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ABSTRACT  

The design of optimum polynomial digital data 

smoothers (filters) is considered for linear and adaptive 

processing systems. It is shown that a significant 

improvement in performance can be obtained by using 

linear smoothers that take into account known a priori 

constraints or distributions of the input signal. The 

procedure for designing optimum (minimum mean square 

error) adaptive polynomial data smoothers is then dis- 

cussed and analyzed. The optimum smoother makes use of 

a priori signal statistics combined with an adaptive 

Bayesian weighting of a bank of conditionally optimum 

smoothers. Use of this technique permits large improve-

ments in performance with a minimum of additonal system 

complexity. 
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1.0 INTRODUCTION 
Polynomial data smoothers, because of their ease 

of handling, and their attractive properties, have had 
widespread usage in a variety of data processing appli­
cations. Heretofore, the design of these smoothers has 
been based only upon the minimum required a priori 
information necessary for their design, name*ly the-., 
degree of the input signal. More often than not, how­
ever, additional a priori information is available to 
the smoother designer. Moreover, during the course of 
the actual data processing, additional information about 
the input signal can become available. It is the pur­
pose of this dissertation to consider the design of 
optimum polynomial filters either when a priori infor­
mation is available to the designer or when information 
becomes available during the course of the data proces­
sing. The latter procedure gives rise to what is 
commonly called a self-adaptive processing system.



2.0 APPROACH TO THE PROBLEM 
Information available to the smoother designer con­

cerning certain characteristics of the input signal is 
often not effectively used. This information might be of 
the form, for example, that the maximum acceleration of 
an object, due to mechanical constraints, is equal to 100 
ft/sec^, or even less restrictively, that its velocity Is
less than the speed of light. We might also know that due

f'
to uncertainty in rocket design the actual acceleration 
can be described by some probability distribution with 
known mean and variance. The use of the above type of 
information, which is often available, can Improve the 
estimation accuracy if properly used. This' problem is 
considered in Chapter 5*0 where the optimum (minimum 
mean square error) polynomial filter design is presented 
when known constraints on the input signal derivatives 
are available. In Chapter 6.0, examples are given 
illustrating the Improvement obtainable as compared with 
normal polynomial filters.*

In addition to a priori information available to 
the smoother designer, initial processing of the data 
yields information which can be used for further

♦Normal polynomial filters are briefly discussed in 
Chapter 4.0, with complete details shown in Appendices 
I and II.
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processing. This "learning" feature of a device is 
referred to as self-adaptation. In Chapters 7.0 and 8.0 
the optimum adaptive filter is shown to be composed of a 
weighted sum of subfilters. Specific illustrations of 
these techniques are presented in Chapter 9.0 for sev­
eral discrete, finite memory smoothers. Included.are 
some sample results showing the improvements obtainable 
by using adaptive techniques.



3.0 REVIEW OP PERTINENT PRIOR WORK 
The importance and usefulness of optimum filtering 

and prediction in pur m o d e m  electronic systems environ­
ment has been clearly demonstrated during the past decade. 
Present-day theories of smoothing and prediction may be 
said to have originated with the classic papers of 
Wiener^1 and Kolmogoroff2^, which were written during 
World War II. In fact much of the research on predic­
tion and filtering has been concerned with various exten­
sions of the Wiener Theory. In his pioneering work, 
Wiener^ showed that problems of prediction of random 
signals and detection of signals of known form in the 
presence of random noise lead to the so-called Wiener- 
Hopf Integral equation. He gave a method (spectral 
factorization) for the solution of this integral equa­
tion in the practically Important special case of sta­
tionary statistics and rational spectra. The method 
involves performing a least squares operation on obser­
vations assumed available for all past times. Under 
certain conditions, optimality under the least squares 
error criterion implies optimality under a wide class of
criteria. Such conditions have been found by Benedict

4 28and Sondhi and independently by Sherman . Zadeh and
Ragazzini^2' ^  modified Wiener theory for observations
which are available only over a past interval of finite
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duration. They also developed the useful and reasonable 
approach of specifying that the nonrandom part of the 
signal is known to be a polynomial in time of degree not 
greater than some fixed Integer. Their continuous finite 
memory filters have led to many other variations on this 
basic approach.

