Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

EFFECT OF PARTICLE SIZE AND PARTICLE SIZE DISTRIBUTION ON THE BURNING RATE OF BARIUM CHROMATE-BORON

PYROTECHNIC DELAY COMPOSITIONS

BY

DONALD J.FREEMAN

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR DEGREE

OF

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

AT

NEWARK COLLEGE OF ENGINEERING

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

> Newark, New Jersey 1965

APPROVAL OF THESIS

FOR

DEPARTMENT OF CHEMICAL ENGINEERING NEWARK COLLEGE OF ENGINEERING

BY

FACULTY COMMITTEE

APPROVED:

NEWARK, NEW JERSEY

JUNE, 1965

ABSTRACT

The burning rate of barium chromate-boron delay compositions is shown to be related to the 10 percent particle size point on the particle size distribution curve (particle size vs. percent greater than size) for either of the components. The burning rate is also shown to be inversely proportional to the 10 percent point of the barium chromate; and to follow a hyperbolic type relationship with the 10 percent of the boron, decreasing asymptotically as the 10 percent point increases. No correlations were found between the burning rate of the compositions and the average particle diameter, the mean particle diameter, or the 50 percent point for either component.

The average particle diameter (APD) as determined with the Fisher Sub-Sieve Sizer, is presently specified as the measure of the particle size of the components of barium chromate-boron delay compositions. As the validity of the APD is subject to question, other methods of particle size analysis were considered. The Mine Safety Appliances (MSA) Particle Size Analyzer was thus selected for the determination of the particle size distribution of barium chromate and boron.

The ABD was found to be closely related to the product of the uniformity index of the sample and either the MSA 50 percent point of the MSA d_m (mean particle diameter.) For barium chromate the APD's were approximately equal to the modified MSA values. A low degree of inequality between the MSA and APD values existed for the boron samples.

ACKNOWLEDGEMENTS

The author is grateful to Professor Michael Frederick for his guidance and counsel throughout the course of this research.

The writer wishes to acknowledge the cooperation and assistance of Picatinny Arsenal in making available the facilities and equipment for experimental work, with special thanks to G. Weingarten of the Pyrotechnics Laboratory.

The writer is indebted to Mrs. Helen Ender for her assistance in the typing of the manuscript.

The writer also expresses his appreciation to his wife, Barbara, whose patience and sacrifices have made completion of this thesis possible. TABLE OF CONTENTS

		Page	e
	ABS	TRACT	iii
	ACKI	NOWLEDGEMENTS	v
	TAB	LE OF CONTENTS	vi
	LIS	T OF ILLUSTRATIONS v	iii
	LIS	T OF TABLES	xi
I.	INT	RODUCTION	l
II.	EXP:	ERIMENTAL	8
	A.	Dispersion of Barium Chromate and Boron	8
		 Method of dispersion Selection of dispersing agents 	8 8
	в.	Use of the Mine Safety Appliances (MSA) Particle Size Analyzer	11
		1. Equipment and procedure 2. Results	11 22
	С.	Preparation of Delay Compositions and Fuzes	23
		1. Selection of barium chromate and boron samples	23
		 Blending of compositions Loading of delay fuzes 	28 29
	D.	Burning Rate Testing	33
		 Equipment Procedure Results 	33 35 37
III.	DIS	CUSSION	38
	A.	Dispersion of Barium Chromate and Boron	38
	в.	Evaluation of Particle Size Analysis Equipment	40
	C.	Particle Size Distribution of Barium Chromate and Boron	49

	D.	Relationship of Burning Rate of Barium Chromate-Boron Delay Compositions to the Particle Size of the Components	Page 61
IV.	CON	ICLUSIONS	81
٧.	REC	OMMENDATIONS	83
VI.	BIE	BLIOGRAPHY	84
VII.	APP	PENDIX	86
	Α.	MSA Particle Size Analysis Tables and Graphs	87
	Β.	Particle Size Frequency Tables and Graphs	107
	C.	Burning Rate Data and Results	135
	D.	Glossary	155

vii

LIST OF ILLUSTRATIONS

		Page
l.	Mll2Al Photoflash Cartridge Assembly- Ordnance Drawing F8848546	2
2.	Fuze Assembly - Ordnance Drawing C8848544	3
3.	Burning Time and Heat of Reaction of Barium Chromate - Boron Composition vs. Percent Boro	5 m
4.	Feeding Chamber and Centrifuge Tube	12
5.	Centrifuge Tubes During Analysis Run	13
6.	Centrifuge Tube in Projector for Reading of Sediment Height	14
7.	Delay Fuze Housing - from Ordnance Drawing C8848543	30
8.	Fuze Housing and Loading Fixture Assembly	31
9.	Dennison Four-Ton Multi-Press	31
10.	Burning Rate Testing Equipment	34
11.	Details of Test Fixture	34
12.	90/10 Squib Assembl y - Modified Ordnance Drawing C8879892	36
13.	Fisher Sub-Sieve Sizer	41
14.	Bausch and Lomb Research Metallograph	46
15.	MSA Particle Size Analysis Equipment	- 48
16.	Fisher APD vs MSA 50 Percent Point (Barium Chromate)	54
17.	Fisher APD vs MSA 50 Percent Point (Boron)	55
18.	Fisher APD vs MSA d _m (Barium Chromate)	56
19.	Fisher APD vs MSA d _m (Boron)	57
20.	Fisher APD vs Modified MSA 50 Percent Point (Barium Chromate)	63

		Page
21.	Fisher APD vs Modified MSA 50 Percent Point (Boron)	64
22.	Fisher APD vs Modified MSA d _m (Barium Chromate)) 65
23.	Fisher APD vs Modified MSA d _m (Boron)	66
24.	Effect of Particle Size on Burning Rate of Barium Chromate	73
25.	Effect of Particle Size on Burning Rate of Boron	74
26.	Burned and Unburned Fuzes	78
27.	Particle Size Distribution for Barium Chromate - Lots Baker 38388 and Baker 91104	97
28.	Particle Size Distribution for Barium Chromate - Lots Baker 25894 and Baker 26428	98
29.	Particle Size Distribution for Barium Chromate - Lots MP 25160 and MP 28303	99
30.	Particle Size Distribution for Barium Chromate - Lots MP 32500 and MP 28511	100
31.	Particle Size Distribution for Barium Chromate - Lots MP 31801 and MP 30701	101
32.	Particle Size Distribution for Barium Chromate - Lot B&C Fine	102
33.	Particle Size Distribution for Boron - Lots Trona 571 and Trona 419	103
34•	Particle Size Distribution for Boron - Lot HCST 873	104
35.	Particle Size Distribution for Boron - Lots HCST 900 and HCST 954	105
36.	Particle Size Distribution for Boron - Lots UMC 1992 and UMC 1993	106
37.	Size Frequency Curve for Barium Chromate - Lot: Baker 30388 and Baker 91104	s 125

ix

		Page
38.	Size Frequency Curve for Barium Chromate - Lots Baker 25894 and Baker 26428	126
39.	Size Frequency Curve for Barium Chromate - Lots MP 25160 and MP 28303	127
40.	Size Frequency Curve for Barium Chromate - Lots MP 28511 and MP 32500	128
41.	Size Frequency Curve for Barium Chromate - Lots MP 30701 and MP 31801	129
42.	Size Frequency Curve for Barium Chromate - Lot B&C Fine	130
43.	Size Frequency Curve for Boron - Lots Trona 571 and Trona 419	131
44.	Size Frequency Curve for Boron - Lot HCST 873	132
45.	Size Frequency Curve for Boron - Lots HCST 900 and HCST 954	133
46.	Size Frequenc y Curve for Boron - Lots UMC 1992 and UMC 1993	134

x

LIST OF TABLES

l.	Wetting and Dispersing Agents	<u>Page</u> 10
2.	Reading Schedule for Analysis of Barium Chromate	17
3.	Reading Schedule for Analysis of Boron	21
4.	Fisher APD for Barium Chromate and Boron Samples	25
5.	Chemical Analyses of Barium Chromate Samples	26
6.	Chemical Analyses of Boron Samples	27
7.	Summary of Delay Compositions	32
8.	Methods of Analysis of Particle Size Distribution	43
9.	Summary of Particle Size Analysis Results	50
10.	Summary of Burning Rate Calculations	62
11.	MSA 50 Percent Point vs. Burning Rate for Compositions Containing Baker Barium Chromate	6 8
12.	MSA 50 Percent Point v s. Burning Rate for Compositions Containing Mineral Pigments Barium Chromate	69
13.	MSA 10 Percent Point vs. Burning Rate for Compositions Containing Baker Barium Chromate	71
14.	MSA 10 Percent Point vs. Burning Rate for Compositions Containing Mineral Pigments Barium Chromate	72
15.	MSA Particle Size Analysis of Barium Chromate- Lots Baker 30388 and Baker 91104	87
16.	MSA Particle Size Analysis of Barium Chromate- Lots Baker 25894 and Baker 26428	88
	MSA Particle Size Analysis of Barium Chromate-Lots MP 25160 and MP 28303	89

		 	Page
	le Size Analysis o 500 and MP 28511	f Barium Chromate-	90
	le Size Analysis o 901 and Mp 30701	f Barium Chromate-	91 9
20. MSA Partic Lot B&C Fi		f Barium Chromate-	92
21. MSA Partic 419 and Tr		f Boron-Lots Trona	93 [°]
22. MSA Partic HCST 873	le Size Analysis o	f Boron-Lot	94
	le Size Analysis o nd HCST_954	f Boron-Lots	95
	le Size Analysis o nd UMC 1993	f Boron-Lots	9 6
25. Size Frequ Lot 30388	ency Data f or Bari	um Chromate-	107
26. Size Frequ Lot 91104	ency Data for Bari	um Chromate-	108
27. Size Frequ Lot 25894	ency Data for Bari	um Chromate-	109
28. Size Frequ Lot 26428	ency Data for Bari	um Chromate-	110
29¥-Şize Frequ Lot MP 283	en cy D ata f or Bari 03	um Chromate-	111
30. Size Frequ Lot MP 251	ency Data for Bari 60	um Chromate-	112
31. Size Frequ Lot MP 285	ency Data for Bari 11	um Chromate-	113
32. Size Frequ Lot MP 307	ency Data for Bari Ol	um Chromate-	114
33. Size Frequ Lot MP 325	ency Data for Bari 00	um Chromate-	115

xii

34. Size Frequency Data for Barium Chromate- Lot MP 31801	<u>Page</u> 116
35. Size Frequency Data for B & C Fine	117
36. Size Frequency Data for Boron-Lot Trona 571	118
37. Size Frequency Data for Boron-Lot Trona 419	119
38. Size Frequency Data for Bordn-Lot HCST 873	120
39. Size Frequency Data for Boron-Lot HCST 900	121
40. Size Frequency Data for Boron-Lot HCST 954	122
41. Size Frequency Data for Boron-Lot UMC 1992	123
42. Size Frequency Data for Boron-Lot UMC 1993	124
43. Burning Rate Data-Composition 1	135
44.Burning Rate Data-Composition 2	136
45. Burning Rate Data-Composition 3	137
46. Burning Rate Data-Composition 4	138
47. Burning Rate Data-Composition 5	139
48. Burning Rate Data-Composition 6	140
49. Burning Rate Data-Composition 7	141
50. Burning Rate Data-Composition 8	142
51. Burning Rate Data-Composition 9	143
52. Burning Rate Data-Composition 10	144
53. Burning Rate Data-Composition 11	145

xiii

Page
146
147
148
149
150
151
152
153
154

xiv

I. INTRODUCTION

Pyrotechnic delay compositions are physical mixtures of one or more metal powders (fuel) and one or more powdered oxidizing agents. These mixtures ignite and react exothermally at a predetermined rate upon the application of heat or flame; and are characterized by high reaction temperatures, solid combustion products, and the evolution of very small quantities of gas. The oxygen necessary for combustion of the fuel is supplied by the decomposition of the oxidizing agent, thus the combustion of these compositions is not affected by the presence or lack of air.

Time delay fuzes containing pyrotechnic delay compositions loaded under pressure are used in a wide variety of military and non-military; explosive and non-explosive items, due to their simplicity of design, low cost, compactness and resistance to physical abuse. Typical of these compositions is the barium chromate-boron system used in the delay fuze of the M112Al Photoflash Cartridge (Figure 1), which is fired from aircraft for the purpose of ground illumination during aerial photography missions. The delay fuze, (Figure 2) upon initiation by the black powder expelling charge, delays the functioning of the photoflash charge for 1, 2, or 4 seconds, depending on the intended delay interval. The black powder charge simultaneously expels the charge case

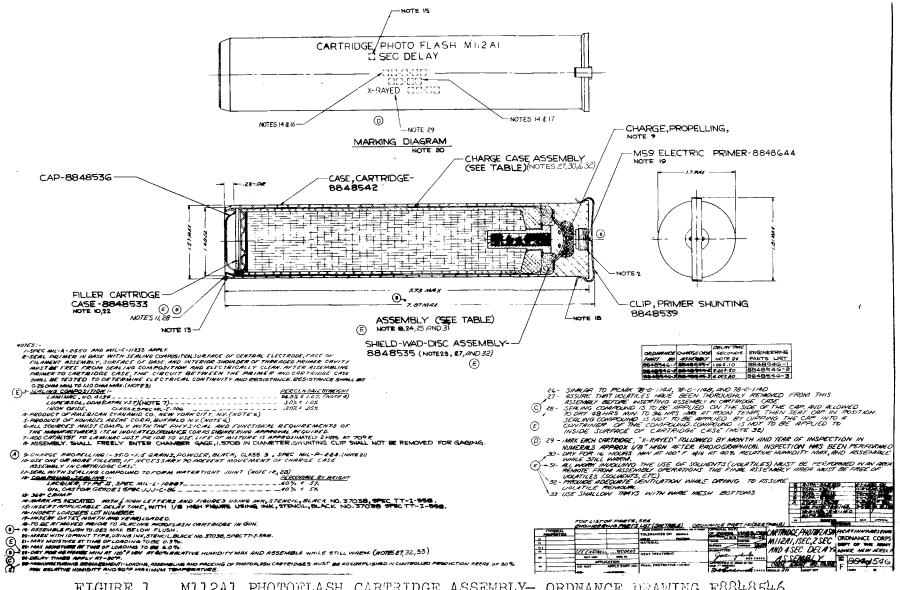
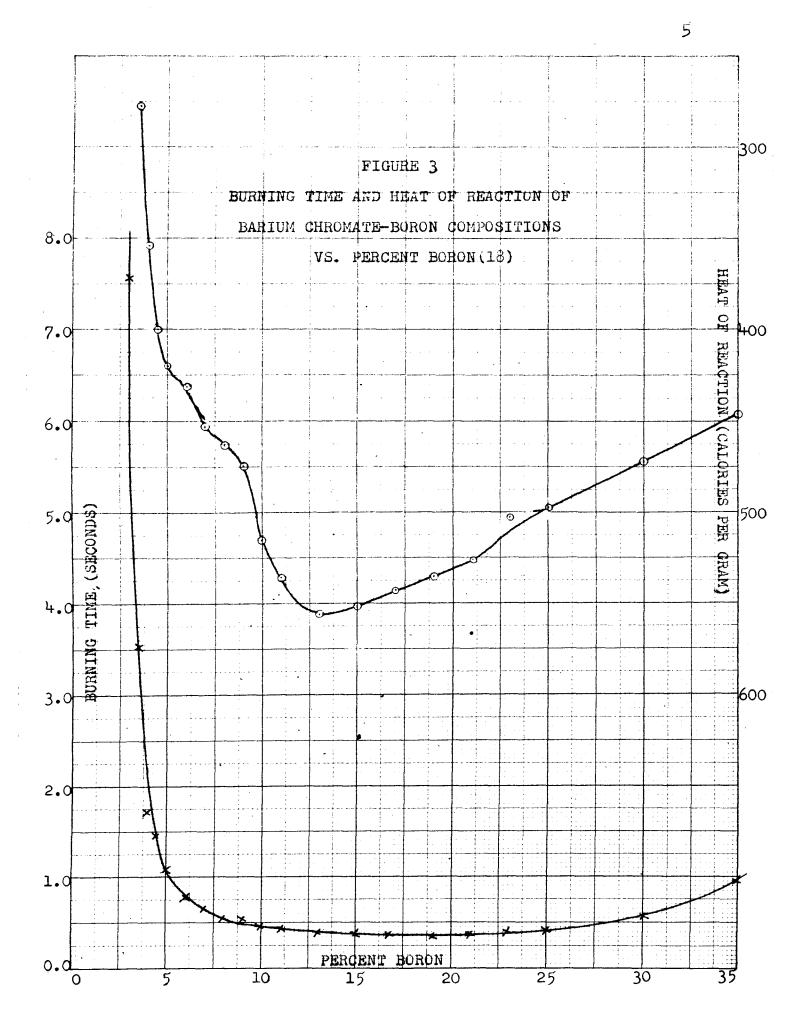


