  INTERMEDTATE PRODUCT 27 TEMP=0.J=N-M ' ' ~DO 28 I= 1 , J28“ TEMP= (E( I)* (1.-R ( I D 7 Y + R  ( I7)*C7T)*WM( Q  +TEMP IF(M)31,30,31 7 T 7 =  N-TC+T ~DO 29 I = J , N29 TEMPr=C( I )*E ( rj*(E (1 )*WM( 1) /Y-(E (1 )*WM( 1) /Y-WM( 1) )*R (1) )* 

1(1.-R(I))+ TEMP 3 O' C O S T (N T )=TEMP/P “



COMPUTE MIN AND MAX COST OF INTERMEDIATE PRODUCT
CM IM=COST(1)CM A X=CMIN _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _DO 70 N T = 1,LOOP I F (COST (NT )-CM I N )40,50,50 40 CM IN= COST(N T )50 IF (COST (N D - C M A X ) 70,7 Q-, 60 60 C M A X = C O S T ( N T )7 0  CO NTINUE _ _ _ _ _ _ _ _ _ _C CLEAR KF ARRAY FOR FREQUENCY COUNTDO 00 1=1,NC 80 K F ( I)=0.FNC= NCC COMPUTE SIZE OF CLASSES_ C LS ZE=7C MAX~CMI NJ / F N C      ;______C COUNT NUMBER IN EACH CLASSDO 90 N T = 1,LOOP A=(COST(NT)-CMIN)/CLSZE 
I F ( C O S T (NT)-CMAX)87,05,95 85 l=AGO TO 90 _ _ _ _ _ _ _  __87 l=A+1.90 K F (I ) = K F ( I)+1C OUTPUT M I N  AND MAX COSTS, CLASS SIZE AND FREQUENCYC DISTRIBUTIONPUNCH 102, CM IN,CMAX,CLSZE

  PJJNCH 103 ______ ___  ______ _ _ _ _ _ _ _ _ _ _ __PUNCH 10 h , ( I, KF ( I), I = 1, NC)PUNCH 105 GO TO 99 95 CALL EXIT200 F O R M A t (33HMONTE-CARLO COST ANALYSIS STEP 1$)100 FORMAT (^-15) __ _ ____  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _101 FORMAT (7F 10.A-)102 F0RMAT(6HCMIN =,F10,6,5X,6HCMAX =, F 10.6,5X^ 7HCLSZE 
1F 1 0 . 7 ,1H) 103 F O R M A T (1.H$/5HCLASS.,5X, 1QHFREQUENCY.$/ 1.H$)._ _ _ _ _ _ _ _ _104 F 0 R M A T ( I 4 , 7 X , 15,1H$)105 FORMAT(1H*) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _END
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C AMERICAN CYANAMID C0_., BOUND BROOK, N.J. - PROGRAM NO. Q558BC MONTE-CARLO COST ANALYSIS - STEP 2C _ _ _ _ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _C THIS PROGRAM USES FUNCTION RN FOR GETTING RANDOM NUMBERSC FROM A NORMAL DISTRIBUTION_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ______C A.H. BOB ISC NOVEMBER 22 1965 __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
DIMENSION CM(3),CSD(3),RM(3),RSD(3),E(3),WM(3),C(3),R(3),2C0_ST_C500) KF(20)^ESD_(.3)____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _99 READ 103, N,~M,LOOP,NCREAD 101,CMIN,CLSZE _ _ _ _ _ _ _ _ _ _READ 101,YM,YSD,P,ARGDO 1 1=1,N _ _  ____1 READ 101, R M ( 1),RSD(I) ,E( I) , WM (1)DO 2 1=2, N _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _2 READ 101, C M ( I ),C S D ( I)C READ IN FREQ DISTRIBUTION FROM STE_P 1 __ __ __ _ _ _ _ _ _ _READ 1 00 ,(KF(i),1=1,NC)DO 10 l=2,MC _ _  _ _ _ _ _ _ _ _ _ _ _10 K F ( I)=KF( I- 1 ) + K F ( I)C L O O P=LOOP _   _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _DO 30 H T = 1,LOOP C COMPUTE STOICHIOMETRIC RATIOSDO 13 1 = 1, N. . . . . . . . . .  ". . . . . . 'IF(ESD(I))7.13,7 _ _  _ _ _ _7 E ( I)=RN(ARG;*ESD(I)+E(Ij 13 CONTINUEC COMPUTE RECOVER IESDO 3 I= 1 , N IF(RSD(I))A,5,A 5 R ( I ) = R M { 1)GO TO 3 

