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ABSTRACT

The design of optimum polynomial digital data
.smoothers (filters) is considered for linear‘and adaptive
processling s&%téms. It 1s shown that a significant
improvement in performance can be obtalned by using
linear smoothers that take into account known a priori
constraints or distributions of the input signal. The
procedure for designing optimum (minimum mean squaré
error) adaptive polynomial data smoothers 1s then dis-
cussed and analyzed. The optimum émoother makes use of
a prioril signal statistics combined with an adaptive
Bayesian welghting of a bank of conditionally optimum
smoothers. Use of this technique permiﬁs large improve-
ments in performance with a minimum of addit.onal syﬁpem

complexity. .
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1.0 INTRODUCTION o

Polynomial data smoothers, because of their ease
of handling, and their attractive properties, have had
wldespread usage 1n a varlety of data processing appll- |
cationé. Heretofore,_fhe design of'these.smoothers has
‘been based oﬁly upon the minimum required a priori
1nformat1§n necessary for their design, pamély the-.,
degree of the input.éignal, More often than not, how-
ever, édditional a priorli information 1s available to
the eméother designer, Moreover, during the course of
the actual data processing, additional information about
the input signal can become avallable. It is the pur-
pose of this dissertation to consider thé design of
optimum polynomial filters elther when a priori infor-
‘mation 1s available to the designer 6r when information
becomes avallable during the course of the data proces-
sing. The latter procedure gives rise to what is

commonly called a self-adaptive processing system.



2.0 APPROACH TO THE PROBLEM

information available to .the smoother designer con-
cerning certain characteristios of the input signel‘is
often not effectively used. This informatlon might be of |
. the form, for example, that the maximum acceleration of
an object, due to mechanical constraints, is equal to 100

‘;i‘t/sec2

» or even less restrictively, that its velocity is
less than the speed of light. We might also know that due
to uncertaintylin rocket design the actual acceleration
can be described‘by some probability distribution with
known mean and‘varience. The use of the above type of
‘information, which 1s often avallable, can improve the
estimation accuracy if properly used. This problem is
considered in Chapter.S.O where the optimum (minimum

mean square error) polynomial filter design 1s presented
when known constraints on the input.signal‘derivatives-
are avallable. In Chepter 6.0, examples are given
illustrating the improvement obtainable as oompared with

normal polynomlal filters.*

In addition to a priori information available to
~ the smoother designer, initial processing of the data

yields information which can be used for further

*Normal polynomial filters are briefly discussed in —
Chapter 4.0, with complete detalls shown in Appendices
I and II.



processing. This "learning" feature of a device 1is

referred to as self-adaptation. In Chapters 7.0 and 8.0

-the optimum adaptive filter 1s shown to be compdséd~of a

weighted sum of subfilters, Specific illustrations of

these techniques are presented in Chapter 9.0 for sev- .

~eral dlscrete, finlte memory‘smoothers.' Included . are
‘some sample results sdeiné the improvements obtainable

' by using adaptive techniques.



3.0 REVIEW OF PERTINENT PRIOR WORK

- The importance and usefulness of optimum filtering:
~ and prediction in our modern electronic systems environ;
; ment has been clearly demonstrated during the past decade.
"Pfeeent-day theories of smoothing and prediction méy be
. sald to_ha#e gfigihated with the classlc papers of ’
'fWienefsl ahdeolmogoroff23, which were written during
World War II. In fact much of the research on predic-
'ﬁion and flltering has been concerned with various exten-
sions of the Wiener Theory. In his ploneering work,
4w1ener31 showed that problems of prediction of random
signals and detection of signals of known form in the
presence'of random nolise léad to the so-called Wiener-
Hopf integral equation. He gave a method (spectral
factorization) for the solution of this integral equa-
tion in the practically 1mportantbspecial case of sta-
tionary statlistlcs and rational spectra. The method |
involves performing a least squares operation on obser-.
vations assumed avallable for all past t;mes. Under
certain conditions, Optimality‘under the least squares
error criterion implies optimality under a wide class of
criteria. Such conditions have been found by'Benedict
and Sondhiu and.indépendently by shermanea.' Zadeh and
Ragazzini32’33 modified Wlener theory for observations

which are avallable oniy over a past interval of finite
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dﬁration. They also.developed the useful and reﬁsonable
approach of speclfying ﬁhat.the nonrandom part of the
signal is known to be a polynomial in time of degree not
greatér than some fixed integer. Thelr continuous finite
memory filters have léd to many other variations on this

basiec approach.

19 .. .25 6

» Lees™ , Bergen,
1

Mahy authors,‘including Johnson

Darlingtonl3, Blu 8'11, Franklinl5’l6

» and Alterman .have
discussed discrete, finite-memory ﬁolynomial filters.
Blum uses an orthogonél polynomial éignal representation
and develops a recursive dlscrete filter. Blackman7
developed the technique of cascaded simple sums smoothing
as 'a substitute for optimum smoothing usingAa digital
computer for prediction of sampled data. Cascaded simple
sums smoothers obtaln estimates of the dépivatives of
the 1nput signal by averaging compound differences of the
nolsy input data. The advantage of cascaded simple sums
1s the eliminatlon of most of the multiplications and
many of the arithmetic operatiéns required in the optimum
,conﬁolution type smoother. Howard and Rauchl8 consider
the design of an optimum polynomial filter with a simble
a prioﬁi constraint using a minimax error criterién.

- ' : _r
.One,of‘the_newest.and most promising areas of inves-

tigation in prediction theory i1s the concept oandaptivé
systems, Normally, the data required by optimum filter-



theory are unknown a priori, so that a filter in the
eﬁvironment.must "learn" or'"adapt"-to these as neces-
sary. Adaptivity has not been preclsely defined to date
and many of the adaptive systems are based on parametric
" methods. Most of .the work in this field has not been
concerned with prediction and flltering as such but with
controlusystem desigh. There has been someAlimited work
1ﬁ the adaptive system area applied directly to filter
and prediction theory. Some of the earliest work was
done by Benner and Drenick5, who were filtering a signal
which could elther be a ramp or a parabola in the pres-
ence of additive, zero mean, Gaussian noise. Thelr fil-
ter chose between two linear subfilters on the basis of
an estimate of the.derivative of the signal part of the
input. Franklin17 attempted to improve on Benner's work
by using the optimum ramp and parabola filters as the
subfilters and choosing between them in a manner which
would minimize the mean square error. Shaw29 also con-

- slders a switching two-mode filter, but rather than -
designing by sﬁccess;ve optimization, he sets up a design
procedure. for simultaneously designing the subfil%ers and

the switching decision rule to minimize mean square error.

24

Kushner~  and Sakrison27 have applied stochastilc

approximation theory to estimation problems with unspeci-

14

fled noise. Follin and Bucy ' consider an adaptive



scheme for a.specialized case where the signal-to-nolse

30 examined a.

ratio is an unknown parameter. Weaver
linear parametric adjustment system; Balakrishnan3 con=-"
siders a nonparametrilc meﬁhod applied to pure prediction,
where no noise is assumed and no stétistical'aséumptions

made,

: Magill24 describes an adaptive approach to the
problem of estimating a scalar-valued, stochastic
process described by an initially unknown parameter
vector., Hls solution 15 limited to those procesées whose
parameter ve¢tor'comeé from a finite set of a priori

known values,

2 describes a digital smoother'technique

Alterman
where the known form of the differential equation for
the input signal is used in conjunction with least squareé
vpolynomial smoothing to obtain an optimﬁm fiﬁite-memory

digital fillter.

This paper 1s essentially concerned wlth the exten-
slon of the above work in twd directions: 1) the design
of optimum polynomial discrete filters whén knowledge of
a priorl statistics and/or constraints on parameters which
describe the lnput signal are avallable and 2) the design
of adaptive, finlte-memory digital filters when the input
signal ;s described by one of a finité number 6f ranges

and/or values of an unknown parameter. -



4,0 CLASSICAL POLYNOMIAL SMOOTHERS

As an 1ntroductioh to the problem under considera-
tion, some of the elementary cohcepts and results of
" classical polynomial smoothing theory are presented in
- thls chapter., Detalled discussion and.derivations are

included in Appendices I and II.

By classlical polynomlal smoothers, we mean those
smoothers which are designed under the assumptlon that
the determinlstlc portion of a signal 1s known to be a
polynomial in time with dégree less than_br equal to a

fixed integer, J.

. Conslder a sampled signal, x(t,), which 1s dis-
turbed by nolse, n(ti), such that

y(t) = x(t,) + n(t,) o (s1)

where y(ti) represent nolsy measurements of x(ti).- We
assume that samples of the input signal are obtained at

uniform tlme intervals of At seconds and that n(ti)'is a

2
o

Further, we assume that n(ti) are independent from sample

zero mean random variable with variance equal to o7,
to sample (i.e. that the aﬁtocorrelation functlion of

. 0 |
n(ti) is given as, R (n(ti), n(t£)> = 0,0y, where 512.18
the Kronecker delta symbol.



We are 1hterested in determining the obtimum-finite
memory dlscrete linear filter to estimate the function,
x(ti), or any of 1ts derivatives, x(m)(ti), given a fihiﬁe
humber, r, of nolsy Samples,}y(ti), extending over a
smoothing (or filtering) time, T, where T = (r-1l)At. We
say a filter 1s dlscrete linear if the transformation of

a finlte input sequence of numbers,
soe V(t_g): Y(t_l): Y(to): V(t+l)’o~-

into a finite output sequence of eétimates,

'....x*(m)(t_a), " sy, 2@ ey, M)y

#1)rees
is given by
(M) (5,) = i (1) y(t,) T - (4-2)
e

Hence x*(m)(ti) 1s a linear combination (welghted aver-
age) of the input sequence, y(t,).  The sequence of
welghts, W(i), is called the weighting sequence or Iimpulse

response of the filter.

fThe symmetrical represenﬁation will be used throughout
this development for simpllcity. The index 1=0 repre-

sents the center of the smoothing interval and 1 = - 551
and 1 = £§l the oldest and 1atest'points respectively.
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We shall be concerned with the question of estimat- -
th . . (m),,
ing the m*" derivative of the input signal | x'7/(t,) | at

some time, t = 7, for the case in which x(t) 1s either a
polynomial of known degree, J, or can be approximated by

a polynomlal over the time interval, T.

The polynomial filter welghting function can bhe
derived using varlous optimality criterla, each of which
leads to identical results for the conditions described
above, These criterlia include least sum of squares
error curve fitting, unblased estimation and minimum
varlance estimation. These results can be obtained in an
extremely useful form by using an orthonormal polynomial
expansioh signal representafion rather than the usual

Taylor's series approach. Let the input signal be given by

' J
Cx(8y) = ) by f(t/a8)  (4-3)
J=0

where the b, are coefficlents related to the Taylor's

1,2 ang the'fJ(ti)'are certain ortho-

series coefficients
normal polynomials described in Appendix I. Let x*(t) be

the estimate of x(t,) at time t = T where

x*(7) = i b; fJ('r/At) C(4-l)
J=0 .
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in which J is called the smoother order or power and the
b; coefficients are to be determined. To satisfy the
"1east squares" error criterion, the expression for the

sum of squared errors given by

o . ) v ' E—— . | 2
Sum of squared errors = 3R = i [y(ti) - x*(ti)]
| | { m - iE%ll'

15 minimized with respect to the coefflicients, b;, This
ylelds

bk =) ¥(by) £ (63/At) (4-6)
i —

th

Consequently from (4-4) the J“* order smoother welght-

ing sequence for the estimate of x*(r),'wJ(i), 1is

Jd

Wy(1) = ;Zo £4(ty/88) £,(c/08) - ()

From Appendlx I, the welghting function for the'mth

derivative estimate of a Jth order smoother at time t =

is given as,
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' J .
W (1) = ) £5(s,/m8) £ (x/at) (4-8)

, J=0 :
This result gives an expllicit formula for the filter
weighting-function (1mpuise respdnse) as a fﬁnction of
‘all system parametera where

| J = s@oother order
m = estimated derivative
At = data spacing
7 = time at which estimate is obtained

fJ(n) = discrete, equally spaced, finite time,
‘ orthonormal polynomials (Appendix Ia)
index 1 = O refers to center of smbothing interval

1= ifill refers to oldest data point

1l = Eal refers to latest data point

Aslde from the curve filtting properties of pdly-
nomlal smoothers, as 11lustrated by the method of deriva-
tion in Appendix I(a),'polynomial filters have other

deslirable properties which we now consider,

As shown in Appendix I(b), the expected value of the

th

estimate of the m " derivative 1s glven as

e[ ®(0] - i by £ (vat) = xB(n) (u-9)
_ _ J=0 .
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1f x(t) 1s é polynomlial of degree K, which 1s equal or .
less than J. Conslder the situation where the input
slgnal 18 a polynomial of degree K, where K > J, the

smoother order, or

x™(5) = ) vy 2m)(s) (4-10)
. J=0

Under these conditlions dynamic or blas error is intro-
duced into the estimate. Define dynamic error in the

th

estimate of them derivative, Dh as

D, = E {x*(m)('r) - x® (o)} (u-11)

It 1s shown in Appendix I that, .