IQ 25 6Many authors, including Johnson Lees Bergen ,
Darlington1 ,̂ Blum®”11, Franklin1'*'1®, and Alterman1 have
discussed discrete, finite-memory polynomial filters.
Blum uses an orthogonal polynomial signal representation

7and develops a recursive discrete filter. Blackman'
developed the technique of cascaded simple sums smoothing
as 'a substitute for optimum smoothing using a digital
computer for prediction of sampled data. Cascaded simple
sums smoothers obtain estimates of the derivatives of
the input signal by averaging compound differences of the
noisy input data. The advantage of cascaded simple sums
is the elimination of most of the multiplications and
many of the arithmetic operations required in the optimum

18convolution type smoother. Howard and Rauch consider 
the design of an optimum polynomial filter with a simple 
a priori constraint using a minimax error criterion.

■ _ C'
One .of the newest and most promising areas of inves­

tigation in prediction theory is the concept of adaptive 
systems. Normally, the data required by optimum filter
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theory are unknown a priori* so that a filter in the 
environment must "learn" or "adapt" to these as neces­
sary. Adaptivity has not been precisely defined to date 
and many of the adaptive systems are based on parametric . 
methods. Most of the work in this field has not been 
concerned with prediction and filtering as such but with 
control system design. There has been some limited work 
in the adaptive system area applied directly to filter 
and prediction theory. Some of the earliest work was 
done by Benner and Drenick**, who were filtering a signal 
which could either be a ramp or a parabola in the pres­
ence of additive, zero mean, Gaussian noise. Their fil­
ter chose between two linear subfilters on the basis of 
an estimate of the derivative of the signal part of the 
input. Franklin1^ attempted to improve on Benner's work 
by using the optimum ramp and parabola filters as the 
subfilters and choosing between them in a manner which 
would minimize the mean square error. Shaw2^ also con­
siders a switching two-mode filter, but rather than - 
designing by successive optimization, he sets up a design

t
procedure, for simultaneously designing the subfilters and 
the switching decision rule to minimize mean square error.

oil 27Kushner and Sakrison 1 have applied stochastic 
approximation theory to estimation problems with unspecl- 
fied noise. Follin and Bucy consider an adaptive
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scheme for a specialized case where the signal-to-noise
■?0ratio Is an unknown parameter. Weaver^ examined a 

linear parametric adjustment system. Balakrlshnan^ con­
siders a nonparametric method applied to pure prediction, 
where no noise is assumed and no statistical assumptions 
made.

ohMagill describes an adaptive approach to the 
problem of estimating a scalar-valued, stochastic 
process described by an initially unknown parameter 
vector. His solution is limited to those processes whose 
parameter vector comes from a finite set of a priori 
known values.

oAlterman describes a digital smoother technique 
where the known form of the differential equation for 
the input signal is used in conjunction with least squares 
polynomial smoothing to obtain an optimum finite-memory 
digital filter.

This paper is essentially concerned with the exten­
sion of the above work in two directions: 1) the design 
of optimum polynomial discrete filters when knowledge of 
a priori statistics and/or constraints on parameters which 
describe the input signal are available and 2) the design 
of adaptive, finite-memory digital filters when the input 
signal Is described by one of a finite number of ranges 
and/or values of an unknown parameter.



4.0 CLASSICAL POLYNOMIAL SMOOTHERS 
As an introduction to the problem under considera­

tion, some of the elementary concepts and results of 
classical polynomial smoothing theory are presented in 
this chapter. Detailed discussion and derivations are 
included in Appendices I and II.

By classical polynomial smoothers, we mean those 
smoothers which are designed under the assumption that 
the deterministic portion of a signal is known to be a 
polynomial in time with degree less than or equal to a 
fixed integer, J.