h R ( I ) = R N ( A R G ) * R S D { I ) + R M ( I )
8 IF (R ( f)-1.00)3,3,9 ~9 R (. I) = 1 • 00 _ ___ _ _ _ _ _ _ _3 C O N T I N U E   . . . . . . . .C COMPUTE INPUT COSTS OF C ( 2 )  C f N )DO 19 l=2,N       ‘. .... .

GO TO 19 11 C(I)=RN 19 CONTINU C COMPUTE Y I E L D  “ IF (YSD)2if, 25.2^ 25 Y=YM GO TO 26 
2b Y=R N(ARG)*YSD+YM

i " (I)+CM(I)
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26 IF(Y)15,15,16 . . . . . . . . . . . . . .  .____ _ __ _  __ _ _
15 Y=.0000116 IF(Y-1.00) 17, 17, 1 8 _ _ _ _ _ _ _ ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _18 Y = 1 .00

C COMPUTE RANDOM ORDINATE FROM FREQ D I S T R 1 BUT I ON FROM STEP 1C FOR INPUT COST C(1)17 KOFC=RAND(ARG)*CLOOP. . . . . . . . . . . . . . . . . . . .  ...... ..  ..DO 20 J = 1,NC I F (KF (J )- K O F C ) 20 ,J5,35_ _ _ _ _ _ _ _ _ ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _35 CK=JIF (J-1 132,34,32 34 DEN= KF (1)GO TO 33'32 DE M s K F (J )- K F (J - 1)33 D.I.F=KF(J)-KOFC .. .. . _ _ _ __ ____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _DIF=CLSZE*DIF/DEM GO TO 2120 CONTINUE
21 C(1)=CMIN+CK*CLSZE-DIFC COMPUTE COST OF FINAL PRODUCTTEMP=0, _ _ ____ _ _ _ _ _ _ _ _ _ _ _ _ _ _J=N-MDO 28 1=1,J28 TEMP= (E ( I j*( 1 ,-R ( I)) /Y+R ( I) )*C ( i )*WM( I j-t-TEMP 30 COST(NT)=TEMP/P C COMPUTE MIN AND MAX FINAL COSTS

 CMJJ\|=C0SL(J1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _CMAX=CMIN DO 70 NT=2,LOOP IF(COST(NT 5— CM IN)40,50,50 40 CM IN=COST (NT)50 IF(COST(NT)- C M A X )70,70,606 0 CMAX=COST (N T ) _ _ _ _ _ _ _ _ _ _ _ _  ______ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _70 CONTINUEC CLEAR KF ARRAY FOR FREQUENCY COUNT_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___DO 80 1=1,NC80 KF(L)=0 _  __ _ _ _ _ _ _ _ _ _ _ _ _C COMPUTE CLASS SIZEFNC=NCCLSZE=(CMAX-CMIN)7FNC "C COUNT N U M B E R J N  EACH CLASS _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _DO 90 NT=1,LOOP A=(COST(NT)-CMIH)/CLSZE IF(COST(NT ) - CMA X)87,85,8585 I =A_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _GO TO 90 87 l-A+1.90 K F ( l ) = K F O  )+T