K
D, == ) by £m(r) (4-12)
J=THL

From equation (4-12), we note that the bJ coefficients
for values of J from J+1 to X determine the magnitude of
the dynamic errors. Further, these values of b, are

1 &

proportional™ to the values of the J+ls?jto K

h dgriva-
tives of the input function at the centér of the smoothing
interval [1.e., Taylor's series coefficlents]. Hence,
polynomlial smoother estimates are unblased estimates for |
all derivatives 1f the input signal order ls less fhan

or equal %o J, the smoother order.

¢
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The Taylor's series expansidn of‘the'input signal,

x(t), about t = O is given as,

x(t) = }; a, & (4-13)
In general, Dm can be written in terms of the Taylor's

‘'series coefficients,

D, = 8y €y (4-14)

where the emJ are called dynamlc error coeffliclents.

Specifically, equation (4-12) can be written as

X
m 3 SmJ
J=T41

The emJ coefficlents may be obtained by noting that
for an input signal described by equation (4-13), the -
totél dynamlc error 1s equal to the sum [since we have

a linear filter] of the dynamlc errors assbciatgd with
each of the terms of equation (4-13). Hence from (4-14),
our definitlion of dynamic error coefflclents, we note

~ that €my is simply the dyngmic’errdr in estimating the

mth derivatlive of the input for an 1nput,equa1 to tJ,'

which 1s
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<tJ' W(m) , o (4-15) "

at®

tur

Also note that (tJ w(m)> are the moments of the filter
welghting function, W(m)(i)

We now concern ourselves with the effect of poly-
nomiaféfilters on the input noise; in particular, we
desire some measure of the output noilse assoclated with
a particulér estimate, x*(m)(T), using a Jth order
smoother. From Appendix I we obtain for the vafiance,

oﬁJ, of the estimate of the mth derivative using a Jth

smoother,
2y = o2 e )|
nJ oll"J
where ‘
. - - (4-16)
r-1 '
|2 &
\\w‘?‘"(nh = z = ng)(i) w(m)(i)
i = - r-l
r;l r-1
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Using equation (4-8), equation (4-16) becomes*

;
= 2
oflJ = cg J}b [fgm)(T/At)] - | (4-17)

’

which is the desired result. Note that as J (the smoother :
order) increases, ogJ increases so that the use of a

higher order smoother gilves rise to a nolsier estimate.

We are now in a position to sﬁate an important opti-
mality property of polynomial smoothers in the form of a
theorem which 1is proven 1n Appendix II.

Theorem: The Jth

order polynomlal smoother used to
estimate the mth derivative of a Jth degree poly-
nomial 1hput 1s that filter with zero dynamic error
which minimizes the expectation of the square of the

estimation error.

‘ Although polynomial filters are the}optimal fllters
when the signal is a polynomlal of knoﬁn degree, poly-
.nomial filters are of particular interest becguse of their .
applicability to the case in which the signal 1s not a
polynomial but can be approximated by‘a polynomial of
suitéble degree, J, over a sultable smoothing time, T.

Under these conditions, however, the estimation error .

*See Appendix I.
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consists of both a nolse error and a bias error. The
proper procedure for deéigning a polynomial filter in
this caée is to:select the fllteriparameters J, and T,
so as to minimize the total expectatlion of éhe square of
the estimation error, which is giyen as

Dag + g

where

ng = dynamic error of a J°® order smoother

‘estimating the mth

D

derivative
2

Ong = output noise variance.of Jth

smoother estimating the mth derivative

ordep

The output nolse varlance lncreases with lncreasing J
or decreasing T. On the other hand, dynamic error
decreases with increasing J (due to the better fitting
properties of.higher order polynomials) and increases
with increasing T (since more highly.derivatives are

required to accurately represent the signal).

Care should be taken in the selection of the estima-
‘tion point in the smoothing interval [i.e., time, T, at
which estimate is madg]. The parameters which must be
consldered in making this selection are the ordef of the

- input ddta, the smoother order and the aliowable smoother

‘real time dela&. In general, updatihg smoothers [}.e.,
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T = Eai-Agj-have the poorest accuracy but have no delay.

If some delay can be tolerated, an improved accuracy'of'
’éstimatioh of the derlvatives of fhe~1nput function can
be obtéined._ Génerally,'the lowest estimation errors
result from émoothing to the center of the smoothing
interval [i.e., T = 0] which of course introduces a delay
of one-half the smoothing time [1.e;, 7/2] for the.output

estimate.



5.0 OPTIMUM POLYNOMTAL SMOOTHERS USING
A PRIORT INFORMATION

- The design Qf.the optimum linéar polynomial smoother
is consldered, when statistical information or constraints

on the input signal are available, a priori.

Assume the ‘input signal, x(t) is described by a poly-

nomlal of dggree J, where

&Y

x(t) = a, + alt + eoe + 85 (5-1)

If a finite number of discrete observations are made on
the input at egually spaced time intervals and these
‘ observations are disturbed by noise n(ti), then the

observations, y(t,), are given as:
y(t,) = x(ty) + n(t,) o (5-2)

Assume the input noise consists of uncorrelated samples
of a'random variable with zero mean and standard devia-
tion, Ogo° The smoothing interval to be consldered 1s

- % £t S,%'where T 1s the total smoothing time. Let-

ting At be the time spacing between obserﬁations and r be

the total number of observations in T secdnds, then

T = (r-1)At
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At this point the explicit design oriteria for the
optimal linear smoother can be stated. Defining the
linear fllter in terms of its weighting function, W(t,),
then the estimate or'xm(f),'the m®h derivativeiof the
signal at time = v, when the signal x(t) is a poly-

nomial of known degree, J, 1s glven as

. r-1
A
2™y« ) e ™) (5-3)
1 r-1l
-
It 1s required to determine'w<m)(t1), such that x(m)(w)
has a minimum mean square error when a priori knowledge
about the coefficlents of the input polynomial is avall-
‘able. This‘knowledge might conéist of elther constraints
on the magnitude of the coefficients, a4, of the input
polynomial x(t),'or the fact that any or all of the coef-
ficlents, aJ, are described by some probabllity distri-

bution with glven moments.

Let the a priorli probabllity density fﬁnctions»of
the unknown coefficients be given as p(aJ), and assume
that both E[adak] for J # k and El:ai] = °§ + m? are known,
where a? 1s the variance of the Jth'coefficieht and my is
the mean of the Jth coefficient. Also assume that the

observation noise and the aj coefficlents are independent.
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Let N equal the noise output 'at.t = T and'bin,. the
dynamic error of the smoother. From Appendix I(b),

- J

Dy = z 23 €my - o (5-M)
- =0

and the average square nolse error 1is
. R )

2 . .
E(N?) = o2 (™)) (5-5)
where w(m) = w(m)(ti) 1s the filter weighting sequence
and. t»:mJ is t_he dynamic errér in estimating the mth

derivative of an input, tJ, for J = 0,1,2,...J
The total squared error at ¢ = v 1s glven as

P ¥
2

2 ' 2
+2NDm+Dm=N + 2N

2
[N+Dm_] a N | aJ €ny
J=0

: J J
+ Z Z adak em,jsmk - (5-6)
. J=0 k=0 -

Taking expectations of equation (5-6) we obtain for the

total mean squared error

mse = E [(N+Dm)2:| . E(N2) + 2E| N i ay Eng
. | =

| .+E i z 848y Eps€ny

J=0 k=0 -
(5-7)
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Since the observation nolse and the aJ-'s are assumed

1ﬁd,ependent , equation (5-7) may be rewritten as,

Jd

mse = E(N)? + 2E[N] E Z 8y &y
| =5
.  rs g
tE Z Z 218 €ngCmk
§=0 k=0

It is easily's_hown‘ using equations (5-2) and (5-3) that
E[N] = 0 1s implied by the assumption that the input

noise has zero mean., Hence

: d
= a2 w(m)y2
mse = o_ WY1 © + B Z Z 248, €pa€mp
. 420 k=0 |

which ylelds

mse = cg "w(m)" z X *mJCmk E[aJ k]
J=0 k=0 '
(5 8)

~ Equation (5-8) must now be solved for that weight:!.ng
function, w(m) s w_ith its ass‘o'ciated dynamic error coef-

flclents, €ny? which minimlzes the mean square error gﬂ..ven'

by E [(N+Dm)2] . This result will be obtained utilizing

the following th_eorems and definitions:
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For J = O,l,...J; define ﬁJ(t) as a poiynomial of

" degree J defined by its moments |
0 1r kA4 3
1 it k=

(+*,49) = { (59)

Let w4 = momgn‘cs of W(m)(ti) = (t:, W(m)> .

~ Theorem 3. (Proof in Appendix II)

Let uo,ul,...uJ be given real numbers. Then

there 1s a unlque polynomial, W(t), of degree, J,

such that .
(1:~",w)«--u‘1 0<Jg3
aand
J
W(t) = z uy W(t) (5-10)
J=0 " ‘

TheoremAQ. (Proof in Appendix II) |
Of all filters with given dynamic error coef-

ficlents, that filter which minimizes the'output
noise has a welghting function, w(t), which 1s a
polynomlal of degree J.

Define

m.Jl ' ' .
Cng = S 0< 3T (5-11)
& | gor
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From Appendix I, (I-30),

" €mg ™ Ymg = %mg

Hence
J .
W) av® ey 0 Y e wWe)  (5-12)
: _ J=0 ,
where
B | ‘
v(m) (g - Z g wie) ' (5-13)
— - 420

Since equation (5-13) describes the polynomlal weighting
function, U(m)kt), for ey 4 = 0 (and hence Cpny = umJ),
u{™) (£) 1s the J*P order polynomial least squares |
smoother weighting function which provides‘unbiasgd esti-

th

mates of the m™" derivative of the input signal.

From equation (5-12)

| L |
e R N S O (o
- J=0 k=0

+2 §‘ €ns (wj, U(m)> (5-14)

Substituting equation (5-14) into equation (5-8) and

rearranging terms we obtain for the mean squared error
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mean square error = E [(N+Dm)2] = o§ ||U(m)|]2

B ' |
)[R + magm) | epgen
' J=O k=0 | o .

3 | N
2o§ Z €ny wd, U(m-)> (5-15)
Jao .

Differentiating equation (5-15) with"respect to each

of the emJ and equating to zero ylelds J+l1 linear equa-

th

tions in J+1 unknowns. The n equation of the J+l total.

equations 1s glven as

i - [og(wn,wk) i E(anak)] = -2 (w“, ﬁ(m)>
=0 (5-16)

The solution of equations (5-16) yleld the dynamic error
coefficients, t-:mJ of the optimum filter.f The moments,

4> Of the optimum filter are obtained since

umJ = SmJ + ch

tre o% or m% 1s arbitrarily large (i.e. - ®), e, 1s set

.equal to zero to obtain a minimum mean square error fil-

ter, since from (5-15) for °£ or mi-—; o, the mean square
error —» infinity for €, # 0.
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The Opfimum welighting function, w(m)(t) is then qual to

w(m)(t) - i u, s W(E) o
J=0 . “
and the mean square error 1s giveh by édugtion (5-15). '

A procedure for obtalning the wJ(t) polynomials 1s shown
'in Appendix III. The results are given as (III-8)

wl(t) =
k=0

3 gk -
). B Blt) (5-17)
where Fk(t) are the orthogonal polynbmials described in
Appendix I given as |

J
R (t) = Z Afed ogkgy
J=0 .

Note that the resffiction of our estimatoé to be
strictly linear (i.e. egquation 573) has resulted in a
blas or dynamié error assoclated with the estimate;
Spec;fically,~the resultant dynamic error 1s glven as
the expected vaiﬁe'of D, (eq. 5-4).

Jd

E[Dm] = E Z aJ em:]
3=0

| J o
E[Dm] = Z E[aJ] EMJ
J=0 ,
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, J
E[D,] = Z my €y (5-18)
J=0
'ﬁhere ma is the known mean of the Jth Taylor's series

‘input signal coefficient.

in Chapter 7.0, we shall have}occasion to consider
smoothers that have minimum mean square error, subJeét
to the constraint that thelr estimates are unblased,*

20 and others have shown

For Gaussian statistics, Kalman
that minimum mean square error, unblased estimation is
equivalent to conditional mean expectation estimation
[{i.e. using as an estimate the mean of the conditional
distributipn of the parameter, given a set of observa-

tions].