FIGURE 1. MIL2AL PHOTOFLASH CARTRIDGE ASSEMBLY- ORDNANCE DRAWING F8848546

N

what an acconstration work is definitely related Deveronment interacement (permone), and output relation Betterminet; interdy receive a classicalities as the delegence effective definities and determines, relationships Deveronment and have intermediated, functional or or any any explored from and determines, relationships and the definition of the definition of the definition of the defi							AS PCMK 78 9-2-540F 17		
Overament way new consistent by analytic and cohoments is an any research excessing the bedder or the dense colors. In our to consider the manifest region of parameters is the manifest research of parameters by parameter constants, the constant, we conserving any constant region and parameters way, or well by parameter constants, the many is the object fractions.	CHARSE NOTESSI					E	0 PA 580G 0PA 52215	3-2-3 4 67 K	3-5-65 41, 52-P
		- NOTESILIS	NITER			BE	0194 34406 0194 - 34599	*************************************	12-16-69 248 28 5 5-7-65 6B 5K
		/ /////////////////////////////////////	* *			<u></u>			
HOUSINC, TUZE			\square						
		- [[\rightarrow						
			\mathcal{V}						
	-vinner				· .				
RELAY ASSEMBLY	.25 MAX	-NOTE E STATIC SEC)AT	FLOETMES ORD	ANCE HOUSING	(SECONDS) AP	PROX M	IN APPR	OK MIN	Mers
8847512 Note4	(NOTES)	C 445.7464	RANGE 06-,92, 6848	546-1 8848563-1		(MG) WT	(MG) NT (A 250	150	8848544-
			S& St.	346 - E 8848543-2 548-3 8848543-3	2 2 2	100 100 /3	300 300	500	8848544 8348544
1-SPEC MIL-A-2550 APPL 2-PRIOR TO LOADING, MARK FIGURES USING INK, STEP 3-INLIEU OF STENCILING, LETTERS AND FIGURES & HIGH OF THE DELRY COLUM	(APPLICABLE DEL MCIL BLACK NO. PERIPHERY DF HI X.OI DEEP, PROVID M. CAVITY AND DO MAST SHOULDEP	STOJA, SPEC EAD MAY BE DED THAT THIS DES NOT INTER	TT-I-SSB.(1) STAMPED, PH OPERATION C RFERE MITH	VOTE SJ. 210R TO LOAD DOES NOT CAU. SCATINE OF	NNG, WITH APA SE ANY DEFORT THE FUZE.	LICABLE D	IN OPE 2 WEEP	TH CON AGE N CONTA (S) UNTIL	: AT 135° ± 5°. INERS (APPRO REPRODUCIBLI
2- P2IOR TO LOADING, MARK FIGURES USING INK, STEP 3- IN LIEU OF STENCILING, LETTERS AND FIGURES & HIGH OF THE DELAY COLUM 4- SEAT CUP FIRMLY AGA 5-CHARGE DELAY : APPROX MILLI GRAMS MAX. AT 30 6- DELAY COMPOSITION BORON, SPEC 7- THE MINIMUM PERCENT 8- WEIGHTS TO BE ADJUST AND COLUMN HEIGHT. 9-IARTICLE SIZE IS MEASUR IO- ADJUST DELAYTIME OF FULL 11- CHARGE, IGNITER: APPROX	(APPLICABLE DEL NCIL, BLACK NO. PERIPHERY OF NO. PERIPHERY OF NO. N CAVITY AND DO INST SHOULDER. (SEE TABLE) DELA (SEE TABLE) DELA (NOTES 715,16,17) TE , CLASSA, AVE. PA-PD-451 TOF BORON TO. ED TO GIVE RES RED WITH FISHER SILE E ASSEMBLY SO THA (SEE TABLE) MILLIGR	STOJE, SPEC E AD MAY BE DED THAT THIS DES NOT INTER AY COMPOSITIO S 6,10) RAGE MARTICLE BE 4.2%. QUIEED DELK EVE SIZER AS DEL AT EEQUIRED DE MAS IGNITING CO	TT-1-3588.[1 STAMPED, PH OFERATION C RFERE WITH N. PRESS IN SIZE 12 4 SIZE 12 4 MI SCRIBED IN PH ELAY TIME OF C MIPOSITION. PH	NOTH 31, RIGR TO LOAD DES NOT CAU SEATINE OF EQUAL INCREN LEONS SPEC MI ATIMNY ARSEMA COMPLETE EOU RESS AT 36,000	INS, WITH APP SE ANY DEFOR THE FUZE. MENTS OF 500 <u>PERCEN</u> U-B-550 9 475 U-B-550 9 9 9 	21(ABLE D. MRTTION <u>AGE BY 1994</u> 5.25%(AC 5.25%(AC 5.25%(AC 1.401150RY 1.401150RY 1.401150RY 1.401150RY 1.20%(N	IN OPE 2 ULEER STATIC ED ON VISO EY 2(NOT C 17- KEER QUAN C 17- KEER QUAN C THE IR-ADUS END C TO EX	TH CON FGE FUSE TIM CONSECU COUSECU COUSECU (FOR COUSECU COUSECU COUSECU COUSECU COUSECU COUSECU CONTE CONT	IPDS ITIONS T TAT 135° ± 5° 1 INERS (APPRI ES ARE OBTRI ES ARE OAYS TH (OMPOSITIO) LOSED USORY). SNAUL POWDER HE AIR AT IG STATION STECT OPEN
2- P2IOR TO LOADING, MARK FIGURES USING INK, STEP 3- IN LIEU OF STENCILING, LETTERS AND FIGURES & HIGH OF THE DELRY COLUM 4- SEAT CUP FIRMLY AGA 5-CHARGE DELAY : APPROX MILLI GRAMS MAX. AT 36 3-6- DELAY COMPOSITION BARIUM CHEOMA BORON, SPEC 7- THE MINIMUM PERCENT 8- WEIGHTS TO BE ADJUST AND COLUMN HEIGHT. 9-IMRTICLE SIZE IS MEASUN IO- ADJUST DELAY TIME OF FUZL (1- CHARGL, IGNITER:-APPROX 12- KONITING COMPOSITION: (1 BARIUM CHEOMA 13- MOISTURE CONTENT AT TIM.	(APPLICABLE DEL NCIL, BLACK NO. PERIPHERY OF NO. PERIPHERY OF NO. N CAVITY AND DO NNST SHOULDER. (SEE TABLE) DELA SOOO PSI. (NOTES. (NOTES.715,16,17) TE, CLASSA, AVE. PA-PD-457 TOF BORON TO ED TO GIVE RES RED WITH FISHER SIL E ASSEMBLY SO THA (SEE TABLE) MILLIGR (SEE TABLE) MILLIGR (SEE TABLE) MILLIGR (SEE TABLE) MILLIGR (SEASA SI	STOJE, SPECT EAD MAY BE DED THAT THIS OCS NOT INTEN AY COMPOSITIO S 6,10) RAGE PARTICLE BE 4.2% QUIEED DELA CONTEED DELA	TT-1-3588.[1 STAMPED, PH OFERATION C RFERE WITH N. PRESS IN SIZE 12 4 SIZE 12 4 MI SCRIBED IN PH ELAY TIME OF C MIPOSITION. PH	NOTH 31, RIGR TO LOAD DES NOT CAU SEATINE OF EQUAL INCREN LEONS SPEC MI ATIMNY ARSEMA COMPLETE EOU RESS AT 36,000	INS, WITH APP SE ANY DEFOR THE FUZE. MENTS OF 500 <u>PERCEN</u> U-B-550 9 475 U-B-550 9 9 9 	LICABLE D. MRTTICN <u>AGE BY MA</u> 5.25%(AC 5.25%(AC 5.25%(AC 6.400050RY 1.400050RY 1.20 1.20 1.20 2.4000000000000000000000000000000000	IN OPE 2 ULEER STATIC ED ON VISO EY 2(NOT C 17- KEER QUAN C 17- KEER QUAN C THE IR-ADUS END C TO EX	TH CON FGE FUSE TIM CONSECU COUSECU COUSECU (FOR COUSECU COUSECU COUSECU COUSECU COUSECU COUSECU CONTE CONT	IPOSITIONS J TATERS (APPRI REPRODUCIBLE ES ARE OBTA TIVE DAYS TH LOSED USORY). SMALL POWDER THE AIR AT IG STATION DIECT OPEN DIECT OPEN
2- P2IOR TO LOADING, MARM FIGURES USING INK, STEL 3- IN LIEU OF STENCILING LETTERS AND FIGURES & HIGH OF THE DELAY COLUM 4- SEAT CUP FIRMLY AGA 5- CHARGE DELAY : APPROX MILLI GRAMS MAR. AT 30 B 6- DELAY COMPOSITION (BARIUM CHEOMA BORON, SPEC, 7- THE MINIMUM PERCENT 8- WEIGHTS TO BE ADJUST AND COLUMN HEIGHT. 9- JARTICLE SIZE IS MEASUR 10- ADJUST DELAY TIME OF FULL (C) IR- KONTING COMPOSITION (BARIUM CHEOMAT BORON, SPEC 13- MOISTURE CONTENT AT TIM. 14- SIMILAR TO PCME TB-250 (A) IS- VELAY TIMES AFE CHANGED L OF VOLATILES (INCLUDING MOIST	(APPLICABLE DEL NCIL, BLACK NO. PERIPHERY OF H Y. OJ DEEP, PROVID M CAVITY AND DO NAST SHOULDER. (SEE TABLE) DELA NOTES 7,15,16,17) TE, CLASS A, AVE, PA-PD-457 TOF BORON TO SED TO GIVE RES RED WITH FISHER S/L E ASSEMBLY SO THA (SEE TABLE) MILLIGR (SEE TABLE) MILLIGR	STOJE, SPECT EAD MAY BE DED THAT THIS OCS NOT INTEN AY COMPOSITIO S 6,10) RAGE PARTICLE BE 4.2% QUIEED DELA CONTEED DELA	TT-1-3588.(1 TT-1-3588.(1 STAMPED, PH OFERATION C RFERE WITH N. PRESS IN A SIZE 12 1 MIC SIZE 12 1 MIC NO TTME SCRIBED IN PH CALORITION PH ZE 12 1 MICRON FOP 415T OF	NOTH 31, PLOR TO LOAD SEATINE OF EQUAL INCREM CEONS SPEC MI CEONS SPEC MI COMPLETE EOU PESS AT 30,00 VS SPEC MIL-B- PARTS SEE	INS, WITH APP SE ANY DEFOR THE FUZE. MENTS OF 500 <u>PERCEN</u> U-B-550 - 9 475 U-B-550 - 9 475 NL REPORT SER ND IS MET. (NOTE <u>PERCENTIBLE</u> 530 - 9 	21(ABLE D MRTTION <u>AGE BY 1994</u> 5.25%(AC 5.25%(AC 5.25%(AC 5.25%(AC 5.25%(AC 7.25%(AC)7.25%(AC 7.25%(AC)7.25%(AC 7.25%(AC)7.25%(A	IN OPE 2 ULEER STATIC ED ON VISO EY 2(NOT C 17- KEER QUAN C 17- KEER QUAN C THE IR-ADUS END C TO EX	TH CON HGE AGE SOUNTIL FUSE TIM CONSECU CONSECU (CONTECU (CONTECU	IPÓS ITIONS 5 TAT I 35° 2.5° INERS (APPRO REPRODUCIBLE ES ARE OBTRI TIVE DAYS, TH COMPOSITIOI LOSED ISORY). SNALL POWDER THE AIR AT IG STATIO FUTTH CAPL DITTH CAPL DITTH CAPL
2- P2IOR TO LOADING, MARK FIGURES USING INK, STEI 3- IN LIEU OF STENCILING LETTERS AND FIGURES & HIGH OF THE DELAY COLUM 4- SEAT CUP FIRMLY AGA 5- CHARGE DELAY: APPROX MILLI GRAMS MAR. AT 38 B 6- DELAY COMPOSITION (BARIUM CHEOMA BORON, SPEC 7- THE MINIMUM PERCENT 8- WEIGHTS TO BE ADJUST AND COLUMN HEIGHT. 9- MARTICLE SIZE IS MEASUN IO- ADJUST DELAY IME OF FUZL (1- CHARGL, IGNITER:-APPROX (C) Z. <u>BANTING COMPOSITION</u> ; (BARIUM CHEOMAT BORON, SPEC 13- MOISTURE CONTENT AT TM 14- SIMILAR TO PCMC TB-2-54 (A) IS- DELAY TIMES AEE CHANGED L	(APPLICABLE DEL NCIL, BLACK NO. PERIPHERY OF NO. PERIPHERY OF NO. N CAVITY AND DO NST SHOULDEE. (SEE TABLE) DELA (SEE TABLE) DELA (NOTES 7,15,16,17) TE, CLASS A, AVE. PA-PD-451 ED TO GIVE EES RED WITH FISHER SILE E ASSEMBLY SO THE SEC) (NOTES 15,16,17) TE, CLASS A, AVE. ED TO GIVE EES RED WITH FISHER SILE E ASSEMBLY SO THE SEC) (NOTES 15,16,17) TE, CLASS A, AVE. ED TO GIVE EES DE LOADING TO E SO ABSORDION URE) BY BOTH THE AND DELAY COM- TECTED BY TEMP.	STOJE, SPECT EAD MAY BE DED THAT THIS OCS NOT INTEN AY COMPOSITIO S 6,10) RAGE PARTICLE BE 4.2% QUIEED DELA CONTEED DELA	TT-1-3588.(1 TT-1-3588.(1 FTAMPED, PA OFERE MITH N. PRESS IN 1 SIZE 12 1 MIC SIZE 12 MIC NO TIME SCRIBED IN PR SCRIBED IN PR SCRIBED IN PR SCRIBED IN PR SCRIBED IN PR SCRIBED IN CO FOR LIST OF FOR LIST OF FOR LIST OF PRYSICAL UNLES	VOTE 31, 2108 TE LOAD 2005 NOT CAD. SEATINE OF EQUAL INCREM CEONS SPEC MI CEONS SPEC MI AJUNY ARSEMA COMPLETE EQU 255 AT 36,00 255 A	ING, WITH APP SE ANY DEFOR THE FUZE. MENTS OF 500 <u>DERCEN</u> U-B-550 - 9 4.75) U-B-550 - 9 4.75) U-B-550 - 9 9 9 9 9 9 9 9 9 9 9 9 9 10 (NOTE <u>BERCENTHEE</u> <u>6</u>) (MOUTH DATE OF DRAMAG MAR 5, 65	21 CABLE D. MATTION <u>AGE BY MA</u> 5.25% (AC 5.25% (AC 5.25% (AC 5.25% (AC 7.20% (AC 7.0% (AC 7.0% (AC 7.0% (AC 7.0% (AC 7.0% (AC) 7.0% (AC	IN OPE 2 USEE STATIC STATIC ED ON VISO EYENOT O. CONTAIN O. 17- KEEN O. 17- KEEN O. EXPO. THE IP-ADVIS ENDO TO EX IOTE 9)	TH CON HGE ACONTAL FUSE TIM CONSECU (COUSECU (SEC TAL (SEC TAL (SEC TAL PIC	IPOSITIONS ; AT AT 135° 25°, INERS (APRI REPRODUCIBLE ES ARE OBTR TIVE DAYS TH COMPOSITION LOSED ISORY). SMALL POUIDER THE AIR AT IG STATION DECT OPEN WITH CAPL DOLATILES.
2- P2IOR TO LOADING, MARM FIGURES USING INK, STEP 3- IN LIEU OF STENCILING LETTERS AND FIGURES & HIGH OF THE DELAY COLUM 4- SEAT CUP FIRMLY AGA 5-CHARGE DELAY: APPROX MILLI GRAMS MAX. AT 38 B 6- DELAY COMPOSITION (BARIUM CHROMA BORON, SPEC, 7- THE MINIMUM PERCENT 8- WEIGHTS TO BE ADJUST AND COLUMN HEIGHT. 9- PARTICLE SIZE IS MEASUM 10- ADJUST DELAY TIME OF FULL (C) IZ- IGNITING COMPOSITION (BARIUM CHROMAT BORON, SPEC A 11- CHARGL, IGNITER:-APPROX (C) IZ- IGNITING COMPOSITION (BARIUM CHROMAT BORON, SPEC A 13- MOISTURE CONTENT AT TIM. 14- SIMILAR TO PCMK T8-254 (A) IS- DELAY TIMES AFE CHANGED L 0F VOLATILES (INCLUDING MOIST C) DOSE AND PRESSED IGNITING POSITIONS THEY ARE ALSO AFF ERATURE CIMNES (APPROX .OC DELAY TIMES), ADE QUATE F CONTROLS FOR THESE UN	APPLICABLE DEL ACIL, BLACK NO. PERIPHERY OF H Y. OJ DEEP, PROVID M CAVITY AND DO IN-ST SHOULDEE. (SEE TABLE) DELA KOTES 7,15,16,17) TE, CLASS A, AVE, PA-PD-457 T OF BORON TO SED TO GIVE EES RED WITH FISHER SIL E ASSEMBLY SO THA (SEE TABLE) MILLIGR (NOTES,15,16,17) TE, CLASS A, AVERAG PA-PD-457 E OF LORDING TO E ST ABSOLDTON URE) BY BOTH THE AND DELAY COM- TECTED BY TEMP- TROCESS ARIABLES	STOJE, SPECT EAD MAY BE DED THAT THIS OCS NOT INTEN AY COMPOSITIO S 6,10) RAGE PARTICLE BE 4.2% QUIEED DELA CONTEED DELA	T-1-3-560.(1 T-1-3-560.) PA DEFERTION C RFERE WITH N. PRESS IN A SIZE 12 1 MIC SIZE 12 1 MIC SCRIBED IN PAC SCRIBED IN PAC SCRIBENTIN SCRIBE	NOTE 31, 2108 TO LOAD 2005 NOT CAD. 5 EATING OF EQUAL INCREM COMPLETE FOU 2005 SPEC MIL COMPLETE FOU 2005 SPEC MIL-B- PARTS, SEE IS PARTS SEE IS PARTS SEE S OTHER IN NOTES S ODECIMALS ANGLES	INS, WITH APP SE ANY DEFOR THE FUEE. MENTS OF 500 DERCENT LEB-550 - 9 4.75) L. REPORT SERI ND IS MET. (NOTE BERCENTREE B STORE TREELES PROMING MAR 5, 65 TRACE ORD MARKED ORD MARKED ORD MARKED MENDIS MAD IS MET. (NOTE BERCENTREE B STOR 9 MARKED S OF DRAWING MAR 5, 65 DEST DRAWING MAR 5, 65	21 CABLE D. MATTION <u>AQE BY 1994</u> 5.25% (AC 5.25% (AC 5.25% (AC 6.400150Ry (ADVISORy (ADVISORy (ADVISOR) (IN OPE 2 USEE STATIC STATIC ED ON VISO EYENOT O. CONTAIN O. 17- KEEN O. 17- KEEN O. EXPO. THE IP-ADVIS ENDO TO EX IOTE 9)	TH CON AGE AGE AGE AGE AGE AGE AGE AGE	APOSITIONS) TATISS 259 INERS (APPRO REPRODUCIBLE ES ARE OBTA TIVE DAYS TH COMPOSITION LOSED ISORY). SMARLE POWDER THE AIR AT IG STATION STET OF COR BLE) ATTAMAT ARSSE RDNANCE COR DEPT OF THE ARMY
2- P2IOR TO LOADING, MARK FIGURES USING INK, STEP 3- IN LIEU OF STENCILING, LETTERS AND FIGURES & HIGH OF THE DELAY COLUM 4- SEAT CUP FIRMLY AGA 5- CHARGE DELAY: APPROX MILLI GRAMS MAX. AT 36 B 6- DELAY COMPOSITION (BARUM CHEOMA BORON, SPEC 7- THE MINIMUM PERCENT 8- WEIGHTS TO BE ADJUST AND COLUMNI HEIGHT. 9- PARTICLE SIZE IS MEASUN 10- ADJUST DELAYTIME OF FUZL 11- CHARGE, IGNITER: APPROX 12- IGNITING COMPOSITION (EARIUM CHEOMAT BORON, SPEC 13- MOISTUEE CONTENT AT TIM 14- SIMILAE TO PCME TB-2-56 15- DELAY TIMES AEE CHANGED 16- DELAY TIMES AEE CHANGED 1005 AND PESSED IGNITING 1005 AND PESSED IGNITING 1005 AND PESSED IGNITING 1005 FOR THEY ARE ALSO AFF EEATURE CHANGES (APPROX . OC DELAY TIME). ADEQUATE F CONTROLS FOR THESE LIA MUST BE PROVIDED DUS CARTRIDGE MANUFACTO	(APPLICABLE DEL ACIL, BLACK NO. PERIPHERY OF NO. PERIPHERY OF NO. PERIPHERY OF NO. NOTES THOULDER. (SEE TABLE) DELA (SEE TABLE) DELA (NOTES 7,15,16,17) TE, CLASS A, AVE. PA-PD-457	STOJE, SPECTO EAD MAY BE DED THAT THIS OCES NOT INTER AY COMPOSITION S 6,10) RAGE HARTICLE BE 4.2%. QUIEED DELA CHIEED DELA CONTENTIONE CO CONTENTIONE STA SE 0.190 MAX. D 78-2-540 K.	TT-1-3588.(1 TT-1-3588.(1 STAMPED, PA OFERATION C RFERE WITH N. PRESS IN SIZE 12 1 MIC SIZE 12 1 MIC SIZE 12 MIC SCRIBED IN PR SCRIBED IN PR SCRIBENT SCRIBED IN PR SCRIBENT SCRI	NOTE 31, PLORE TO LOAD DOES NOT CAR SEATIANE OF EQUAL INCREM LEONS SPEC MI AJJANNY ARSEMA COMPLETE EQU PLOSS AT 36,000 VS SPEC MIL-B- PARTS, SEE IS PARTS, SEE	INS, WITH APP SE ANY DEFOR THE FUZE. MENTS OF 500 <u>PERCEN</u> U-B-550	AGE BY MA AGE BY MA 5.25% (AC (ADVISORY 12) YMEIGHT -1.0% (N +1.0% ORDMAN	IN OPE 2 UJEE STATIC EXAMP C CONTAIN C 17- KEEA QUAN C 17- KEEA QUAN T T KEEA C 17- KEEA QUAN C 17- KEEA C 17- KEA C 17- KE	TH CON FIGE AN CONTRA FOSE TIM CONTRA FOSE TIM CONTRA C	IPOSITIONS T TATISS' 25" INERS (APPRO REPRODUTBLE ES ARE OBTAI TIVE DAYS. TH COMPOSITION LOSED ISORY). SNALL POWDER THE AIR AT IG STATION DISTATION DISTATION DISTATION
2- P2IOR TO LOADING, MARM FIGURES USING INK, STEP 3- IN LIEU OF STENCILING LETTERS AND FIGURES & HIGH OF THE DELAY COLUM 4- SEAT CUP FIRMLY AGA 5- CHARGE DELAY : APPROX MILLI GRAMS MAR. AT 98 6- DELAY COMPOSITION (BARUM CHEOMA BORON, SPEC, 7- THE MINIMUM PERCENT 8- WEIGHTS TO BE ADJUST AND COLUMN HEIGHT. 9- PARTICLE SIZE IS MEASUN 10- ADJUST DELAYTIME OF FULL (C) IE- IGNITICE CONTENT AT TIM BARUM CHEOMAT BORON, SPEC A 11- CHARGL, IGNITER:-APPROX (C) IE- IGNITING COMPOSITION (BARUM CHEOMAT BORON, SPEC A 13- MOISTURE CONTENT AT TIM 14- SIMILAR TO PCMK TB-2-54 (A) IS DELAY TIMES AEE CHANGED L OF VOLATIES (INCUDING MCIST C) DOSE AND PRESSED IGNITING POSITIONS. THEY ARE ALSO AFA ERATURE CHANGES (MERCAN CO DELAY TIME), ADE QUATE FO CONTROLS FOR THESE LA MUST BE PROVIDED DUS	(APPLICABLE DEL ACIL, BLACK NO. PERIPHERY OF NO. PERIPHERY OF NO. PERIPHERY OF NO. NOTES THOULDER. (SEE TABLE) DELA (SEE TABLE) DELA (NOTES 7,15,16,17) TE, CLASS A, AVE. PA-PD-457	STOJE, SPEC E AD MAY BE DED THAT THIS DES NOT INTEN AY COMPOSITIO S 6,10) RAGE PARTICLE ARE 4.2%. QUIEED DELA EVE SIZER AS DE AT EEQUIRED DE PARTICLE SI BE 0.190 MAX. D 78-2-540 K.	ТТ-1-3588.(1 ТТ-1-3588.(1 ВТАМРЕВ, РА ВОРЕРАТИОН С RFERE WITH N. PRESS IN A SIZE 12 1 MIC SIZE 12 MIC	NOTE 31, PLORE TO LOAD DOES NOT CAR SEATIANE OF EQUAL INCREM LEONS SPEC MI AJJANNY ARSEMA COMPLETE EQU PLOSS AT 36,000 VS SPEC MIL-B- PARTS, SEE IS PARTS, SEE	ING, WITH APP SE ANY DEFOR THE FUZE. MENTS OF 500 <u>DERCENT</u> L-B-5509 4.75) L REPORT SERI ND IS MET.(NOTE <u>BERCENTIBLE</u>) OF DAY IG MARE 5 550 9 // PERCENTIBLES	AGE BY MA AGE BY MA 5.25% (AC (ADVISORY 12) YMEIGHT -1.0% (N +1.0% ORDMAN	IN OPE 2 UJEE STATIC ERMT ED ON VISO EYENOT C 17- KEEN QUAN C 17- KEEN QUAN C THE IB-ADUIS END C TO EX OTE 9)	TH CON FIGE AN CONTRA FOSE TIM CONTRA FOSE TIM CONTRA C	IPOSITIONS J TATISS 159 159 INERS (APPRO REPRODUCIBLE ES ARE OBTAI TIVE DAYS TH COMPOSITION LOSED ISORY). SNAALL POUDER THE AIR AT ISORY). SNAALL POUDER THE AIR AT ISORY). SNAALL POUDER THE AIR AT ISORY). SNAAL SOLE) INTTH CAPL DOLATICES.
2- P2IOR TO LOADING, MARK FIGURES USING INK, STEP 3- IN LIEU OF STENCILING, LETTERS AND FIGURES & HIGH OF THE DELAY COLUMA 4- SEAT CUP FIRMLY AGA S-CHARGE DELAY: APPROX MILLI GRAMS MAR. AT 38 B 6- DELAY COMPOSITION (BARIUM CHEOMA BORON, SPEC, 7- THE MINIMUM PERCENT 8- WEIGHTS TO BE ADJUST AND COLUMN HEIGHT. 9- PARTICLE SIZE IS MEASUR 10- ADJUST DELAY TIME OF FULL (C) IZ- KONITING CONPOSITION (BARIUM CHEOMAT BORON, SPEC / 13- MOISTUEE CONTENT AT THE 14- SIMILAR TO PCME TB-25-24 (A) IS- DELAY TIMES AFE CHANGED L OF VOLATILES (INCLUDING MOIST C) DELAY TIMES (INCLUDING COLUMNE C) DELAY TIMES (INCLUDING MOIST C) DELAY TIMES (INCLUDING COLUMNE C) DELAY TIMES (INCLUDING COLUMNE C) DELAY TIMES (INCLUDING COLUMNE C) DELAY TIMES (INCLUDING COLUMNE C) DELAY TIME	(APPLICABLE DEL ACIL, BLACK NO. PERIPHERY OF NO. PERIPHERY OF NO. PERIPHERY OF NO. NOTES THOULDER. (SEE TABLE) DELA (SEE TABLE) DELA (NOTES 7,15,16,17) TE, CLASS A, AVE. PA-PD-457	STOJE, SPEC STOJE, SPEC SEAD MAY BE DED THAT THIS DES NOT INTER AY COMPOSITION S 6,10) RAGE PARTICLE ARE 4.2%. QUI EED DELA ENE SIZER AS	Т-1-3-358.(1 577 МАРВО, РА 578 МА	VOTE 31, PLORE TO LOAD DOES NOT CARL SEATIANE OF EQUAL INCREM CONSSPEC MI CONSSPEC MI COMPLETE ECON COSS AT 36,00 VS SPEC MIL-B- PARTS, SEE IS PARTS, SEE IS PA	ING, WITH APP SE ANY DEFOR THE FUZE. MENTS OF 500 <u>DERCENT</u> L-B-5509 4.75) L REPORT SERI ND IS MET.(NOTE <u>BERCENTIBLE</u>) OF DAY IG MARE 5 550 9 // PERCENTIBLES	AGE BY MA AGE BY MA 5.25% (AC (ADVISORY 12) Y MEIGHT -1.0% (N +1.0% ORDMAN ORDMAN	IN OPE 2 UJEE STATIC EXAMP C CONTAIN C 17- KEEA QUAN C 17- KEEA C 17- KEEA	TH CON AGE AN CONTAN FUSE TIM COUVERS COUVERS COUVERS (SEE TAR CUVES C	IPOSITIONS TAT 135° 1.5° INERS (APPRO ESPRODUCIBLI ESPRE OBTA TIVE DAYS.THO LOSED ISORY). SMALL POWDER THE AIR AT IG STATHON DIFECT OPEN WITH CAPE IOLATILES. SLE) ATTAMY ASS RENANCE COR DEPT OF THE ARMIN 472, MIN LER.

assembly from the cartridge case so that the flash charge will explode safely away from the aircraft after the delay composition has burned. The delay times must have little variation as the photoflash cartridges must be synchronized with the photographic equipment used.


The requirements for this particular application are fulfilled by a 95/5 barium chromate-boron delay composition and a 90/10 barium chromate-boron igniter composition. The 95/5 mixture provides the proper burning rate for the desired delay time, and the 90/10 mixture provides the necessary heat to ignite the delay composition with a high degree of reliability. A graph depicting the burning time and heat of reaction as a function of composition for the barium chromate-boron system is shown in Figure 3 (18).

Barium chromate and boron react in two separate reactions: (1) $2BaCrO_{4} + 2B \longrightarrow Cr_{2}O_{3} + Ba_{2}B_{2}O_{5}$

(2) $BaCrO_{14} + 2B \longrightarrow Cr + Ba(BO_{2})_{2}$

Reaction (1) corresponds closely to the reaction of the 95/5 blend, while reaction (2) corresponds to the reaction of the 90/10 blend.

The stoichiometric compositions contain 4.09 percent boron and 7.87 percent boron, respectively, but consideration is given to the fact that boron with as low as 84 percent elemental amorphous boron is specified for use in these

compositions. A maximum of about 92 percent elemental amorphous boron is the best purity now commercially available. Amorphous boron, and not crystalline boron, is intended for use in the barium chromate-boron system because of lower ignition and burning time reproducibility encountered with crystalline boron.

Little is known at present about the mechanism of solidsolid reactions such as those under consideration. However, for reproducible burning times, ease of ignition, and propagation of burning, one of several variables that must be controlled is the particle size of the components of the composition (5, 6).

The particle size of the components is specified as the average particle diameter (hereafter referred to as APD) as determined by the Fisher Sub-Sieve Sizer (1, 3). Comyn, et al (6) show that reproducibility of burning rates of delay compositions prepared in dilute slurries is related not only to the average particle size, but to the particle size distribution of the components as well. For instance, a delay component with an acceptable APD may contain large particles which would prevent that component from blending properly with the other components of the composition and also cause the particles to segregate with handling before pressing into delay fuzes, thus causing erratic burning times of the pressed compositions. A method of specifying

the particle size distribution of the barium chromate and boron may therefore be necessary, in lieu of specifying the APD as the measure of the particle size parameter.

Thus, the particle size distribution-burning rate relationship must be investigated in two steps:, (1) Using a suitable method for determining the particle size distribution of barium chromate and boron, compare the results of these analyses to the APD of the samples. (2) Determine the effect of the particle size distribution or parameters derived from the distribution on the burning rate of the delay compositions blended with various samples of barium chromate and boron.

II. EXPERIMENTAL

A. Dispersion of Barium Chromate and Boron

1. <u>Method of dispersion</u>. A general method of dispersing difficult-to-disperse small particle size materials was developed for both barium chromate and boron. This method, a combination of methods recommended by several investigators (6, 12, 14) is described as follows:

A 0.2 gram sample of barium chromate (or boron) to be dispersed was placed on a 4-inch watch glass and moistened with portions of 25ml of a 0.01 percent stock solution of the dispersing agent undergoing evaluation. The moistened sample was worked into a smooth paste, using a glass rod with a rubber policeman. The paste was washed through a 325 mesh (44 micron) sieve into a Waring Blendor with the remainder of the dispersing agent and sufficient water to dilute the slurry to 250 ml. The blendor was operated for three minutes to complete the dispersion of the sample.

A coarse barium chromate sample, Mineral Pigments 1357, batch 31801, was blended for an additional 4, 7, and 14 minutes, while performing a particle size analysis on the sample after each time period to ascertain that the action of the blendor had not fractured any of the particles.

2. <u>Selection of dispersing agents</u>. Using the method of dispersion just described, various anionic, cationic,

and nonionic surface-active agents (surfactents), (Table 1) and combinations of anionic and nonionic surfactents were evaluated as dispersing agents for barium chromate and boron. As suggested by the Mine Safety Appliances Company (14), the concentration of the surfactents was maintained at about 0.02 percent. The criteria for evaluation of the quality of dispersion were as follows:

(1) No indication of agglomeration, either visually or under microscopic examination.

(2) Minimum amount of sediment at the bottom of the test tube initially, after one to three hours, after one day, and after one week.

(3) Maximum density of dispersion initially, after two to three hours, after one day, and after one week, as determined by the color of the dispersion and the transmission of a light beam through the suspension.

Of the individual surfactents, the nonionic surfactents, Tenlo 70 and Ethofat C/15, and the anionic surfactents, Tamol SN and Lomar PW, appeared to be best for dispersing barium chromate. Ethofat C/15- Lomar PW, Ethofat C/15-Tamol SN, Triton X-100- Tamol SN, and Tenlo 70- Lomar PW mixtures containing 50 percent of each surfactent produced more stable dispersions than any of the individual surfactents, with the most stable dispersion provided by the 0.01 percent Ethofat C/15- 0.01 percent Tamol SN combination.

TÄBLE 1

WETTING AND DISPERSING AGENTS

Trade Name

Chemical Type

Manufacturer

Nonionic

.

Triton X-100	Alkyl aryl polyether (x=10) alcohol	Rohm & Haas
Ethofat C/15	Polyethoxy (x=5) ester of coco fatty acid	Armour
Ethofat 0-15	Polyethoxy (x=5) ester of oleic acid	Armour
Span 60	Sorbitan monostearate	Atlas
Span 80	Sorbitan monooleate	Atlas
Tween 60	Polyoxyethylene (20) sorbitan monostearate	Atlas
Tween 80	Polyoxyethylene (20) sorbitan monooleate	Atlas
Tenlo 70	Fatty acid amides	Nopco
Brij 78	Polyoxyethylene (20) stearyl ether	Atlas
	Polyoxyethylene glycol (400) monolaurate	Kessler
Anionic		
Lomar PW	Sodium salt of naphthalene sulfonic acid	J. Wolf
Nopcosant. L		Nopco
Tamol SN	Sodium salt of condensed aryl sulfonic acid	Rohm & Haas
Tamol 850		Rohm & Haas
Cationic		
Bromat	Cetyl trimethyl ammonium chloride	Fine Organics
Dibactol	Dimethyl benzyl higher alkyl ammonium chloride	Fine Organics

Preliminary evaluation of individual surfactents for dispersing boron indicated that the best nonionic-anionic combination was Triton X-100 and Tamol 850. Boron was found to be much more difficult to disperse, and to keep dispersed, than barium chromate. This was overcome by adding a small quantity of ammonium hydroxide to the surfactent combination and by increasing the concentration of the Tamol 850 from 0.01 percent to 0.20 percent. Ultimately, an aqueous solution containing 0.01 percent Triton X-100, 0.20 percent Tamol 850, and 0.08 percent ammonium hydroxide provided the most stable dispersions of boron samples.

B. <u>Use of the Mine Safety Appliances (MSA) Particle</u> Size Analyzer

1. Equipment and procedure. The Mine Safety Appliances (MSA) Particle Size Analyzer was selected as the most suitable equipment for analysis of materials smaller than 0.5 micron in size, as was anticipated for the barium chromate and boron under investigation. Illustrations of this equipment are shown in Figures 4 to 6. The general description of the use of this equipment can be found in "MSA Particle Size Analyzer-Operating Procedures and Applications" (14).

The layer sedimentation technique was used in the analytical procedure, so that all settling particles would travel the same verticle distance during sedimentation, providing an undistorted particle size distribution. This method involved placing a thin

FIGURE 6. CENTRIFUGE TUBE IN PROJECTOR FOR READING OF SEDIMENT HEIGHT

layer of feeding liquid containing the sample being analyzed on top of the sedimentation liquid in the centrifuge tube. This required the feeding liquid to be approximately 10 percent less dense, 50 percent more viscous, and also miscible with the sedimentation liquid. The feeding and sedimentation liquids must also be excellent dispersants for the samples to be analyzed. The sedimentation liquid was selected during the investigation of the dispersion methods as distilled water containing 0.01 percent - 0.02 percent Ethofat C/15 and 0.01 percent - 0.20 percent Tamol SN. In order to maintain the density and viscosity of the liquid constant, the temperature of the analysis room was maintained at 77-1°F by regulating the air conditioner and steam heat supply. The dispersing properties of ethanol with the proper surfactents were known, as this liquid had been included in the evaluation of dispersing agents for the barium chromate. Thus a 50 percent aqueous solution of ethanol (with surface-active agents) was selected as the feeding liquid.

Selection of the proper feeding liquid has to be accomplished before proceeding with the analyses. Pure liquids that met all the requirements set forth for the feeding liquids were not available, consequently mixtures were investigated. The ethanol-water system provided the greatest promise because of a maximum on the viscosity-composition curve resulting in a viscosity of 2.38 centipoises at $77^{\circ}F$

and 50 percent ethanol by volume, rather than 1.05 centipoises if the system had behaved as an ideal liquid. The density of this mixture is 0.93 grams per cc. These values compare satisfactorally to the criteria that the viscosity be about 50 percent greater than that of the sedimentation liquid, or 1.5 centipoise, minimum, and that the density be about 10 percent lower than that of the sedimentation liquid, or 0.90 grams per cc.

The centrifuge time reading schedule was determined for the barium chromate-water system, starting with Stokes' Law, previously expressed by the equation: $t = 18.37 \times 10^8 \mu_0 h/(\Delta \rho) gd^2$. (1) Equation (1) reduces to $t = K_g h \times 10^2 / gd^2$, where $K_g = 18.37 \times 10^6 \mu_0 / (\Delta \rho)$. For the centrifuge tubes being used, h = 10 cm., thus $t = K_g \times 10 \times 10^2 / 980d^2$, or $t = K_g \times 10^3 / 980d^2$. (2) Rounding off, equation (2) becomes: $t = K_g / d^2$, which applies for gravity settling only.

For sedimentation under the influence of centrifugal force, $K_s = K_{cent} K_g$, where K_{cent} is a constant for the centrifuge being used and s indicates the centrifuge speed in RPM. In turn, $t_s = (1.394/d^2)K_s \dots (3)$. The complete centrifuge time reading schedule for the barium chromatewater system was then calculated, using equation (3). (Table 2).