C OUTPUT F R L u 'Jc :uvPUNCH 1 0 4 , 7 , KF ̂ C FliJD MEAL OF E ACCOSTi 1 )=Cf'! :+CLS DO 9c 1=2, C 96 COST  ̂ I )=COST^ ! - ’ C OUTPUT M C A  . OF .PUNCH 101, ,.00 .-7 v u0 TO c0
100 FORMAT 7  1 X , K-;101 FORMAT (.5F10.4, 104 F O R M A T ( I 4.7X,! 108 FORMAT(A I 5/EiJD
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OUTPUT FREQUENCY DISTRIBUTION PUNCH 1 0 4 , ( I,KF(I),1=1,NC)F IND MEAN OF E A C H  CLASS, USE 1ST NC W O R D S OF COST ARRAY C O S T (1) = C M I N + C L S Z E / 2 .DO 96 I= 2 , NC 96 COS T (I) =C OST (1-1)+CLSZE OUTPUT MEAN OF EACH CLASS PUNCH 1 01 ,( C O S T (I) ,1 =1 ,NC)GO TO 99 _________ _iO'O FORMAT( 11 X,101 FORMAT(5F1O. k)10if FO RMAT( IA,7X, \ k)
100 F O R M A T (^15)END
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Appendix D 

DIRECT SEARCH MAIM ROUTINE

The calculation of the minimum cost is based on modifications 
by Wood of the Hooke and Jeeves method of Direct Search. Wood pro
vides the requisite optimization procedure which can be regarded as 
a huge subroutine which operates on a particular problem, or set of 
equations. A specific program for each problem is required. This 
should not cause concern as the basic equations are easily programmed.
To illustrate this point the main routine written for calculating the 
cost of Alternate Route I step 1 is provided. It consists of any 
necessary regression equations and the cost Equation 2-5.

The second order regression equation for the yield of the step 
is converted to a constraint equation by subtracting a slack variable X^ 
The cost is calculated from the following input data:

XC(l) The cost of the first raw material.
XM(l) Its molecular weight.
E(l) Its excess ratio.
XMP The molecular weight of the product.
XC(2) The cost of the second raw material.

The excess of the second raw material is given by: .025(x(3)) + 1.05, 
an expression similar to Equation k-2 in the text. X^ is one of the 
variables whose setting the technique attempts to optimize.



A.H. BOB IS _ _  ____OCTOBER 18 1965J O  CONST(I) = BO + B1*X(.1.) .+ B2*X(2) + B3*X.(..3.) +B 12*X (1 )*X (2)1+ B13*X(1)*X(3) + B23*X(2)*X(3) + B11*X(1)**2 + B22*X(2)2**2 + B 33*X (3 ).**2. - X (k)....    _  _Y = C O N S T (1j + X (k)YAXMP = Y * X M P . . . . . . . . . . . . ..... ... .. . . . . . . . . ..... . . . . . .COST = X C (1) * X M ( 1) * E (1)/YAXMP + XC(2)*X M(2 )* (.0 25 *X( 3 ) +1.05) 1/YAXMP _ _ _ _ _ _ _ _ _ _  _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _SN=COST+PE M (1) *CONST (1 j **2
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Appendix E 

OUTPUT FROM MONTE CARLO SIMULATION

The results of the Monte Carlo simulations are given in 
Chapter 5 as smoothed curves. The raw data are presented in this 
Appendix. In all cases the 500 trials are partitioned among 20 classes. 
The form of the output for the several cases differ as the programs 
were continually modified.
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TABLE E-l

12-9-65

MONTE CARLO COST ANALYSIS ROUTE 

0 EXPTS

CMIN .0885 CMAX .0918
CLSZE .000166

CLASS FREQUI

1 2 5 A
-2- - 3 5
3 26
A 2 A
5 22
6 2 A
7 2 0
g 22
9 2 0

10 12
11 7
12 7
13 10
1A 3
15 A
16 2
17 3
18 0
19 3
20 1

STEP 1
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12-9-65

MONTE CARLO COST ANALYSIS ROUTE 

5 EXPTS

CMIN .0885 CM AX .0901
CLSZE .000082

CLASS FREQU!