In Appendix VI the minimum mean square error,
unbiased polynomial smoother is derived where the
estimator 1s allowed to consist of a constant term

plus a linear welghting sequence given as
r-1

2 (x) =gy + f ) W) (5-19)

1---(%].1

*Shaw29 considers the very simple, épecial'case when
the highest coefflclent 1s a zero mean Gausslian random
variable., : : .
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where G, 18 & constant, independent of the observations,
y(1). It is shown in Appendix VI that the value of the

constant, G, is

J=0 :
and that thé dynamic error coefficients, €my? (and
hence the filter welghting sequence] are obtained as
the solution to J+1 linear equations, where the nth

equation is given as,

JJ mk[ 2(w™,W*) + E(a,8,) - mnmk] - (w" U(m))
- (5-21)

Note that 1f the a priori distributions of the aJ

coefficients have zero mean (i.e. m, = 0) then equation

(5-21) 1s identical to (5-16) and both linear and linear

plus a constant estimation yleld identical results.

From Appendix VI, the mean square error of the

optimum unbiased polynomial filter is (eq. VI-9)

mse. = og IIU(“")II2 z l: 2(w~’,w ) + E[a ak] -m mk] €mISmk

22 Z'emj (W, u)) (5-22)



- 29

where the e, are obtained frbm the solution of (5-21).
We note that "unblased" used in the above sense indi-
cates an average bias error equal to zero when averagéd-
over the ensemble of'alllinput signals. This is cén-
tﬁasted with the usual ﬁnbiased.éolynomial'smgother

estimates which are unblased for each signal 1nput}



6.0 EXAMPLES AND SAMPLE RESULTS OF
_OPTIMUM POLYNOMIAL SMOOTHERS

In this chapter»varioué examples are considered'which
11lustrate the design procedure for obtaining the optimum
linear filters derived in Chapter-5.0. Results presented
indicate the performance improvements obtainable using

the above technlques.”

6.1 Optimum Velocity Estimate With Known Constraint on

the Input Acceleration

As an example of the fllter design procedure derived
in Chapter 5.0, consider a second degree input polynomial
(T = 2), given by

x(t) = aj +a,t + a2t2

Let the a priori distribution of a, be given by

' 1l . ‘
p(ag) = m— B < 8 < oy
It 1s easily shown that the variance and mean of 8y

are,

0 = and m_ - =0
8y 3 82

" We assume that no a prliori information is known abdbout a,

or a, 80 that we may arbitrari@y‘assign mean values df 0

and variances of w o these coefficlent distributions,
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| 2 2 | | | |
l.e., o = ¢ = m =m =0]. Consequently
[ ’ 8, ay ’ a, a, ] | :

€, €; = 0 and from equation (5-16),

.
o2 (ulm) 2
fur ~ — ¢ waz | (6-1)

2 ,.2.2 . 2y
o IWIH" + 5=

Assume that we desire to find the minimum mean square
estimator of the velocity (m = 1) at the present time,

T _ r-l
t ﬂ'g TAt,

Using equation (5-11)
a(s°
Co ™ 'é'ﬁ'l =0
t = I3k At

' d(s ‘
.°1f’"§'€)', ol =1
t-—é—-At

= 2t l = (r-1)At
5 = E‘; At
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From Table I, Appendix I

Fb(xz =1 B, =1
. . . . 2 . .
b o .
Fyx) = x B, = T3
‘ "2 2 4\p® oy
(o) o 2. D=1 - (Z2-H) (r-1) e
Fo(x) = x% - =5~ By —{%0
where
X = t/At

Note that (from 5-1T)

Therefore from (6-2), and Table I,

e

(r®-4) (rc-1)r/180

w© 1
wﬂ-r-

In a simllar manner we obtain

* 1
(NOTE: A7 = 1/At, since x = t/ht)
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.

;which 1s, as mentioned in Chapter 5.0, the weilghting

33

and

1 x2 - r2;1
Z;E._ i - O

2 _ L
(r2=l) (r°-1)r/180

Using equation (5-13)

2
U(t) = Z cJ'wJ(t)
- §=0
1 l.2 rPa
o eng|e-gg]

’ | 12x
U8 = Ty T T () (Pen)e/a80

sequence which provides the least squares estimate of

=1

veloclty at ¢t = L At for a quadratic least squares

smoother., Further,

o
(ana)'Ez CJ (WJ:WQ)
J=0

(wl’w2) = 0

2 .2 180 2,2
WE,W°) = : = ||W€
( ) Atq(ra-h)(ra-l)r' W=
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Since ¢_ = 0, and (wl,w?) = 0,

Co 2 - 2 .,2 - - 180
(p.,w ) °2(W_--’w,) _(r Ljat [At“(r?.u)(.rz-l)r]

Substituting into equation (5-18)

 -02(r-1)180 At /8t (rPat) (r2e1)r
= - 5*—

2 180 ey
% <At4(r2-4)(r2-l)r> 3

and upon rearranging,

- €o

e, = -(r-1)At 2
a
1+ 18
( 54005 >
B At (rS=4) (rS-1) i

Now

W(t) = U(t) + eM>(k)

Hence
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12x -

w(e) = (22-1) At
B ] | S
180(r-1) [xz - %ﬂ]
- 12 . 5 >
L. 8y : At (r°=-4) (r°-1)r
< 5400o >
L At (22-4) (r2-1)r/ |

which is the desired filter welghting function. The mean

square error is, from equation (5-15),

)2

4 2
2 2 ao(U,W

2 122 . 2TH
oo WI° + —=
which becomes, after some algebraic manipulations,

"g 12(8:-11) (2r-1)
At2  (r°-4)(r°-1)r

W y2ae2 [ 180 V7]
o4 [(r 1)°At (Atq(rg-u)(re-l)r>]
-

mge =

)
180 8y

+
% T (k) ()r |3
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Note that the first term in the above equation is the
mean square error for the least square veloclty estimate
for the quadratic smoother. The fact the second term 1s

negative shows the reduced meaﬁ'square error for this

filter.

As a numerical example, consider a one-second filter
with At = .1 sec and r = 11 points. Let o, = 10 ft.
Figure 1 shows a plot of the velocity mean square error .
as a function of 8ipype The dashed line represents the
asymptotic value of mean square error as amy - o, corres-

ponding to ﬁhe normal least sduares estimate. Depending
| on amy, improvement on'the'order of over 100 to 1 are

obtalnable using the optimum filter.*

6.2 Optimum Acceleration Estimate With Xnown Constraint

on Input Acceleration

As a second example we conslder the optimum acceler-

ation estimate for the same conditions stated in Section

6.1. In this situation,

L]

C, =¢ = 0; ey, = 23 ms= 2, T = Eil'At

#0f course these improvements are only obtained if the .
a priorl distributions which are used are correct. All
uncertainties in the signal parameters must be reflected
in these distributions in order that the results be
meaningful, This situation must be kept in mind during
all subsequent discussions where a priori data is utilized.
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 The usual quadratic filter weighting sequence, U(t) 

- 1s obtained as 

| o 360 [}2 - ‘EiégL%]
U(t) = ) ey w(E) = owP(t) = '

J=0 | Z:Ekf2_4)(;2;l)r

From (6-1)

-o2(u,w?)
.82 = ‘ar
2 2,2 . 3TH
2 W32 + 238

where
u2 o2 60 B 2,2
(U,W?) = c, (W2,W2) = _ -2 W
' 22T T ACR (rPb) (- 1)r "
Theréfore
2 180
-2¢
e, - © At (rf-b) (rf-1)r
2 180 &1y

c - + .
© pty(r2-b)(rP-1)r 3
The optimum weighting sequence 1s given as

W(t) = U(t) + e M3(t)
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- Substitution into the above equatidh ylelds,
2 180

% At“(rQ-u)(f?-l)raQ we(t5”

W(t) = e W2(t) -
.- 180 - o 2TH
° Atq(rz-h)(rz-l)r 3

o T . 2 'r2-l
20,2 180 180 X - KT)-

o Atu(pz-u)(fQ-l)r

c2 180 + TH
O At*(rfal)(ro-1)r S |

Wwis) =2 -

al. | At (r°-4)(r°-1)r

The mean squared error for the optimum acceleratlon

estimate is glven as

o o oalUW)
mse = g ol < - %

a | .
2 nwen? . _TH —
og IIWEI* + —= ‘

2
720o§ \
72002 A7 (22-4) (r2-1)r
U TR - :
At (rS-4)(r -})r 720°g // 22

> J/ b+ 2
Aﬁn(ra-u)(rg-l)r // ¥ 3

Using the same parameter valges as in 6.1 Figure 2
shows a plot of the acceleration mean square error as a
~ function of aTﬁQ The dashed line 1s the mean square error

for the usual quadratic smoother acceleration estimate.
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Note'fhat for By = 0, the mean square error equals zero.
‘This 1s true.since complete a_priofi knowledge of the

acceleration 1s avallable.

6.3 Optimum Estimate of a Constant When True Value 1s a

Sample of a Random Varliable With Known Statistlcs

As a further example, consider the case of estimat-
ing a constant signal, x(t) = a_, glven a set of meas-
urements of the signal. The usual procedure, assuming
zero mean measurement noise, is to take an average of
the observafions. This corresponds to a zeroth order

polynomial émoother whose welghting sequence 1s simply
1
wity) = 5

The mean square error of this eétimate is glven as og/r.
If, however, we have a priorl informatlon concerning the
signal, an improvement can be obtaiﬁed. Suppose.we know
that a, is a sample of a random prdcéés whose varlance
is c?'and'whose mean value 1s éero. Using the results

developed in Chapter 5.0, the dynamic error coefficlent

for the optimum smoother 1s glven as

2
-oo/r

€ HT——-Q-
° co/r + oy



42

~ and the optimum welghting sequence 1s

o 1 ‘og/re '
o) = d -y

UO/I' + ol

The mean squared error of the optimum estimate is

52 cLl/r2

-

The first term in the above equation 1s the mean
. 8quare error of the zeroth order polynomial smoother.
Since the second term 1s positive, the resultant error
1s, as 1t should be, always less than for the zeroth_
_order polynomial filter. To 1llustrate with some
nﬁmberical results; consider a measurement accuracy
of 01, the standard deviation of the rahdom varlable from
which a, is a sample. The dashed liné represents the
- mean squared error obtalned using the usual polynomial

smoother.
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7 0O OPTIMUM ADAPTIVE FILTER DESIGN FOR
INCOMPLETELY SPECIFIED SIGNALS

We discuss 4in this chapter the design of the opti-

- mum* filter given initlal uncertainties,about the form.of '
" the input signal. The input signal is assumed known
excépt for éome»parametér, a,: which mighﬁ represent a
specific parameter vélue or some range of values of a

t

particular parameter.’ It 1s known a priori that o can

take on only a finite number of values (or ranges of
values). If one knew the actual value of a, a priori, a

filter could be designed to obtain a minimum mean squafe
estimate of the input signal.
Let

X =‘actua1 value of a state of the physidal world
we wish to estimate
% = estimate of the state, x, given}a set of measure-
ments; Y. |
The minimum meah square error estimate éf i, given a set

of observations, Y, is the conditional mean2° of x éiven

as
§

R = E(x | Y] -Z-xr(xIY) | (7-1)

X

#Optimum 1s defined as the conditional mean of x which is
equivalent to minimum mean sguare error.

fA similar approach to the problem 1s taken using Hilbert
Space Theory in reference (24) for continuous systems using
. expanding memory recursive estimation. Only considered

‘however, are cases when the unknown parameter takes on
specific values, The transient behavior of these filters
1s not examined in (24) but is included in this paper.

i
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Let a be' a paraméter of the input signal whose value 1s
unknown a. priori. Assume o can take on only a finite
numbei- of values, given as ai; for 1 <1 < L. Each oy
may represent a range of values of a signal parameter,
Summation of the joint conditional probabilities of x and
@y, given ¥, ylelds P(x|Y). i.e. |

P(x|Y) = ) P(x,a, 1Y)
: dad
1=l
Using the theorem of compound probablility the

following result 1s obtained

- .