TABLE 2

READING SCHEDULE FOR ANALYSIS OF BARIUM CHROMATE

Particle Size (microns)	Centrifuge Speed (RPM)	Reading Time (min:sec)	Sediment Height
20	300	:16	
10		:49	
7		1:08	
5	600	:41	
3		2:05	
2.5		1: 28	
2.0		2:36	
1.5	1200	1:29	
1.0		3:55	
0.9		1: 45	
0.7	1800	2:56	
0.5		6:26	
O • ↓	· · ·	7:17	
0.3		1 5:14	
0.2	3600	11:04	
0.1		57:09	

It was recommended $(1\frac{h}{2})$ that the concentration of the barium chromate be high enough to almost fill the capillary tube with settled barium chromate at the conclusion of an analysis run. However, the 0.75 mm centrifuge tubes required so high a concentration of barium chromate in order to obtain a reasonable sediment height in the capillary, that the particles re-agglomerated in the narrowing section of the tube just above the capillary. Substitution of 0.5 mm tubes for the 0.75 mm tubes decreased the necessary concentration of barium chromate by 50 percent, to about 0.7 percent, resulting in the elimination of the tendancy of the barium chromate to agglomerate.

After the barium chromate was dispersed as previously described, a medicine-dropper-full was quickly removed from the Waring Blendor and placed in the feeding chamber, which was transferred to a centrifuge tube filled to the bottom of the feeding chamber with sedimentation liquid. The feeding chamber was then removed, leaving a sharp layer of feeding liquid containing the dispersed sample on top of the sedimentation liquid.

Although the tubes were cleaned, gravity settling resulted in barium chromate particles coming to rest on the sloping portion of the sedimentation tube. Upon spinning the tube in the 300 RPM centrifuge for even a few seconds, this material

settled into the capillary. It was concluded that the normal friction between the sloping wall of the tube and the tiny particles was too great to be overcome by gravity. Gravity settling was thus dispensed with and replaced by short, carefully-timed runs with 300 RPM centrifuge. The centrifuge tube was transferred, in turn, to the 600/1200, 1800, and 3600 RPM centrifuges for sedimentation runs, as per the schedule in Table 2. After each run the tube was placed in the projector and the height of the sediment was read.

A constantly re-occurring problem during the analyses was the fouling of the capillary bore with lint and other foreign matters. In order to eliminate this, the following steps were taken:

(1) All solutions were filtered with membrane filters and kept covered.

(2) Centrifuge tubes were covered with aluminum foil during analysis of a sample.

(3) Ethofat C/15 solutions were prepared fresh daily because of the apparent hydrolysis of the surfactent, forming a solid residue.

(4) Centrifuge tubes with the sedimentation liquid were precentrifuged at 3600 RPM for at least one minute to ascertain that there was no dust or lint in the tube.

Distilled water (with surfactents) was used as the sedimentation liquid for boron even though the expected fine

particles (less than 0.1 micron particle size) would require an excessively long time for analysis because:

(1) Considerable numbers of large particles (greater than 20 microns) were anticipated for most of the borons and any "lighter" liquid would have resulted in initial sedimentation at too high a rate.

(2) A degree of familiarity had been gained with the water: ethanol-water system used for barium chromate analyses. Thus, 50 percent aqueous ethanol was again used as the feeding liquid. The centrifuge time reading schedule for the analysis of boron is shown in Table 3.

Most of the technique developed f or the barium chromate particle size analyses was applicable to the analysis of the boron samples. However, boron re-agglomerated much more readily than barium chromate, requiring several corrective measures: (1) Because of the lower density of boron, the sample size was reduced to 0.6 grams per 250 ml of feeding liquid. This resulted in filling the capillary tube to about 40 to 60 percent of the total height. However, in order to counter the readiness of the boron to re-agglomerate, the sample size was cut to 0.35 grams for the most dense boron, and to 0.15 grams for the least dense boron.

(2) The dispersing power of the surfactent was increased by increasing the concentration of the dispersing agent. The concentration of the surfactent used was 0.01 percent Triton X-100.

Particle Size (microns)	Centrifuge Speed (RPM)	Reading Time min:sec)	Sediment Height
20	300	:43	
10		2:09	
5	600	2:19	
2	1200	3:57	
1.0	1800	6:29	
0.8		5:01	
0.6		10:09	
O ↓ <i>l</i>	3600	7:35	
0.3		10:22	
0.2		27:37	
0.16		30:09	
0.12		59:21	
0.10		59:21	

READING SCHEDULE FOR ANALYSIS OF BORON

0.20 percent Tamol 850, and 0.08 percent ammonium hydroxide.

Several of the boron samples contained gritty material that would not pass through the 325 mesh sieve during the dispersion of the samples. This material appeared to consist of discrete particles, and thus was washed into the blendor for inclusion in the ensuing particle size analyses.

2. Tables 15 through 2/1 present the data obtained Results. from the particle size analyses of the barium chromate and boron samples. The particle size distribution. expressed as "percent greater than particle size-d" was calculated and tabulated on the same tables. The particle size distribution curve for each sample of barium chromate and boron (Figures 27 through 36) was drawn on three-cycle log-probability graph paper, with "particle size-d" plotted on the logarithmic scale from 0.1 micron to 100 microns. and "percent greater than particle size-d" plotted on the probability scale from 0.01 percent to 99.99 percent. As no experimental points were obtained beyond the one percent point, the particle size distribution line (or curve) was extrapolated out to the 0.01 percent point.

The particle size curves for the three boron samples containing \bullet 325 mesh (greater than 44 microns) particles were extrapolated toward the intercept at a point greater than 44 microns particle size. All other curves (or lines)

were extrapolated toward the intercept at a point less than 44 microns particle size.

These curves (Figures 27 to 36) provided the data (Tables 25 to 42) for drawing the size-frequency curves (weight percent in particle size class vs. particle size-d)(Figures 37 to 46).

C. Preparation of Delay Composition and Fuzes

1. <u>Selection of barium chromate and boron samples</u>. In order to determine the effect of particle size and particle size distribution on the burning rate of barium chromate-boron delay compositions, all other variables must be held constant. This may be accomplished in two ways:

(1) By using a number of samples that have been synthesized from one process, by one manufacturer.

(2) By starting with a sample having a wide particle size distribution, and separating the sample into fractions of various particle sizes.

Assuming that there would be little difference in the nature of impurities or other characteristics on a batch-tobatch basis, samples of barium chromate were obtained from Mineral Pigments Corporation, J.T. Baker Chemical Company, and Barium and Chemicals Company, while samples of boron were obtained from American Potash and Chemical Company, Shieldalloy Corporation, and United Minerals and Chemicals Corporation. These samples were classified according to APD as determined by the Fisher Sub-Sieve Sizer. The average particle sizes

ranged from 0.7 micron to 2.6 microns for the barium chromate, and from 0.5 micron to 2.4 microns for the boron (Table 4).

It was theorized that by separating one sample into particle size fractions, the purity of the fractions should be identical and the only variable would be particle size. Separation of a sample by sieving using micromesh sieves, filtration using millipore porous membrane filters. air elutriation of a fluidized bed, and fractionation by liquid sedimentation was evaluated. The only method which offered promise of a separation was the liquid sedimentation method. Although a rough separation of a barium chromate sample was obtained (MP28303, with an APD of 1.3 micron, was separated into 1.1 micron and 1.9 micron fractions) this method was found to be impractical because sedimentation of the fine particles required a long time to separate and purify the sample, as well as the necessity for handling large amounts of liquid by virtue of the dilute slurries that must be used to prevent premature agglomeration of the dispersed particles.

Because of limited time and facilities, this endeavor was re-appraised and it was decided to use instead the commercial samples, unaltered, for this study. Use of the commercial barium chromate and boron samples meant that factors other than particle size, such as purity and density, had to be considered when determining burning rate correlations, thus chemical analyses of these samples were performed (Tables 5 and 6).

FISHER APD FOR BARIUM CHROMATE AND BORON SAMPLES

Lot Designation	Fisher APD (microns)
Barium Chromate	
MP 1357-B28303	1.3
MP 1355-B28511	0.9
MP 1358-B32500	2.1
MP 1357-B25160	0.8
MP 1357-B31801	2.6
MP 1355-B30701	0.7
BAKER 26428	1.1
BAKER 30388	0.9
BAKER 25894	1.1
BAKER 91104	0.8
B&C FINE	1.1
BORON	
UMC 1992	2.4
UMC 1993	1.75
TRONA 571	0.7
TRONA 419	0.75
HCST 873	1.0
HCST 900	0.6
HCST 954	0.5

Lot Designation	Purity (%)	Sulfate (%)	Chloride (%)	Volatile matter at 100°C (%)	Water soluble matter (%)	Loss on ignition at 900°C (%)	Bulk density (gm/cc)
MP 1357- B28303	99.0	0.28	0.00	0.00	0.01	0.14	0.49
BAKER 26428	99•5	0.02	0.00	0.00	0.00	0.00	
BAKER 30388	99.6	0.04	0.00	0.00	0.00	0.01	0.68
MP 1355- B28511	98 . 4	0.13C	0.06	0.03	0.08	0.64	0.66
MP 1358- B32500	99.0	0.23	0.03	0.00	0.11	0.40	0.75
BAKER 25894	99•9	0.02	0.00	0.00	0.01	0.00	0.57
MP 1357- B25160	98.7	0.32	0.01	0.04	0.01	0.51	0.51
B&C FINE	98.1	0.04	0.02	0.00	0.05	0.41	0.37
MP 1357- B31801	99.1	0.16	0.00	0.00	0.00	0.55	0.88
BAKER 91104	99.2	0.05	0.00	0.03	0.00	0.29	0.50
MP 1355- B30701	98.6	0.20	0.06	0.01+	0.02	0.72	0.50

CHEMICAL ANALYSES OF BARIUM CHROMATE SAMPLES

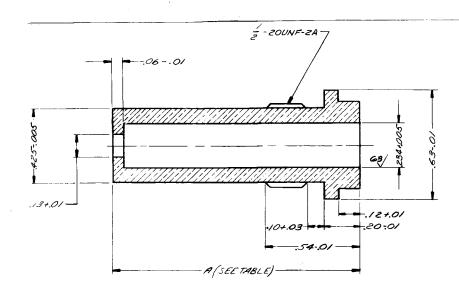
Lot Designation	Amorphous boron (%)	Moisture (%)	Total boron (%)	Insoluble matter (%)	Magnesium (%)	Bulk density (gm/cc)
TRONA 571	87.5	0.92	90.9	0.5	3.6	0.21
TRONA 419	84.3	1.99	86.3	0.0	4.9	0.17
HCST 873	84.5	0.80	87.4	4.9	0.5	0.36
HCST 900	81.9	2.48	86.9	0.5	0.6	0.15
HCST 954	86.3	2.42	87.6	0.0	0.1	0.12
UMC 1992	69.7	0.53	91.2	22.6	0.0	0.34
UMC 1993	61.4	0.68	87.5	32.3	0.1	0.28

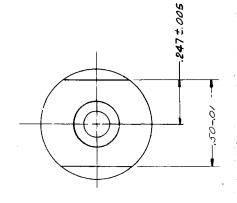
CHEMICAL ANALYSES OF BORON SAMPLES

2. <u>Blending of Compositions</u>. Eleven samples of barium chromate and seven samples of boron were used in the preparation of twenty delay compositions.

Boron is a hygroscopic material, being capable of absorbing 2.55 percent moisture at 30 percent relative humidity and 5.88 percent absorption at 70 percent relative humidity. In order to minimize absorption of boron and yet facilitate manufacture, all blending and loading operations involving barium chromateboron delay compositions are generally performed under controlled atmosphere conditions of 40 percent maximum relative humidity. The relative humidity was actually maintained between 17 and 30 percent during blending of the compositions used in this study.

The barium chromate and boron were dried in a circulating forced air oven at $135^{\circ} - 145^{\circ}F$ for 16 hours, minimum, and then allowed to cool to room temperature in sealed containers. The barium chromate was passed through a 40 mesh sieve to break up small lumps, preparatory to the blending operation.


A mixture of 166.7 grams barium chromate, 8.3 grams boron, and approximately 75 ml anhydrous, 99 percent ethanol was blended in a polyethylene cup, using a rubber spatula, until uniform and dry enough for screening. The partially dry composition was then passed through a 40 mesh sieve and air dried until no ethanol vapors could be detected, followed by further drying at $135^{\circ} - 145^{\circ}$ F for 16 hours, minimum, in a circulating forced air oven. The hot, dried composition was


then sealed into a rubber powder container and allowed to stand for a minimum of three weeks before being pressed into delay fuzes.

So that all 20 compositions would have the same blending history, this series of operations was followed without deviation for each composition. These compositions are listed in Table 7.

3. Loading of Delay Fuzes. The delay compositions were loaded into one-second delay housings - Ordnance drawing C8848543 (Figure 7), in accordance with Ordnance drawing C8848544, titled "Fuze Assembly" (Figure 2), with modifications as specified below. All fuze housings were dried at 130°F for two hours and cooled down to room temperature before being loaded with delay composition.

A fuze housing was placed in the loading fixture (Figure 8) which was then positioned in the Four-Ton Dennison Multi-Press (Figure 9). The loading pressure was set at 36,000 psi. Four equal increments of delay powder ranging from 490 to 575 milligrams and one - 100 milligram increment of 81/19 igniter powder were pressed into the fuze housing with the intention of determining the amount of delay powder that should be loaded per increment, for each delay composition, so as to obtain the longest burning time possible for the complete fuze. Once the proper amount of delay powder was determined (Table 7).

ORDNANCE PART NO.	DIMA	DELAYTIME (SECONDS)
8848543-1	.945010	1
8848543-2	1.455:010	2
8848543-3	1.785010	4

NOTES:-

ASTNI BIG. 3- SIMILAR TOPCMK 18-2-540 M& 18-2-540W.

DELAY FUZE HOUSING - FROM ORDNANCE DRAWING C8848543 FIGURE 7.

FIGURE 8. FUZE HOUSING AND LOADING FIXTURE ASSEMBLY



FIGURE 9. DENNISON FOUR-TON MULTI-PRESS

SUMMARY OF DELAY COMPOSITIONS

Composition	Barium Chromate Lot	Boron Lot
l	BAKER 30388	TRONA 571
2	MP 1357-B28303	11
3	MP 1355-B30701	11
4	BAKER 91104	11
5	B a ker 26428	**
6	MP 1358-B32500	11
7	B&C FINE	11
8	BAKER 25894	11
9	MP 1355-B28511	11
lo	MP 1357-B31801	п
בב	MP 1357-B25160	11
14-	BAKER 30388	HCST 954
15	11	HCST 873
16	11	UMC 1992
17	. 11	UMC 1993
19	11	TRONA 419
20	15	HCST 900
21	MP 1355-B30701	HCST 954
23	MP 1358-B31801	UMC 1992
24	MP 1358-B31801	HCST 954

25 delay fuzes were loaded. To aid in proper consolidation a two second minimum dwell time on each increment was used during the pressing operation. As the powder, by virtue of its boron content, was hygroscopic, care had to be taken when weighing and pressing the powder, in order to prevent unnecessary exposure of the powder to atmospheric moisture. This was accomplished by removing such small portions of powder from the main sealed container that the duration of time between removal from the container, weighing the increments, and pressing did not exceed ten minutes. Also, the relative humidity was maintained below 30 percent. In order to calculate the burning rate of the composition in each fuze, the depth of powder was measured with a depth micrometer before and after loading the igniter increment (Tables 43 to 62).

The completed fuzes, after marking and measuring, were sealed into powder cans containing dessicant bags, and held until required for burning rate testing.

D. Burning Rate Testing

1. <u>Equipment</u>. Figure 10 shows the equipment set-up used for the burning rate determinations. The components included a starter circuit, a delay-relay circuit, a twentyfour volt source (two-twelve volt storage batteries connected in series), a chronograph and the test fixture.

The test fixture (Figure 11), was a steel box with an opening at the top for insertion of the delay fuze. In

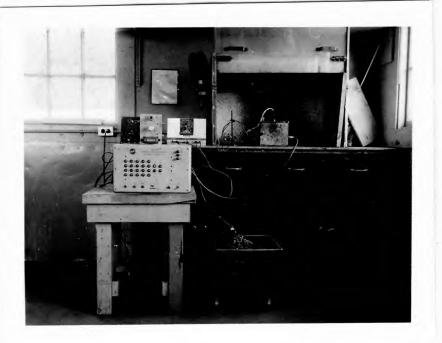
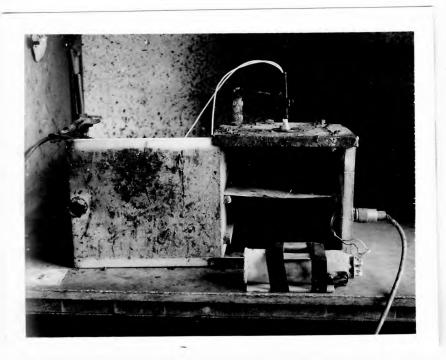
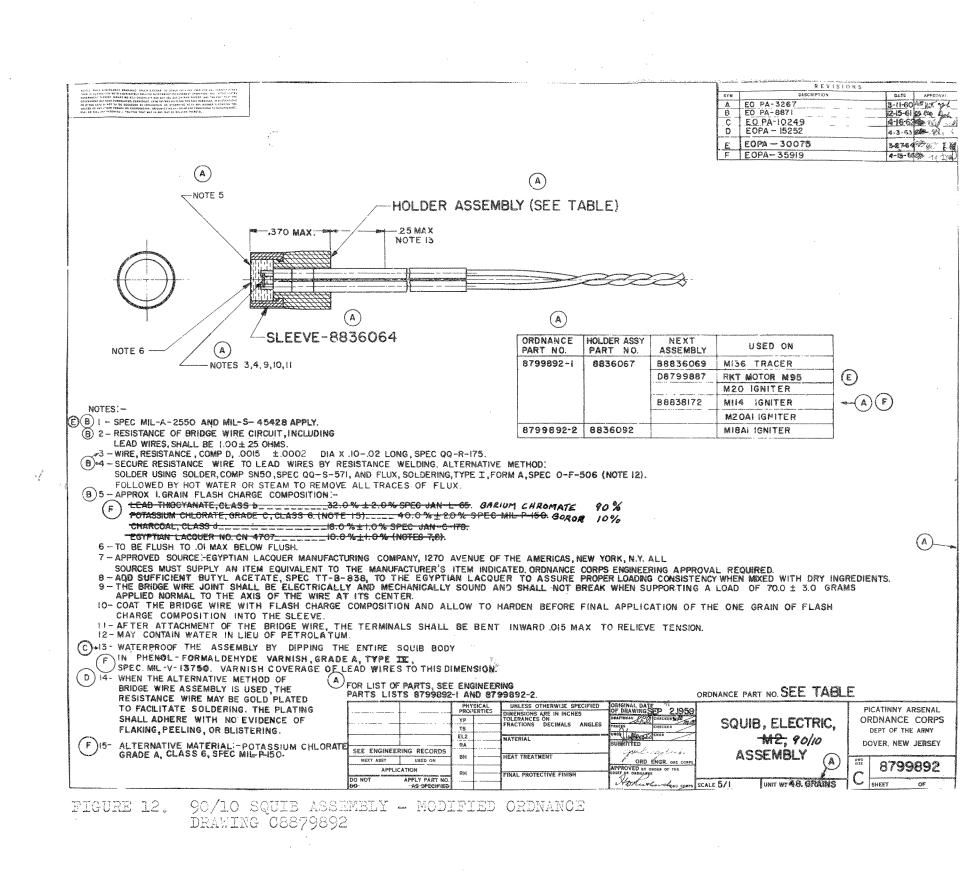


FIGURE 10. BURNING RATE TESTING EQUIPMENT




FIGURE 11. DETAILS OF TEST FIXTURE, SHOWING PHOTOCELL, FUZE IN TOP OF BOX, 90/10 SQUIB, AND LEDGE FOR PLACING PHOTOCELL

addition it contained a photocell to pick up the light as the delay burned through, thus sending a signal to stop the chronograph. The purpose of the removable shelf was to allow the photocell to be placed close to delay fuzes that would not emit enough light to energize the photocell from a greater distance. An adapter washer prevented light from leaking around the fuze in the box, causing premature activation of the photocell. A light-proof sliding door was located on the front of the box for servicing the photocell.

The fuze was ignited by a 90/10 electric squib (Figure 12), which was in turn initiated by a pulse from the battery. The starter switch simultaneously started the chronograph and sent a pulse to the squib. The squib, containing 70 milligrams of 90/10 barium chromate-boron igniter powder, ignited the 81/19 barium chromate-boron first-fire charge in the delay fuze, which in turn generated enough heat after burning to ignite the delay composition.

The chronograph used was a model 456 - 1.6 Megacycle Counter Cronograph, manufactured by the Potter Instrument Company. An auxiliary timer was connected to the chronograph to indicate time in multiples of whole seconds of burning time, while the chronograph indicated the decimal part of the burning time.

2. Procedure. With the photocell on'the top shelf in the test box and the front door closed, the fuze to be tested was placed in the fuze insert of the box. A 90/10 squib was

connected into the ignition circuit and positioned above the delay fuze so that it was close to, but did not touch the fuze. The chronograph and auxiliary timer were re-set at zero time and a safety jack was plugged into the delay-relay circuit to complete the circuit. The starter switch was closed, energizing the timing and ignition circuits. After reading the burning time of the fuze from the chronograph and the second timer, the safety jack was removed, breaking the continuity of the circuit. After all the fuzes were burned, ten 90/10 squibs were ignited to determine the squib burning time contribution to the total burning time. In addition, the burning time of ten fuzes loaded with 500 mg of 81/19 igniter composition was tested to determine the burning rate of the igniter burning time, thereby permitting the calculation of the igniter burning time contribution to the total burning time.

3. <u>Results</u>. Tables 43 to 62 present the burning rate test data for the 20 compositions tested, along with the depth of the delay and igniter compositions.

III. DISCUSSION

A. Dispersion of Barium Chromate and Boron

The most time consuming phase of this study was the evaluation of dispersing methods and agents for barium chromate and boron; and also the dispersion of the samples being analyzed for particle size distribution. Improper or inadequate dispersion of the samples would have led to erroneous results for the particle size analyses, thus affecting the final correlations of particle size of the components and the burning rate of the compositions. The need for proper dispersion is increased by the reported tendency of particles smaller than five microns to reagglomerate after being dispersed (4, 6, 7); this tendency becoming greater as the particle size decreases.

Several investigators (7, 12, 14) had recommended the use of a Waring Blendor for dispersing extremely fine powders. Before adopting the use of a Waring Blendor, the question of the fracture of discrete particles as a result of the violent action of the blendor had to be considered. Cadle (4) found that it was difficult to break up particles smaller than 15 microns by any mechanical means. Since most particles of the samples under consideration were smaller than 15 microns, attrition of discrete particles was not considered to occur. To support this, particle size analyses of Mineral Pigments 1357, batch 31801 barium chromate, containing 35 percent of greater than 15 micron particles, which was blended for 3, 7, 10, and 17 minutes, indicated no change in the concentration of coarse particles as the blending time increased.

Although development of a suitable method of dispersion resulted in a high degree of dispersion, the selection of an optimum surfactent (or combination of surfactents) was necessary, mainly to prevent re-agglomeration of the dispersed sample while settling.

Nonionic surfactents, such as Ethofat C/15, Triton X-100, and Tenlo 70, owe their dispersing power to their ability to "wet" the particles to be dispersed by reducing the surface tension of water from 72 dynes /cm² to 25-35 dynes/ cm². Anionic surfactents such as Tamol SN, Tamol 850, and Lomar PW do not significantly reduce the surface tension and thus "wet" the particles, but disperse them by placing a negative charge on each particle, causing the particles to repel each Since the wetting of the particles is an important other. preliminary step toward preparing a stable dispersion, 50:50 mixtures of nonionic and anionic surfactents were evaluated. As expected, the 0.01 percent Ethofat C/15 - 0.01 percent Tamol SN combination was thus selected as the dispersant for the barium chromate. Boron exhibited a greater tendancy to re-agglomerate than did barium chromate so that it was necessary to increase the dispersing power of the surfactent

solution for the preparation of boron dispersions. This was achieved by increasing the concentration of the anionic surfactent from 0.01 percent to 0.20 percent and by adding dilute ammonium hydroxide to the surfactent mixture.

B. Evaluation of Particle Size Analysis Equipment

The specifications for both barium chromate (MIL-B-550A) (1) and boron (PA-PD-451) (3) specify that the APD shall be $1\frac{21}{2}$ micron and 1.0 micron maximum, respectively, as determined with the Fisher Sub-Sieve Sizer. This apparatus measures the flow rate of air through a powder bed under a controlled pressure differential, and automatically relates the flow rate to an average particle size of the sample with the aid of a calculator chart attatched to the instrument (Figurel3).

The practice of using the Fisher Sub-Sieve Sizer for particle size analysis of barium chromate and boron is felt to be erroneous for the following reasons:

(1) The desired APD is at or below the lower limit of usefulness of the Fisher Sub-Sieve Sizer.

(2) The value obtained is an average particle diameter and does not indicate the particle size distribution which could vary, depending on the manufacturing process.

(3) Since the APD is based on the total surface area, the reading will be biased toward a low APD, as the smaller particles with a large surface area will have a dispro-

portionately large effect on the total surface area.

(4) The Fisher Sub-Sieve Sizer might also be expected to be inadequate for the determination of the APD of a sample with a multi-modal distribution in the one micron size range, as the instrument would be sensitive to the APD of the smallest particle size mode of the sample.

Because of the shortcomings of the Fisher Sub-Sieve Sizer and the values obtained from its use, a more suitable method of particle size analysis was deemed necessary. As the value of an average particle size is questionable, the evaluation of particle size analysis equipment was limited to particle size distribution analyzers.

Table 8 summarizes the methods of analysis of particle size distribution commonly used. Of these, sieving and gas sedimentation are immediately discarded as the anticipated particle size range of barium chromate and boron is below the normal particle size range that can be analyzed by these methods.

Microscopic examination has the advantage of being the most direct method of absolute particle size determination. The method involves the dispersion of a very small portion of the sample and mounting it on a slide or a grid, depending on whether an optical or electron microscope was being used.

As an electron microscope was not available, further

METHODS OF ANALYSIS OF PARTICLE SIZE DISTRIBUTION

Method	Equipment Required	Normal Size Range (microns)
Sieving	U. S. Standard Sieves Electroformed sieves	44 - 2000 5 - 40
Gas Sedimentation	Sharples Micromerograph	5 - 200
Change in electrost atic resistivity	Coulter Counter	0.5 - 100
Microscopy	Optical microscope, using visible light	g 0.2 - 100
	Electron microscope	0.001 - 5
Liquid sedimentation	a. Gravitational Eagle-Picher Turb- imimeter	0.5 - 300
·	b. Centrifugal Mine Safety Appliances (MSA) Particle Size Analyzer	0,05 - 50

This apparatus (15), which utilizes the principle of gravitational sedimentation, consists of a condensed light source, a rectangular sedimentation cell, and a photocell and microammeter for measuring the transmitted light. A dilute (approximately 0.02 percent) dispersion of the sample being analyzed is placed in the sedimentation cell and allowed to settle. It is assumed that the particles act as spheres, both when settling and when absorbing light. The rate of settling is in accordance with Stokes' Law, given by the equation:

 $t = 18.37 \times 10^8 \mu_0 h / (\Delta \rho) gd^2$, where

 μ_0 = absolute viscosity of the sedimentation liquid-poise

t = time in seconds to settle distance h

 $(\triangle \rho)$ = difference in density between sedimentation liquid and settling particles-gm/cm³

d = particle diameter-micron

 $g = gravitational constant-980 cm/sec^2$

The particle size distribution is thus a function of the change in concentration of the suspension at a definite level below the surface with time, as measured with a light beam passing through the suspension and energizing the photocell. The lower limit of usefulness of this method is about 0.5 microns, requiring several hours to reach this point.

The Coulter Counter measures the change in resistance of an electrically conductive liquid in an orifice as particles in suspension pass through the orifice and displace consideration could not be given to this equipment, even though it would be capable of indicating particles as small as 0.001 microns. Another draw-back would be the extreme tediousness of measuring a sufficent number of particles to obtain a distribution curve.