1 2 77
2 35
o 21
4 33
5 20
6 20
7 21
8 11
9 10

10 14
11 18
12 11
13 3
14 2
15 1
16 2
17 0
18 0
19 0
20 1

STEP 1



12-9-65

MONTE CARLO COST ANALYSIS ROUTE 1 STEP 1 

9 EXPTS

CHIN .0885 CMAX .0896
CLSZE .000052

CLASS FREQUENCY

1 2 6o
2 19
3 32
4 23
5 30
6 13
7 19
8 17
9 14

10 16
11 9
12 7
13 5
14 11
15 2
16 6
17 4
18 2
19 3
20 2
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TABLE E-2

12-20-65

MONTE CARLO COST ANALYSIS ROUTE 1 STEP 2

0 EXPT STEP 1 1 EXPT STEP 2

CMIN .0997 CM AX .1095
CLSZE .00199

CLASS FREQUENCY

1 2
2 7
3 13
A 19
5 5 5
6 A 5
7 63
8 7 0
9 6 A

10 5 7
11 AO
12 22
13 18
1A 10
15 A
16 3
17 3
18 2
19 0
20 1



12-20-65
MONTE CARLO COST ANALYSIS ROUTE 1 STEP

5 EXPT STEP 1 1 EXPT STEP 2

CMIN .0998 CMAX .1078
CLSZE .001785

CLASS FREQUENCY

1 2
2 A
3 8
A 11
5 35
6 A3
7 66
8 68
9 A8

10 73
11 A 1
12 AO
13 20
1A 17
15 13
16 2
17 A
18 2
19 2
20 1



12-20-65
MONTE CARLO COST ANALYSIS ROOT £ 1 STEP 2

9 EXPT STEP 1 1 EXPT STEP 2

CMIN .0996 CMAX .1074
CLSZE .00165

CLASS FREQU

1 1
2 3
-"iD 7
4 11
5 8
6 33
7 37
8 43
9 82

10 70
11 5 1
12 46
13 43
14 26
15 14
16 8
17 7
18 3
19 0
20 2
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TABLE E-3 

1-5-66

MONTE CARLO COST ANALYSIS ROUTE 2 

0 EXPTS

CMIN .0892 CMAX .1095
• CLSZE .00102

CLASS FREQUENCY

1 3
2 8
3 13
A 22
5 35
6 A9
7 61
8 50
9 53

10 50
11 A7
12 33
13 27
1A 12
15 18
16 7
17 A
18 A
19 3
20 1
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1-5-66

MONTE CARLO COST ANALYSIS ROUTE 2 

2 EXPTS

CMIN .0912 CMAX .1062
CLSZE .00075

CLASS

1
2
3
4 
s 
6
7
8 
9

10
11
12
13
14
15
16
17
18
19
20

FREQUENCY

10
5

14
28
33
45 
51
46 
53 
48 
56 
36 
26 
20 
13 
10
3
0
2
1



1-5-66

MONTE CARLO COST ANALYSIS ROUTE 2 

6 EXPTS

CMIN .03 84 CMAX .0937 
CLSZE .000 51

CLASS FREQUENCY

1 3
2 6
3 9
4 19
5 15
6 27
7 45
8 55
9 47

10 43
11 47
12 46
13 36
14 2 4
15 36
16 14
17 11
18 9
19 3
20 5



1-5-66

MONTE CARLO COST ANALYSIS ROUTE 2 

9 EXPTS

CMIN .0391 CM AX .100798
CLSZE .00058

CLASS FREQU

1 5
2 7
3 14
4 25
5 35
6 56
7 45
8 50
9 46

1C 58
11 56
12 34
13 24
14 23
15 13
16 3
17 2
18 3
19 0
20 1



TABLE E-1+

MONTE CARLO ANALYSIS EXPECTED GAIN

CHOICE OF ROUTE 2 OVER ROUTE 1

ROUTE 1 ROUTE 2
STEP 1 O-EXPTS 0-EXPTS 
STEP 2 1-EXPTS

CLASS FREQUENCY MEAN

1 3 -.0047
2 2 -.0036
3 11 -.0025
4 8 -.0014
5 14 -.0004
6 24 .0006
7 30 .0017
8 35 .0028
9 40 . 0039