P(x|Y) = P(x | Y,a,)+P(a, | ¥) (7-2)
. 1=l : o o

where x, Y and @, may be vectors. Using (7-1)
| & -Zx i P(x | ¥,a,) P(oy [Y) (7-3)
X 1=l '
Interchanging the order of summations ylelds ’

_ 2 - i Zx P(x | }f,ai)-]&’(a:L | ¥) o (7-4)

1=l x '
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Define

R(ag) =) x (x| Y,a,) (7-5)
N x L :
Q(ai) is the cohditional mean of X, given a set of obser-

vations, Y, assuming that ai‘actuaily is true, Hence,

'y i R(ay) Play | ¥) (7-6)

1=1 '

A
The above equation states that x, the conditional

meanf estimate of x, 1s the welghted sum of the L condi-

—

tionzl mean estimates of x (1.e. x(ai), 1 =1,2,,,.L). The
welghting function 1s the conditional probability of oy
~ given Y (observations). Schematically, equation (7-6)

corresponds to Figure 4,

For an increasing memory filter*, as the observed
data increases P(a | Y) converge326‘to 5<a1'°true) where
delta (6) is the Kronecker symbol. Note that in the
usﬁal adaptive procedure using multiple smoothers, the

estimatelis taken as

R = R(a,) .

'Minimum mean square error.

*Smoothing time increases as more data is observed.
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where P(ay | Y) 1s the.maximnm for all values 1 < 1 ¢ L.

This estimate 1s optimum only when

- The schematic representation of the usual adaptive

switched smoother 1s shown in Fisure 5.

The significant point to note with regard to the
above ‘theory 1s that no restrictive assumptions for
distribution functions were made 1in the derivation.

Moreover, equation (7-6) was derived in general, for
any values of smoothing time or filter bandwidtq, so
that tne estimation technlque is optimum for the
transient sltuation as well as for the infinlte data

steady-state condition.
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8.0 QENERATION OF THE OPTIMUM ADAPTIVE
SUBFILTER WEIGHTS

The adaptive or ﬁonlinear nature of thé optimum
smoothing filter, as derived inichaptér 7;0; is embbdieq
in the weighting functlons. applied to the 1nd1viduai sub-
filfér outputs. These welighting functions, (ﬁhiéh are
the conditional probﬁbilities that the 1ndividua1 sub-
filters should be used;wgiven a set of observations),
are functlons of the observed dafa, so that a nonlinear
operation 1s introduced. Letting oy repfesent a particu-
lar state of the input signal, we have from Bayeé'

i J
‘Theorem that the a posteriorl probabilities of a5,

P(ai | Y), are given as?

P(ai.l ¥) = p(Y | 0'1) P,(ai) (8-1)

p(Y | az) Play)
L F

TAlthough Bayes' Theorem is usually written as

B(¥|ay) Ploy) -
P(Y | ay) P(a
T |

P(ai ' Y) =
5)

(8-1) is correct since the components of the random
variable, ¥, are not discrete. (See Harmon, W. W.,
Principles of the Statistical Theory of Communications"
equation 10-17.) ' 3 S
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shere Y is the observation vector (set of messurenents)
and P(“J) are a priori probabilities of the parameter

‘ values “J If the P(aJ, are known, the optimum weighting
functions are determined by obtaining the conditional
probability density functions of the observation veotor,'
Y, given that some aJ isttrue, evaluated at tns particu-
lar value of the observa%ion vector, Y. If the P(aj)oane .
unknown, then P(ay | ¥Y) must be estimated from the data
‘alone., Examples are given in the next chapter assuming
the P(aJ) are known s priorl and also assuming they are

unknown.,



9.0 EXAMPLES OF OPTIMUM ADAPTIVE FILTERING
;g Chapters 7.0 and 8.0 a generalized approaéh to
.optimum gdaptive data smoothing (filtering) 1s discussed.
It 1s shown that the~conditional mean optimum adaptive |
estimate is comprised of a welghted sum of the.outputsf
of a bank of smoothers, each designed tb be‘optimum for
some specific bqssible state of the 1nbut; ‘We note that

Kalman20

shows that conditional expectation is equivalent
to unblased minimum mean square error linear estimation for
Gausslan statistics., These results in conjunction with

the optimum linear (and constant plus linear) fllters
derived in Chapter 5.0 wlll form the basis for the

examples consldered in the followlng paragraphs, ‘The use
of optimum linear subfllters ls Justiflied by the results

of Kalman20

who shows that "results obtalnable by linear
estimation can be bettered by nonliﬁear estimation only
when 1) the random processes are non;Gaussiaﬁ and even
then only 2) by conslderling at least third order prob-
abllity disﬁribution functions”. Also in the same paper
~ a heuristlc Justificatlon for The common use of Gaussian
statistics 1s glven. Kalman shows that: "Given any
random bgocess with known first and second order aver-
‘ages, we can find a Gausslan random process wlth the same
propertles. Thus Gaussian distributions and linear dynamicé_ ’
are natural, mutually plausible assumptions particularly

when the statistical data are scént."

The examples presented in this chapter illustrate
the adaptive subfilter design and determination of the
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system'subfilter weights, In 9.1 the specific éxgmpie
of estimatlion of a éonstant signal when a set of nolsy
_observations are made, 1s.ekpiored in detall. A compari-
son of the resultant mean square errors obtained usihg'

a .usual polynomial smoother,.an'optimum linear smoother

(Chapter 5.0) and an optimum adaptive smoother are given,

In 9.2 a method is presénted 6f estimating the
8 posteriori probabllities (subfilter welghts) using
only the observed data. Various suboptimum smoothing
'techniques proposed in the literature are also considered

for comparison with results obtalned in this paper.

9.1 Adaptive Estlimate of a Constant Signal

As an example conslider the followlng problgmt A

set of measurements Y(y,,y,,¥3...¥,) are made on a sig--
nal, x(t), where x(t) 1s equal to some unknown constant

value a There 1s noise, n(1), assoclated with each

o.
measurement y(i), such that

y(1) = a, + n(1) (9-1)

Assume n(i1) has a zero mean Gaussian probability density

2
o

of n(1) are uncorrelated. 'Alﬁhough a, 1is constant dufing '

function with variance equal to o , and successive samples
the set of r measurements, 1t 1s known that a, is a sample
of elther one of two Gaussian random processgs. The

probabllity that ag is a sample from process 1 is given
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as P, and from process 2 is Pa'where P, + P, = 1. The
means and variances assoclated with process 1 and pro-
cess 2 are (0, cf) and (o, cg> respectively. The optimum

adaptive estimgte of ao,'ﬁo, 1g required.

| Before obtaining a solution to this problem, let us
conslider some possible applications. The quantity 8y
‘might be a transmitted voltage level in a binary com-
munlcations system where the binary signals are samples
of one of two random processes. The estimate Qo would
be the optimum estimate of the voltage level 2, In the
solution to the above problem, by-prodﬁcts are eétiﬁates.
6f the probabllities that ﬁhe sample a, is from either

process 1 or process 2.

Another application might be the estimation of a
reentry vehlcle pargmeter in a missile defense system,
Suppose that a particular reentry vehicle is from either
one of two specific classes, elther decoy or warhead,
with known a priori probabilities Pp or P,. A set of r
1ndepéndent-measurements of the unknowﬁ parametér are
obtained and the optimum estimate of the parameter 1is
required along with an estimate of the a posteriori prob-
ability that the reentfy vehicle is elther a warhead&or

a decoy; _
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' The solution for the optimum adaptive filter for the -
above problems is shown in Chapter 7.0. The optimum esti-
‘mate of a,s 1s obtained as the welghted average of the out-
puts of two subfilters designed to estimate the conditibnalv
mean (which 1s eqﬁivalent to unblased minimum mean sduare
error estimation slnce statistics are Gaussian) assuming
that a 18 a sample of process 1 and that a, is a éample
of process 2. [The unknown pafameter, a, to be 1earnedl.
is which random précess a, is taken from.] In this
particular example, using the notatlion of Chapter 7.0,
al, represents the case when a, is a sample of pro&ess l

and o, the case when a, is a sample of process 2,

For this situation the optimun subflilters are zeroth
order optimum polynomial smqothers designed with known
‘variances of the a, coefficient. Hence the results of
Chapter 5.0 are directly applicable and since the meah
of a, = 0 for both processés, the welghting sequences for

the subfilters are from Chapter 6.0, given as,

W (%) = -2 —s (9-2)

and
N C) S - - (9-3)

. All that remains now 1s to find the optimum welghts
for the subfilter outputs which are, as shown in Chapter

8.0, glven as
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. . p(Y"al) P .
e 1Y) = gyrar e T etvray Ty, OW

and

p(Y 'aa) P2

Blog | ¥) = gryTer v o0y Y,  (95)

~Since Py and P, are known, only p(Y| o) and p(¥ | a,)

need be evaluated. We note that

o .
p(Y I al) = J p(Y,Xl l al) dxl ’ (9-6)
- 00
where P(Y,X, | @;) is the Joint probability density func-
tion of the observation vector, Y, and the random vari-
able xl,* given that the sample a, is taken from process

1. Usling the theorem of condltlonal probabllities,
P(Y:xll al) = p(Yl xl’al) p(xll al)b (9'7)
Substituting equation (9-7) into equétion (9-6) we have

p(Y]a,) = J p(Y | X;,0;) p(X; | @)) aX, '(9-8)

=00

*xl and x2 are the random-ﬁariables associated with

random processes 1 and 2 respectively.
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We are given that process 1 is Gaussian, with zero mean

and variance °§’ hence

4 SO

. | X |
p(X,) = —=—exp| - =5 9<9
1 vEm e 207 ( )

Since the n(i1) are uncorrelated samples from a Gaussian,
zero mean random process, the Joint'density function of

the observations, given a particular sample of xl and @y
is |

r 2
' ly, - X;1 |
1a1 V2T 0, 20,

which can be written as,

. 2 7]
Z i X Z Vi 42
R(Y]Xp,0)) = s exp | - | 2 - —Lp— 4
. (em)™" < o, 20 O 2c§
(9~11)

Substituting (9-11) and (9-9) into (9-8) and simplifying
we obtain,



2¢° . d
2 r =00 o o ° 1
(2x) 0.9y .
. L -
(9-12)
Making the substitution y, = -2-‘;2 + =1 in equation (9-12)
g 20 '

yields - . ° 1

_ —— 20 . ,
(2x) 2 °§ ° =

, — ‘ : o
-3

. ' ‘ Zy:l , 00 Zyi
“B(Y] ) = e | - j op |- 7K - | ax
- o

— L

(9-13)

Completing the square in the exponent“of (9-13) .and" sim-
plifying ylelds '

o TIr E I
25 Q)| | | L
p(¥| ) = iti exp--:-‘;g--—é;;-— J exp 'lel";g
(30 2 aﬁﬁ. o o].» =00 lo
L 'Lt L - B
(9-14)




- 59

Integrating equation (9-14) ylelds the following results,

r - L]
Z Vi <Z yi) -
(Y]e) = . exp (9-15)
P 1 /2.t - -
(217') OO 1 271 O 40071 .
In a similar manner, we obtaln
2 ()
; ¥ ( /, V1> |
1 1
p(Y|ey) = /2T exp | - 2 T (9-16)
(2) | 0.9 \/57'2' 207 4o 7, .
. _ — -
where
r 1
Yo"ttt
200. 202

and
: r . L
Z = y y = gsum of the squared observations .
e
i=l '

, P 2
Z vy [Z yi = gquare of the sum of the observations.
1 1=1 . . '
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_Using (9~16) and (9-15) we can obtain the optimum weights
. for the subfilter outputs,

B(Ya;) F; + p(Y[G,) F,

- . AP(Yl al)'rl : '
P(al| Y) = (Y lal)‘fi F p(Y]6,) F; (9-17)_
and -
p(¥|a,) P |
Plag | ¥) = | 2 (9-18)

where P, and P, are known and p(Y | @) andbp(Y |a2) are
glven by (9-15) and (9-16). Therefore Qo, the 6pt1mnm

estimate of a,, 1s given as

=" . = il
A ) : 2 .
A . W) vy | Blag 9+ ) wa(e) v, |Blayl Y
1y o1 : 14 oo 2=l '
i 7 i _ 2 i
(9f19)

where wl(t) and we(t) are given in equations (9-2) and

(9-3) and P(a, | ¥) and P(a, | Y) are given in equations
(9-17) and (9-18). Obviously, from (9-17) and (9-18),

P(a, | Y) + P(aalY) -1

To illuétrate the improvement of the adaptive pro-

cessing technique described by (9-19) over the usual

ndnadaptive technique let us consider.the case when the

number of measurements, r, approaches infinity (steady-

state conditions).

The nonadaptive smoother which takes
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no“advantage of the measurements would consist of merely
an averager or zeroth order smoother, ,The mean square
error for the nonadaptive least squares smoother would

- be

mse (nonadaptive) = og/r (9-20)

For the adaptive smoother, as r -» «», when al,is true,
P(a; | ¥) ~ 1 and P(a, | ¥) = O and when a, 1s true,
P(al_l Y)=~ 0 and P(o, | ¥) = 1. From (9-19)

. r .
8 = ) W(t) vy
1=) :

when oy 1s true and

. r .