A Bausch and Lomb Research Metallograph was available for particle size analysis (Figurel4). This instrument is theoretically capable of 2000 x magnification and a limit of resolution of 0.20 micron. However, due to the wave length of ordinary white light and the diffraction of light around small particles, the actual limit of resolution is about 0.5micron or higher, thus the smaller particles would not be included in the analysis. Also, as with electron microscopy, the use of the optical microscope is very time-consuming. Photographing the sample, followed by measuring and counting the particles appears to be a simple operation, however, photographs taken at 2000x magnification were of a very poor quality and could not be used for analytical purposes. Because of the very short depth of focus at this magnification. particles larger than 2 microns would be out of focus when measuring the smallest particles, thus the focus must be continually adjusted when analyzing a sample.

Comyn, et al (5) has recommended the use of the Eagle-Picher Turbidimeter for obtaining the particle size distribution of components of delay powders.

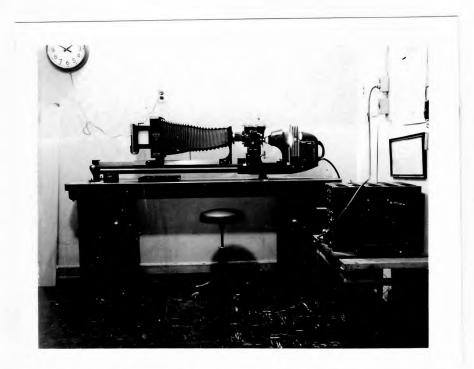


FIGURE 14. BAUSCH AND LOMB RESEARCH METALLOGRAPH

an equal volume of electrolyte while settling in accordance with Stokes' Law, thus producing a voltage pulse proportional to the particle volume. The instrument is intended for analysis of particles as small as 0.5 micron, however, several investigators (9, 13) have reported that the Coulter Counter produced results which indicated that analyzed samples were two to three times coarser than when analyzed by sedimentation or microscopy.

The Mine Safety Appliances (MSA) Particle Size Analyzer, a recent introduction to the particle size analysis field, consists of four constant speed centrifuges (300 RPM, 600/1200 RPM, 1800 RPM, and 3600 RPM) and other accessory equipment (Figure 15). The operational principal is Stokes" Law liquid sedimentation, with the rate of settling augmented by centrifugal force. This method brings the analysis of particles as small as 0.1 micron within the range of practicability, as well as decreasing considerably the time necessary to perform particle size analyses of other, larger The centrifuges have been specifically designed for material s. particle size analysis and have the following special features: Constant speed obtained through the use of high quality (1)hysteresis type synchronous motors.

(2) Stable starting and stopping characteristics, including a maximum rate of acceleration of five radians per second.
(3) Ability to be stopped and started by an interval timer.

The particle size distribution data can be obtained by placing the sample in the centrifuge tube filled with the sedimentation

liquid and centrifuging at predetermined speeds and time intervals until all of the sample has settled in the capillary tube while measuring the height of sample in the centrifuge tube capillary bore at the end of each time interval.

In a final comparison of the methods of particle size analysis; microscopy, gravitational liquid sedimentation, and electrostatic resistivity change cannot be considered to be adequate, mainly because of the limitation of these methods to a low particle size of about 0.5 micron. (This does not include electron micro= scopy, since this method was not considered due to the unavailability of an electron microscope). APD's as determined by the Fisher Sub-Sieve Sizer range as low as 0.5 micron for the samples being evaluated in this study, indicating that the small particles in these samples will be smaller than 0.5 micron.

The only method which appears to be suited for analysis of particle size distribution for particles smaller than 0.5 micron is centrifugal liquid sedimentation, using the MSA Particle Size Analyzer. Consequently, the decision was made to use the MSA Particle Size Analyzer for the particle size analysis of barium chromate and boron.

C. Particle Size Distribution of Barium Chromate and Boron

Inspection of Figures 27 to 36 and 37 to 46 shows that the samples of barium chromate and boron which were not represented by approximately straight lines between the "85 percent and 15 percent greater than particle size=d" points on the log-probability

SUMMARY OF PARTICLE SIZE ANALYSIS RESULTS

Lot designation	Fisher APD M S				U×(M S A)	
and code number	(microns)	50 percent p oi nt (microns)	d _m (microns)	index (U)	50 percent point (microns)	d _m (microns)
Barium Chro	mate					:
MP 31801 (1)	2.6	10.4	6.38	•293	3.05	1.87
MP 32500 (2)	2,1	110	6.98	. 286	3.15	2.00
MP 28303 (3)	1.3	3.60	3.65	• 477	1.72	1.74
BAKER 26428 (4)	1.1	1.92	1.99	• 513	0.99	1.02
B&C FINE (5)	1.1	2.52	2.50	• 50 7	1.28	1.26
MP 25160 (6)	0.8	2.55	2.34	•485	1.24	1.21
BAKER 91104 (7)	0.8	1.67	1.70	•586	0.98	1.00
BAKER 30388 (8)	0.9	1.52	1.54	.607	0.92	0.94
MP 28511 (9)	0.9	1.27	1.75	•383	0.49	0.67
BAKER 25894 (10)	1.1	2.16	2.13	•551	1.19	1.17
MP 30701 (11)	0.7	1.08	1.69	•300	0.32	0.51
Boron	ŀ,	•				,
UMC 1992 (1)	2.4	8.3	7.32	• 4++2	3.67	3.23
UMC 1993 (2)	1.75	5.45	5-35	•433	2.36	2.31
HCST 873 (3)	1.0	1.90	1.73	•450	0.86	0.78
TRONA 419 (4)	0.75	2.47	2.21	•429	1.06	0.95
TRONA 571 (5)	0.7	2.90	2.58	•412	1.19	1.06
HCST 900 (6)	0.6	2.40	2.53	•373	0.90	0.94
HCST 954 (7)	0.5	2.09	2.05	.381	0.80	0.78

graphs, exhibited definite bi-modal particle size distribution on the size-frequency graphs. The remaining samples were represented by variations of the normal "bell-shaped" curve. The barium chromate samples from J.T. Baker exhibited normal particle size distribution with a high degree of uniformity. On the other hand, the Mineral Pigments barium chromate samples, including four with a bi-modal particle size distribution, were less uniform than the Eaker samples.

The uniformity of the components was at first qualitatively estimated from the range of the particle size distribution and the shape of the size-frequency curve for each sample. An algebraic function of the particle size distribution, termed the uniformity index, expresses the particle size uniformity of the samples as a quantitative value. The uniformity indices of the barium chromates range from .286 to .485 for the Mineral Pigments samples and from .513 to .607 for the Baker samples, while the uniformity indices for the boron samples range from .373 to .450. The range of the uniformity index scale is from 1.0 for a sample containing only one particle size species, to zero for a sample with an infinitely wide particle size distribution.

The general difference in particle size distribution between manufacturers of barium chromate led to inquiries as to any differences in the method of manufacture of barium chromate. J.T. Baker manufactures barium chromate as a high purity reagent grade chemical, as indicated by the one-step reaction:

 $Cr_2O_3 + 2Ba(OH)_2 \longrightarrow 2BaCrO_4 + 3H_2$

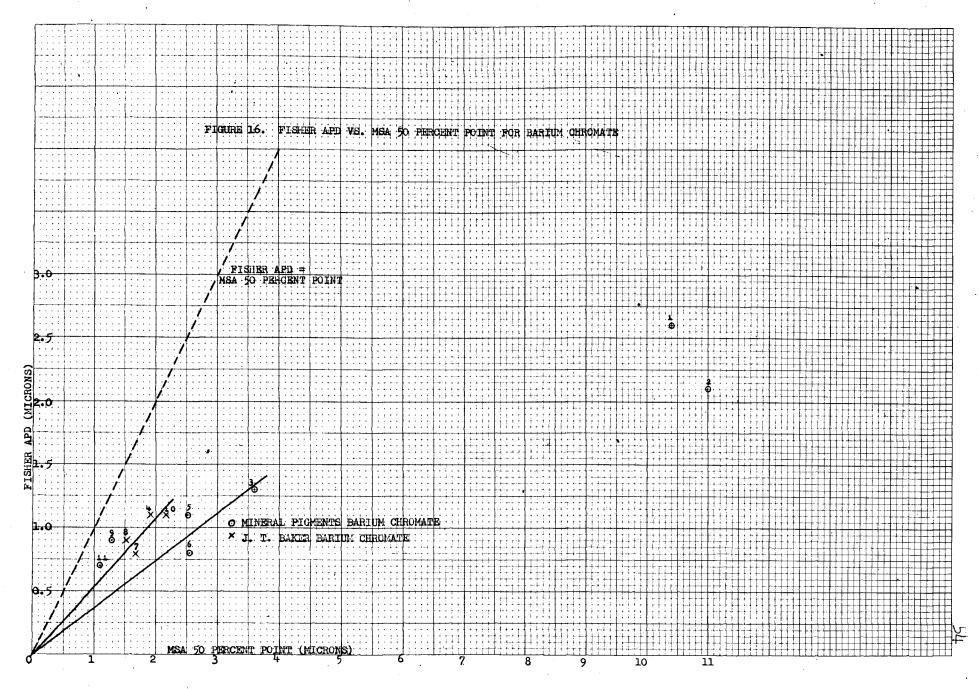
The Mineral Pigments process is represented by the following reaction:

BaCl₂ + Na₂CrO₁, ---- BaCrO₁ + 2NaCl

This reaction requires an in-process pH adjustment (no elaboration could be obtained) so that the reaction will proceed toward completion. Consequently, this reaction may take place in two separate steps, depending on the timing of the pH adjustment, and result in a bi-modal particle size distribution. The chemical analyses specified by MIL-B-550A (1) and TL-PD-104 (2) were performed to determine the effects of the different methods of manufacture on the chemical purity (Table 5)

The J.T. Baker barium chromate was found to have a higher purity than the Mineral Pigments barium chromate and contained little or no chloride, sulfate, volatile matter, or moisture; with little or no loss on ignition at $900^{\circ}C$. The Mineral Pigments barium chromate samples had a discernable chloride content as a result of the synthesis reaction, a high sulfate content due to the use of city water for processing, rather than distilled water (the sulfate in the Baker barium chromate comes from the small amount of sulfate impurity in the chromic anhydride), and a high loss on ignition at $900^{\circ}C$, resulting from the volatility of the sodium chloride and any moisture or gases that were not removed in normal drying.

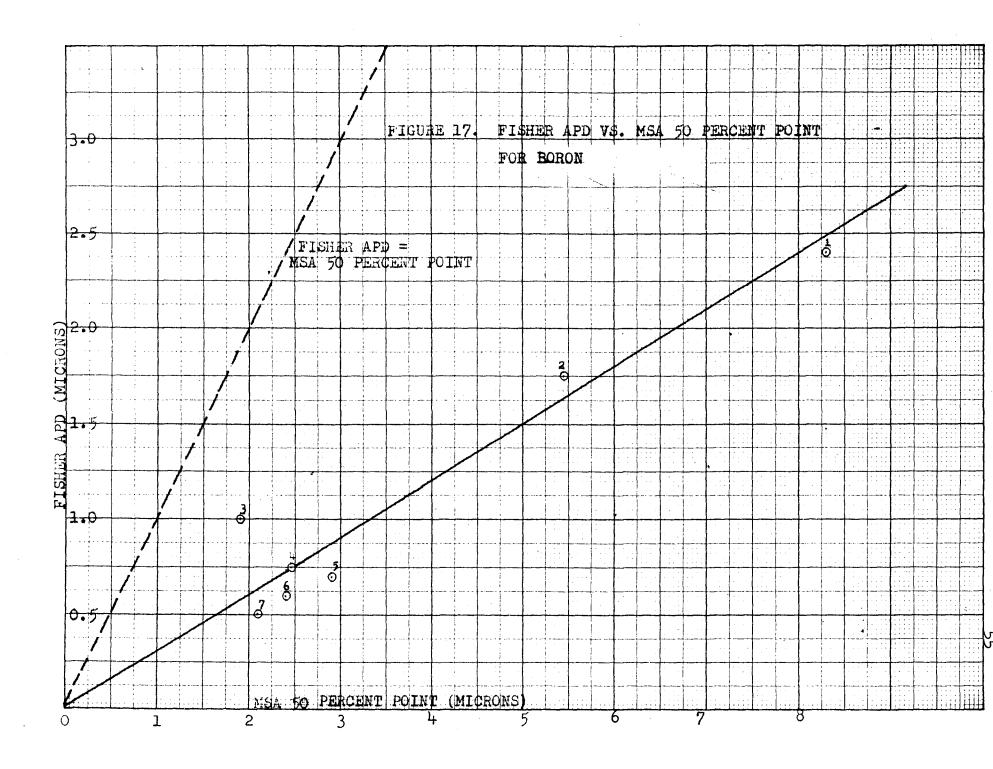
With the exception of a low sulfate content, the barium

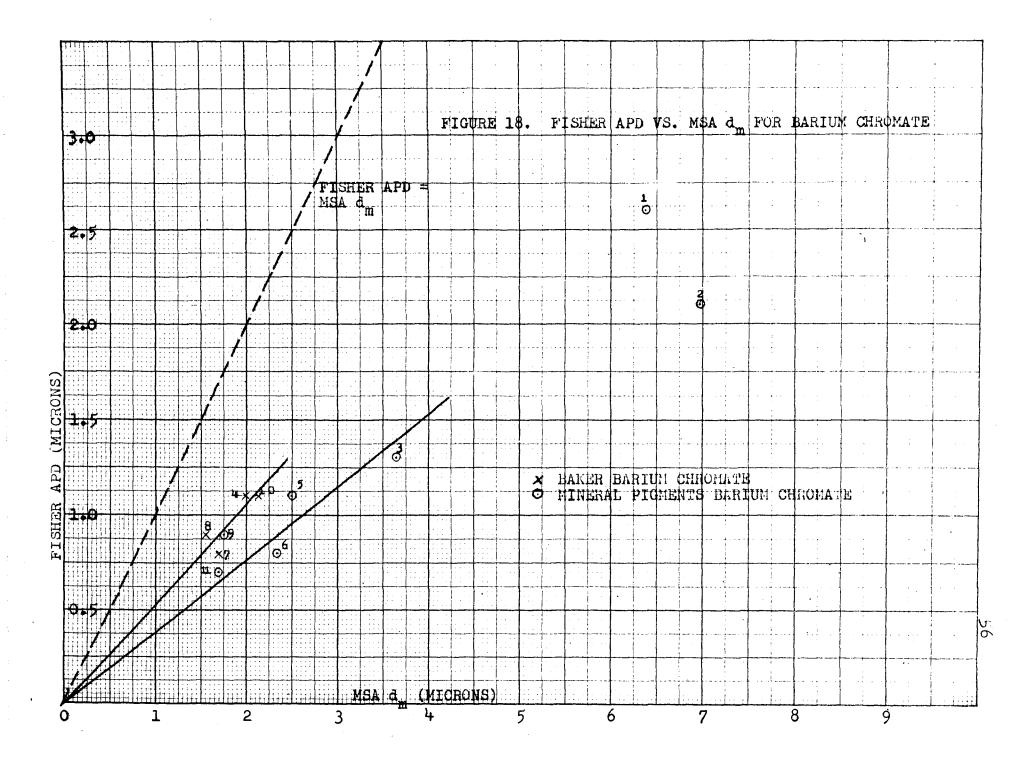

chromate sample from Barium and Chemicals Corporation (B & C Fine) had a purity level and impurity content which classified it with the Mineral Pigments samples. This suggested that the Barium and Chemicals process was similar to the Mineral Pigments process, but with greater control of the reaction rate and the use of distilled processing water.

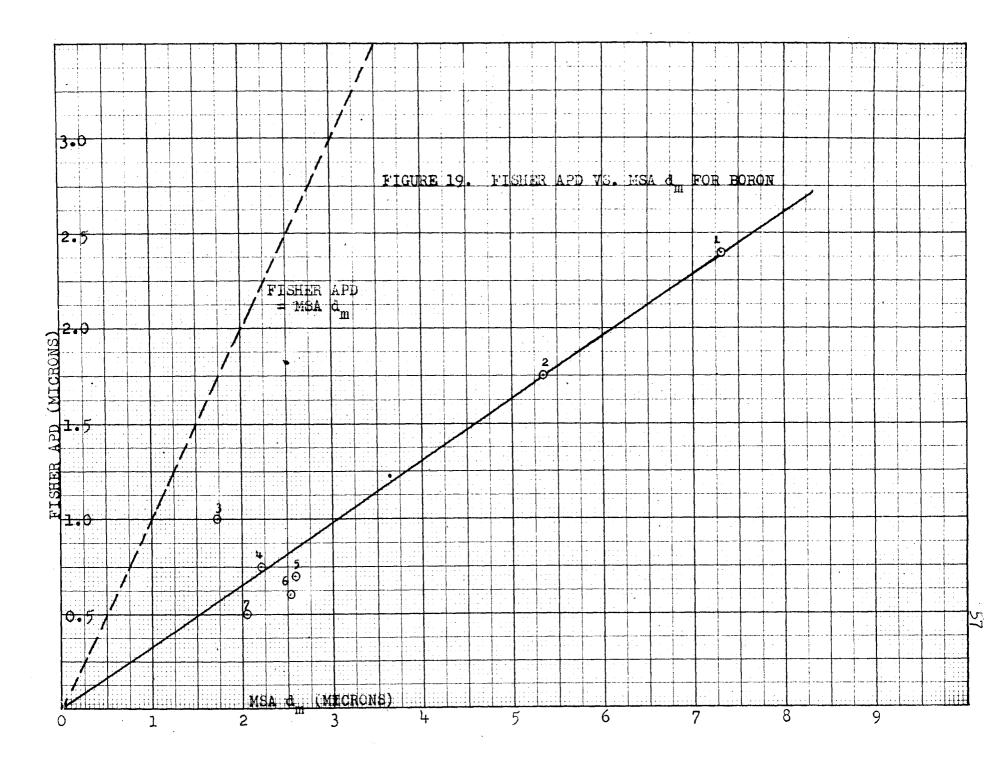
After consideration of the chemical differences of the Baker and Mineral Pigments barium chromate samples, it was felt that classification of the two types might be useful for better correlation of particle size and burning rate results.

In order to compare and evaluate the two methods of particle size analysis, the following graphs were drawn for both barium chromate and boron:

(1) Fisher APD versus MSA 50 percent point (Figures 16 and 17).
(2) Fisher APD versus MSA dm (log mean particle diameter) (Figures 18 and 19).


The MSA 50 percent point was indicated as the particle diameter at the point where the log-probability curve intersected the "50 percent greater than d" line, while the MSA dm was the mean particle size obtained by integrating the area under the sizefrequency curve. For comparison, the "Fisher APD=MSA dm" and the "Fisher APD=MSA 50 percent point" lines were drawn on the appropriate graphs for both barium chromate and boron. In all cases, the experimental points lay below the theoretical "Fisher APD=MSA" line implying that either the Fisher readings were biased




EUGENE DIETZGEN CO

, 3410-10 01£726£N бадри рар. 10 X 10 P£R імси

ġ

toward the low end of the particle size range or that the MSA readings were biased in favor of the larger particles, possibly because of re-agglomeration of the samples. It is believed that the former is actually the case, based on several facts and observations:

(1) As the APD as determined by the Fisher Sub-Sieve Sizer is related to the total surface area of the sample. the particle size determination will be strongly influenced by the small particles which have a large surface area. This phenomenon would be more pronounced, the smaller the size of the smallest particles in the sample and the larger the particle size range of the sample. (2) Since the method of dispersion used was a combination and also an improvement on each of several individual methods of dispersion (4, 12), and since any visible re-agglomeration was eliminated by controlling the concentration of the sample being analyzed, it is improbable that re-agglomeration was responsible for the higher readings obtained with the MSA equipment. The MSA readings also coincided with estimations of the particle size range as determined by microscopic examination. In addition. Irani (12) states that, for a particle size range below 10 microns. if the proper dispersion is achieved, and if the layer technique is utilized, the MSA equipment and the electron microscope repeatedly gave identical particle size distributions.

The barium chromate samples from J.T. Baker and all of the boron samples except HCST873 follow a straight line relationship when plotted on either the Fisher APD=MSA dm or the Fisher APD=MSA

50 percent point graphs. On both graphs. the Baker barium chromate follows the relationship: MSA dm (or MSA 50 percent point) = 1.9 Fisher APD. The two Mineral Pigments bi-modal samples with the primary mode in the large particle range, ie., MP 32500 and MP 31801, exhibit the greatest deviation from either the Fisher APD=MSA dm or the Fisher APD=MSA 50 percent point lines. It will be recalled that one of the shortcomings of the Fisher Sub-Sieve Sizer is that the APD's so obtained are biased in favor of small particles. The smallest particles of these samples are further removed from the value of the mean diameter or the 50 percent point of each sample, as compared to more uniform samples with a normal distribution. The APD for each sample is thus much smaller than the MSA values (MSA 50 percent point = h=5 APD). Conversely, the two Mineral Pigmentsbi-modal samples with the primary mode in the small particle range, ie, MP 30701 and MP 28511, exhibit the least deviation from the Fisher APD=MSA dm and the Fisher APD=MSA 50 percent point lines. Again, it is reasoned that the size of the smallest particles is relatively close to both the mean diameter and the 50 percent point, the MSA values will not be much larger than the APD's (MSA 50 percent point = 1.5 APD). The two remaining Mineral Pigments samples, MP 28303 and MP 25160, as well as the B & C Fine sample, indicated normal size distributions with the exception that the particle size range was greater than the particle size range for the Baker barium chromate samples. The slope of the MSA-APD lines for this group of samples should be intermediate between the two bi-modal groups and slightly less

than the slope of the MSA-APD lines for the Baker samples. Examination of Figures 16 and 18 show that, as expected, the relationships are: MSA 50 percent point (or MSA d_m)= 2.5 APD.

The boron samples were not segregated as to method of manufacture. Table 6 shows the results of the chemical analyses performed on the boron samples. The Trona and HCST samples were similar in purity and composition while each of the UMC samples had a low amorphous boron content. The low amorphous boron content, coupled with the large particle size, high percentage of insolube matter, "gritty" feeling, and total boron content similar to all other boron samples, led the investigator to believe that the UMC samples contained a high percentage of crystalline boron. All boron samples followed the straight-line relationships MSA d_m = 3.1 APD and MSA 50 percent point = 3.3 APD (Figures 17 and 19), with two qualifications:

(1) HCST 873 deviated from these lines because of its bi-modal nature, as was explained for the bi-modal barium chromate samples.
(2) The boron samples with the APD's of less than 0.7 micron show a tendency to deviate from the MSA-APD line to a greater extent because of the sensitivity of the Fisher Sub-Sieve Sizer to progressively smaller particles.

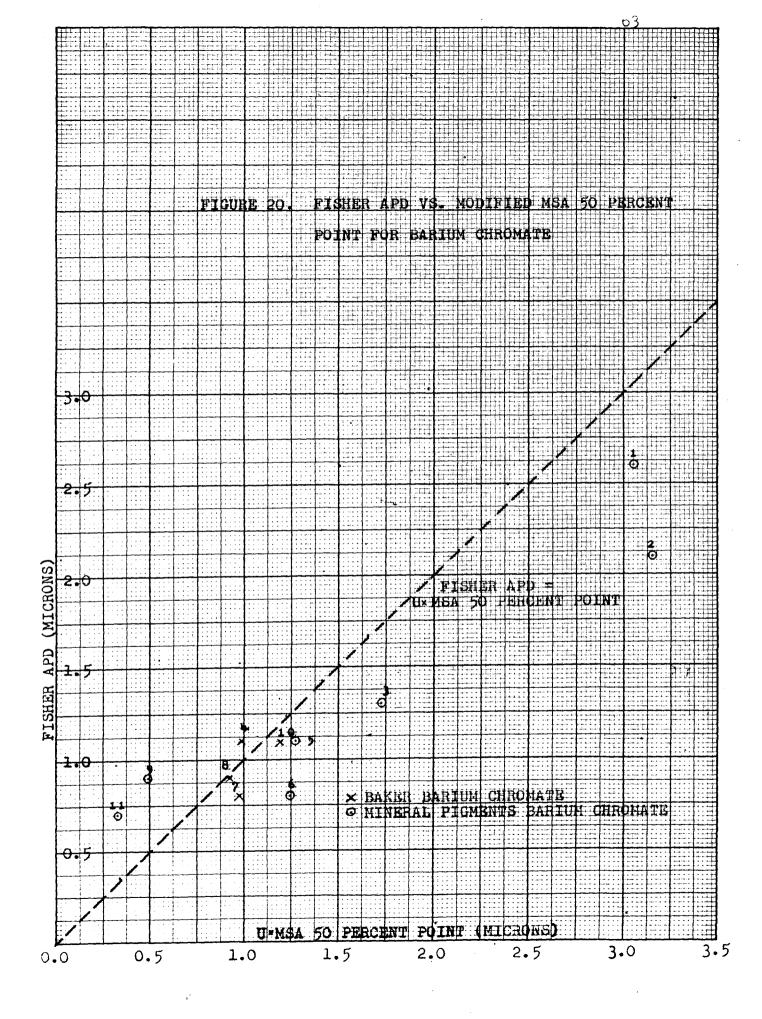
In order to compensate for the apparent effect of the particle size distribution on the Fisher APD's as a result of the nonuniformity of the samples, the oroduct of the MSA d_m or MSA 50 percent point and the uniformity index was plotted against the

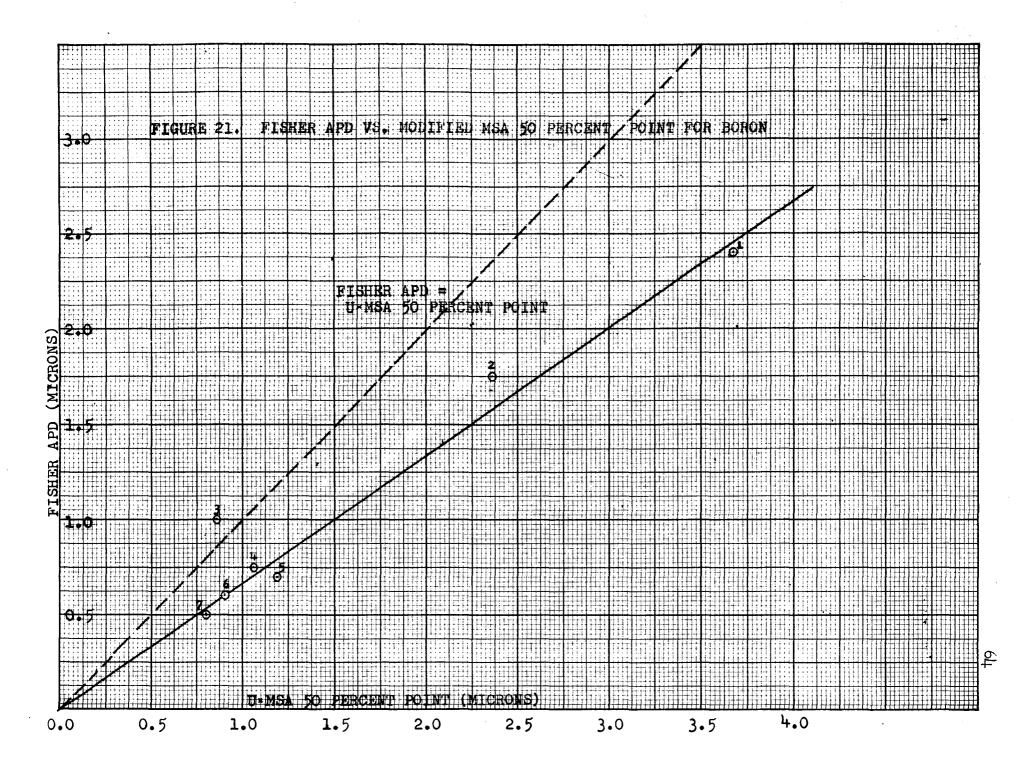
Fisher APD for each sample, as indicated in Figures 20 to 23.