Consider a sampled signal, xft^, which is dis­
turbed by noise, nft^), such that

y(t± ) - x(t±) + n(t±) (4-1)

where y(ti) represent noisy measurements of x(ti). We
assume that samples of the input signal are obtained at
uniform time intervals of At seconds and that n(t^) is a

ozero mean random variable with variance equal to or .o
Further, we assume that n(t1) are independent from sample 
to sample (i.e. that the autocorrelation function of 
n(t1) is given as, R ^n(t±), n(t^)>) » where 5ljg is
the Kronecker delta symbol.
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We are interested in determining the optimum finite 
memory discrete linear filter to estimate the function, 
x C-*3i)> ov any of its derivatives, x ^ f t ^ ) ,  given a finite 
number, r, of noisy samples, y ^ ) ,  extending over a 
smoothing (or filtering) time, T, where T » (r-l)At. We 
say a filter is discrete linear if the transformation of 
a finite input sequence of numbers,

... y(t_2 ), y (*.].)> y(*0), y(t+1),...

into a finite output sequence of estimates,

... **(B)(t0), / (m)(t+1),...

is given by

r-1

f, W(l) y(tA) f (4-2)
r-1 

' "  2

Hence x*^m ^(t1 ) is a linear combination (weighted aver­
age) of the input sequence, y(t1). The sequence of 
weights, W(i)., is called the weighting sequence or impulse 
response of the filter.

*The symmetrical representation will be used throughout 
this development for simplicity. The index i=0 repre­
sents the center of the smoothing interval and i « -r»w 1 ^and i » —g—  the oldest and latest points respectively.

i
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We shall be concerned with the question of estimat­

ing the mtl1 derivative of the Input signal Q c ^ C t ^ J  at

some time, t » x, for the case In which x(t) Is either a 
polynomial of known degree, J, or can be approximated by 
a polynomial over the time Interval, T.

The polynomial filter weighting function can be 
derived using various optimality criteria, each of which 
leads to identical results for the conditions described 
above. These criteria Include least sum of squares 
error curve fitting, unbiased estimation and minimum 
variance estimation. These results can be obtained In an 
extremely useful form by using an orthonormal polynomial 
expansion signal representation rather than the usual 
Taylor’s series approach. Let the input signal be given by

J
*(**) - X  f j ( V A t )  (“-3)

3-0

where the bj are coefficients related to the Taylor’s
1 2series coefficients ' and the fj(t1 ) are certain ortho- 

normal polynomials described in Appendix I. Let x*(t ) be 
the estimate of x(t^) at time t » x where

x*(t ) » fj(v/At)
J-0

(4-4)
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In which J la called the smoother order or power and the 
bj coefficients are to be determined. To satisfy the 
’’least squares" error criterion, the expression for the 
sum of squared errors given by

r-1

Sum of squared errors - SR ■ ) I y(^ )  ” x*(^) I

2 (*-5)

Is minimized with respect to the coefficients, bj, This 
yields

# ”̂l
bk ” ) y^i) ( M )

1

i * U
Consequently from (4-4) the J order smoother weight­
ing sequence for the estimate of x *(t ), Wj(i), Is

J
Wj(l) - £  W ^ )  fj(rAt) (U-7)

J=*0

Prom Appendix I, the weighting function for the mth 
derivative estimate of a J order smoother at time t » t 
Is given as,
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w M ( i )  - £  fjttj/At) f(“ )(T/At) (4-8)
J»0

This result gives an explicit formula for the filter
weighting function (impulse response) as a function of
all system parameters where

J » smoother order
m = estimated derivative

At a data spacing
t a time at which estimate is obtained

fj(n) a discrete, equally spaced, finite time,
orthonormal polynomials (Appendix la)

index i a o refers to center of smoothing interval
i a . (-Tg1) refers to oldest data point 

1**11 a refers to latest data point

Aside from the curve fitting properties of poly­
nomial smoothers, as illustrated by the method of deriva­
tion in Appendix 1(a), polynomial filters have other 
desirable properties which we now consider.