A

L By ) wa(t) vy
i=1

when Qs is true. Hence the tptal‘mean square error of
the adaptive filter is the weighted averagé mean square

error resulting from using wi(t) when a, is true and

"Wy (t) when a, is true. Using the resultsjof Chapter 5.0,

the total adaptive mean square error is,
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” - og og/r2
mse (adaptive) = P; | =% = —pp—m——m
oo/r + o]

-

2 h, o
gg co/r
T

oy e (.9'21)4

+ P,
ao/r + 0

2

Noting that P, +'P2 = 1, equation (9-21) can be rearranged
as follows,

2 4 o
mse (adaptive) = —2 - Eg = '?;.2 + — Pg__z
r oo/r + 0] oo/r + o]
(9-22)

Since the second term in (9-22) is always positive, the

méan square error of thé adaptive system 1is always less
5 . ;

(o] .
than 1% the nonadaptive, zeroth order smoother mean

square error.

For large r (as has been assumed) equation (9-22)
can be approximated by

n

2 .
o g P P
mse (adaptive) = "'z?' - —% —%- + -% . (9~-23)
r“lo] o5 .

-

Now_consider the use of the optimum nonadaptive
filter described in Chapter 5.0 to estimate a, directly.
Let x be a random variable defined by the mutually
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excluslive selection of samples of process 1 with prbb-'
.abilify Pl and process 2 with probability Pa. It is

“shown ih Appendix V that the variance and meanAassociated"

with the random variable, x, -are given as

5"
Ox = Plc

f + ong ' (9-2&’

and
m,2 =0 when m = m2 = 0

X

The welghting function for the optimum linear filter
1s then (from Chapter 5.0) -

‘ 2/ 2
1 oy ™ . \
W(t) = 5 = (9-25)
r o'o/r + Ox ‘
which, after substitution of (9-24) becomes,'
2,2
o%/r
W(t) = 5 - ——2 (9-26)
o
0 2 2

The mean square error of the optimum linear filter 1s

then

2 4 i
% _ % 1
mse (optimum linear) = —= - —5 | —x—
- r“lo
0 2 2
|7t F1o + Pop |
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For large r (as assumed), (9-27) reduces.to

2 &
% _ % 1
mse (optimum linear) = —= = —z | = -

r Plol -{-.Peo'2

(9-28)
In order to show that the adaptive mean square error
is always less than or equal to the optimum linear fllter
mean square error, it 1s necessary to show that the

bracketed quantity in equation (9-23)'19 always greater
than or equal to the bracketed quantity 1n equation (9-28)

l.e.:
P P
1 22 1
St z2—>3 3
oq 0o Plcl + P262

Using the fact that P, + P, =1, the following algebraic

manipulations can be made.

2 2
P102 + Pao1 ? 1
5202 2 P.02 + P.o
1% 11 2%
2 2
(1-92)02 + P, (cl> .

2. . (2 2\I.e2 '22?22



- s
P201 ( 2. oé) + P202 ( - °1>
+P2(cl- a)(oa- al>£0

Dividing both sides by P2 (cl - 02> we obtain,

2 2. . 2 2\2 2

0] = 0y + P2‘<02 - °1> 2 0, P2 (c - 02 ¥ O -
or . |

2 22
and finally
?

which must be true-since P, + P, = 1, hence proving that
mse (adaptive) < mse (optimum linear). We note that for
the case that P, = 0 and P, = 1 (or vice versa) the
adaptive fllter reduces to the optimum linear filter and
no mean square error improvement is obtained. From

equation (9-21) and (9-26), if o? = og, both filters are
identical, as they should be. .

To summarize, 1t has been shown that the adaptive
'filter mean square érror is less than the optimum linear
filter mean square error, and that both filters yield an
improved performance over the zeroth order polynomial

fllter,
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9.2 Adaptive Estimation When A Priorl Statistics Are

Not Completely Known

We now consider an example where the ﬁnknown para-
meter o, represents a range of values of somé quantity
which descfibes the input signal. Further, assume
that the probébilities of occurrence of a signal fal-
1ing within the various poséible ranges of parameters
are unknown a priofi. It 1s desired to find the adaptive
filter which estimates the signal parameters in an opti-

mum fashlon.

As an example, assume that the input signal ﬁay
be represented hy a polynomial of known degree, J. How=-
ever, it 1s known that the highest derlvatlve, éJ, of
the signal, x(t), falls wlthin either one of two known
ranges, Aa; or Aa; . Let AaJl represent those values of
ay such;that |aJ IS-aTH and let Aan represent the range
of values of aj given as|ay|> apy. Suppose we wish to

estimate the mth derivative of the input signal at time ¢t = 7.

‘The solution for the conditional mean optimum adap-
tive filter requires that the individual éubfilters for
}eaéh ay (the unknown range of the highest derivative 6f
the input signal which is to be learned) be conditional
mean estimators. Althoggh:the statistics are non—Gaussian,
we shall use minimum mean square error, unblased estima-
tors for the subflilters, using the Justification of
Chapter 9.0, 1In particular, we must f£ind that wl(t)
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such that the estimate of x(m)(w) has a minimum mean

square error, subject to the constraint that

lagl< any

with all values of ay in thls range equally 11kel&, and
‘that W,(t) such that the estimate of x(m)(r) has a mini-

mum mean square error, subject to the constraint that
laz 1> apy

with all values equally likely. Note that this problem
1s a speclal case of the problem solved in Chapter 5.0.
Before we consider the derivation of the optimum welghts

for the-subfilter'outputs, let us conslder a specific

‘situation and derive the optimum subfilter welghting

sequences. Select the degree of the highest signal
derivaoive to be equal to 2 (J = 2), and an estimate of

the velocity (m = 1) at the 1atest data point (i €.,

1 = 1) 5 1s required. TFor subfilter number 1 we have

—_—

that [a, | < aqys where a, is the signal acceleration.

As shown in Chapter 6.01, the optimum welghting sequence

for subfilter number 1 1s glven as

fThe results for linear estimation are equivalent to-

llnear plus a constant estimation since the mean value
of ay is zero.
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12x -

“i(t) T
| 180(r-1) [x2 - %ll:l
+|1 - l2. e -z .
1s. e at(r"-4) (r°-1)r
5400§ | ‘
| <At4(r2-u)(r2-1)*r>_ - (9-29)

For subfilter number 2, the variance of a, is infi-
nite. Hence the optimum subfilter is the normal quadratic

least squares smoother where the weighting sequence, we(t)

8 180(r-1) [xa - (_"m""'.l.).]
Wz(t). = 12x

+ —— pa—
(r°-1)rAt | At(rz-u)(ra—l)r

(9-30)

Lét us return to the derivation of the optimum

- welghts for the subfllter outputs. Since there is no

a priorl information on the probabilitles of occurrence

of a éample of'aJ being from one or another of the pos-
sible ranges, we assume that ay [the-acceleration in the
above case) can take on aﬁy value, equall& likely. Hence
the initlal minimum mean square estimate of a; is obtained

by a Jth order, least squares pol&ndmial smoother., For
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the quadratic example, the welghting sequehce for this
filter i1s derived in Chapter 5.0; and given as U(t),

where

360 [}2 - iiiégL{] .

AtQ(rQ-u)(ré;i)f

u(t) = (9-31)

It 1s now shown that the optimum subfilter weights,
[?(al [ ¥)s P(as |Y):] are given by the integrated

' a postériori probabllity density function of ay over the
regions | ay | < apy and | ay | > agy, respectively.

Since no a priofi information is available describ-
ing the probabilities that the highest signal derivative,
ays lies wilthin the threshold region between =8y and 8y
a Baygs estimate of these probabllities must be obtalned
solely ffom the observations. The minimum mean square
estimate of ays 1s obtained using a Jth order, least squares

polynomial smoother, since there are no restrictions on the

A
3 8
estimate of the probability that -an, < a; < apy,

coefficlents. Given thils estimate of a y» the best
p(|a; | < apy), must be obtained. Since no a priori
statistics are avallable about ags the use of Bayes'
Theorem to estimate p( | a;|< agy) requires that prob-
abllity density functions be assumed and then limiting
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arguments be used to obtain the final results. More-
over, since aj 1s an unknown constant, rather than a

random variable; some mathematician512

obJject to using -
Bayes'! technliques for estimation and instead prefer ‘
the use of the method of confidence intervals., It is
‘shown in.Appendix IV that uéing’either'approach, with
the assumption of independent, zerb mean, Gausslan
nolse corrupting the observations, the best estimate of

P(lay]< aqy) 1s given as

-8y = & 8y - 8
(lagls agy) = § ) erto (T T) - ereo (LT
: V2o

v2 o
8
(9-32)
where
X
T L2
erfc x = -2 J' e~b dat
vT d g
o = standard deviation of the estimate of a., &..
4 . | . _ D M

Therefore, the optimum adaptive fllter consists of
the sum of the outputs from filters one and two [equations
(9-29) and (9-30)] weighted by P(lay|< aTH) and
P( | aJI > amy) respectively. '

Let us now investigate the improvement obtained in

‘mean- square error of the adaptive estimate compared with
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the nonadaptive estimate. We shall make the comparison
both for the so-called steady-state splution (r - ) and
for the transient (finlte r) solution for a specific 
example. The nonadaptive least sduares quadratic poly-
-nohial estiﬁate of present velodity yields a mean squara '

error givén as approximately¥ (for large r)

t
192o2

o,\ (nonadaptive) ¥ -—-2—
v T r

where T = smoothing time,

AS r— ® the adaptive fllter reduces to elther sub-

fllter 1 or 2 depending on whether ay belongs to Aay , or
: : 1l

AaJA. The resultant meah square error 1s glven as
2 ‘ :

Mean Square Error (adaptive filter) = P (Aa ) mael '

_ + P <AaJ2>‘mae2

The mean square error of subfilter 1, mse,, 1s given

as (from Chapter 6.0)

2
_ 19202 ag? ( >

Tr .2 180 'I‘H
° ofn 3

1This result may also be obtained using I-38 and assum-
ing r >> 2., )
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.The mean square error of subfilter 2, is 1dentical
with the nonadaptive least squares filter, and siven_

| apperimaﬁely (for large 1)

N 19202
mse T-
e T°r

The total adaptive mean square error is therefore

180
: 1920
MS€\DAPTIVE = Tzr P<A8‘Jl>
* 2180, oy
° p%p 3

Since
P <§a > + P <Aa ) = 1
Jo Jq

and both bracketed terms are less than or eéual to the
nonadaptive mean square error, the total adaptive mse 1s
alwéyé less than or equal to the nonadaptive~r§sults

. [equality holds for the trivial case when both filters

are identical which results when Bpy = o],
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For the transieht case when only a finite ambunt of

' déta is avallable, the closed form'eélution-for the mean
square error or‘the adéptive filter'is extremely tedioﬁs
to obtain and leads to nqntabulatéd integral forms,
Thérefore é computer Monte Carlo* aimulation was under-
taken to obtain some results for particular examples,
These examples consisted of the use of varlious adaptive
filtering techniques for the above problem, to allow éoﬁi
parison 6f the optimum adaptive filter with other "sub-
optimum® filtering procedures. Frank11n17Aconsiders the
use of the least squaﬁes ramp and parabola filter as the
éubfilters and switching between'them based on an estimate
of the acceleration. We note that for the example under
consideration, the normal parabola fllter has zero dynamid

error and'a total mean square veloclity error given asl

2
% 12(8r-11) (2r-1

MS€pARABOLA = 2t2 (F-2) (F-I)o(T+I) (F

' The ramp filter on the other hand has a bias error pro-
portlional to the value of the agceleration input, 52, in

addlition to a nolse error given as

*#The Monte Carlo simulation conslsted of generating an
ensemble of observation vectors, Y, (using a random num=

" ber generator computer routine) for particular values of
input signal acceleration. The various proposed filter
welghting sequences and operations were applied to these
data and ensemble averages of the resultant estimation
errors were obtained. The IBM 7094 computer was used.
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A : 1202
OA = -

The. total mean square error of the ramp fllter 1is

—

a T2 1202
mse - + —x '
(RAMP) T A5 (r-1)r(r+l)

2
-a,T
where —%r— is the contribution of the blas error. By

equating msep \mp to msePARABOLA we can solve for that

value of a, for which both errors are equal. Dolng this

we obtain (assuming a large value of r)

26.90o
a =
2ty 12 JF

Ifl a2| 1s greiter than a5 then the parabola filter

TH

ylelds the lower mean square error and if |a,|< a,
- TH
then the ramp fllter 1s better. Using Franklin’s approach,'

the resultant fllter conslsts of selecting the ramp or

parabola filter depending'on whether the estimate of

- . acceleration, 85 1s less than or gregter than a5 . It

TH
1s also of interest to consider the use of the ramp and

parabollc subfllters but using the optimum welghting

arrangement described in thils chapter.
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" Finally, consider the uée of optimum linear sub-
filters, but with a switching proéedurg rather than a
welghting technique. The following parameter value
were assumed for the comparison., Assume J = 2;'m 5 1,
r = lOO,,At = ,01 sec,.cb

= 10 £t and that the estimate
is obtained at t = r-l At. Under these conditions

a, = 26.9.ft/sec2‘_
TH

and to have a common base for comparison, we let

= a, ='26.9'ft/sec2

a
- "TH TH

The nonadaptive least squares quadratic polynomial
estimate of the present velocity ylelds a mean square

error glven asl
2 ' Ug 12(r-2 r;e + 180(r-1 G
on (nonadaptive) = — | T TTITTIET oA 1o
v At

which for the above example 1s
o2 (nonadaptive) = 187 fte/seqa.:
v : .