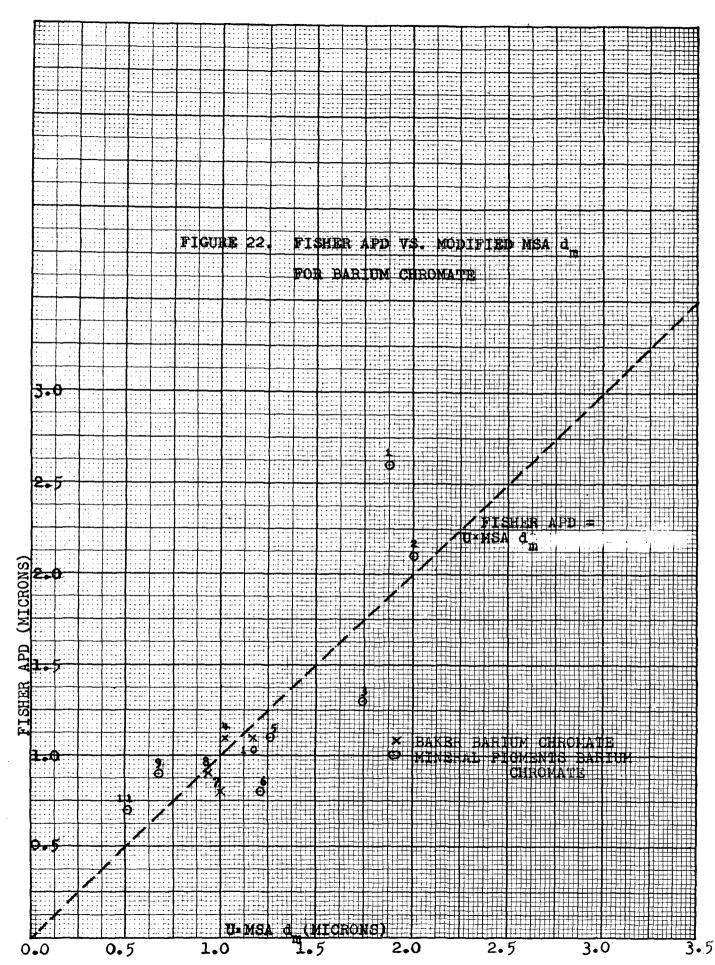
The graphs for barium chromate indicate that the Fisher APD is approximately equal to both the modified MSA dm and the modified MSA 50 percent point. There still appear to be devitions because of the degree of non-uniformity of the samples, but the application of the uniformity index definitely does provide a close correlation between the Fisher APD and both the MSA dm and the MSA 50 percent point. Similarly, all boron samples with the exception of HCST 873 provided a straight line, indicating the relationship:

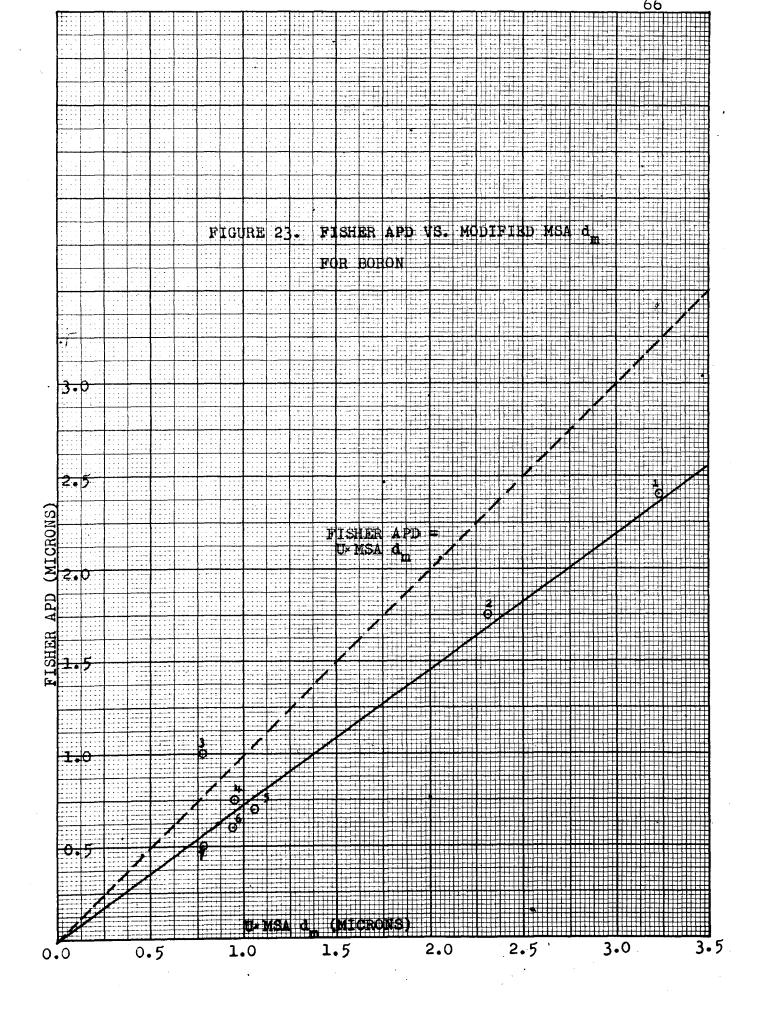
UMMSA 50 percent point (or UMMSA dm) = 1.4 APD.

D. <u>Relationship of Burning Rate of Barium Chromate-Boron</u> Delay Compositions to the Particle Size of the Components


Twenty different 95/5 barium chromate-boron delay compositions (Table 7) were pressed into delay fuzes and tested for burning time. The test data is shown in Tables 43 to 62 and the calculated results are summarized in Table 10.


Two major "families" of compositions were represented among the twenty compositions. One "family" included seven compositions in which one lot of boron was blended with eleven different lots of barium chromate. The other major family included seven compositions in which a single lot of barium chromate was blended with seven lots of boron.


Because of the differences in particle size distribution


					•	
Co mposition	No. of samples	Corrected burning time (sec)	Height of delay composition (in.)	Average (in./sec)	Surning Rate Standard deviation (in./sec)	Coefficient of variation (%)
1	8	0.940	0.764	.810	ی والد می میک میک میک میک میک در از این میک	
2	25	1.064	•775	•728	. 0117	1.61
3	25	1.121	•769	.687	.0237	3.45
4	23	1.065	•767	•720	.0192	2.67
5	23	1.065	•751	•704	.0165	2.34
6	2 5	1.292	• ? 55	• 585	.0061 ·	1.04
7	23	0.982	•761	•771	.0182	2.36
8	25	1.048	•773	•738	.0100	1.35
9	19	1:147	•771	.673	• 0 120	1.78
10	20	1.306	•771	• 590	.0067	1.13
11	24	1.313	•757	• 577	•0114	1.98
14	8.	2.800	•766	•277		
15	9	2.260	.761	• 3 38		
16	11	4.076	•769	.189	.0026	1.35
17	18	5.326	•753	.142	.0016	1.16
19	20	0.911	•767	.842	.0148	1.76
20	19	2.311	•776	•336	.0067	1.96
21	19	2.255	•782	• 347	.0062	1.92
23	18	4.820	⊷7 72	.160	.0023	1.41
2 ¹ +	20	2.907	•769	•264	.0032	1.23

SUMMARY OF BURNING RATE CALCULATIONS

and chemical purity as a result of the different methods of manufacture, the compositions containing Baker barium chromate were separated from the compositions containing Mineral Pigments barium chromate. This step was taken to minimize the effect of variables other than particle size parameters of the components on the burning rate of the compositions.

The MSA 50 percent point of each component was compared to the burning rate of the compositions for Baker barium chromate (Table 11) and for Mineral Pigments barium chromate (Table 12). These tables have been arranged so as to show the variation of burning rate of the composition as the particle size of either component increases. These tables indicate a general trend toward decreasing burning rate of the compositions as the particle size of either component increases, with several important exceptions. Examination of Table 11 shows that, if burning rate does actually increase as the particle size decreases. Trona 571 and Trona 419 boron samples should be finer than the HCST samples. Table 12shows that Trona 571 boron should be the finest of the borons in this table, and that B & C Fine barium chromate should be the finest of the Mineral Pigments group of barium chromates, followed by the MP 28303 sample. Similarly, the MSA d_m and the Fisher APD show only limited correlation to the burning rate of the compositions.

Assuming that no other variables, such as purity, density,

67 .

RELATIONSHIP OF THE MSA 50 PER CENT POINT FOR BARIUM CHROMATE AND BORON COMPONENTS TO THE BURNING RATE OF THE DELAY COMPOSITION (BAKER BARIUM CHROMATE)

Lot designation		Ba BAKER 30388	rium Chromate BAKER 91104	BAKER 26428	BAKER 25894
MSA 50 percent point		1.52 microns	1.67 microns	1.92 microns	2.16 microns
	HCST 873 1.90 microns	0.338 in./sec			
Boron	HCST 954 2.09 microns	0.277 in./sec		•	
	HCST 900 2.40 microns	0.336 in./sec			
	TRONA 419 2.47 microns	0.842 in./sec			
	TRONA 571 2.90 microns	0.810 in./sec	0.720 in./sec	0.704 in./sec	0.738 in./sec
	UMC 1992 5.45 microns	0.142 in./sec			
• • •	UMC 1993 8.3 microns	0.189 in./sec			

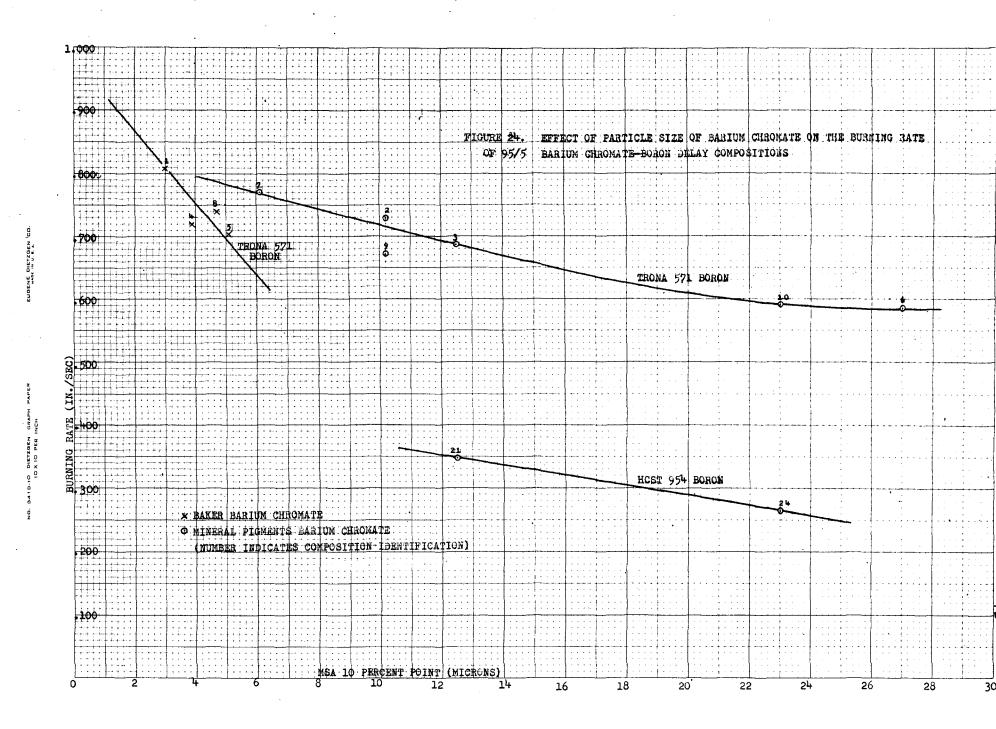
RELATIONSHIP OF THE MSA 50 PERCENT POINT FOR BARIUM CHROMATE AND BORON COMPONENTS TO THE BURNING RATE OF THE DELAY COMPOSITION (MINERAL PIGMENTS BARIUM CHROMATE)

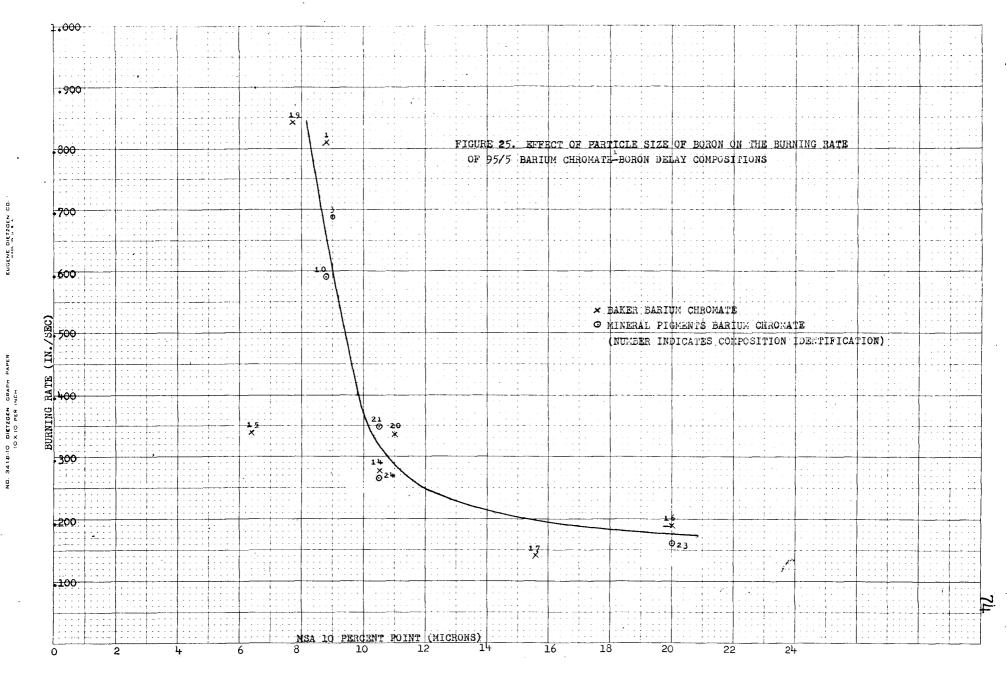
Lot designation		HCST 954	Boron TRONA 571	U MC 1992	· · · · · · · · · · · · · · · · · · ·
MSA 50 percent point		2.09 microns	2.90 microns	8.3 microns	
	MP 30701 1.08 microns	0.3 ¹ 47 in./sec	0.687 in./sec		
Barium Chromate	MP 28511 1.27 microns		0.673 in./sec		· · · · ·
G III Oma te	B&C FINE 2.52 microns		0.771 in./sec	•	
	MP 25160 2.55 microns		0.577 in./sec	• •	•
	MP 28303 3.60 microns		0.727 in./sec		
- -	MP 31801 1 g. & microns	0.264 in./sec	0.590 in./sec	0.160 in./sec	
· · · · · · · · · · · · · · · · · · ·	MP232500 11.0 microns		0.585 in./sec		

or degree of crystallinity are involved, the burning rate of the composition should be related to the component particle size only if the composition contains a single particle size for the component, for a theoretical uniformity index of 1.0. This statement is limited to compositions with a particle size small enough to react upon the application of heat for initiation. Consequently, it is felt that a relationship between the burning rate of the compositions and an average particle size of the components can not be expected if the uniformity of the components falls below some empirically determined point.

The particle size distribution curves (Figures 27 to 36) were examined for a correlation to the burning rate of the compositions. As the "x percent was greater than d" point decreased, the correlation of that particle size to the burning rate became more apparent. At the 10 percent point there was a definite correlation between the particle size and burning rate, indicating that the burning rate is limited by the amount of slower burning, coarse particles present. (Tables 13 and 14. Figure 24 and 25.)

The burning rate of the compositions decreases as the particle size (10 percent point) of the barium chromate increases according to a virtually linear relationship (Figure 24). For Mineral Pigments barium chromate samples this rate of decrease is independent of the boron blended with the


RELATIONSHIP OF THE MSA 10 PERCENT POINT FOR BARIUM CHROMATE AND BORON COMPONENTS TO THE BURNING RATE OF THE DELAY COMPOSITION (BAKER BARIUM CHROMATE)


Lot designation		Baker 30388	rium Chromate	BAKER 25894	BAKER 26428	
MSA 10 percent point		3.0 microns	3.9 microns	4.7 microns	5.1 microns	;
· · ·	TRONA 419 7.7 microns	0.842 in./sec		· · · · · · · · · · · · · · · · · · ·		
Boron	TRONA 571 8.8 microns	0.810 in./sec	0.720 in./sec	0.738 in./sec	- 0.704 in./sec	·
	HCST 900 11.0 microns	0.336 in./sec				
	HCST 873 6.3 microns	0.338 in./sec				
	HCST 954 10.5 microns	0.277 in./sec	· .			÷
	UMC 1992 20.0 microns	0.189 in./sec				
· ·	UMC 1993 15.6 microns	0.142 in./sec			. *	
:						

RELATIONSHIP OF THE MSA 10 PERCENT POINT FOR BARIUM CHROMATE AND BORON COMPONENTS TO THE BURNING RATE OF THE DELAY COMPOSITION (MINERAL PIGMENTS BARIUM CHROMATE)

1

Lot designation MSA 10 percent point	· .	TRONA 571 8.8 microns	HCST 954 10.5 microns	UMC 1992 20.0 microns
	B&C FINE 6.10 microns	0.771 in./sec		
	MP 28303 10:2 microns	0.728 in./sec		
	MP 28511 10.2 microns	0.673 in./sec		
	MP 30701 12.5 microns	0.687 in./sec	0.347 in./sec	
	MP 31801 23 microns	0.590 an./sec	0.264 in./sec	0.160 in./sec
	MP 32500 27.0 microns	0.585 in./sec		

EUGENE DIETZGEN CO.

barium chromate, as evidenced by the slope of the Trona 571 and HCST 954 lines (Mineral Pigments barium chromate) being approximately equal. Figure 24 shows that the burning rate of the composition decreases as the uniformity of the barium chromate decreases, providing further evidence that the burning rate of the compositions is dependent on the coarseness of the components.

The burning rate of the compositions is strongly affected by the boron which is blended with the barium chromate, regardless of the source of the barium chromate (Figure 25). For fine boron samples, the burning rate decreases sharply with an increase in the particle size. However, as the particle size (10 percent point) increases beyond approximately 11 microns, the burning rate decreases only slightly, suggesting a hyperbolic type relationship between burning rate and the particle size of the boron. The significance of these results as applied to actual compositions is as follows:

(1) As the particle size of the boron increases, the burning rate will level out at a very low burning rate until event-ually nonignition of the composition is reached. This is supported by the occurance of two incompletely burned fuzes out of twenty tested for composition no. 23, containing UMC 1992 boron, the coarsest boron used in this study.
(2) As the particle size of the boron decreases to a limit-ing particle size in the low range, the burning rate will become infinite, corresponding to spontaneous combustion. This

is in fact, one of the actual dangers to be considered when dealing with extremely fine boron, both un-mixed or when blended in a delay composition.

The burning rate of the compositions should be related to the particle size only if all other variables were maintained constant. Figure 24 shows that compositions blended with Mineral Pigments barium chromate would be faster burning than Baker Samples of the same particle size. One explanation is that the slight amount of barium sulfate present in the Mineral Pigments samples tends to increase the burning rate of the composition. Other variables, which could either augment or detract from the particle size-burning rate relationships illustrated in Figures 24 and 25 include purity, density, species of impurities, and degree of crystallinity. The various boron samples plotted on Figure 25 do not vary to any great extent from the general curve drawn to represent the data, thus it appears that the particle size expressed as the 10 percent point provides a close correlation to the burning rate, and may be the main factor in the variation of the burning rate. No conclusions can be drawn at this time as to the effect of impurities on the burning rate of the compositions used in this study.

The burning rate standard deviation and coefficient of variation (standard deviation ~100/ave. burning rate) for 17 of the compositions tested are listed in Table 10. No specific

correlations are obvious, but it does appear that as the burning rate decreases, both the coefficient of variation and the standard deviation decrease, indicating that a portion of the burning rate variation is due to an "ignition lag" or other end effects. These effects were minimized by pressing as much delay composition as possible into the fuze housings in order to increase the average burning time of the delay fuzes. Also, elimination of the relay assembly eliminated the possible premature ignition of the heat sensitive relay charge by the heat front preceding the actual burning front. This "anticipatory effect" has been discussed in detail by Gilford, et al (11).

Another factor that should effect the burning rate variation is the amount of gases produced by heating the barium chromate, specified as "loss on ignition at 900° C" on Table 5 . The generation of gas can cause a pressure drop between the burning surface and the outside atmosphere, especially if the solid reaction products result in a heavy slag formation (Figure 26). Werbel (18) found that, for 95/5 barium chromate-boron compositions, the burning rate increased as the ambient pressure increased. Since the pressure drop, and consequently the pressure at the burning surface, is a function of the porosity of the slag, varations in the burning rate will result. No conclusive results were observed to substantiate this theory, except

FIGURE 26. BURNED AND UNBURNED FUZES Left - burned fuze showing slag formation; center - loaded delay fuze; right - empty fuze housing.

that composition no.3, containing barium chromate with a high loss of ignition of 0.72 percent had the highest burning rate variation (3.45 percent).

The delay compositions used in this study were blended by spatulation of a thick paste of the composition after being wet with ethanol. The uniformity of the blend was achieved by breaking down agglomerates with the aid of the ethanol, which normally is a dispersing agent for both barium chromate and boron. The components tended to re-agglomerate together more or less uniformly only by virtue of the concentration of the paste and not by any tendency of the liquid vehicle to promote agglomeration.

Complete uniformity of the blends was not achieved, as evidenced by the occasional observation of particles of barium chromate in the compositions. Non-uniformity of a composition could lead to segregation of the components as a result of handling between the blending and pressing operations, in turn causing variations in the burning rate of the delay compositions. The use of barium chromate (or boron) with a high degree of non-uniformity, such as the bi-modal samples from Mineral Pigments, could increase particle segregation. The particles at this point are not discrete particles but agglomerates of delay composition. Since the tendency to agglomerate, as well as the size of agglomerates formed, increases as the discrete particle size decreases, the burning

rate of a delay composition may increase as the apparent particle size increases. This statement is contrary to the results obtained in this experiment, but is credible when it is realized that the large particles are actually agglomerates of much smaller discrete particles. It follows that the use of barium chromate (or boron) with a high degree of non-uniformity, such as the bi-modal samples from Mineral Pigments, would result in varying degrees of agglomeration and, in turn, increased particle segregation. This segregation was not encountered in this study because of the small amounts of delay composition made up and the care taken in handling this composition. However, this process is used widely on a manufacturing scale and the possibility of segregation of particle size is a factor to be considered when discussing particle size.

Another standard method of blending delay powders is the dispersion of the components in a dilute liquid slurry, using a mixer or blendor (6). Although uniform blends should result because of intimate mixing of the particles, it is necessary that the particles be of uniform size, otherwise, differing rates of settling will cause a non-uniformity of the composition, leading to burning rate variations. Further segregation upon handling would be probable.

IV. CONCLUSIONS

1. The burning rate of the barium chromate-boron delay compositions is not related to the Fisher APD, MSA d_m or MSA 50 percent point of either component, but is related to the particle size corresponding to the "10 percent greater than d" point on the particle size distribution curve for the component.

2. The burning rate of the compositions was found to be inversely proportional to the 10 percent point of the barium chromate. However, the burning rate of compositions containing Baker barium chromate decreased at a faster rate with increasing particle size than did 'the burning rate of compositions containing Mineral Pigments barium chromate. This suggests that other characteristics of the barium chromate, in addition to the particle size, have an effect on the burning rate of the delay compositions.

3. The burning rate of the delay compositions followed a hyperbolic type relationship when plotted against the 10 percent point of the boron, with extreme cases of non-ignition of the composition for coarse boron and spontaneous ignition for compositions containing fine boron. The individual compositions did not deviate from this relationship to any great extent, indicating that particle size is the main characteristic of boron affecting the burning rate of barium chromate-boron delay compositions.

4. The Mine Safety Appliances (MSA) Particle Size Analyzer is the only apparatus now available, which is suitable for the routine analysis of the particle size distribution of substances containing particles as small as 0.1 micron.

5. The Fisher Sub-Sieve Sizer provides an APD which is biased in favor of the low end of the particle size range. The deviation of the APD from the MSA dm or the MSA 50 percent point increases as the uniformity of the particle size distribution decreases. The presence of a bi-modal particle size distribution will, based on whether or not the principle mode is toward the small particle size end of the distribution, either decrease or increase the deviation of the APD from the MSA values. This deviation was minimized by multiplying the MSA values by the uniformity index of the samples.

6. The best dispersing agent for the dispersion of barium chromate and boron preparatory to particle size analysis is a 50-50 mixture of a nonionic wetting agent and an anionic dispersing agent.

V. RECOMMENDATIONS

It is recommended that:

1. Further studies be undertaken to investigate the effect of particle size distribution on the burning rate of barium chromate-boron delay compositions and to determine specifications for the desired particle size distribution for barium chromate and boron.

2. The particle size distribution as determined with the MSA Particle Size Analyzer replace the APD as determined with the Fisher Sub-Sieve Sizer for the specification of barium chromate and boron for use in pyrotechnic delay compositions.

VI. BIBLIOGRAPHY

- 1. Barium Chromate Military Specification MIL-B-550A 25 September 1958.
- 2. Barium Chromate <u>Purchase Description TL-PD-104</u> U.S. Army Munitions Command, Harry Diamond Laboratories, Washington, D.C., 8 December 1959, with Amendment 1, 8 June 1961.
- Boron
 <u>Purchase Description PA-PD-451</u>
 U.S. Army Munitions Command, Picatinny Arsenal,
 Dover, N.J., 12 November 1954.
- 4. Cadle, R.D.-<u>Particle Size Determination</u> New York, Interscience Publishers, Inc., 1955.
- 5. Comyn, R.H., Couch, M.L., and Mc Intyre, R.E. <u>Measurement of Particle Size of Components of Gasless</u> <u>Mixtures</u> TR-636, U.S. Army Munitions Command, Harry Diamond Laboratories, Washington, D.C., 28 August 1958.
- Comyn, R.H., Couch, M.L., and Mc Intyre, R.E. <u>Specification of Barium Chromate for Use in Gasless</u> <u>Mixtures</u> TR-635, U.S. Army Munitions Command, Harry Diamond Laboratories, Washington, D.C., 17 September 1958.
- 7. Comyn, R.H., Marcus, I.R., and Mc Intyre, R.E. "Agglomerate Mixing" Industrial and Engineering Chemistry, <u>52</u>, 995-998. December 1960.
- 8. Dubrow, Bernard <u>Determination of the Particle Size and Distribution</u> <u>of Sub-Sieve Powders</u> <u>Research and Development Lecture No. 13, U.S.Army</u> <u>Munitions Command, Picatinny Arsenal,</u> <u>Dover, N.J., March 1955.</u>
- 9. Eigsti, D.R., and Dwiggins, R.D. Particle Size Measurement and Effect of Particle Size on the Burning Time of Chemical Delay Compositions Navweps Report 7304, U.S. Naval Ordnance Laboratory, White Oak, Silver Spring, MD., 16 November 1960.

- 10. Ellern, Dr. H. <u>Modern Pyrotechnics</u> New York, Chemical Publishing Company, Inc., 1961.
- 11. Gilford, M., Werbel, B., Weingarten, G., and Key, L. <u>The Anticipatory Effect, A Study of the Burning</u> <u>Mechanism of Delay-Relay Columns</u> <u>PATR-3047, U.S. Army Munitions Command, Picatinny Arsenal,</u> Dover, N.J., March 1964.
- 12. Irani, R.R., and Collis, C.F. <u>Particle Size Measurement, Interpretation and Application</u> New York, John Wiley and Sons, Inc. 1963
- 13. Loveland, R.P. "Methods of Particle Size Analysis" <u>Symposium on Particle Size Measurement</u> Philadelphia, American Society for Testing Materials, 1959.
- 14. MSA Particle Size Analyzer: Operating Procedures and Applications, Pittsburgh, Mine Safety Appliances Company.
- 15. Musgrave, J.R., and Harner, H.R. <u>Turbimetric Particle Size Analysis</u> Joplin, Eagle-Picher Research Laboratories, 1958.
- 16. Crr, C., and Dallavalle, J.M. Fine Particle Measurement New York, The Macmillan Company, 1959.
- 17. Osipow, L.I. Surface Chemistry-Theory and Industrial Applications New York, Reinhold Publishing Corporation, 1962.
- 18. Werbel, B., and Lopatin, S. <u>Development of Delay Powders</u> PATR 2477, U.S. Army Munitions Command, Picatinny Arsenal, Dover, N.J., April 1958.