As shown in Appendix 1(b), the expected value of the 
estimate of the m derivative is given as

E [**<” > (t ) ] -  J  bk f W ( T / A t )  . ! « ( , )  (4-9)
J-0



13

If x(t) is a polynomial of degree K, which is equal or .•}
less than J. Consider the situation where the input 
signal is a polynomial of degree K, where K > J, the 
smoother order, or

K
x M ( t )  - £  toj (4-10)

3-0

Under these conditions dynamic or bias error is intro-
#

duced into the estimate. Define dynamic error in the
i,U

estimate of the m derivative, D„, asm

D„ -  E - [ x* W ( t ) -  x W ( t )} ( '* -1 1 )

It is shown in Appendix I that,

K
’ I  (4- 12)J-J+l

Prom equation (4-12), we note that the bj coefficients
for values of J from J+l to K determine the magnitude of
the dynamic errors. Further, these values of bj are 
proportional1 to the values of the J+lst to deriva­
tives of the input function at the center of the smoothing 
interval [i.e*, Taylor’s series coefficients]. Hence, 
polynomial smoother estimates are unbiased estimates for 
all derivatives if the input signal order is less than 
or equal to J, the smoother order.
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The Taylor's series expansion of the Input signal, 
x(t), about t = 0 Is given as,

K

In general, Dm can be written in.terms of the Taylor's 
series coefficients,

where the em j are called dynamic error coefficients. 
Specifically, equation (4-12) can be written as

The em j coefficients may be obtained by noting that 
for an input signal described by equation (4-13), the ' 
total dynamic error is equal to the sum [since we have 
a linear filter] of the dynamic errors associated with 
each of the terms of equation (4-13). Hence from (4-l4), 
our definition of dynamic error coefficients, we note 
that emj is simply the dynamic error in estimating the
X.U. J

m derivative of the input for an input equal to tJ, 
which is

J-0.

(4-14)

K

Dm X  aJ
J-J+l
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&mj ( V ,  «<»>) - d V
dtm (4-15)

t-T

Also note that ( V ,  w « )  are the moments of the filter 
weighting function, W^m ^(l).

We now concern ourselves with the effect of poly­
nomial" filters on the input noise; in particular, we 
desire some measure of the output noise associated with 
a particular estimate, x*^m ^(r), using a order
smoother. Prom Appendix I we obtain for the variance,
^ rt •f' o o f  o f 1 f  h o  — ^ t hmJJozT, of the estimate of the m v“ derivative using a J

smoother.

where
mJ y W ( i )

r-l■■j ■■
(4-16)

r-l r-l
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Using equation (4-8), equation (4-l6) becomes*

°ls ■ ffo I  2 (4-17)
> 0

which is the desired result. Note that as J (the smoother
Oorder) increases, amJ increases so that the use of a 

higher order smoother gives rise to a noisier estimate.

We are now in a position to state an important opti­
mality property of polynomial smoothers in the form of a 
theorem which is proven in Appendix II.

Theorem: The J order polynomial smoother used to
i.u 4*V>estimate the m derivative of a J degree poly­

nomial input is that filter with zero dynamic error 
which minimizes the expectation of the square of the 
estimation error.

Although polynomial filters are the optimal filters 
when the signal is a polynomial of known degree, poly- 

. nomlal filters are of particular interest because of their 
applicability to the case in which the signal is not a 
polynomial but can be approximated by a polynomial of 
suitable degree, J, over a suitable smoothing time, T. 
Under these conditions, however, the estimation error

*See Appendix I.
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consists of both a noise error and a bias error. The 
proper procedure for designing a polynomial filter In 
this case Is to select the.filter*parameters J, and T, 
so as to minimize the total expectation of the square of 
the estimation error, which Is given as

The output noise variance Increases with Increasing J 
or decreasing T. On the other hand, dynamic error 
decreases with Increasing J (due to the better fitting 
properties of higher order polynomials) and Increases 
with increasing T (since more highly derivatives are 
required to accurately represent the signal).