For the optimum adaptive system, the mean square error is
" presented as a function of the input acceleration.

Flgure 6 1s a plot of the results, where mean squére
errof in velocity 1s plotted.as A function of ihput sig-

nal acceleration. The dashed curve 1s the nonadaptive



220

VELOCITY MEAN SQUARE ERROR (FT2/SEC2)

200

®
o

—_—.zvz' r—'—hﬁ——-ﬁ |

o)
o

140

120

100

A- OPTIMUM ADAPTIVE
(QUADRATIC)

B - NON-ADAPTIVE
(QUADRATIC)

0]
e

9)]
o

C-OPTIMUM ADAPTIVE
(QUADRATIC) (SWITCHED)

H
(@

n
O

O

be—-
-y
4
-
r

’-

"

.

-

]

1 A

0

10 20

30 40 50 60 70 80 90 100

" INPUT ACCELERATION (FT/SEC2)
ADAPTIVE VELOCITY ESTIMATE

' FIG.G



77

mean square error calculated above, »Alﬁhoughlror some
valges of input acceleratipn the adaptive mse'1; greater
thah»thé nonadaptive mse, the aﬁeragg, as anticipated

1s lowenr, The~actﬁal mean square errbr, of.coursé;
depends on the actual probability distribution of the
input acceleration. Also plotted on Figure 6 is the
Suboptimum swiltched adaptive mean square error resuit,
usihg'the optimum subfilters. . By sﬁitched adaptive we

- mean that the output estimate is elther that of subfilter
l or2 depénding on which of the a posteriori probabili-
tieé, P( | aj | < aTH)’ or P( | aJl > aTH) is greéter. | |

Flgure 7 1s a plot of the Franklin suboptimum switched
filter and also the suboptimum welghted filter., Compari-
son of Figures 6 and 7 show that the optimum adaptive |
filter ylelds the lowest éverage mean square error. In
addition, for each of the cases, the weighting approach

- seems to yleld better results than the swltching technique.'
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10.0 CONCLUSIONS
10.)1 Discussion of Results

‘This dissertation introduces the concept of minimum.
mean‘SQuare'error polynomial smoothing in addition to the
usual methods of unblased, minimum variance estimafion.
It 1s shown that linear polynomial smoothers can be
designed, taking into account known a priorl constraints
or distributions of the 1nput.signél parameters,,which |
yleld substantial performance improvements with no addi-
tional system complexity. The resultant smoothers are
obtained by finding that'filtér weighting sequen;e, such
that the average output square error, consisting of noise

and bias (dynamic error), is minimum. Closed forﬁ solu-
tlions for the optimum‘filter welghting sequence and the -
resultling mean square error are obtalned, and are com-
pared with 1eas€ squares polynomial filter performance.
In all cases, the optlimum filter ylelds substantilal
improvements,:which are lllustrated by several numerical
examples. Also considered ié(unbiased, minimum mean
square error estimation using a priorl information.
Although polynomial_signalé were considered in this dis-
sertatiqn, the same approach would yleld results for the

case of a signalldescribed by any linear combination of

known functlons.

The second class of problems considered is that of
adaptive polynomial smoothers. The input signal i1s assumed

known except for some parameter which can take on a finite
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number of values or ranges of values, It 1s shown that
using a gengralized meah.square error performance 1ndgx,
the optimum estimatéﬂconsists of the weighted sum of
estimates from each of several subfilters, each designed
assuming the unknown parameter takes on é different'spe-
cific value or ranges of values. The welghts for ‘the
individual outputé are the respectlve cdnditibnal prob-
abllitles that a parameter takes on a specific value, given
the set of observations of the signal plus nolse. 'Sinéé the
welghts for the individual subfllter outputs aré fuhc-
tions of the output measurements, the optimum adaptive
filters are obviously ﬁonlinear. Varlious examplé§¢1llus-‘

trating the improved performance of adaptation aréfgiven

in Chapter 9.0,

e

10.2 Suggestions for Future Work
20-22

It 1s well known that for signal estimation
problems,.the minimum mean square error estimate is always
obtained using the conditional mean- estimator. However,
when the statistlcs aséociated with the signal are'non-
Gausslan, the optimum filter is 1n general nonlinear and
qonsequently difficult to derive or requires a complex
fealizatiqn. This problem 1s generally skirted by elther
one of two methods (which lead to equiva;ent results),

namely'assuming the statistics are Gausslan or finding

the optimum linear filter.
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‘ In this dissertation a special class of non-Gaussian
statistical signals was considered, consisting of 8lg-
nals described by a probability law obtained by the selec-
tion of samples from vaﬁious Gaussian distributions with
known selection probabllitles. It‘was shown that the
optimum filterléonaisted of the weighted sum of est;mates
obtained from a set of linear subfilters, Although the
ciass of éignals consldered appears restricted, a
slightly different point of view may lead to a more gen-

eral apprdach to non-Gaussian signal estimatlon.

Specifically, the density function, p(x), of a
random variable constructed by a selection procedure

described above 1s easlly (Appendix V) shown to bhe

L
p(x) = Z Pipi(x): IP1 |Z Y (10-1)
1=l

where P, 1s the probability of selecting from the TR
distribution and p,(x) 1s the 1*P gaussian prdbability
density function. ‘pi(x) is given as

B, (x) 1 egg —-Q-(x'mi)e  (10-2)
1 . ‘/2.".01 201 E
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where
2 th
oy = variance of the 1 distribution
m, = mean of the 1%1 g1stribution.

Since the'selectioh procedure 1s mutually exclusive,'
. _ .

i=m

Consider now the genéral estimation'problem where

~§ non-Gaussian signal wiﬁh probability density function,

Pg(x), is given. If Py, my and~o§ for 1 <1< L and

ji P, = 1, can be determined such that p(x) equals
i=1

or approximates ps(x), then ps(x) can be assumed to be
' of the form considered in Chapter 7.0 and 8,0 and the

optimum nonlinear filter 1s determined.

VériouS'questions must be considered before this
approach proves useful, Specifically, how are Pi,_mi; ‘
_of and L determined so that p(x) = Py (x)? what are the
convergence properties of the series expansion éepresenp
tation of (10-1)? One possibility might 5e to use A

least squares fitting procedure, i.,e. minimize
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' 2

L o
Z Pipi (x) - pS (X) dx
i=l '

I |

[o(x) - 5] ax = |
I A . .(;0-3) |

subJect to the constraint that,ji' Pi =], fhls approach
o 1=a) ) B

seems attractive since pi(k) are linearly independent and
henge can be orthogonalized, which generally simplifies -
the curve fitting problem. In order for this technique . .
to be practically feasible, L, must be kept small so

that only a few subfilteré are needed. However, under
| these conditions 1t s not clear 1f 1t is worthwhlle

to use thls approach over the optimum linear filter tech-

nique,

Another possible approach would be that of matching
the moments of ps(x) and p(x). The noncentral moments

of p(x) are glven, very simply, as

L - |
my = ) Bymy  (10-4)
i=] : .

th th

where m 1s the n moment of p(x) and m,, 18 the'n

moment of pi(x). Since pi(x) i1s Gaussian, all of 1its
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moments can be expreséed in terms of m, and af. For
example, the oth through Sth noncentral moments of p,(x)
can be identically matched using L=2 (1.e. two subfilters),
However, six nonlinear simultaneous equations must be}
solved to obtain the unknown parameters,

2 2

Pro Poo Myy Mo,
o1, and og. '



-APPENDIX I. POLYNOMIAL SMOOTHERS
a) Derivation of Polynomial Filters

Consider a sampled signal, x(ti), which 1s disturbed
by noise,.n(ti), such that :

(ty) - x(ty) +n(ty) - (11)
Assume | |
E [:n(ti), n(tz)] - 5,00
and
E [n(ti):] -0
and

Bi4p = By = AT

We are interested in determining the optimum finite
memory'discrete linear filter to estimate the function,
x(ty), or any of its derivatives, x(m)(ti), given a
finlite number, r, of noisy samples, y(ti), extending over

a smoothing (or filtering) time, T, where T = (r-1)At.

th

" A linear estimator of the m derivative of the

input signal 1s defined as

5 |
e - ) W) vy (1-2)
R
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We shall be concerned with ‘the question of estimat-

“ing the mth

derivative of the input signal[ (m )(t )] at

some time, t o=, for the case in which x(t) 1s either a

polynomial of known degree, J, or can be approximated by

a polyhOmial over the time.interval, T. The results are

obtained in an extremely useful form using an orthonormal

polynomlal expansion signal representation rather than

the usual Taylor's series approach.

These polynomials, fJ(n), are describedl8

lowing recursive formulas,

fJ(n) - -F-J-S-n_).
S~

v B

where '

Fo(n) = 1

Fy(n) = n

1)

K2 (p2_1.2
Fisp(n) = k(n) - E?ﬁ‘QZE‘L Fp(n)s k21

where

L Eﬂc,

and

TN
_ k2(r%-k®)
B B k 1l
kT yndoy) kel 2

by the fol-

(1-3)

(1-4)

(I-5)

Table 1 1ists the first several of these polynomials.



TABLE I
Orthogonal Polynomials

Fo(n) = 1
Fi(n) = n )
Po(n) = n - I3k

2
3 rc - 7
2 Cafp? 2
Fum-n“_@Lﬁ4%n2+xr4“rgz.
2 L 2 :
Fs(n) -n’ - l:iﬁi‘ﬁl)_] nd + [:_Lgr = 2 gg + 407:] n .

B. = r2—1 r
, ==

5 o (ZP-u)(rPo1)r
2 100

5 o (2?-0) (v2-4) (r2-1)r
37 2800

B = (£P-16)(rP-0) (r2o4) (x®-1)>
| 4 34,100

where n = zt'ﬁ' .
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In the development of the theory we shall use the
following'theorem which is proven in Appendix II.

Theorem 1: Every polynomial, x(t), of degree J,

can be expressed as a linear combination of the
orthogonal polynom;als.fa‘<£%> .
. Using Theorem 1
x(fdi') = i bJ‘fJ(ti/At).. 4 (1-6)
J=0
where

r-1

-y

and 6Jk is the Kronecker delta symbol,

'fJ(tiﬁAt) fk(ti/At) - ajk (1-7)

Let x*(t) be the estimate of x(t,) at time t = 7 where

| S

x# (1) = }J by £,(v/at) . (1-8)
. J=0 '

where J 13 the smoother order and the b; coefficlents are

to be determined. To satisfy the least squares error

criterion, the expression for the sum of square errors

glven by
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2
Sum of squared errors = 3R = }; o [}{ti) - x*(ti)]
. | ! 1 |

e

(I-.Q) .
18 minimized with pespect to the coefficlents ;'b’s. Sub-

stituting equation (I-8) into (I-9) we obtain

2

YR=) (ty) - }L by £,(6,/a8) | (1-10) -
T 1 I . ‘

L)

Expanding equation (I-10) we have

o ZR.Zf(ti)-ei b;.Zy(ti) f&(ti/At)
T T =0 r

ThLHA@sG e

Differentiating equation (I-11l) with respect to b; and
using the orthogonality relation of equation (I-T) we
" obtain '

by .; y(by) fe(6y/a8) ’(:-12)'
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Substituting (I-12) into (I-8) we have

e = 3| Tt 4000000 [ £,m0)  (z13)
Jeo LT | A -

Rearranging (I-13)

g S
x#(x) =) w(ty) ) £3(63/a) £y(x/at)

(Irlu)
1 J=0 |

From (I-14) we note that the J*® order smoother weighting

sequence for the estimate of x*(<), WJ(i), is given as

| wJ(i) - ;i; £4(t,/a%) rJ(T/At) | (I-15)

We now consider the optimum estimate of the mth

derivative of the input signal, x:(m)(T/At). Blum™® has
shown that the optimum estimate 1s simply the m#h derlva-

tive of the optimum estimate of x(t), given as

x*‘@)(t) = %;a'x*(w)

(I-16)
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Substituting (I-14) into (I-16) we have

| | . .
- Cooam : :
= (m)(.r‘) - %‘ﬁ; y(t,) Z’o £4(%,/At) f.Jgr/At) |
| | (I-17)

Simplifying (I-17) and using the notation

.%'r,(rm) « £{m) (x/at)

we obtain

=" (1) () -Zy(ti) i £,(t,/at) fgm)('r/At) (1-18)
T j=0 °

Hence the weighting function for the m®? derivative esti-

mate of a th order smoother at time‘t = 17 1s given as,

3 .
wf,m)(i) - JZO fJ(ti/At) fgm)('r/At) (1-19)

b) Properties of Polynomlial Smoothers

Aside from the curve fittlns.properties of poly-
homial‘smobthers, as 1llustrated by the method of dériva-
tion in Appendix I(a), polynomial fiiters have other

deslrable properties which we now consider.