VII. APPENDIX

MSA PARTICLE SIZE ANALYSIS OF BARIUM CHROMATE-LOTS BAKER 30388 AND BAKER 91104

Particle Size, d (microns)	Contrifuge Speed (RPM)	Centrifuge Time (min:sec)	S I Sedir Heig h ₁	ght	Perc	cent er Than l %2	BA Sedime Heigh h1	ent	91104 Perce Greater %1	. Than
20	300	:16	•0	•0	0	•0	•0	•0	•0	.0
10		:49	.1	.0	.22	20	•0	.0	•0	.0
10 7		1:08	•5	•7	1.1	2.4	•0	•0	•0	•0
5	600	:41	1.0	1.5	2.2	5.2	2.0	2.5	4.3	5.8
3		2:05	5.0	2.8	11.2	9.8	6.5	8.9	14.4	20.5
2.5		1:28	7.9	5.0	17.7	17.5	10.5	12.3	23.2	28.5
2.0		2:36	13.5	8.0	30.2	28.0	16.9	17.6	37•3	40.5
1.5	1200	1:29	•	14.0	**** *****	49.0	24.0	25.4	53.0	58.7
1.0		3:55	37.2	23.2	83.3	81.2	37.6	35.5	82.2	82.9
•9		1:45	40.0	24.2	89.6	84.7	39.0	37.0	86.0	85.6
•7	1800	2:56	42.0	26.6	94.0	93.0	42.5	40.5	93•7	93•7
• 5		6:26	43.7	28.0	97•7	97.9	45.1	42.7	99•3	98.5
•4		7:17	¥4.¥	28.5	99.4	99•5	<u>145.3</u>	43.0	10900	99•3
• 3		15:14	44.5	28.5	99.6	99.5		43.3]	L00.0
.2	3600	11:04	44.7	28.6	100.	100.0				

MSA PARTICLE SIZE ANALYSIS OF BARIUM CHROMATE LOTS BAKER 25894 AND BAKER 26428

()

Particle Size, d (microns)	Centrifuge Speed (RPM)	Centrifuge Time (min:sec)	BAKEF Sediment Height h ₁ h ₂	R 25894 Perce Greate: 2 d %1	r Than	BAKER 2 Sediment Height h ₁ h ₂	6428 Percent Greater Than d %1 %2
20	300	:16	•0 •0	.0	•0	•0 •0	.0 .0
10		:49	•9 •0	119	•0	1.4 1.3	3 2.7 2.4
7		1:08	2.3 1.5	5 4.9	3.3	3.7 2.3	7.0 4.2
5	600	:41	4.6 4.3	9.9	9.6	6.0 4.8	11.4 8.8
3		2:05	12.3 11.0	26.5	24.5	14.8 12.8	28.2 23.4
2.5		1:28	18.3 16.3	39.4	36.3	28.6 26.7	54.4 48.7
2.0		2:36	26.7 23.9	57.4	53.2	34.8 33.0	66.2 60.3
1.5	1200	1:29	31.5 30.5	67.7	67.8	47.5 47.0	90.3 85.8
1.0		3:55	42.0 40.0	90.3	88.9	48.0 49.0	.91.3 89.4
•9		1:45	44.5 41.0	95.7	91.3	50.0 52.0	95.2 94.7
•7	1800	2:56	45.0 44.0	96.8	97.8	51.5 54.5	98.0 99.3
• 5		6:26	46.0 44.3	99.0	98.4	52.0 54.5	99.0 99.3
•4		7:17	46.4 44.5	б 99.8	98.8	52.3 54.6	99.4 99.4
•3		15:14	46.5 44.7	100.0	99.3	52.6 54.9	100.0100.0
•2	3600	11:04	45.0) :	100.0	· .	

MSA PARTICLE SIZE ANALYSIS OF BARIUM CHROMATE-LOTS MP 25160 and MP 28303

Particle	Centrifuge	Centrif			MP 28303
Size, d (microns)	Speed (RPM)	Time (min:se		Percent Greater Than	Sediment Percent Height Greater Than
• • • • • • •	•	•	h_1 h_2	d	h_1 h_2 d
				%1 %2	%1 %2
20	300	:16	0.0 0.0	0.0 0.0	0.0 0.0 0.0 0.0
10		:49	0.0 0.0	0.0 0.0	7.0 3.2 1 ¹ .7 7.1
7	н на селото на селот Селото на селото на с	1:08	2.3 3.5	4.4 5.7	12.0 9.0 25.2 20.0
5	6 00	:41	9.5 13.7	18.1 22.3	17.7 15.2 37.2 33.8
3		2:05	20.6 28.5	39.3 46.3	28.3 25.7 59.5 57.2
2.5	·	1:28	24.5 32.7	46.7 53.1	33.1 30.3 69.6 67.4
2.0		2:36	29.8 39.2	56.7 63.7	39.7 35.6 83.5 78.2
1.5	1200	1:29	35.0 47.0	66.7 76.3	41.3 38.4 86.8 85.4
1.0		3:55	45.0 53.0	85.7 86.1	46.0 43.0 96.7 95.7
•9 • 7	1800	1:45 2:56	45.0 54.5 47.0 56.5	85.7 83.9 89.5 91.7	46.6 43.4 97.8 96.7 46.6 43.9 97.9 97.7
•5		6:26	51.0 59.5	97.2 96.7	47.3 44.5 99.5 99.0
•4	· · · · ·	7:17	51.5 60.0	98.0 97.5	47.5 44.9 99.8 100.0
•3		1 5 :1 4	52.2 60.6	99.3 98.3	47.6 44.9 100.0 100.0
•2 •1	3600	11:0 4 57.09	52.4 61.0 52.5 61.6	99.8 99.1 100.0 100.0	

MSA PARTICLE SIZE ANALYSIS OF BARIUM CHROMATE-LOTS MP 32500 AND MP 28511

Particle Size, d (microns)	Centrifuge Speed (RPM)	Centrifuge Time (min:sec)	MP 32500 Sediment Percent Height Greater Than h ₁ h ₂ d %1 %2	MP 28511 Sediment Percent Height Greater Than h ₁ h ₂ d %1 %2
20	300	:16	12.5 18.0 30.9 40.0	.0 .0 .0 .0
10	-	:49	22.5 25.0 55.6 55.6	4.5 6.3 10.3 12.5
7		1:08	24.6 26.0 60.7 57.8	9.3 9.4 21.4 18.6
5	600	:41	27.8 31.0 68.7 68.8	10.3 10.6 23.7 21.0
3		2:05	29.5.32.7 72.8 72.7	11.7 13.7 26.9 27.1
2.5		1:28	30.3 33.5 7 4.8 75.5	12.6 15.6 29.0 30.9
2.0		2:36	31.3 34.9 77.3 77.7	14.7 18.4 33.8 36.4
1.5	1200	1:2 9	32.4 36.0 80.0 80.0	20.7 21.0 47.6 41.6
1.0		3:5 5	37.0 40.0 91.3 89.0	29.5 28.0 67.8 55.3
0•9		1:45	37.0 40.5 91.3 90.0	32.0 31.0 73.6 61.3
•7	1800	2:56	38.0 42.0 93.8 93.3	37.0 41.0 85.0 81.2
• 5		6:26	39.5 43.7 97.6 97.2	41.0 44.5 94.3 88.2
•4		7:17	39.7 44.4 98.0 98.7	47.5 48.4 97.8 95.8
• 3		15:14	40.0 44.7 98.8 99.3	43.3 49.5 99.7 98.0
.2	3600	11:04	40.545.0100.100.	43.5 50.5 100. 99.0
.1		57:09		50.5 100.0

MSA PARTICLE SIZE ANALYSIS OF BARIUM CHROMATE-LOTS MP 31801 AND MP 30701

Particle Size,d (microns)	Centrifuge Speed (RPM)	Centrifug Time (min:sec)	Sedim	ht Great h ₂	cent er Than d	M Sedim Heig h ₁	ht G	Perce reater d	Than
				%1	% 2			%1	%2
20	300	:16		11.0	28.6	1.2	0.9	2.8	1.9
10		:49		20.0	51.8	6.8	7.0	15.8	14.8
7		1:08		24.0	62.3	9.8	9.1	22.8	19.2
· 5	600	\$41	17.0	24.4 60.0	63.3	11.7	11.5	27.2	24.3
. 3		2:05	18.5	27.4 65.2	71.2	14.4	13.8	33.5	29.1
2.5		1:28	18.8	29.4 66.3	76.3	<u>1</u> 5.3	15.8	35.6	33•3
2.0		2:36	19.4	31.6 68.3	82.0	16.8	16.9	39.1	35.6
1.5	1200	1: 29	22.7	32.4 80.0	94.2		18.0		37.9
1.0	•	3:55	24.0	35.3 84.6	91.7	24.0	25.0	55.8	52.7
0.9		1:45	25.5	35.8 90.0	93.0	27•3	27.7	63.5	58.3
0.7	1800	2: 56	26.5	35.9 93.5	5 93•3	31.0	33.4	72.2	70.0
0.5		6:26	27.5	37.4 97.0	97.0	36.2	40.0	84.2	84.3
0 <u>•</u> 1+		· 7:17	28.3	37.8 97.7	98.2	39•5	42.0	91.8	88.5
0.3		15:14	28.4	38.2 100.	99 .2	41.0	44.5	95•3	93.8
0.2	3600	11:04		38.5	100.0	41.5	45.7	96.5	96.3
0.1		57: 09				43.0	47•4	100.05	100.0

MSA PARTICLE SIZE ANALYSIS OF BARIUM CHROMATE-LOT B&C FINE

Particle Size, d (microns)	Centrifuge Speed (RPM)	Centrifuge Time (min:sec)		B&C ment ght h ₂	Great	cent er Than d %2
. 20	300	:16	0.2	0.1	0.4	0.2
10	· .	:49	1.8	2.4	3.2	4.2
7	•	1:08	3.0	4.4	5•3	7.7
5	600	:41	9.0	7.6	16.0	13.3
3		2:05	19.0	21.5	33•9	37.7
2.5		1:28	24.8	29.0	44.2	51.0
2.0		2:36	32.6	37.5	58.2	65.8
1.5	1200	1:29	43.2	46.5	77.0	81.7
1. 0 .	•	3: 55	51.0	54.5	91.0	95.8
• 9	•	1:45	52.0	55•5	92.8	97.5
• 7	1800	2: 56	53.6	53.7	95.6	97.8
• 5		6:26	55.1	56.5	98.2	99.2
• 14		7:17	55•5	56.6	98.9	99•3
•3		15:14	55.6	56.7	99.1	99.6
•2	3600	11:04	.56.1	56.9	100.0	100.0

MSA PARTICLE SIZE ANALYSIS OF BURON-LOTS TRONA 419 AND TRONA 571

Particle Size, d (Microns)	Centrifuge Speed (RPN)	Centrifu Time (min:sec	Sed.) He:	TRONA iment ight 1 h2	Perc Greate	er Than		TRON edimen Height h ₁ h	Great	cent er Than d
·.					701	%2			81	%2
20	300	:43								
1 5		1:17	0.0		0.0		0	0 Ö.	0 0.0	0.0
10		2:09	0.9		4.2		2	5 1.	5 10.2	6.9
5	600	2:19	6.6		31.0		8	7 6.	3 35•5	28.9
2	1200	3:57	12.3		57•7		1 ¹⁺	6 13.	6 59.6	62.3
1.0	1800	6:29	16.7	· ••••	78.3		20	0 18.	5 81.6	84.8
0.8	· · ·	5:01	17.6		87.6		20	5 19.	0 83.6	87.2
0.6		10:09	18.3		85.8		21	9_12.	5 88.5	89.4
0.1+	3600	7:35	20;]	*****	94.3		23	5 21.	0 95.9	96.3
0.3	*	10:22	20.9		98.0	-	24	•02 -	97.8	
0.2	Ň	27:37	2 <u>1</u> .1		99.0	с. С	24	4 21.	3 99.5	97.8
0.16		30:0 9	21.2		99.6		24	4 21.	6 99.5	99.2
0.12		59:2 <u>1</u>	21.2	****	99.6	4944	24	5 21.	8 100.0	1000
0.10		59:21	21.3	-	100.0					

Particle Size, d (microns)	Centrifuge Speed (RPM)	Centrifuge Time (min:sec)		LOT HO ment ght h ₂	Great	cent er Than d %2
20	300	:43	0.0	0.0	0.0	0.0
10		2:09	- 0.0	0.1	0.0	0.7
5	6 00	2:19	2.9	3.0	19.1	19.9
2	1200	3:57	7.5	7.3	49.3	48.3
1.0	1800	6:29	10.4	10.2	68.5	67.7
•8	• •	5:01	11.0	10.9	72.3	72.3
•6		10:09	11.5	11.3	75.7	74.8
• +	36 00	7:35	14.2	14.0	93.4	92.8
•3		10:22	14.5	14.2	95.3	94.1
•:2		27:37	15.0	15.0	98.8	99•3
.16	• •	30:09	15.2	15.1	100.0	100.0

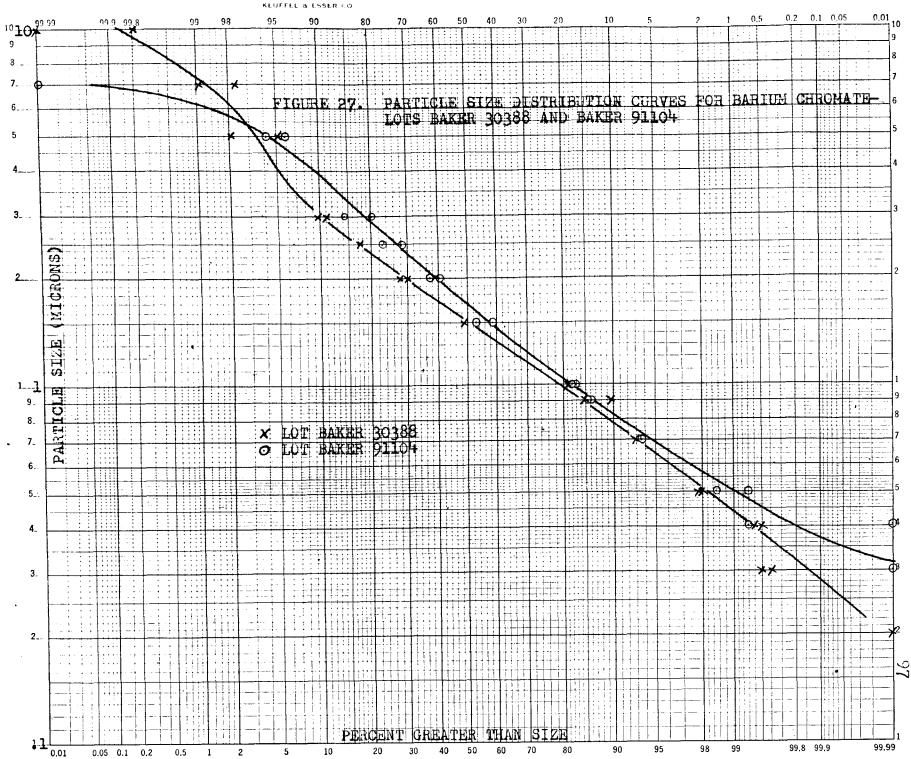
MSA PARTICLE SIZE ANALYSIS OF BORON-LOT HCST 873

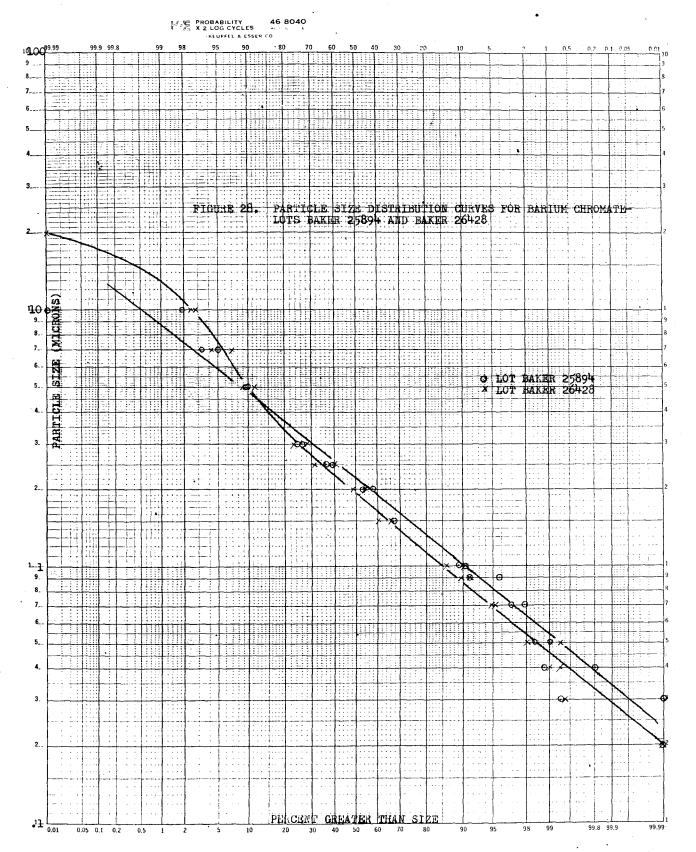
16

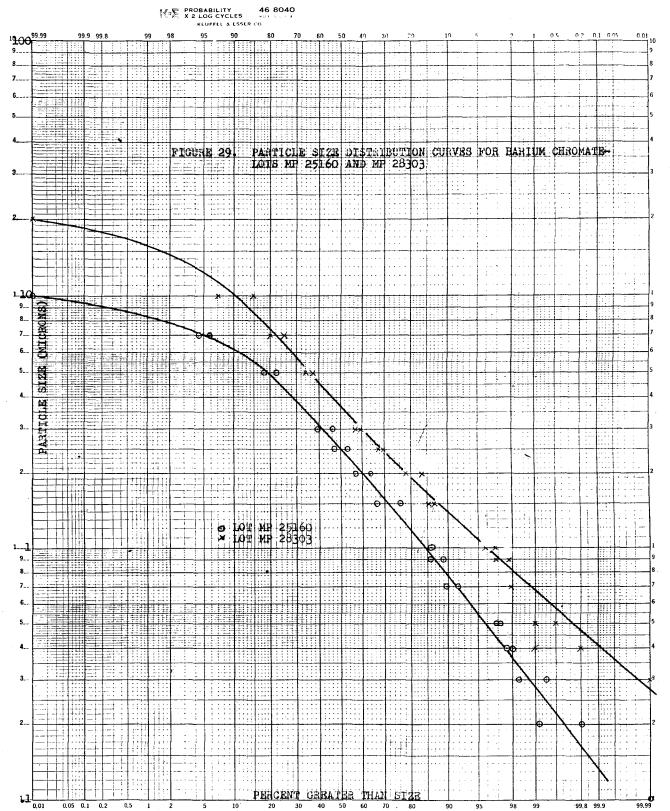
1.1

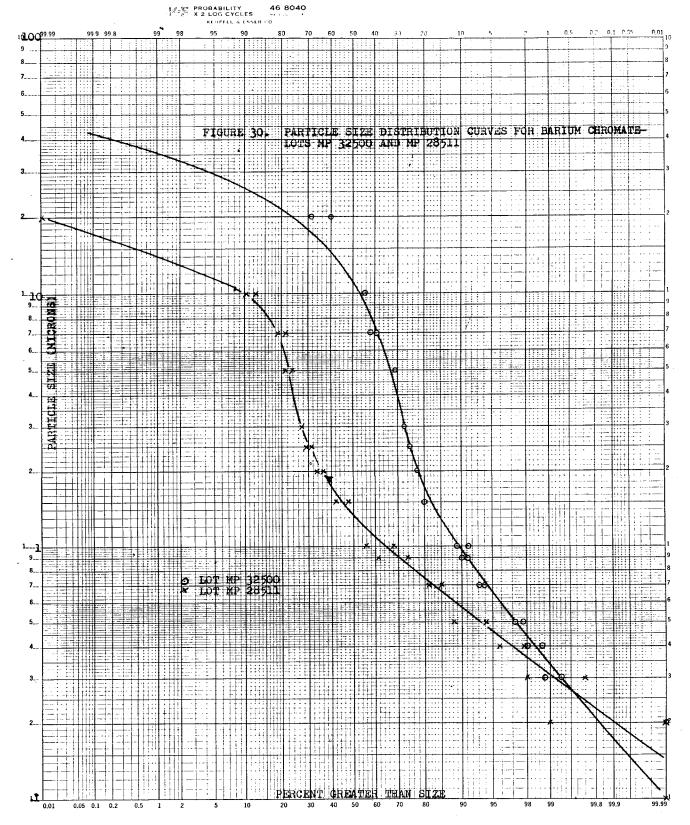
MSA PARTICLE SIZE ANALYSIS OF BORON-HCST 900 AND HCST 954

Particle	Centrifuge	Centrifuge	HCST 900	HCST 9	•
Size, d (microns)	Speed (RPM)	Time (min:sec)	Sediment Percent Height Greater Th	Sediment an Height	Percent Gpeater Than
,			$h_1 h_2 d$	h_1 h_2	_ d ⇒
			% 1 %	2	%1 %2
20	300	:43	1.0 ¹ 5.6 ¹	0.51	2.3 ¹
15		1:17	1.7 7	.2 1.3	6.2
10		2:09	2.2 2.7 12.4 11	.5 2.0 2.1	9.2 10.0
5	600	2:19	5.2 5.4 29.4 23	.0 6.1 5.6	28.0 26.7
2	1200	3:57	10.0 12.6 56.4 53	.7 .12.0 10.5	55.0 50.0
1.0	1800	6:29	13.9 19.5 7 8.5 82	.8 16.0 15.1	73.3 71.8
.8		5:01	16.1 20.0 90.8 85	.2 17.0 15.6	77.9 74.2
•6		10:09	16.2 21.3 91.5 90	.6 17.9 16.5	82.1 78.6
• 4	3600	7:35	17.5 22.9 98.8 97	.3 19.6 17.3	89.8 82.3
•3		10:22	17.6 23.0 99.3 97	.8 20.1 20.0	92.2 95.2
•2		27:37	17.7 23.5 100. 100	.0 20.4 20.2	93.5 96.2
.16		30:09	20.7	20.7 20.4	96.3 97.2
.12		59:21		Statestine - StatiStat	
.10		59:21		21.8 21.0	100.0 100.0

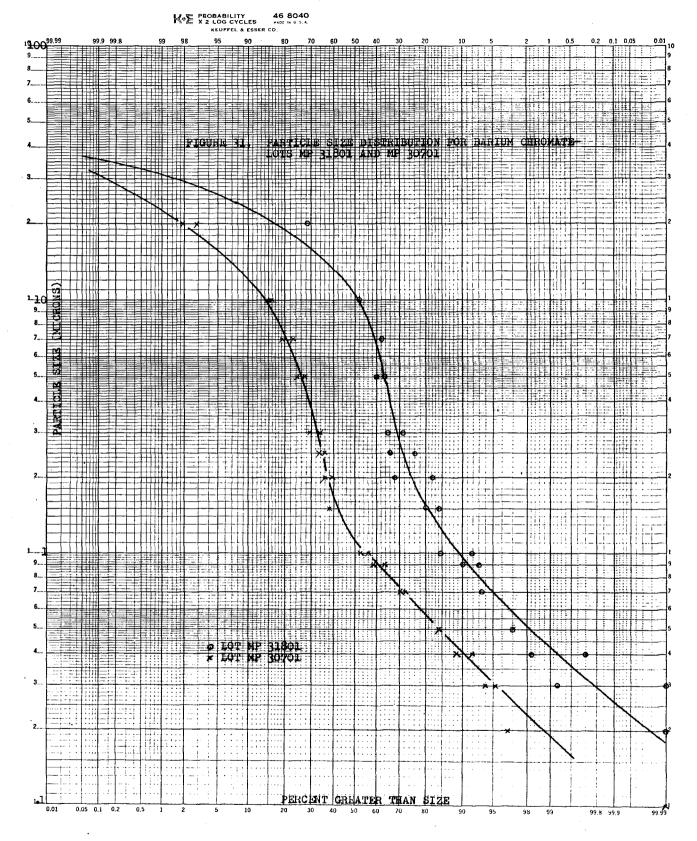

¹ Small portion of sample would not pass through the 325 mesh sieve before being washed directly into the Waring Blendor, thus a portion of the greater than 20 microns portion of the sample was actually larger than 44 microns.