Care should be taken in the selection of the estima­
tion point in the smoothing interval [i.e., time, t , at 
which estimate is made). The parameters which must be 
considered In making this selection are the order of the 
input data, the smoother order and the allowable smoother

real time delay. In general, updating smoothers i.e.,

where
D,mJ

f U
» dynamic error of a J order smoother 

estimating the m derivative
i.u

» output noise variance of J order
iat.

smoother estimating the m derivative
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t - At J  have the poorest accuracy but have no delay.

If some delay can be tolerated, an Improved accuracy of 
estimation of the derivatives of the input function can 
be obtained. Generally, the lowest estimation errors 
result from smoothing to the center of the smoothing 
interval [i.e., t « 0] which of course introduces a delay 
of one-half the smoothing time [i.e., T/2] for the output 
estimate.



5-0 OPTIMUM POLYNOMIAL SMOOTHERS USING 
A PRIORI INFORMATION

The design of the optimum linear polynomial smoother 
is considered, when statistical information or constraints 
on the input signal are available, a priori.

Assume the input signal, x(t) is described by a poly­
nomial of degree J, where

x(t) =* aQ + a^t + ... + ajtJ (5—1)

If a finite number of discrete observations are made on 
the input at equally spaced time Intervals and these 
observations are disturbed by noise n(t^), then the 
observations, y(t^), are given ass

y(tA) = x ^ )  + n ^ )  (5-2)

Assume the input noise consists of uncorrelated samples 
of a random variable with zero mean and standard devia­
tion, aQ. The smoothing interval to be considered is 
~ \  ^ where T is the total smoothing time. Let­

ting At be the time spacing between observations and r be 
the total number of observations in T seconds, then

T « (r-l)At
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At this point the explicit design criteria for the 
optimal linear smoother can be stated. Defining the 
linear filter in terms of its weighting function, W(t1), 
then the estimate of xm (T), the mth derivative of the 
signal at time ■ r, when the signal x(t) is a poly­
nomial of known degree, s', is given as

r-l
A(m) X

(t ) - £  y(tt ) (5-3)
l -

It Is required to determine W^m '(tj_), such that x^(*r) 
has a minimum mean square error when a priori knowledge 
about the coefficients of the input polynomial is avail­
able. This knowledge might consist of either constraints 
on the magnitude of the coefficients, a^, of the input 
polynomial x(t), or the fact that any or all of the coef­
ficients, aj, are described by some probability distri­
bution with given moments.

Let the a priori probability density functions of 
the unknown coefficients be given as p(aj), and assume 
that both Eta^a^] for J / k and E » Oj + nij are known,

p
where Cj is the variance of the J coefficient and m^ is

J.U
the mean of the J coefficient. Also assume that the 
observation noise and the a^ coefficients are independent.
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Let N equal the noise output at . t - t and Dm , the 
dynamic error of the smoother. Prom Appendix 1(b),

mj (5-4)

and the average square noise error Is
i

E(N2) - a2 ||w(m)||2 (5-5)

where s ie the filter weighting sequence
4.W

and em j Is the dynamic error In estimating the m
derivative of an input, t^, for J ■ 0,1,2,...J

The total squared error at t ■ t Is given as

[N+Dj2 = N2 + 2ND + D2 *■ m m m
, r

n2 + 2N Z  aJ am)
J=0

J J
+  L  L  a AJ=0 k=0

emJemk (5-6)