I-8

|

We note that the estimates of the orthogonalvpoly-.
nomial coefficlents, b;, given in eduation (I-12) are.

unblased estimates of bJ, since = T :

E [p;] - E Zy(ti) fk(t;/At)
r K |

"_. ZE [:V(ti)] fk(“i/"\““»)
)

JIMEN x(ti) £, (6, /At) - (1-20)
which from equation (I-6) yields

E [b;:[ = b, | (I-21)

Jd
Therefore, since x*(m)(¢) - }E 'b; fﬁm)(r/At)
J=0

E [x*(m)('r):l -Jio b, £ (x/at) = x(®) () (1-22)

if x(t) is a polynomial of degree, K, which 1s equal or
less than J. Hence under these conditions polynomial

estimates are unbiased estimates for all derivatives if
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tﬁe input signal order 1s less than'of equal to J, the
smoother ordér. Consider the situatlon where the input

" signal 1s a polynomlal of degree K, where K > J. Hence

 xm) gy a }K b, fgm)(t) . (1-23)
J?b 3 :
Under these conditions dynamic or blas error is intro-

~duced into the estimate. We shall defihe dynamic error
in the estimate of the m°P derivative, D as '

D =E {x*@“)(f) - x(m)('r)} (T-24)

Substituting equation (I-8) and (I-23) into (I-24) we
obtaln

. J K
‘D, =E Z by £{m) () - 2 by £4(7)
3=0 j=0 |

Rearranging the above equation ylelds.

s

. J K :
Dy = E ,z RO ORI WRTE 210
- =0 " J

uJ+l
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H Since E:{pg} = bJ we can simplify the above to yleld
S em)
m } .
==~ ) by £fm() ~ (z-25)
' ' J=J+l » . '
A Taylor'!s ‘serles expansion‘of the input signal,

x(t), about t = 0 ylelds

x(t) = 55 QJ td B (I-26)
J=0 ' '

Using (I-26), equation (I-25) can be rewritten to yleld

1=

» ay EmJ'- (1-27)

where the émJ are called dynamic error coefficlents and
in partlcular for the above situation, emi =0 for J =0

to J = J. Hence

. K ,
Dm - E: .aJ emJ o (1=28)
J=J+1 .
Therefofe for dlscrete polynomial filters, the dynamic
error 1s zero i1f the input signal order, K, is less than

or equal to J, the smoother order,
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" The €ny COefficients may be obtained by noting that
for an input signal described by equation (I-26), the
total dyhamic error 1s equal to the sum of the dynamic
efrors [since we have a linear filter] assoclated with
each of the terms of equation (I-26). Hence from (I-27),
.our definitidn of'dynamic error coeffiéients, we note
that'smJ 1s 8imply the dynamic error due to an inbut
equal to tJ, which 1is |

Cr=1 A
- 3 o(m) &™d
ey = E;;l of i) - I . (1-29?.
===

where the first term on the right side 1s the fllter out-
. put and the second term i1s the true value. Equation (I-29)

can be rewritten in terms of the inner product notation

as

cag = (¢ W) -

- (1-30)

tmt

‘We also note that (tJ, ng)> are the moments of the filter
welghting function, wgm).

We now concern ourselves with the effect of poly-
nomial filters on the 1npuﬁ noise; in particular, some

measure of the output noise assoclated with a particuldr
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th order smoother is desired.

estimate, xf(m)(r), using a J
Consider a general linear filter which 1s described by
- some weighting}fﬁnctioﬂ (impulse resppnse);_w(i),-suéh

that the output 1s glven by, R, where

2-) vy ) (-31)
1 . . ) '
and

y(i) = x(1) + n(1).

Equation (I-31) may be rewrlitten as

R =) x(1) W(2) +) n(2) W() (1-32)
1 T |

where the second term on the right is the nolise term
assoclated with the estimate, 2. Let us consider the

 properties of this term, N, where

N=)n()w@E)  (1-33)
T .

A measure of the "size" of N is the mean square value of

N; that is to say, the expectation of (N)Q.

( ; n(1) w(a))‘a

E(Ne) = E
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Therefore
50) - 2 {Z };n(i) n(3) w(1) w(a)}
gnd 8o

E(N?) -,-Z Zw(i) W(ﬁ) E(n(1)n(J)) (1-34)
13

By assumption, the input nolse samples are mutually inde-

pendent with mean value zero and varlance og. Henqe

B(a(On() = o¥yy (1-35)

Equation .(I-35) into (I-34) we obtain
, 2 2 2 2 Ane
CE(N®) = oF ) WR(1) = o (L) (1-36)
i :

Thls result 1s significant éince 1t states that the out-

put nolse varliance is equal to the input noise variance,

og, multiplled by a constant equal to the équare of the

norm of the filter welghting function. Therefore, using
(I-36) and (I-19) we obtain for the variance, o2, of the

mJ’
estimate of the mth derivative using a Jth order smoother,
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which 18 our deslred result. cﬁJ may be expressed directly

in terms of the orthonormal polynqmials as follows,

==

o |
2 ’ J ,
z . z ;: fgm)('r/ t) :1({’.“)(1/&) fJ(ti'/At) fk(ti/At.)
{ = _{x-1) 3=0 kfo

2

J
2;.‘02
amJ o

> le

'J
AT Y £,(t,/0%) £, (t,/0%)
3= S

k

&

r-l

=z

fgm) (1/at) fﬁm) (1/at) Z
PP 5]

= .
| (1-37)

Using the orthogonality-relétionship of fj(ti/ t) given
by equation (I~4), (I-37) reduces to ‘

' dJd 2 A
-2 P[]’ ew

which 1s another useful form of the results.



APPENDIX II. "PROOF OF SOME IMPORTANT THEOREMS®

Theorem 1. Every polyhomial x(t) Bf degree J can be ex-
pressed as a linear combination of the polynomials fk(t)

- [@escribed by equations (I-3), (I-4), (I-5)]

' Proof. The proof follows from the fact that £, (t) is a

polynomial of degree k with nonzero coefficient'of tk,

where k = 0,1,...,J. For k > 1, fk(t) 1s of the form

atc & R, (t), (II-1)

where A = constant and Rkil(t) is a polynomial of degree

k-1, If we replace tY in x(t) by

£4(t) ’ARJ-l(t) |  (1r-2)

the resuit wlll be of the form

c;f5(t) + Uy ,(t) | | .(II-3)

where UJ_l(t) is a polynomial of degree J-1. Now replace

771 4n uy_;(8) by

SSCELECRN
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which transforms equation (II-3) into an expression of

the form
C:fJ(t) + °J-1fJ-1(t)'+ UJ_Q(t)

where UJ_2(t) is a polynomial of degree J-1. Prbceeding
in this way, we will finally arrive at an expression of

the form
x(t) = Csf5(t) + ... + T f(8) + Cf (I1-5)

which 1ls the required linear combination (since

ro(t) = constant).

Theorem 2. If U(1) is the welghting function of any
discrete filter having zero dynamlic error for all 1npﬁt

polynomials of degree J, then

IW(1) 17 < loge) i@ - (11-6)
with equality holding in (II-6) only if
r-1 r-l
W(i) = U(i) - (T) 1< =

where W(1) 1is the weighting"functibn of the discrete J'D
order polynomial filter, having zero'dynamic érror, de-~

scribed by equation (I-19).
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Proof. Denote U(1) - w(isfby v(1). Thus

S U(1) = w(1) + V(1) (1I-7)

I = (U,0) = (W+V,W+)

IR - W)+ (LY + (W) + (Y) (11-8)

]

lol? = IWIE + 2(w,v) + [IvI?

To say‘that the filter with wéighting function U(1) has
zero dynamic error for all input polynomials x(t) of de-
gree J 1s to say that

r-24
2

e [x"™(s,)] - ) EDHQ]Nb=xWH)

1= - 1£%ll

(11-9)

for all input polynomials of degree J and all ti. By
hypothesis, U(1) satisfies equation (II-9). By equation
(I-2) for polynomial filters, (II-9) also holds when U(1).
is repiaced by W(i). By subtfaction of the two equations,
we obtain '
r-1 o
x(ty)[U(1) - w(1)l =0 (1I-10)

g = - (1)

2
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for all 1 and all polynomials x(t) of degree J. Thus
U(1) - W(1) 1s orthogonal over the interval

- 12%&1 <1 S_iE%ll to all polynomlals of degree J. In
.other words, by (II-7)
| (V) =0

for all §oiynomiais Q(t) of degree J. But, W(1) is a
polynomial of degree J and hence 1s itself such a poly-
nomisl Q(t). Hence (W,V) = O and thus by (II-8)

lwli® = IWiE + lIvi? (IT-11)
which proves (II-6).

Furthermore, by (II-11), equality holds in (II-6)
only if V|2 = o, 1.e.,

r-l1

= .

}: (1) - w(1)12 = o (II-12)
1 r-1

The left side of equation (II-12) is the sum of a nonnega-
tive function which can only be zero 1f

U(1) -w(1) =0

Q.E .D.
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From (I-36), the variance of the estimate obtained

Jth

using a order least squares polynomial smoother 1is

less than that obtained with any other filter with zZero
dynamic error for a Jth degree input signal.

Thgorem 3. Let uo,ul,...,uJ be‘given real numbers. Then
there 1s a unique polynomial, W(t) of degree J, such that

(¢, W) =u, 0g<ygT (11-13)
and cén be rebresented as
J ,
w(t) = Z u, wd (%) (II-14)

J=0 .

where wJ(t) is a polynomial of dégree J defined by its

moments

| 1 k #
(£%,wd) = {o | ! (1I-15)
1 itk =)

Proof. Using the orthogonality relation for fJ(t/At), we
have, from (I-4)

(£5,8) =0 (II-16)

Supposing W(t) of degree J to exlst, let.us prove the
uniqueness of W(t). The polynomials fJ(t) can be.written

in the form
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J o
1, (%) ='Z H‘; £J 0

<kgJ (II-17)
s ,
By (II-13) and (II-17) we have
J . .
W) = Z 4, 0gkgd  (1I-18)

From Theorem 1 we can write for any polynomial,

. J
W(e) = ) &y £y(6)
| i
!
From this and (II-16) we conclude

(fJ,w) = cJ(fJ,fJ) = ¢y 0gkgJT

Hence

g
WE) = ) (£,W) £4(8) . (1I-19)
k=0 o

This proves the uniqueness of W(t) since, by (II-18),
(fJ,w)'is uniquely determined by U _,U;,...,uj. Taking

the inner product of tk with both sides of (II-14) we .

have
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. J K _
(t¥,w) = jz u, (£%,wd) (II-20)
. J=0 : : ’

Byl(II-l3) and (II-15)

J
. uk'=,jz uJ BJk‘= u,
3=0

hence proving (II-14). The existence of w(t), 1s there-
fore demonstrated since a solutioh, (II-14), has been
shown to satisfj the conditions of the theorem., Thus

Theorem 3'18 proven.

Theorem 4. Let uo,ul,...,uJ be given real numbers and

let W(ti) be the polynomial of degree J such that

(td,w) = u, 0<JI< T (II-21)
Then, for any function U(t) such that
- (t9,v) = u, 0<J3<d  (II-e2)

holds, we have

Ili? = Iwi? + Jju-w]? (1I-23)
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Proof. Subtracting (II-21) from (II-22) we obtain

(¢l u-w) =0 0g g7

2
-

Hence
- (Q,U-W) = 0,

~ for all polynomials Q(t) of degree J. In particular,
. since W(t) 1s a polynomial of degree J, we have

(W,U-W) = 0 ' (II-24)

|
In general, for- any functions F(t) and G(t),

Ir+ell® = [IRI? + 2(F,6) + ligli®

Seﬁting F=Wand G = U-W, we obtalin

lwl® = W% + 2(w,u-w) + Jju-w]?

which, because of (II-28), yields the desired relation

Iol? = 1wl + fo-wi?
- Theorem 5. Given an input polynomial signal of degree J,
then of all fllters with given dynamic error coefficients,
the filter which minimizes the output nolse has a welght-
ing function, w(ti) which 1s a polynomlial of degree J.
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Proof. The dynamic error éoefficients,‘eﬁj,ﬁare-given by

- (II-25)
t=1

el um)) Ml
emJ <t s W ) at™

where
J th |
uy = (t ,W) = the J~ moment of the weighting function

Hence the dynamic error coefficlents determine the filter

moments and therefore by Theorem 4, Theorem 5 is proven.