10 54 .0050
11 61 .0061
12 52 .0071
13 62 .0082
14 42 .0093
15 29 .0104
16 15 .0113
17 9 .0126
18 6 .0136
19 1 .0147
20 2 .0158



MONTE CARLO ANALYSIS EXPECTED GAIN

CHOICE OF ROUTE 2 OVER ROUT F 1

ROUTE 1 ROUTE 2
STEP 1 0-EXP T 2-EXP T
STEP 2 1-EXPT

CLASS FREQUENCY MEAN

1 1 -.0029
2 2 -.0020
3 6 -.0012
4 6 -.0003
5 6 .0004
6 23 .0013
7 29 .0022
8 49 .0030
9 49 .0039

10 54 .0047
11 49 . 0056
12 5 4 .0064
13 42 . 00 73
14 44 .0081
15 31 .0090
16 18 .0098
17 10 .0107
18 8 .0116
19 6 .0124
20 3 .0133



MONTE CARLO ANALYSIS EXPECTED GAIN

CHOICE OF ROUTE 2 OVER ROUTE 1

ROUTE 1 ROUTE 2
STEP 1 0-EXPT 6-EXPT
STEP 2 1-EXPT

CLASS FREQUENCY MEAN

1 2 .0034
2 3 .0041
3 5 .0047
4 11 .00 54
5 15 .0060
6 26 .0066
7 28 .0073
8 41 . 0079
9 56 .0086

10 39 . 0092
11 63 .0099
12 57 . 0105
13 57 .0111
14 34 .0118
15 19 .0124
16 17 .0131
17 11 .0137
18 10 .0143
19 4 .0150
20 3 .0156
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Appendix F 
LACK OF FIT

The effectiveness of the prediction equations to represent the 
surface of experimental and estimated results is given by presenting 
the difference between the given and predicted values.

A good fit is obtained. The single exception is for run 13 
Route II where the second order model fails to predict the expected 
low result given by the estimated value 30. The resulting weighted 
residual sum of squares would indicate a serious lack of fit. However, 
the variable setting for the particular case is so far removed from 
the region of interest that it does not influence the optimization 
procedure.



TABLE F-l

2-17-66

LACK OF FIT ROUTE 1 STEP 1

0 EXPTS

RUM DATA PRED DIFF

1 .9000
2 .9500
3 .9100
4 .9600
5 .9300
6 .9900
7 .9400
8 .9900
9 .9600

1C .9100
11 . 9800
12 . 9500
13 .9700
14 . 9400
15 . 9600

.9172 -.0172

.9611 -.0111

. 9302 -.0202

. 9734 -.0134

. 9392 -.0092

. 9966 -.0066

. 9502 -.0102
1.0069 -.0169
. 9596 .0004
. 9240 -.0140
. 9944 -.0144
. 9530 -.0030
. 9693 . 0007
. 9385 .0015
. 97 74 -.0174



2-17-66

LACK OF FIT ROUTE 1 STEP 1

5 EXPTS

RUN DATA PRED DIFF

1 .9100 . 8887 .0212
2 . 9750 . 9639 .0110
3 . 8553 . 8659 -.0106
A . 9 500 . 9659 -.0159
5 . 9749 . 9637 .0111
6 . 9950 . 9829 .0120
7 . 9500 . 9614 -.0114
8 .9915 1.0054 -.0139
9 .9832 . 9824 .0006

10 .8800 .9135 -.0335
11 . 9950 . 9970 -.0020
12 . 9600 . 9680 -.0060
13 . 9700 . 9678 .0021
14 .9100 . 9200 -.0100
15 . 9950 1.0002 -.0052



2-17-66

LACK OF 
9 EXP-TS

FIT ROUTE 1 STEP 1

RUN DATA PRED DIFF

1 .8429 . 8471 -.0042
2 .9750 . 9706 . 0043
3 . 8553 . 85 14 .0038
4 .9940 . 9976 -.0036
5 .9749 . 9712 .0036
6 . 9853 . 9891 -.0038
7 . 9424 . 9467 -.0043
8 .9915 . 9872 .0042
9 .9832 . 9831 .0001