Talcing expectations of equation (5-6) we obtain for the 
total mean squared error

mse - E £(N+Dm )2̂ | - E(N2 ) + 2E N t aa 'mj
J=*0

+ E ’£  tj»0 k=0
ajak emJemk

(5-7)
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Since the observation noise and the a^'s are assumed 
independent, equation (5-7) may to® rewritten as,

mse = E(N) + 2E[N) E a, e . J mj

+ E
* J J
Z  Z  a Jak emJemk

k=0

It is easily shown using equations (5-2) and (5-3) that 
E[N] » 0 is implied by. the assumption that the input 
noise has zero mean. Hence

mse = a + E
J J
I  IJ»0 k=0

aJak emJemk

which yields

J J
mae - a\ l|W(m)||2 + ^  Z  Emjemlc E tajalc1

J=0 k-0
(5-8)

Equation (5-8) must now be solved for that weighting 
function, with its associated dynamic error coef­
ficients, emj, which minimizes the mean square error given

by E [(H+Dm )2]  . This result will be obtained utilizing

the following theorems and definitions:



For J - 0,1,...J, define W^(t) as a polynomial of 
degree J defined by Its moments

u- i fO It k ^  J 
(tk;V3) - { (5-9)

'•l if k - J

Let um j ■ moments of

Theorem 3. (Proof In Appendix II)
Let u0>u i>» **tij be given real numbers. Then 

there is a unique polynomial, W(t), of degree, J, 
such that

.3(t ,W) » Uj 0 £  J £  J

and
J

W(t) - Y  WJ(t) (5-10)
3-0

Theorem 5. (Proof in Appendix II)
Of all filters with given dynamic error coef­

ficients, that filter which minimizes the output 
noise has a weighting function, W(t), which is a 
polynomial of degree J.

Define
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Prom Appendix I, (1-30),

emJ " umJ " cmJ
Hence

J
„W(t) . uW(t) + ^  emJ w-t(t) (5-12)

3»o
where

J
u(“)(t) - £  oaJ wj(t) (5-13)

J-0

Since equation (3-13) describes the polynomial weighting 
function, u(m )(t), for em j » 0 (and hence cmj - umj), 
U^m ^(t) is the order polynomial least squares 
smoother weighting function which provides unbiased esti- 
mates of the m derivative of the input signal*

. Prom equation (5-12)

l | W ( m ) | | S  -  | | U (m)||2 +  £  £  e m J e m k  ( * * » " * )
J"0 k-0

+ 2 t cmJ (”3' U<m)) (5-11*)
J-0

Substituting equation (5-l4) into equation (5-8) and 
rearranging terms we obtain for the mean squared error
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mean square error * E J”(N+Dm )2^  » a2 ||Û m |̂|2

J J
I  I  [ ^ ( W J.W|C) + E(aA )] 
J-0 k«*0

+ 2o° I  cmJ (wJ- u(m)) (5-15)
J»0

Differentiating equation (5-15) with respect to each 
of the em j and equating to zero yields J+l linear equa-

i.u
tlons in J+l unknowns. The n equation of the J+l total 
equations is given as

Z  emk [ ° > n -wk) + E(anak>] " -°o («"' u(n))  
k=0 (5-16)

The solution of equations (5-16) yield the dynamic error 
coefficients, em j of the optimum filter.* The moments, 
Umj, of the optimum filter are obtained since

umJ “ emJ + cmJ

*If o^ or m® Is arbitrarily large (I.e. -* oo), is set 
equal to zero to obtain a minimum mean square error fil-

O Qter, since from (5-15) for o9 or m. -> «, the mean square 
error-* Infinity for e^ ^ 0.
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The optimum weighting function, W ^ ( t )  is then equal to

t f W ( t ) - £  unJ w^(t)

and the mean square error is given by equation (5-15).
A procedure for obtaining the W^(t) polynomials is shown 
in Appendix III. The results are given as (III-8)

(5-17)
k-0

where Pk (t) are the orthogonal polynomials described in 
Appendix I given as

“ I
Note that the restriction of our estimator to be

strictly linear (i.e. equation 5-3) has resulted in a
bias or dynamic error associated with the estimate.
Specifically, the resultant dynamic error is given as

«

the expected value of Dm  (eq. 5-*0»

E[D J  - E
' J
I
J«0

aJ

j
E(Dn ] - I  Etaj] emj
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J
E tDm} ■ L  *} em 3 (5-l8>

J - o

where nij Is the known mean of the J Taylor’s series 
input signal coefficient.