APPENDIX III, DERIVATION OF Wi(t) POLYNOMIALS

' The wi(t) polynomials are defined by their moments
glven as, . '
0 1 £ B R
(ed,why -{ =6y for 0g1gJ  (III-1)
Using the orthogonal polynomials, FJ(t), describved
in Appendix I, where

(FpR) =0 34k
(Fk’Fk) = Bk
and
J
Fi(t) = z A‘§ tJ 0gkgy (111-2)
J=0 . ‘

Taking the inner product of the k'O orthogonal polynomial
with Wi(t)'we have

<Fk, wi> - z A‘§ (t9,wt) 0 kT (III-3)
J=0 |
Using (III-1) we hgve'

. d .
(Fk’ "1> i JZO AJ B3y =AY (TIT-4)
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where A§ is the coefficlent of the ith power of t(t = 1At)f

" in the orthogonal polynomial, Fk(t).

From Theorem %, Appendix II, we can write,

- d
wi(e) = ) gy B(8)  (1II5)
£=0 :
Therefore
(?k. wi) = g (P, Fy) - (mmz-6)
and hence _
I (o i T
F., W
wht) = Z grk—’pj)l’k(t) (III-7)
K=0 k'’ k
Substituting (III-4) into (IIi-?) we obtain
1 oAy L AT |



APPENDIX IV, DERIVATION OF SUBFILTER WEIGHTS
IV.1 Bayes Estimate of Prob (laJ IS,aTH) |

The Bayes estimate of the probability that ,
-8my S.aJ‘s.aTH’ given an estimate of 85 aJ, 1s'requ;red.
Since QJ 1s obtained using a JUP order least squares poly-
nomlal smoother, and the noise samples-are assumed to be
Zero mean, 1ndependent and Gausslan, aJ is a random vari-
able with a Gaussian distribution, whose mean value is ay

and variance, 0, 1s given by equation (I-38). The proba-
| | a7 . |
bllity density function of a8y for some glven value of ay is

D)

202

. : a '
» (5 10) = e T (1v-1)

V2T a,

agy

Since ay 1s not actually known, a priori, we shall assume
ay has a uniform distribution between finlte 11m1ts_and'
finally take the 1imit of our results as these limlts go

‘to infinity. 1In particular we assume that

p(aJ) - %-, - %S ay g% and (Iv-2)

eventually let a = =,



-2 '_

~ ‘With the above information as introduction we a.i-e

now interested in finding the .Bayes' estimate of

4TH
Prob QaJlsaTHIQJ)-I P a;la‘,) day ~ (IV-3)
| » ~Bires D

Using the theorem of .oon'ditional probabilities R

(Ivet)
.
Do d) Galag)ste) )
Zntegrating squatton (V-5 -
» (SJ)-E o) 0 (3g10) e, (we)

_ Substituting (IV-5) and (IV-6) 1into (IV-5) we obtain

x; aJ|2J).' "’(QJ"J)“’(’J)

4 K“ p(a;) p (QJ | aJ). d%,

| (Iv-7)



Substitut ing (IV-l) and (IV-2) into (IV-T) Y‘lelds
-2
1 —_l e oxp § Jz
o 2oA

Ia/a p ‘(QJ l aJ) 453

: -a/2

=] ]
p(a,,|3.,)-r,2 | exp¥ (Ja;e@

N]l—'

<.ns>

Nl

(1v-8)

Integrating (IV-8)

A A
Probability (laJ’lgaTHIaJ) -j ) (aJ | aJ> da;

-8
a -Q ' a ..3
% erfc -—TH——J - erfec -—T-}l—g—
O °A
a5
Prob Q ag | < aTH | a ) y

(Iv-9)
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- Taking 1imit of (IV-9) as a — w ylelds

A A
. A “8mp~a 8myr=a
Prob (l ag | < @npy | a J> - %- erfec IH J ). erfc - a4

OA V2 o,
as ay
(IV-10)

Iv.2 'Confidence Interva112

Method of Obtaining
Probability QaJ' | < aTQ

. The Bayes' approach used in the previous section makes

the statement that "the probability of a; being sltuated
between glven fixed limits 1s equal to some.e.ﬁm_If in
fact ay 18 not a random variable, questions_arlse as to
the meaning and sense of such a statement. The method of
Confidence Intervals, however, makes the statement that
"the probability that some fixed limits include between
them the_value of the parameter, ays corresponding to the

actual sample, 1s equal to e&."

Keeping these statements in mind, we now f£ind the
probability that the range of values between -8y and By
include the value of ay which correéponds to the actual

"sample.

Consider the aj vs. QJ plane shown in Figure (8).

' A
For some value aJl of aJ, two limitg of 8y, 71 and 7ps are



CONFIDENCE LIMITS

FIG 8
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.seledted; such that the probability of“QJ fallgpg within
this fegiqn (71,72) 1svequél to €. The curves obtained
“when this 1is done for all ay are ocalled confldence curves
for.some ccnfidence level equal to €. For a different ¢,
different ocurves are obtained. The relatlionships between
Y1» 7p» € and ay, are obtalned using p <3J | aJ> glven by
equation (IV-1). If an estimate of az, QJ » 1s obtalned,

2
12 that the unknown value of the param-

1t may be stated
eter,'aJ, lies within the coﬁfidence-interval (01,02), or
between the confidence 1limits cl‘and 02 with a confldence
72
level equal to €, where € -j p(’a\a.'l aJ> dQJ. Since in
| 71 .
equation (IV-1), ay appears only as the mean of a normal
distribution, the (7,,7,) interval will shift linearly
with unity slope fof different values of ay if (71,72) is
selected over the same portion of p <?J |aJ> relative to
the mean (aJ) for all values of ay. Consider Figure (9)
Where ng 1s an estimate of gJ for a glven set of observa-
tlons. We are interested in determining with that confi-
dence levgl we can say thatxaJ lies within the confidence
limits of ay = =Bpy and ay = +tamy. Confidehce curves can
.be constructed with unity slope passing through the points
(?Jl, aTH) and <?Jl’ -aTH> . It 1s now required to f£ind
the appropriate confldence level, &, for the resultant

.curves, This 1sveasily‘accomplished'by selecting any



CONFIDENCE LIMITS

FIG9
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arbitrary value of a;, say ay = 0, and finding the prob-
abllity that‘aJ, lies between the intersection of the

ol ‘é:‘onfidence curves with the a; = O line, Using equation

(Iv-1)
= 2
A a.-a
%] A
A - -
27, oy 20 a 205
1 a TH a
€ -j 1 e J daJ - j e J aa
a V2T o ~&ry
— 4, 7%mH ag
(Iv-11)
Integration ylelds
-a . - 8 a_ . -8 ]
1 TH ~ %7, ™ T %)
€ = 5| erfo - erfc (Iv=-12)
2 ca g, :
_ J &y /]

which 1is the same result as equation (IV-10) which was

found using Bayes' Theorem.



APPENDIX V. DERIVATION OF_STATISTICS
FOR EXAMPLE IN SECTION 9.1

Deriné ao*to be a sample value of a random vhriable,

X, Let x be the random varlable with cumulative prob-

| #7:gb111ty. distribution, P(x) = Probability (x < X), defined

by the following modél (fdhction\of random variables,

Xy and x2): LI is a sample of-eithér"oné of two Gaussiﬁn
‘random variables, Xy and Xpe The probab}lif&.tﬁﬁt'go is
a gample of X, is P, énd of X5 is P2, where Pl + Pai-'l. 
The means and variances of X and X, are (él’ oi) and
<ﬁ2, c%) respectively and pl(xl) and p2(x2) represent

their probability density functions. The mean, m

? and

variance, ai, of x 18 required.

P(x) = Probability (x < X)

which is equivalently the Joint probabilility of Xy being

selected and x, < X, and that x, 1s selected and x, < X.

1.e-. ' -

P(x) = Probability [(1,::1 < X) and (2,x,¢ x)] .

Since the selection of a‘sample from Xy and X, are mufually

exclusive,

B

P(x) = Probability (1,x, < X) + Probability (2,%5 < X). -

o]
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The selection of a random variable (xl or x2) is inde-

pendent from the sample .values of the random“variabies.
Hence
Probability (1,x; < X) = Probability (1)

- - Probability (x, £ X)

or

Pr(l,x; < X) = PyPr(x, < X)-
and

Pr(2,x2 < X) = P2Pr(x2 < X)
Therefore

P(x) = P Pr(x, < X) + PoPr(x, < X)

Differentlating P(x) we obtain the probability'densityf

funetion, p(x), of x.
p(x) = Pypy(x) + Pypp(x)

The mean of x, m  1s given as Efx] where

E[x] = m, =J‘ x p(x) dx =J x [Plpl(x) + P2p2(x)] ax



m, = PIJ X pl(x) dx + P2J. x pa(x). dx
) ’ ) =00
which is

mx = lel + P2m2 .

The variance of X, ai is given as

ai- = E[x2] - [E(x) ]2 = E[_x2] - mi

where
E(x?) =J x2 p(x) ax *I x? [Plpl(x) + Pzpa(_x)] dx
‘Etle = PIJ" x> pl(x) dx + Pé [ x2 pa(x).dx

Etx2] = él [a% + m?] + P, [ag + mg]

Therefore

| e | 2
2 2 2 2 2
o, =P [ol + 1] + Py [02 + m2] - [lel + P2m2] —



If

then

and

V-4



~APPENDIX VI, OPTIMUM UNBIASED POLYNOMIAL SMOOTHERS
In order to obtain an unblased minimum mean square
error estimate, we allow the form of the estimate of the

mth derivative of the lnput signal to be a constant ternm,

Gm, plus a linear combination of the observed data, y(i).

¥ () g+ Yy w®E) (v

. . rel
1=-==

Using the identical procedure as in Chapter 1. O, the

dynamic error is given as,

Dp=Cp+ ) agen, (VI-2)
J=0

To 1nsurelan unblased estimate,
J . .
E[Dm] = B Gm + Z aJ.SmJ a O - ('VI..3)

J=0

Rearranging (VI-3) and noting that E[aJ] = my,

Gy = = ) myen T (VI-4)
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Substituﬁing (VI-4) into (VI-1) we obtaln

Pel

J - |
3 (x) @ - )emy ey + f y(1) w(m) (1)
J=0 BT R ¢ |
T ' (VI-5)

RN

The dynamic error assoclated with.thé.above eétimate’is,

from (VI-2) and (VI-4), glven as,

D, = ji (aJ-mJ) €nJ | (VI-6)
J=0 il

Using (VI-6) and the fact that the output noise varilance

1s given as
B[(N?) = o2 Jwl™))?
we obtaln for the resultant mean square error, -

E {[N+bm]é} = E(N?] + E[2ND_) + E [sz]

. . -
- 02 ||w(m)|| + E} 2N z (aJ-mJ) €

| 3=0 ]

>L y

+E (aJ-mJ)(ak—mk) €mySmk

J=0 k=0 i
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Noting that E[N] = 0 and that the observation nolse has
been assumed uncorrelated with the aJ random variable,

equation (VI-7) can be simplified to

. 4 . J J ’ o .
| E [[N+Dm}2] n c§ ||W(m)||2 + z . Z €3 Emk (E[ajak] - melJ
| - » =0 k=0 , '

. (v1-8)

Substituting (5-14) into (VI-8) we obtain,

5 [1w,1%] = o2 o™y
J J

. + }: E: € . € (E[a a,] - m,m_+ 02(wJ wk)>
£ & mJ “mk \ *t%J3%k J7k o ’ ‘

J .
+ 207 Z y w-’,-vu(“‘)> | (VI-9)
J=0

Differentiating (VI-9) with respect to each of the emJ

and eguating to zero ylelds J+1 linear equations in J+1

unknowns. The nth equation of the J+1 total equations

- 1s glven as

_.zo €my [og(w“,wJ) + E(ana;’) - mnmJ] = _gg (wn, U(m)>

(VI-10)
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The solution of (VI-10) yleld the dynamic error coef-
flcients, emJ of the op'timum unblased filter. The mean -
square error of this filter is then given by (Vi-9).
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