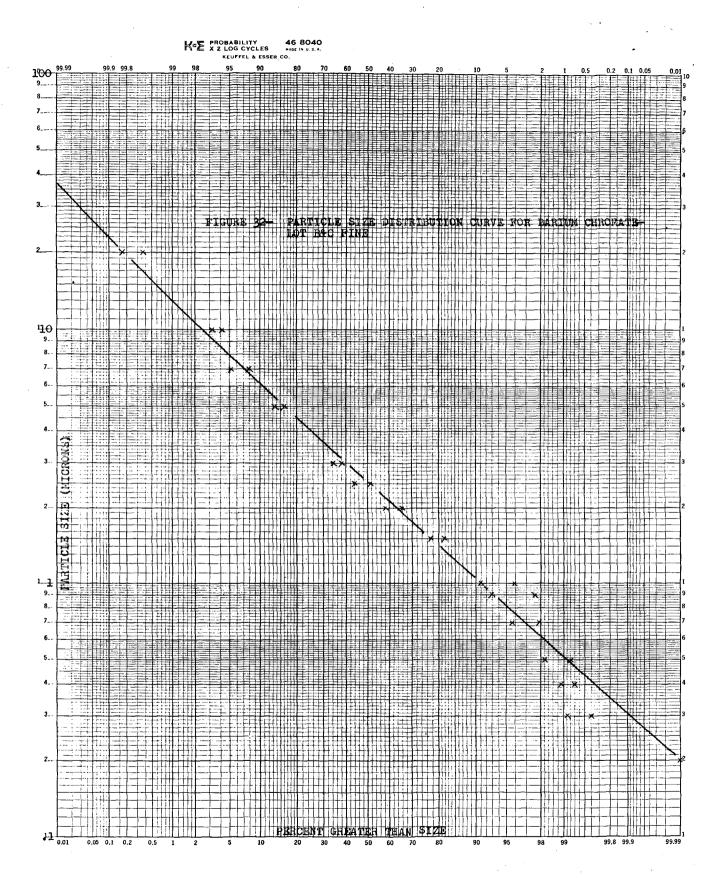

30

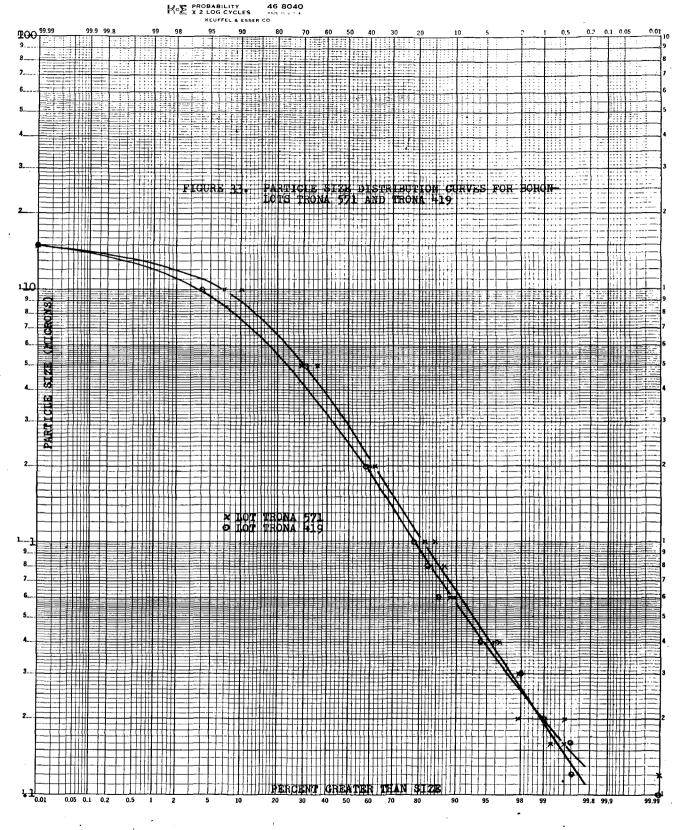

MSA PARTICLE SIZE ANALYSIS OF BORON-LOTS UMC 1992 AND UMC 1993

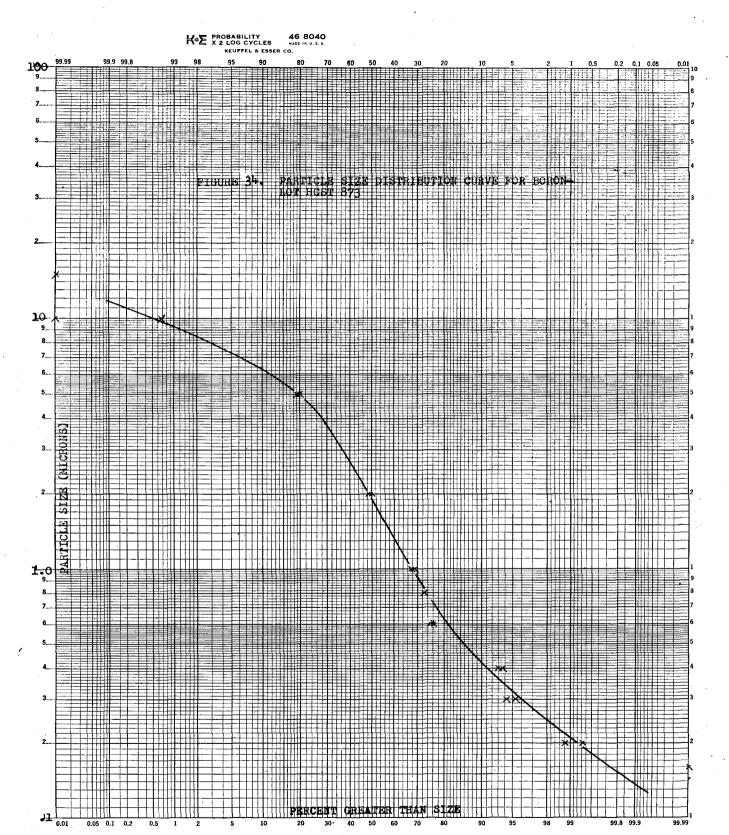

Particle Size, d (microns)	Centrifuge Speed (RPM)	Centrifuge Time (min:sec)	UMC 19 Sediment Height h ₁ h ₂	Percer	nt Than %2	UMC 19 Sediment Height h ₁ h ₂	93 Percent Greater Than d %1 %2
25	300	:28	0. 1.5		4.1		
20	ب ب	:43	3.4	8.0		0.9	14.141
15		1: 17				2.5	13.4
10	1	2:09	20.6 14.5	48.7	39.2	2.5 4.5	12.3 24.1
5 -	600	2:19	29.1 26.3	68.7.	71.0	13.0 10.5	63.7 56.2
2	1200	3:57	38.5 34.1	91.0	92.2	18.0 16.3	88.2 87.2
1.0	1800	6:29	41.8 36.7	98.8	99.2	19.8 18.4	97.2 98.3
•8		5:01	42.0 36.9	99+3	99•7	20.2 18.6	99.0 99.3
•.6		10:09	42.3 37.0	100.0]	100.0	20.3 18.6	99.5 99.3
•4	3600	7:35				20.4 18.7	100.0 100.0

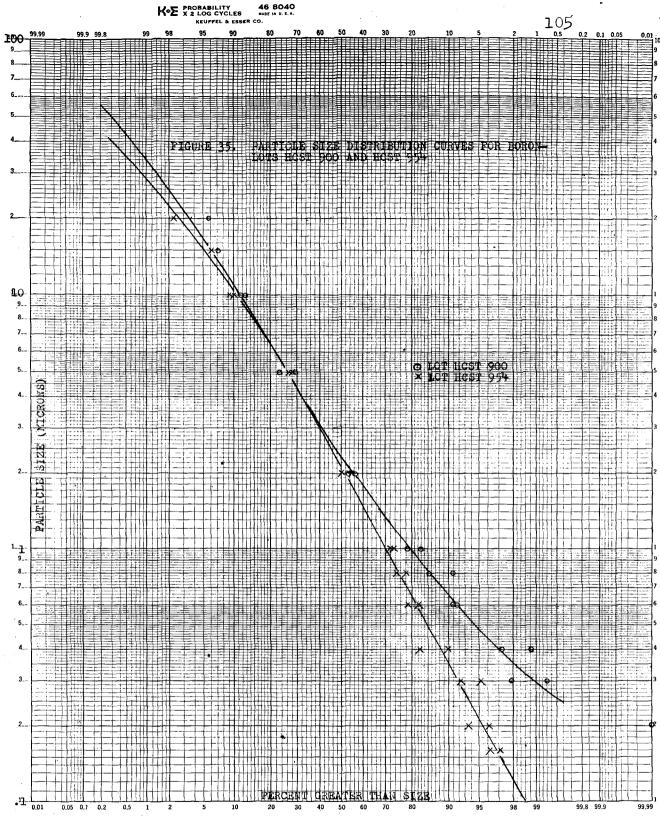
¹A small amount of this sample would not pass through the 325 mesh sieve before being washed directly into the Waring Blendor, thus a portion of the greater than 20 microns sample was actually larger than 44 microns.

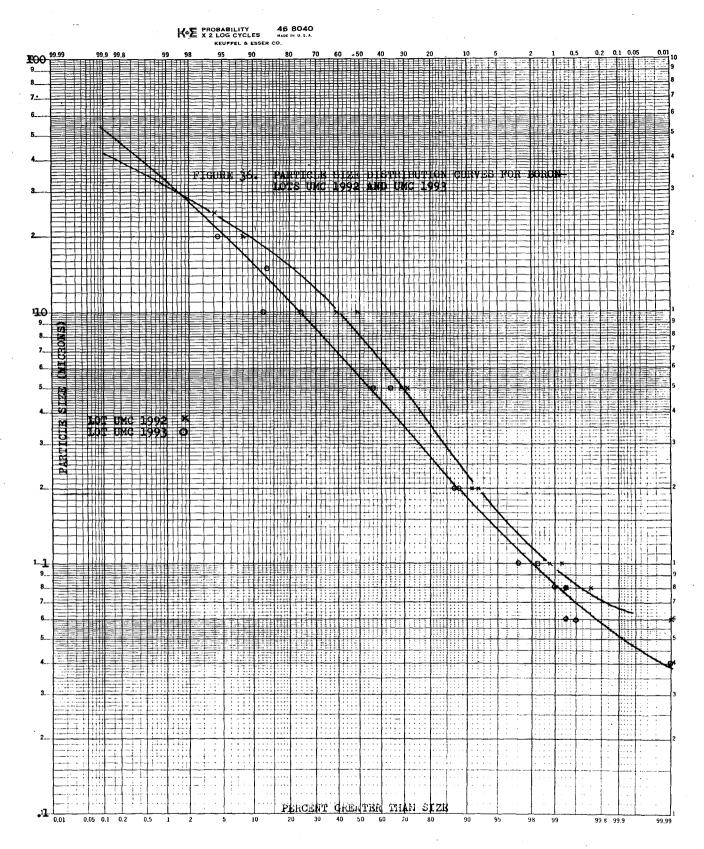







· .





.

٠.

Particle Size,d (microns)	Mean Particle Size,đ (microns)	log ā	Percent Greater Than d	Frequency (percent)
10	12.6	1.1	.12	
6.3	7.9	•9	1.85	1.73
4.0	5.0	•7	5.3	3.45
2.5	3.2	•5	16.7	11.4
1.6	2.0	•3	46.0	29.3
1.0	1.26	.1	79.0	33.0
.63	•79	1	95.4	16.4
•40	•50	3	99.38	3.98
.25	•32	5	99.95	•57

SIZE FREQUENCY DATA FOR BARIUM CHROMATE-LOT BAKER 91104

Particle Size,d (microns)	Mean Particle Size,d (microns)	log d	Percent Greater Than d	Frequency (percent)
6.3	. 7.9	.9	.8	•
4.0	5.0	•7	9.3	8.5
2.5	3.2	•5	26.5	17.2
1.6	2.0	•3	53.0	26.5
1.0	1.26	.1	81.3	28.3
.63	•79	 l	96.6	15.3
•40	.50	3	99.83	3.23

Particle Size,d (microns)	Mean Particle Size, d (microns)	log d	Percent Greater Than d	Frequency (percent)
25	32	1.5	•00	
16	20	1.3	•04	•04
10 .	12.6	1.1	•54	• 50
6.3	7.9	•9	3.7	3.16
4.0	5.0	•7	15.3	11.6
2.5	3.2	•5	40.0	24.7
1.6	2.0	•3	68.2	28.2
1.0	1.26	.1	89.3	21.1
.63	•79	1	97.6	8.3
•40	• 50	3	99.7	2.1
.25	•32	5	99.98	.28

Particle Size,d (microns)	Mean Particle Size,d (microns)	log d	Percent Greater Than d	Frequency (percent)
40	50	1.7		
25	32	1.5	.0	
16	20	1.3	.22	.22
10	12.6	1.1	2.4	2.18
6.3	7.9	•9	6.6	4.2
4.0	5.0	•7	15.0	8.4
2.5	3.2	•5	34.0	19.0
1.6	2.0	•3	61.0	27.0
1.0	1.26	.1	84.7	23.7
•63	•79	1	96.1	11.4
•40	•50	3	99.4	3.3
.25	•32	5	99.95	•55

Particle Size, d (microns)	Mean Par <u>t</u> icle Size,d (microns)	log	d Percent Greater Than d	Frequency (percent)
25	32	1.5	•0	
16	20	1.3	•7	•7
1.0	12.6	1.1	10.5	9.8
6.3	7.9	•9	25.5	15.0
4.0	5.0	•7	44.5	19.0
2.5	3.2	•5	68.0	23.5
1.6	2.0	•3	86.3	18.3
1.0	1.26	.1	96.10	9.8
.63	•79	1	99.30	3.2
•40	• 50	3	99.92	.62

Particle Size,d (microns)	Mean Particle Size,d (microns)	log đ	Percent Greater Than d	Frequency (percent)
10	12.6	1.1 .	•0	
6.3	7.9	•9	10.0	10.0
4.0	5.0	•7	29.0	19.0
2.5	3.2	•5	50.7	21.7
1.6	2.0	•3	70.0	19.3
1.0	1.26	.1	84.4	14.4
•63	•79	1	93.3	8.9
•40	• 50°	3	97.4	4.1
.25	•32	5	99.28	1.88
.16	.20	7	99.81	•53

Particle Size,d (microns)	Mean Particle Size,d (microns)	log đ	Percent Greater Than d	Frequency (percent)
25	32	1.5		
16	20	1.3	.25	.25
10	12.6	1.1	10.4	10.15
6.3	7.9	•9	20.7	10.3
4.0	5.0	•7	24.2	3.5
2.5	3.2	•5	30.0	5.8
1.6	2.0	•3	41.3	11.3
1.0	1.26	.1	62.0	20.7
•63	•79	1	86.1	24.1
•40	• 50	3	97.0	10.9
.•25	•32	5	99.67	2.67
.16	.20	7	99.98	•31

SIZE FREQUENCY DATA FOR BARIUM CHROMATE-LOT MP 30701

Particle Size,d (microns)	Mean Particle Size,d (microns)	log d	Percent Greater Than d	Frequency (percent)
40	50	1.7	.02	, ·
25	32	1.5	•58	•56
16	20	1.3	5.0	4.42
10	12.6	1.1	15.0	10.0
6.3	.7.9	•9	22.7	7.7
4.0	5.0	•7	28.7	6.0
2.5	3.2	•5	34.2	5.5
1.6	2.0	•3	40.0	5.8
1.0	1.26	.1	53.5	13.5
.63	•79	1	75.5	22.0
•40	• 50	3	90.04	14.9
.25	•32	- •5	97•4	7.0
.16	.20	7	99.54	2.14

Particle Size,d (microns)	Mean Particle Size,d (microns)	log d	Percent Greater Than d	Frequency (percent)
40	50	1.7	.15	
25	32	1.5	13.3	13.15
16	20	1.3	35.0	21.7
10	12.6	1.1	53.0	18.0
6.3	7.9	.9	64.0	11.0
4.0	5.0	•7	70.0	6.0
2.5	3.2	•5	74.8	· 4.8
1.6	2.0	•3	80.4	5.6
1.0	1.26	.1	89.0	8.6
.63	•79	1	95.3	6.3
•40	• 50	3	98.4	3.1
.25	• 52	5	99.67	1.27
.16	.20	7	99.91	.24

SIZE FREQUENCY DATA FOR BARIUM CHROMATE-LOT MP 31801

Particle Size,d (microns)	Mean Par <u>t</u> icle Size,d (microns)	log d	Percent Greater Than d	Frequency (percent)
25	32	1.5	6.2	6.2
16	20	1.3	32.0	26.0
10	12.6	1.1	51.5	19.5
6.3	7.9	.9	61.0	9.5
4.0	5.0	•7	66.0	5.0
2.5	3.2	•5	71.2	5.2
1.6	2.0	•3	79.4	8.2
1.0	1.26	•1	88.6	9.2
63	•79	1	96.4	7.8
•40	•50	3	99.3	2.9
•25	•32	5	99.93	•63

TABLE 3	35
---------	----

SIZE FREQUENCY DATA FOR BARIUM CHROMATE-LOT B & C FINE

Particle Size,d (microns	Mean Particle Size,d (microns)	log đ	Percent Greater Than d	Frequency (percent)
40	50	1.7		
25	32	1.5	.06	•06
16	20	1.3	•43	•37
10	12.6	1.1	2.3	1.87
6.3	7.9	•9	9.3	7.0
4.0	5.0	•7	24.7	15.4
2.5	3.2	•5	50.5	25.8
1.6	2.0	•3	73.8	23.3
1.0	1.26	•1	90.6	16.8
•63	•79	1	97.6	7.0
•40	.50	3	99.58	1.98
.25	• 32	 5	99.95	•37

SIZE FREQUENCY DATA FOR BORON-LOT TRONA 571

Particle Size,d (microns)	Mean Particle Size,d (microns)	log d	Percent Greater Than d	Frequency (percent)
16	20	1.3	•0	
10	12.6	1.1	6.4	6.4
6.3	7.9	•9	22.2	15.8
4.0	5.0	•7	39.0	16.8
2.5	3.2	•5	55.0	16.0
1.6	2.0	•3	69.0	14.0
1.0	1.26	.l	81.2	12.2
•63	•79	1	89.8	8.6
•40	• 50	3	95.2	5.4
.25	•32	5	98.1	2.9
.16	.20	7	99.32	1.2
.10	.126	9	99.8	•5

SIZE FREQUENCY DATA FOR BORON-LOT TRONA 419

Particle Size,d (microns)	Mean Particle Size, d (microns)	log d	Percent Greater Than d	Frequency (percent)
16	20	1.3	•0	
10	12.6	1.1	3.5	3.5
6.3	7.9	•9	16.0	12.5
4.0	5.0	•7	32.3	16.3
2.5	3.2	•5	49.6	17.3
1.6	2.0	•3	64.6	15.0
1.0	1.26	•1	77.0	12.4
.63	•79	1	87.4	10.4
•40	• 50	3	94.3	⁻ 6 . 9
.25	•32	 5	97.8	3.5
.16	.20	7	99.43	1.63
.10	.126	9	99.93	• 50

٦

SIZE FREQUENCY DATA FOR BORON-LOT HCST 873

Particle Size,d (microns)	Mean Particle Size,d (microns)	log d	Percent Greater Than d	Frequency (percent)
16	20	1.3	•00	、
10	12.6	1.1	.05	.05
6.3	7.9	•9	10.02	10.15
4.0	5.0	•7	28.0	17.2
2.5	3.2	•5	42.5	14.5
1.6	2.0	•3	54.0	11.5
1.0	1.26	.1	66.6	12.6
•63	•79,	1	79.3	12.7
•40	•50	3	91.0	11.7
•25	•32	5	98.0	7.0
.16	.20	7	99.80	1.8

SIZE FREQUENCY DATA FOR BORON-LOT HCST 900

Particle Size,d (microns)	Mean Particle Size,d (microns)	log đ	Percent Greater Than d	Frequency (percent)
63			.12	
40	50	1.7	•64	.52
25	32	1.5	2.3	1.66
16	20	1.3	5.5	3.2
10	12.6	1.1	11.6	6.1
6.3	7.9	•9	20.8	9.2
4.0	5.0	•7	32.8	12.0
2.5	3.2	•5	48.8	16.0
1.6	2.0	• 3	64.0	15.2
1.0	1.26	.1	79.0	15.0
•63	•79	1	90.05	11.5
:40	.50	3	96.9	6.4
.25	.32	5	99.6	2.7
.16	•20	7	99.99	•39
.10	.126	9		

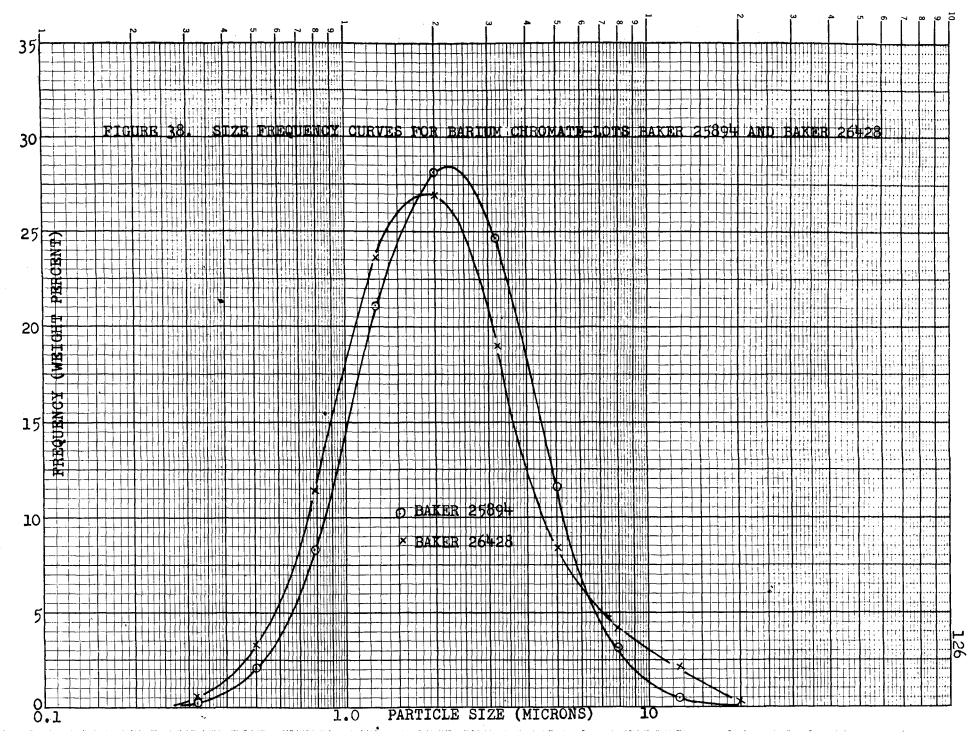
SIZE FREQUENCY DATA FOR BORON-LOT HCST 954

Particle Size,d (microns)	Mean Particle Size,d (microns)	log d	Percent Greater Than d	Frequency (percent)
40	50	1.7	•35	
25	32	1.5	1.55	1.2
16	20	1.3	4.6	3.0
1.0	12.6	1.1	10.06	6.0
6.3	7.9	•9	20.0	9.4
4.0	5.0	•7	31.5	11.5
2.5	3.2	•5	44.7	13.2
1.6	2.0	•3	57.4	12.7
1.0	1.26	.1	70.0	12.6
•63	•79	1	80.4	10.4
•40	•50	3	88.2	7.8
.25	•32	5	93.4	5.2
.16	.20	7	96.6	3.2
.10	.126	9	98.5	1.9

SIZE FREQUENCY DATA FOR BORON-LOT UMC 1992

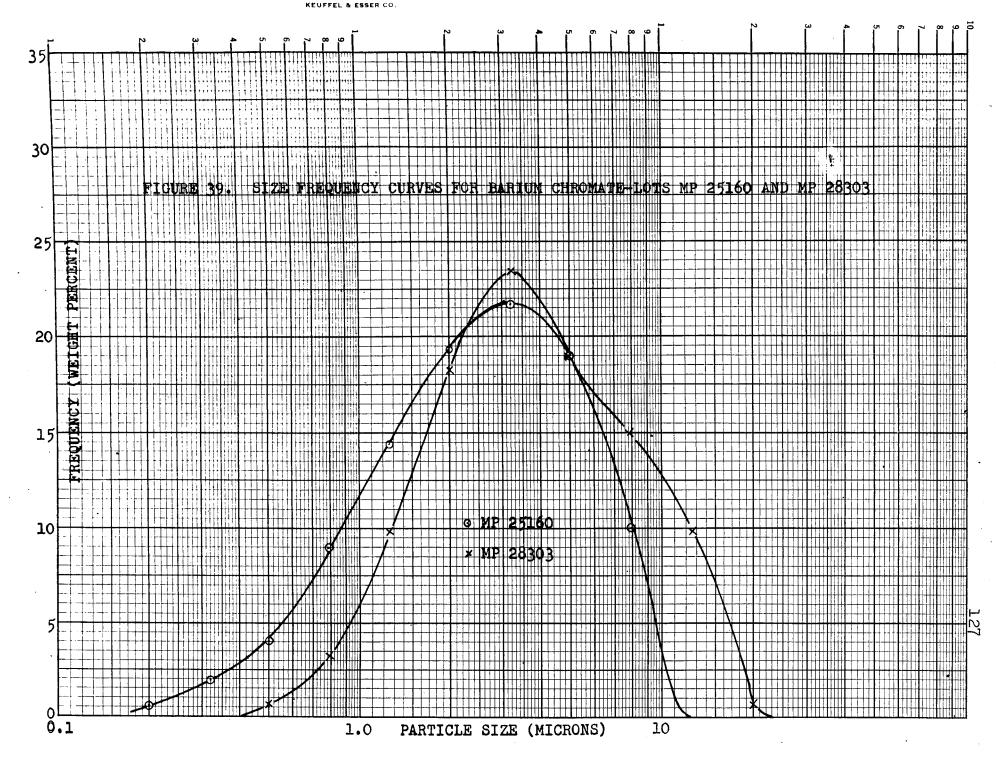
Particle Size,d (microns)	Mean Particle Size,d (microns)	log d	Percent Greater Than d	Frequency (percent)
63			•0	
40	50	1.7	• 05	•05
25	32	1.5	4.0	3.95
16	20	1.3	18.4	14.4
lÓ	12.6	1.1	41.0	22.6
6.3	7.9	•9	61.0	20.0
4.0	5.0	•7	75.5	14.5
2.5	3.2	•5	88.0	12.5
1.6	2.0	•3	95.0	7.0
1.0	1.26	.1	98.8	3.8
.63	•79	1	99.93	1,13

SIZE FREQUENCY DATA FOR BORON-LOT UMC 1993

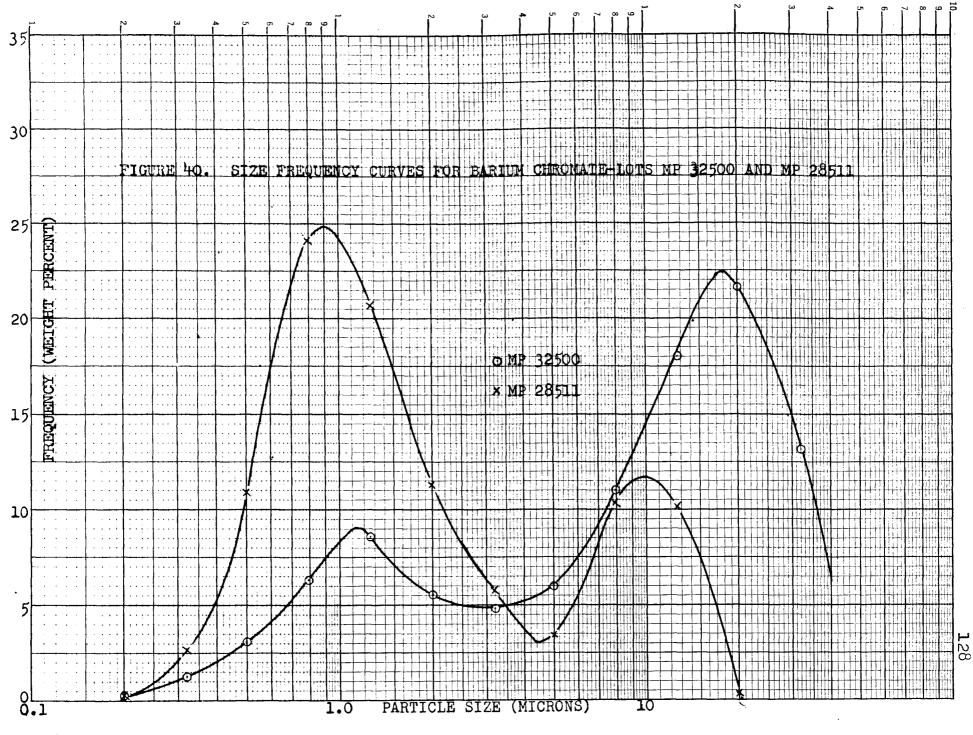

Particle Size,d (microns)	Mean Particle Size,d (microns)	log d	Percent Greater Than d	Frequency (percent)
63			.03	
40	50	1.7	•44	•41
25	32	1.5	2.6	2.16
16	20	1.3	9.5	6.9
10	12.6	1.1	24.0	14.5
6.3	7.9	•9	43.0	19.0
4.0	5.0	•7	64.0	21.0
2.5	3.2	•5	81.0	17.0
1.6	2.0	•3	92.2	11.2
1.0	1.26	.1	97.8	5.6
•63	•79.	1	99.68	1.88
.40	•50	3	99.99	•31

KEUFFEL & ESSER CO.

00 ف Б 35 Π 1111 . . ----T 4.4.4 . i... . . +++++++ 1444 111 1-1-1-. . . . ::. +++÷11 : i . 111 1444 • • • +++ 1 ---. 144 . . . 1:17 30 L. 1 • • • Ō SIZE FREQUENCY CURVES FOR BARIUM FIGURE 37 |+++ ╏╻ CHROMATE LOTS BAKER 91104 AND BAKER 30388 ΠT T TT 25 CENT • • PER 4... ; 4.1 11-. . Π E 20 WEL TTT $\overline{11}$ 111 :11 REQUENCY : ! . Ð 15 ПП . . 4.4. . . . 111 -----TTT + 11. . . . • • ; 10 t 111 O BAKER 91104 ΠП T l i l × BAKER 30388 TT . A . 44 . . . N. 1 Π ┝┼**┇**┑┾┑╸ ┝┤**┇**┥┝┥ 0Ľ 1111111111 ┼┫─┼┼┽┼┫┼┼┥┯┫┥┼┼ 0.1 10 1.0 PARTICLE SIZE (MICRONS)

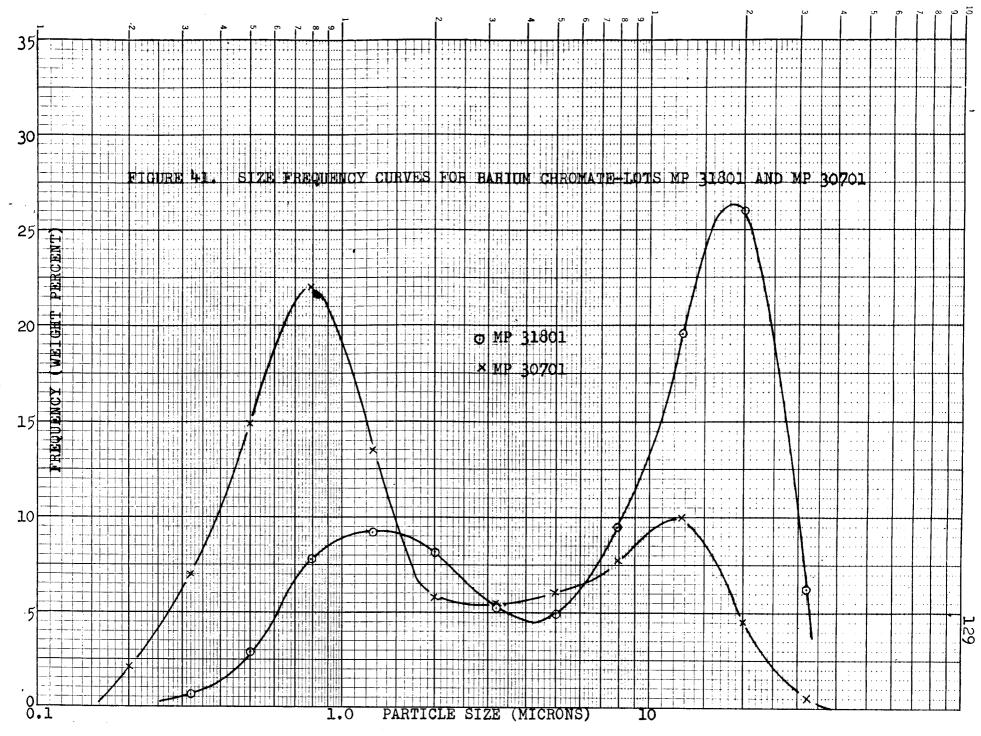

KESSEMI-LOGARITHMIC 46 5490 3 CYCLES X 70 DIVISIONS HADE IN U.S.A

KEUFFEL & ESSER CO.