In Chapter 7.0, we shall have occasion to consider 
smoothers that have minimum mean square error, subject
to the constraint that their estimates are unbiased.*

20For Gaussian statistics, Kalman and others have shown 
that minimum mean square error, unbiased estimation is 
equivalent to conditional mean expectation estimation 
[i.e. using as an estimate the mean of the conditional 
distribution of the parameter, given a set of observa­
tions].

In Appendix VI the minimum mean square error, 
unbiased polynomial smoother is derived where the 
estimator is allowed to consist of a constant term 
plus a linear weighting sequence given as

r-l

£(“ >(T) - G m + V y(l) (5-19)

*Shaw2^ considers the very simple, special case when 
the highest coefficient is a zero mean Gaussian random 
variable.

i
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where Gm Is a constant, Independent of the observations,
y(i). It is shown in Appendix VI that the value of the
constant, G . is m

*  -  t  nj°» * - L  m S 'mj (5-20)
> 0

and that the dynamic error coefficients, [and
hence the filter weighting sequence] are obtained as 
the solution to J+l linear equations, where the n 
equation is given as,

L emk [<’f(Wn.Wk> + E(anak) - n y a j  - -c f (f, u(“ >)
k»o

(5-21)

Note that if the a priori distributions of the aj 
coefficients have zero mean (i.e. - 0) then equation
(5-21) is identical to (5-16) and both linear and linear 
plus a constant estimation yield identical results.

Prom Appendix VI, the mean square error of the 
optimum unbiased polynomial filter is (eq. VI-9)

mse - a® B®W II2 + X  I  [af(WJ,Wk) + S l a ^ ]  - »A ]  emJenlc

+ 2oo I emJ (wJ« u(m))  (5-22)
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where the em j are obtained from the solution of (5-21). 
We note that ’'unbiased” used in the above sense indi­
cates an average bias error equal to zero when averaged 
over the ensemble of all input signals. This is con­
trasted with the usual unbiased polynomial smoother 
estimates which are unbiased for each signal input.



6.0 EXAMPLES AND SAMPLE RESULTS OP 
^OPTIMUM POLYNOMIAL SMOOTHERS 

In this chapter various examples are considered which 
illustrate the design procedure for obtaining the optimum 
linear filters derived in Chapter-5.0. Results presented 
indicate the performance improvements obtainable using 
the above techniques.'

6.1 Optimum Velocity Estimate With Known Constraint on 
the Input Acceleration
As an example of the filter design procedure derived 

in Chapter 5.0, consider a second degree input polynomial 
(J ■ 2), given by

x (t ) “ aQ + + a2t2

Let the a priori distribution of a2 be given by

It is easily shown that the variance and mean of a2
are,

a2
o2 - and m —  ■ 0»2 j “2

We assume that no a priori information is known about aQ 
or a^ so that we may arbitrarily assign mean values of 0 
and variances of » to these coefficient distributions,
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[ i . e . ,  a*0 -  -  » ,  -  o j  .

eQ « e1 » 0 and from equation (5-16)*

Consequently

- o' ( u W ,  »2)
'm2 (6-1)

Assume that we desire to find the minimum mean square 
estimator of the velocity (m » 1) at the present time, 
4. T _ r-l A4.t “ 7J g 1 At,

Using equation (5-H)

- 0
t - At

d m
'1 dt - 1

t “ At

2t
r-l At t *» At

(r-l)At
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Prom Table I, Appendix I

F0 w  - 1 B o * r

F l < x ) - x  B l -

F2( x ) . x 2 - ^ i  Bs . i £ - d * ^ = i k

where
x ■ t/At

Note that (from 5-17)

j  Ak
W J (t) - Y, 5^ pk (t> (6_s>

I. A  lCk»0

Therefore from (6-2), and Table I,

.2
W° » =  +

r + (r2-4)(r^-l)r/l80

In a similar manner we obtain

W 1 - — ^

^NOTE: ■ l/At, since x = t/At^

*
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and

p - # ]
W" ■ . .I i ' i . i

(r -4)(r -l)r/l80

X— n
At‘

Using equation (5-13)