10 .9300 . 8879 .0420
11 . 9950 1.0027 -.0077
12 .9800 . 9794 .0005
13 .9800 . 9810 -.0010
14 .9000 . 9095 -.0095
15 .9900 . 9891 .0008



TABLE F-2

2-17-66

LACK OF FIT ROUTE 2

0 EXPT5

RUN DATA PKED DIFF

1 .6000 .5024 .0975
2 .7500 . 7440 .0059
3 .8500 . 8563 -.0063
4 .9400 . 9408 -.0008
5 .6500 .6 770 -.0270
6 .9000 . 8971 .0028
7 .9200 . 9270 -.0070
8 .9800 . 9900 -.0100
9 .8000 . 8647 -.0647

10 .7500 .7154 .0345
11 .9300 . 9286 .0013
12 .6000 . 6837 -.0837
13 1.0000 . 9965 .0034
14 .7600 . 7597 .0002
15 .9600 .9165 .0434



2-17-66— ■
LACK OF FIT ROUTE 2 

2 EXPTS

RUN DATA PRED DIFF

1 .6000 .5067 .0932
2 .7700 . 7586 .0113
3 .8500 . 8506 -.0006
4 .9700 . 9648 .0051
5 .6500 .6915 -.0415
6 .8750 . 8744 .0005
7 .9400 .9339 .0060
8 .9800 . 9791 .0008
9 .9500 . 9489 .0010

10 .7500 . 7422 .0077
11 .9300 .9502 -.0202
12 .6000 .6934 -.0934
13 1.0000 1.0074 -.0074
14 .7600 . 8276 -.0676
15 .9600 . 9670 -.0070
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1
2
3
4
5
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7
8
9

10
11
12
13
14
15
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2-17-66 

FIT ROUTE 2

DATA PRED

6400 .6326
8500 . 8661
9800 . 9914
9600 . 9543
5900 . 6063
8750 . 8683
9800 .9744
9600 . 9658
9500 .9469
7500 . 8027
9500 . 9601
3000 . 6609
9800 . 9803
9500 . 9685
9500 .9581

DIFF

.0073



2-17-66

LACK OF FIT ROUTE 2

9 EXPTS

RUN DATA PRED DIFF
1 .6400 .6313 .0086
2 .8700 . 8657 .0042
3 .98 00 . 9806 -.0006
4 .9600 . 9600 0.0000
5 .6400 .6349 .0050
6 . 8750 . 8694 .0055
7 .96 00 .9843 -.0043
8 .9600 . 9637 -.0037
g .9500 . 9401 .0098

10 .7500 . 8526 -.1026
11 .9500 1.0022 -.0522
12 .3500 .638/' -.2887
13 .9800 . 9493 .0306
14 .8500 .9417 -.0917
15 .9500 . 9469 .0030



A PPE N D IX  G

SA M PLE CALCULATION

T he fr e q u e n c y -c o s t  d istr ib u tio n  can  be c a lc u la te d  at any point 

in  the a n a ly s is .  A s an ex a m p le  a sam ple  ca lc u la tio n  i s  show n in  

w hich  the in fo rm a tio n  c o n s is t s  e n tir e ly  o f e s t im a te d  r e s u lt s . -  A 

f ic t it io u s  ex a m p le  is  p r e se n te d , w hich u t i l iz e s  the e s t im a te s  g iv en  

in  C hapter 5 fo r  R oute II.

T he fo llo w in g  r e a c tio n  is  con sid ered :

C v
A ~g—  ̂ B + byproducts

The p er tin en t data for the c h e m ic a ls  a re  su m m a r iz e d  in  T ab le  G - l .