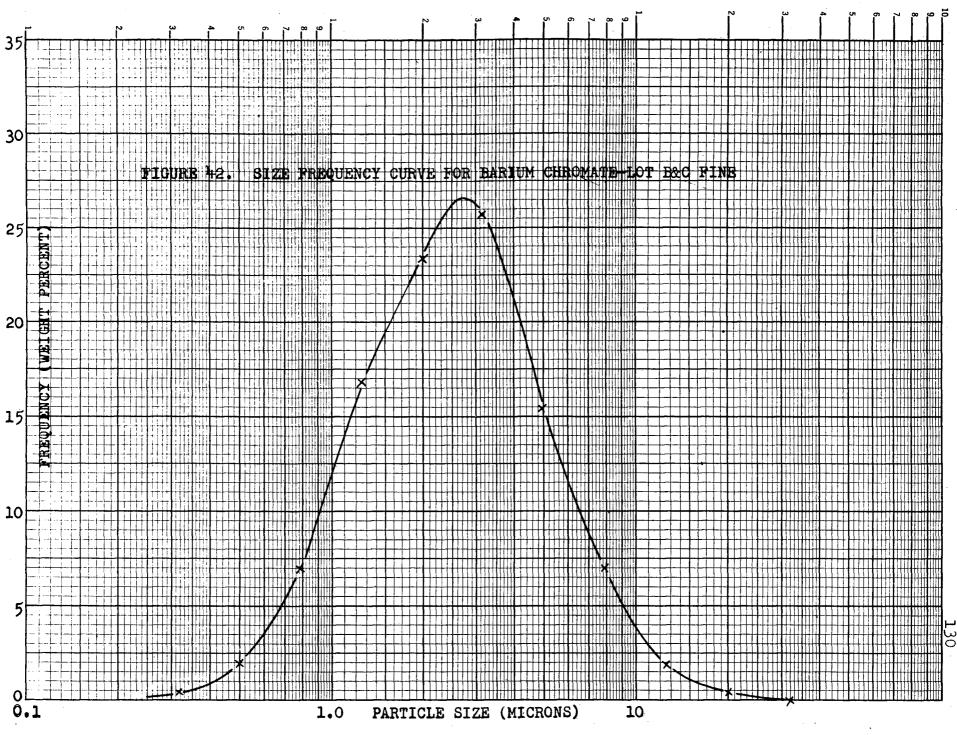
KE SEMI-LOGARITHMIC 46 5490

3 CYCLES X 70 DIVISIONS ... HADE IN U.C.A

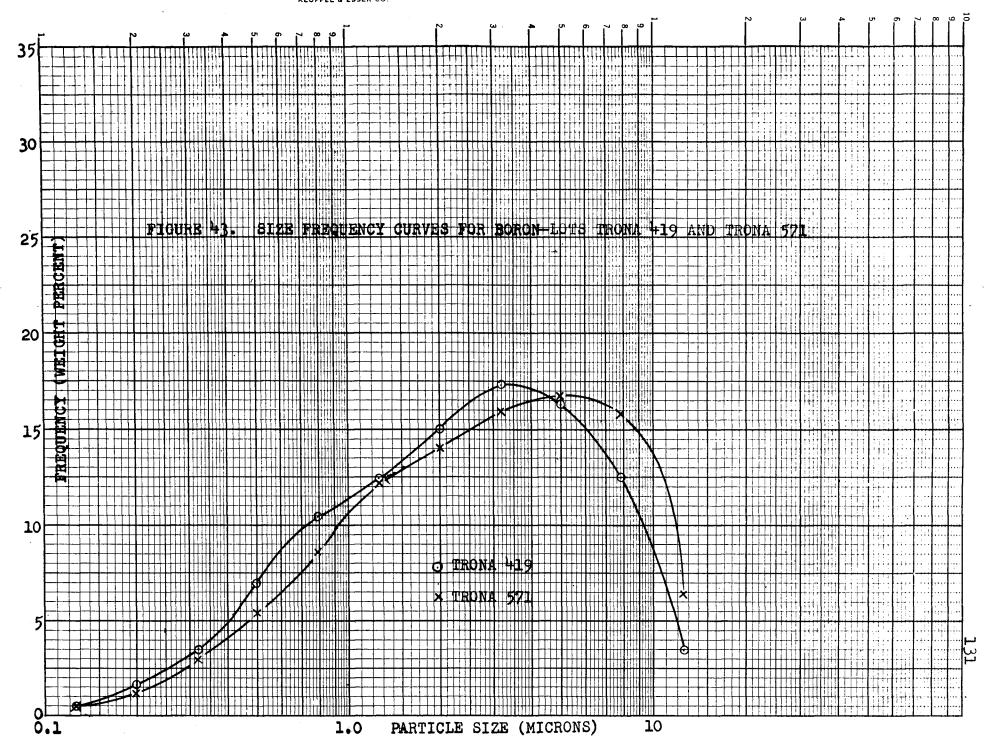


NEUFFEL & ESSER CO.

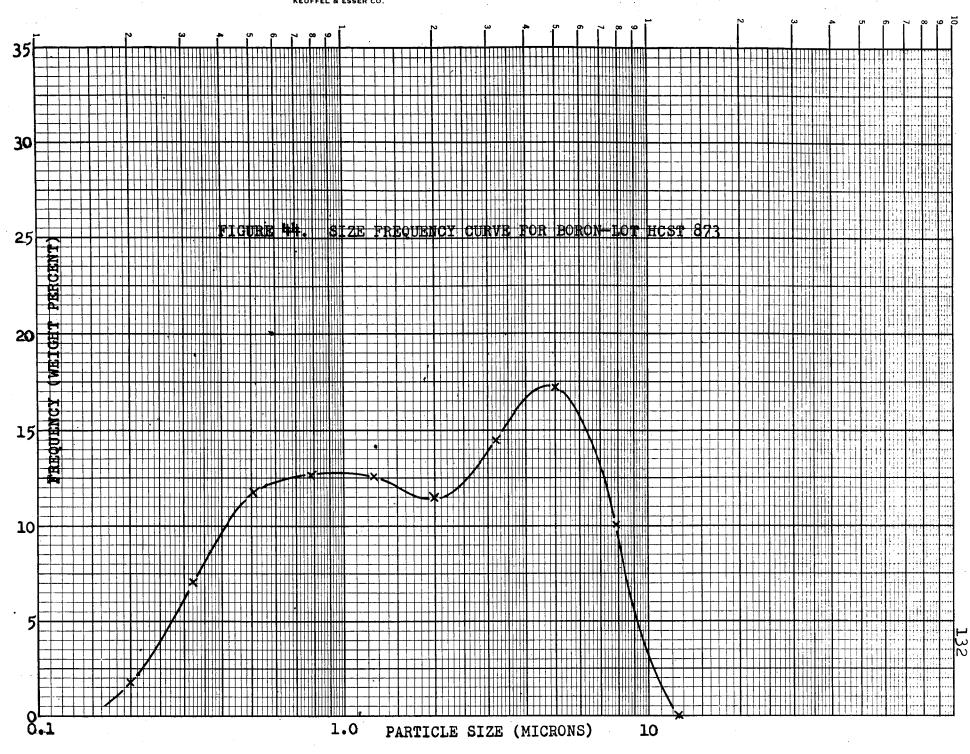
The office of Et


HIN HE 3 CYCLES X 75 DIVISIONS - MORNES X KEUFFEL & ESSER CO.

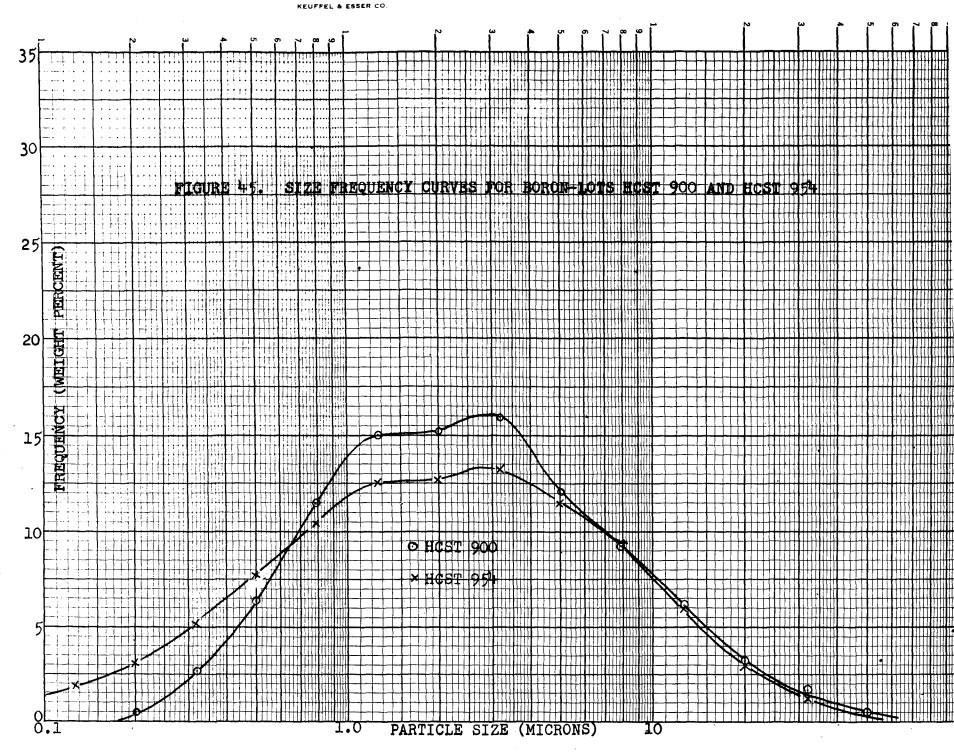
وريقسه مريم الراجي والمتدار بالمري


.

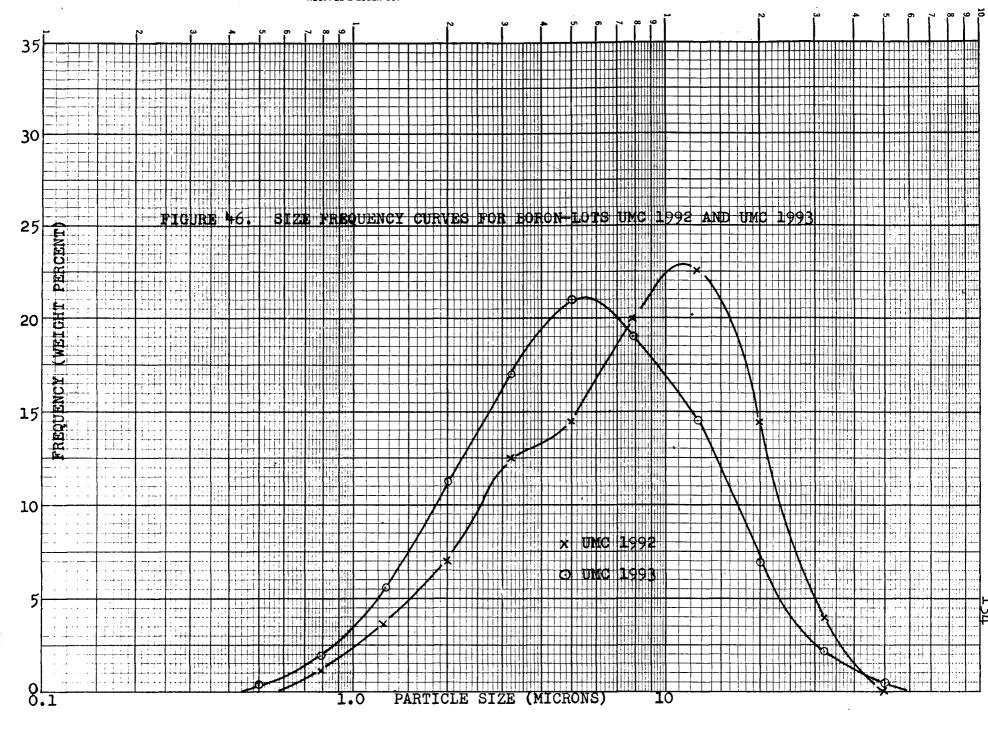
S CYCLES X 70 DIVISIONS ... MIDE IN U.S. K



KEUFFEL & ESSER CO.


R N Dame 3 CYCLES X 70 DIVISIONS - MADE IN SIGNA KEUFFEL & ESSER CO.

KEUFFEL & ESSER CO.



KEE SEMI-LOGARITHMIC 46 5490

KT SEMI-LOGARITHMIC 46 5490 3 CYCLES X 70 DIVISIONS MADE IN U.S.A.

KEUFFEL & ESSER CO.

Depth of Before Igniter Loading (in.)		Burning Bu	mposition rning Rate (in./sec)
-049 -535 -056 -014 -051 -050 -048 -060	.015 .017 .019 .009 .016 .014 .015	1.004 999 998 1.011 952 988 967	•799 •800 •797 •798 •798 •8113 •812 •831

	Column	Fuze	Composition
	After igniter	Burning	Burning Rate
	Loading (in.)	Time (sec.)	(in./sec)
-039 -040 -045 -053 -038 -041 -037 -038 -043 -043 -044 -058 -054 -058 -054 -058 -054 -058 -054 -058 -054 -058 -054 -058 -054 -058 -054 -058 -054 -058 -054 -058 -054 -058 -058 -054 -058 -058 -054 -058 -058 -054 -058 -058 -054 -058 -038 -038 -034 -034 -034 -034 -034 -033	.000 .006 .001 .017 .003 .003 .000 .001 .001 .001 .007 .009 .012 .018 .022 .018 .022 .018 .004 .001 .005 .001	1.089 1.125 1.119 1.056 1.118 1.111 1.115 1.121 1.138 1.132 1.086 1.098 1.072 1.06 1.115 1.105 1.105 1.128 1.124 1.113 1.112	.746 .719 .720 .755 .728 .728 .728 .723 .713 .711 .740 .738 .732 .741 .719 .748 .730 .710 .748 .730 .710 .733 .729 .735 .715 .782 .726 .732

Column After igniter Loading (in,)		Composition Burning Rate (in./sec)
045 050 047 042 049 049 049 044 046 046 046 046 046 051 045 045 045 049 045 049 044 041 049 043 0443 049	1.176 1.201 1.097 1.132 1.087 1.085 1.113 1.171 1.132 1.174 1.219 1.139 1.106 1.160 1.131 1.148 1.099 1.195 1.206 1.156 1.123 1.187 1.173	670 652 718 700 694 723 726 708 672 696 666 666 666 666 666 667 682 714 676 682 716 663 650 684 704 665 668

Depth of Before Igniter Loading (in.)	After Igniter	Fuze Burning Time (sec)	Composition Burning Rate (in./sec)
 051 045 046 043 044 055 055 045 056 049 050 050 054 052 042 054 054 055 048 	016 013 013 016 011 019 018 013 021 011 014 015 014 015 014 015 014 015 014 015 014 015 014 015 014 013 020 019 013 013	l.h0 l.259 l.098 l.147 l.11 l.089 l.125 l.086 l.048 l.048 l.085 l.091 l.128 l.135 l.108 l.156 l.116 l.110 l.111 l.088 l.156 l.101	699 634 729 700 724 730 705 739 757 765 738 732 707 699 718 694 716 717 719 719 721 731 687 727
•050	•016	1.109	.712

	Column After Igniter Loading (in.)		Composition Burning Rate (in./sec)
.065 .068 .064 .067 .059 .063 .055 .066 .060 .070 .075 .079 .063 .067 .066 .049 .069 .059 .059 .067 .059 .067 .057	.026 .029 .023 .028 .029 .026 .022 .025 .030 .024 .032 .037 .039 .026 .033 .029 .011 .029 .011 .029 .0140 .024 .035 .032 .022	1.134 1.135 1.132 1.098 1.097 1.089 1.097 1.085 1.103 1.122 1.03 1.122 1.03 1.122 1.092 1.090 1.154 1.079 1.126 1.096 1.096 1.096 1.130	.691 .688 .694 .714 .698 .724 .718 .730 .709 .709 .702 .674 .695 .705 .705 .725 .711 .715 .715 .692 .709 .699

	Column After Igniter Loading (in.)		Composition Burning Rate (in./sec)
.056 .061 .057 .062 .056 .059 .064 .061 .061 .061 .057 .056 .061 .053 .064 .059 .062 .065 .061 .061 .062 .061	-019 -022 -018 -024 -019 -019 -025 -028 -019 -023 -019 -023 -019 -023 -019 -023 -019 -023 -015 -030 -025 -025 -025 -025 -025 -022 -024 -024 -024 -024 -022	1.354 1.339 1.344 1.346 1.348 1.343 1.343 1.343 1.343 1.334 1.336 1.355 1.358 1.358 1.358 1.358 1.3519 1.363 1.363 1.354 1.354 1.342 1.328	-580 -599 -585 -582 -582 -582 -582 -582 -582 -582

	Column After Igniter Loading (in)		Composition Burning Rate (in./sec)
• 048	•011	1.016	•792
•653 •061	•017 •022	1.026 1.078	•778
•055	017	1.009	•791
.065	.030	1.018	.771
• 047	•009	1.042	•738
• • 059	.022	1.007	•752
•054	•017	1.012	•788
•053 •053	014 005	1.055 1.026	•757 •783
•057	.020	1.042	.762
.055.	.017	1.029	.775
•063	.024	1.001	•789 ·
•058	•069	• 949	.821
• 057	•016	1.045	.761
•050 068	•027 025	1.034	•780 755
•068 •055	.025 .021	1.041 1.056	•755 •752
• 0 <u>4</u> 8	.008	1.032	.780
€ 058	.064	1.041	.760
9 052	•0 1 4	1.011	•79 <u>3</u>
•045	•009	1.038	•776
•050 01 F	•014 008	1.037	•772 •801
•045	•008	1.009	● OOT

Depth of	After Igniter	Fuze	Composition
Before Igniter		Burning	Burning Rate
Loading (in.)		Time (sec)	(in./sec)
•043	.004	1.079	•749
•045	.005	1.114	•723
•044	.019	1.065	•753
•045	.012	1.085	•741
•045	.001	1.109	•728
•040	.006	1.079	•150
•037	.002	1.084	•750
•044	.007	1.099	•733
•046	.004	1.102	•731
•043	.003	1.083	
•038	.002	1.114	•728
•042	.003	1.094	•739
•047	•010	1.088	•738
•040	-	1.111	•730
•042	.002	1.109	•730
•037		1.109	•732
•036 •045	.015	1.113	•726 •741
•044	.002	1.104	•732
•045		1.088	•743
•045	•002	1.106	•730
•045	•006	1.060	•761

Depth of	After Igniter	Fuze	Composition
Before Igniter		Burning	Burning Rate
Loading (in.)		Time (sec)	(in./sec)
.043	.010	1.188	.666
.042	.007	1.215	.652
.057	.018	1.141	.683
.042	.007	1.166	.680
.051	.017	1.198	.653
.049	.011	1.163	.677
.043	.014	1.182	.668
.044	.007	1.188	.666
.044 .046 .042 .045 .040 .040 .049 .040 .044 .043 .042	.007 .010 .009 .010 .013 .014 .008 .003 .010 .007	1.165 1.136 1.186 1.173 1.190 1.164 1.175 1.219 1.149 1.164	.680 .695 .668 .673 .666 .675 .675 .653 .689 .681
.042	.019	1.153	•684

<u> </u>	Column After Igniter Loading (in.)	0	Composition Burning Rate (in./sec)
Loading (in.) .043 .039 .046 .048 .044 .044 .045 .048 .045 .048 .043 .045 .048 .047 .044 .043 .050	Loading (in.) .006 .016 .011 .017 .019 .007 .007 .007 .007 .008 .005 .013 .006 .004 .009	Time (sec) 1.329 1.329 1.329 1.329 1.318 1.321 1.349 1.371 1.335 1.352 1.352 1.340 1.340 1.342 1.299 1.336 1.339 1.327	(in./sec) .594 .594 .592 .594 .594 .585 .575 .589 .589 .584 .588 .587 .605 .591 .591 .590
.041 .044 .053 .040 .045	.016 .006 .013 .006 .013	1.312 1.353 1.340 1.333 1.327	.601 .584 .583 .594 .593

Depth of Column	Fuze	Composition
Before Igniter After Igniter	Burning	Burning Rate
Loading (in.) Loading (in.)	Time (se c)	(in./sec)
.055 .029	1.317	•588
.056 .010 .055 .024	1.370	•569
•057 •025	1.338	•579
•054 •007	1.340	•584
.062 .011	1.348	•575
.063 .032	1.350	•569
.069 .014	1.296	•594
.052 .020	1.325	•588
•053 •022	1.325	•587
•053 •020	1.344	•579
.058 .004	1.392	•560
.059 .026	1.325	•583
•054 •062 •029	1.344 1.318	•577 •584
.057 .024 .059 .024	1.326 1.319	•584
•065 •032	1.382	•586 •554
•059 •025	1.340	•577
•060 •030	1.345	•568
.058 .026 .062 .011	1.325	•584 •581
.060 .028	1.351	•56 7
.060 .026	1.331	• 5 76

BURNING RATE DATA-COMPOSITION 11

1

	Column After Igniter Loading (in.)		Composition Burning Rate (in./sec)
.051 .042 .037 .064 .075 .038 .035 .055 .062 .066 .058 .033 .038 .033 .038 .072 .050 .037	.014 .006 .003 .074 .038 .003 .001 .024 .026 .050 .022 .001 .002 .037 .016 .002	2.860 2.832 2.836 2.344 2.471 2.831 2.817 2.567 2.596 2.912 2.591 2.839 2.801 2.513 2.801 2.587	270 276 277 322 303 277 280 299 294 259 294 259 296 278 280 - 278

Depth of	After Igniter	Fuze	Composition
Before Igniter		Burning	Burning Rate
Loading (in.)		Time (sec)	(in./sec)
•055	.020	2.283	•340
•068	.036	2.380	•320
•055	.021	2.354	•329
•055	.023	2.231	•348
•055	.027	2.383	•325
.058 .057 .052 .042	.025 .029 .020 .020	2.290 2.346 2.325 2.220	•337 •329 •335

Depth of Column Before Igniter After Igniter Loading (in.) Loading (in.) Fuze Composition Burning Burning Rate (in./sec). Time (sec) 4.154 .037 .013 .189 4.101 4.291 .039 .012 .191 .035 .183 .024 4.062 .188 .062 .039 4.041 .188 .043 .012 4.167 .187 •04ē 4.077 .015 .190 .048 4.032 .016 .192 4.137 3.964 .189 .040 .010 .192 .064 .010

Depth of C Before Igniter Loading (in.)	After Igniter	Fuze Burning Time (sec)	Composition Burning Rate (in./sec)
.067	.029	5 372	.141
.060	.026	5.341	•143
.064	.028	5•54⊥	.142
.064	.025	5.320	.143
.069	•031	5.370	.140
.067	.030	. 5.413	.140
.062	.028	5.410	.141
.064	.017	5.276	.144
•057	.022	5.517	.139
.067	.029	5.357	.141
.056	.022	5.425	.141
.065	.027	5.273	•144
.063	.026	5.301	•143
•055	.018	5.414	•142
•065	.029	5.262	•144
.065	.029	5.403	•140
.060	.026	5.499	•139
.062	.026	5.406	.141

Depth of		Fuze	Composition
Before Igniter	After Igniter	Burning	Burning Rate
Loading (in.)	Loading (in.)	Time (sec)	(in./sec)
.037	-	•945	.867
•051	.010	•967	.832
.050	.006	•974	.829
	.003	.983	.824
.047	.008	·983	.822
.064	.012	.949	.840
.054	.014	.949	.846
.050	.005	.961	.842
.051	.006	.970	.832
•045	.003	.967	.840
-	_	•982	.823
•047	.006		
•057	.015	•930	•862 8// 2
.050	.007	•960	.842
•049	.007	•955	.847
.051	•009	•978	. 823
•045	.005	•963	. 843
.040	.001	•94 7	•862
.048	.008	•947	•854
.046	.005	.936	.867
.043	.002	.955	.852

Depth of Column Before Igniter After Ignoted Loading (in.) Loading		Composition Burning Rate (in./sec)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.391 2.325 2.359 2.353 2.371 2.384 2.368 2.320 2.330 2.354 2.427 2.387 2.387 2.387 2.387 2.291 2.462	-333 -341 -331 -332 -335 -330 -334 -342 -341 -335 -326 -333 -332 -346 -322
.041 .001 .035 .003 .044 .010 .044 .006	2.355 2.402 2.255 2.369	•336 •331 •349 •332

Depth of Column	Fuze	Composition
Before Igniter After Igniter	Burning	Burning Rate
Loading (in.) Loading (in.)		(in./sec)
•045 •035	2.267	• 348
.027 .015	2.347	•343
•048 •033	2.318	•339
.034 -	2.326	• 343
.030 .019	2.340	•342
.030 .017	2,356	• 340
.034 .018	2.389	• 334
.030 -	2.274	•352
.033 .022	2.283	•350
.034 .029	2,215	•359
•032 •024	2.304	•346
.041 .029	2.272	•348
.035 .025	2.284	•349
.035 .021	2.268	•352
•034 •025	2.258	•353
•036 •019	2.314	•345
•032 -	2.367	.338
•035 •020 ·	2.284	•350
.029 .017	2.242	•358

Depth of 6 Before Igniter Loading (in.) .052 .048 .042 .043 .044 .046 .046 .046 .046 .046 .046 .046	After Igniter	Fuze Burning Time (sec) 4.874 4.872 4.954 4.823 4.884 4.894 4.905 4.881 4.874 4.814 - 4.790 4.783 5.009 4.787 4.945 4.858	Burning Rate
		4.858 - 4.844 4.811	.160 .162 .163

Depth of Column Before Igniter After Ignite Loading (in.) Loading (in.		Composition Burning Rate (in./sec)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.960 3.021 2.930 2.908 3.008 3.019 2.909 2.939 2.939 2.939 2.927 2.944 2.953 2.927 2.926 2.942 2.942 2.968 2.940	.264 .260 .263 .270 .259 .259 .264 .266 .266 .266 .268 .266 .268 .266 .268 .265 .264 .265 .264 .263 .263 .263
.047 .001	2.956	. 265

GLOSSARY

APD

Average Particle Diameter, as determined with the Fisher Sub-Sieve Sizer.

B&C

Barium and Chemicals Corporation.

Baker

J. T. Baker Chemical Company.

HCST

Hermann C. Stark Company, Division of Shieldalloy Corporation.

MP

Mineral Pigments Corporation.

MSA

Mine Safety Appliances Company.

MSA dm

Mean particle diameter, calculated by integration of the particle size - frequency curves.

MSA 50 Percent Point

Point corresponding to intersection particle size distribution curve (particle size vs. percent greater than size), drawn from MSA particle size analysis results, and "50 percent greater than size" line.

Trona

American Potash and Chemical Company.

UMC

United Minerals and Chemicals Corporation.