T A B L E  G -l

D A TA  FOR SA M PL E  CALCULATIO N

m ic a l P u rp o se

M o lec  - 
u la r  

W eight 
Mi

C ost

S to ic h io 
m e tr ic
E x c e s s

E i
R e c o v e r y

* i

A R eactan t 6 0 0. 17 1 0 . 0

C C a ta ly st 1 0 . 066 V a r ia b le 0 . 8

S S olven t 1 0 . 0 9 0 V a ria b le 0 .9 6

B P rod u ct 40 1 1 . 0
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T he on ly  p r o c e s s  r e s p o n se  in  th is  o n e -s te p  sy n th e s is  i s  the  

y ie ld . It is  b e lie v e d  that the on ly  th ree  v a r ia b le s  o f in te r e s t  are  

the tem p e r a tu r e  (x^), the am ount of c a ta ly s t  (x£) and the am ount 

o f so lv en t (X3) .

A c e n tr a l c o m p o s ite  d e s ig n  i s  d ev e lo p ed  and e s t im a te s  o f the  

m o st  l ik e ly  and th e b e s t  and w o r s t  p o s s ib le  r e s u lt s  a r e  m a d e . 

T h e se  e s t im a te s  are  show n in T able G -2 .

T A B L E  G -2  

ESTIM A TES FOR SAM PLE CALC U LATIO N

C ond ition s
_  —

M ost
Run x i x 2 x 3 L ik e ly R ange

1 - - - 6 0 2 5 -7 5

2 + - - 77 6 0 -8 5

3 - + - 85 7 9 -9 8

4 + + - 97 9 0 -9 9

5 - - + 65 5 5 -7 8

6 + - + 87 8 5 -9 5

7 - + + 94 8 8 - 9 8

8 + + + 98 9 6 -9 9

9 0 0 0 95 9 2 -9 5

1 0 - 1 . 4 0 0 75 6 8 - 8 8

1 1 1 . 4 0 0 93 9 0 -9 8

1 2 0 - 1 . 4 0 6 0 2 0 - 6 8

13 0 1 . 4 0 1 0 0 9 5 -1 0 0

14 0 0 - 1 . 4 76 70 - 92

15 0 0 1 . 4 96 9 2 - 9 9
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w h ere: x^ a t + = 1 00 ° C . ;  Xj at - = 80°C.

x 2  at + = 0. 01 lb . / lb .  A; X£ at - = 0 . 001 lb . / lb .  A

x 3  a t + = 10 lb . / lb .  A; X3  at - = 5 lb . / lb .  A

T he d iagon a l e le m e n ts  o f the w eigh tin g  m a tr ix  V can  be

c a lc u la te d  fr o m  the e s t im a te s  o f the ra n g e . A ssu m in g  the range  

to  be four stan d ard  d ev ia tio n s  ap art, the v a r ia n c e  for  ea ch  o f the  

p o in ts  is  com p u ted . The d iagon a l e le m e n ts  for the sa m p le  

p r o b le m  are

156,  39.  2 , 2 2 . 6 ,  5 . 1 ,  33,  6 . 3 ,  6 . 3 ,  0 . 6 ,  0 . 6 ,  25 , 4 , 144, 1. 6 , 3 0 . 2 ,  3 .1

Y i s  n ex t s e t  eq u a l to  the quadratic  e x p r e s s io n  G - l .

Y = b 0  + b lXl  + b 2 x 2  + h 3 x 3  + b 1 2 X1 x 2  + b 1 3 x l X 3  + b 2 3 x 2 x 3  4- b 1 1 X ] L 2  

+ b 2 2 x 2 2  + b 3 3 x 3 2  G - l

T he v a lu e s  for the c o e ff ic ie n ts  a re  c a lc u la te d  w ith  the u se  of 

eq u ation  G- 2 .

b  = /" x t v " 1 x 7  1 X T V"1 Y G- 2

T he so lu tio n  to  G -2  for the sa m p le  p ro b lem  is  g iv e n  in  T ab le  G-3 .
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T A B L E  G -3

C O E FFIC IE N T S FOR SA M PLE CALC ULATIO N

bQ 0 . 8 6 5

bj  0 . 0 7 6

b? 0 . 1 1 2

b 3  0 . 0 5 6

b 1 2  - 0 . 0 3 9

b 1 3  - 0 . 0 0 5

b £ 3  “0 . 0 2 6

b n  - 0 . 0 2 1

b 2 2  - 0 . 0 1 2

b 3 3  - 0 . 0 1 3

E q u ation  2 -5  i s  th en  expanded to  th e fo rm  g iv e n  in  E quation  G- 3 .

C o st = 0 . 1 7  U x '+ 0. 066 E 2 Ui  (1 -0.  8 ) + 0.  09 E 3 U! (1 -0 .  96) G-3

Ui = 6 0  ■ G-3b
40 Y

E 2  = f lO^0,  5  £*2.7 5 ) j  i o " 2  G - 3 c

E 3  = 2.  5 x 3  + 7. 5 G- 3d

E q u ation  G -2  r e p la c e s  Y and the c o e f f ic ie n ts  g iv e n  in  T ab le  G -3  

a r e  em p lo y ed .
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T he d ir e c t  s e a r c h  p ro g ra m  is  th en  u s e d  to com pute the  

s e tt in g s  for the v a r ia b le s  x^ that m in im iz e  the cos t .

T he r e s u lt  of th is  com putation  is:  

x]_ = 0 . 648  

x 2  = 1. 4 

x 3  = - 1 . 1 4 3

M inim um  C ost = $0. 2904

T he y ie ld  at the m in im u m  c o s t  = 96 . 5%

T he v a r ia n c e  about the m in im u m  c o s t  is  th en  c a lc u la te d  w ith  the 

u s e  o f E quation  G- 4 .

X * T f X T V - 1 X 7  _ 1  X * S 2  G - 4

w h ere  X * is

1 . 000 

0. 648  

1 . 4 0 0  

- 1 . 1 4 3  

0 . 9 0 7  

- 0 . 7 4 0  

- 1 . 6 0 0

0 . 4 2 0  

2 . 000
1. 307

a n d  i s  1 x  1 0 “^.
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T he v a r ia n c e  ca lcu la ted  fr o m  th is  e x p r e s s io n  is  8 . 52 x  1 0 “^.

T he M onte C arlo  c o s t  s im u la tio n  p r o g r a m  fo r  a o n e -s te p  

p r o c e s s  (p ro g ra m  0598A ) is  then  u se d  to  d e te r m in e  th e freq u en cy -  

c o s t  d is tr ib u tio n  about the in d ica ted  op tim u m .

T he data in  T ab le  G - l  app ly. The stand ard  d ev ia tio n  about 

the op tim u m  y ie ld  is  2 . 9 2  x  10"^. The stan d ard  d ev ia tio n  about 

the e s t im a te d  c a ta ly s t  and so lv en t r e c o v e r ie s  a r e  0 . 1 and 0 . 0 1 , 

r e s p e c t iv e ly .

The fr e q u e n c y -c o s t  d is tr ib u tio n  d ev e lo p e d  fr o m  th e s e  data  

i s  show n in  T ab le G-4 .
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T A B L E  G -4

FR EQ U EN C Y -C O ST DISTRIBUTION FOR SA M PLE PRO BLEM

C la ss
M ean
$ / L b . F req u en cy

0 . 2 6 7 5 3

0 . 2 7 0 5 3

0 . 2 7 3 5 1 1

0 . 2 7 6 5 31

0 . 2 7 9 5 38

0 . 2 8 2 5 46

0 . 2 8 5 5 6 2

0 . 2 8 8 5 54

0 . 2 9 1 5 46

0 . 2 9 4 5 57

0 . 2 9 7 5 34

0 . 3 0 0 5 39

0 . 3 0 3 5 2 0

0 . 3 0 6 5 23

0 . 3 0 9 5 9

0 . 3 1 2 5 15

0 . 3 1 5 5 4

0 . 3 1 8 5 2

0 . 3 2 1 5 0

0 . 3 2 4 5 3
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