2
u(t) . y  oj w j(t) 

3-0

(r-l)
x e  £*2 “ ^rirj

U(t) - ■ -a12-— ■ + — 5------ *--------
(r-l)rAt (r -4) (r -l)r/l80

iwhich is, as mentioned in Chapter 5.0, the weighting 
sequence which provides the least squares estimate of 
velocity at t ■ (r.gA). At for a quadratic least squares 
smoother. Further,

2
(U,W2)-X Cj (WJ,W2) 

J-0

(w1^ 2) » 0

(w2,w2) -  * liw2H2At (r -4)(r -l)r
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Since c * 0, and (W1,W2) * 0,

(U,WZ ) « c2(W2,W2) - (r-l)At I ...4 ■ ?[; 180
A t ^ r ^ K r * -i)J

Substituting Into equation (5-18)

e2
-a2 (r-l)l80 At / At^(r2-4)(r2-l)r
 --------------- L----------------g---

c-o \ T J r r *
180

t (r -4)(r -l)r
\ , TH
:J + ”r

and upon rearranging,

e0 - -(r-l)At
a,

1 + TH
( 540ag ^
\it4 (ra-4)(r2-l)r/

Now
W(t) - D(t) + e2WS(t)

Hence
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W(t) 12x
(r2-l)rdt

1 -
a,

1 +

(
TH 

540a!
At4 (rz-4)(r^-l)p5

180 (r-.i) J >  . i s ^ U

At(rz-4)(rz-l)r

which is the desired filter weighting function. The mean 
square error is, from equation (5-15)*

2 2 <*o(u >w2)2mse = <jQ ||U|| r-------
c* l|W2||2 + *TH

which becomes, after some algebraic manipulations,

mSe . fo lg(8r-ll)(gr-l). 
At (r -4)(r -l)r

r( m )2m 2 ,, a §p — f i
L Ndt (r -4)(r -1) r/ J

_2 180 
°o V’'47J3'

a;. ‘TH+ - y
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Note that the first term In the above equation Is the 
mean square error for the least square velocity estimate 
for the quadratic smoother. The fact the second term Is 
negative shows the reduced mean square error for this 
filter.

As a numerical example, consider a one-second filter 
with At « .1 sec and r » 11 points. Let aQ - 10 ft.
Figure 1 shows a plot of the velocity mean square error 
as a function of a^R. The dashed line represents the 
asymptotic value of mean square error as aTjj -» », corres­
ponding to the normal least squares estimate. Depending 
on aTH, Improvement on the order of over 100 to 1 are 
obtainable using the optimum filter.*

6.2 Optimum Acceleration Estimate With Known Constraint 
on Input Acceleration
As a second example we consider the optimum acceler­

ation estimate for the same conditions stated In Section 
6.1. In this situation,

* r-lc0 - °i - 0; c2 - 2} m ■ 2, t « At

•*0f course these Improvements are only obtained if the 
a priori distributions which are used are correct. All 
uncertainties in the signal parameters must be reflected 
in these distributions in order that the results be 
meaningful. This situation must be kept In mind during 
all subsequent discussions where a priori data is utilized.
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The usual quadratic filter weighting sequence, 
Is obtained as

2 360

U(t) ’ £  °1 Wj(t) ■ C^ (t) ’

From (6-1)

-o2 (U»W2 )
*2 " ------------IS

a2 l|W2||2 + a™J0 II" II -J- 

where

(U,w2) - CS ( M  - - 2 l i w V

Therefore

« .2 180 
_ _:2go ^ . 4 H ^ , 1)r

2 ~2
a2 180 . TH
0 rt^?5)'('*J*.X)r + T

The optimum weighting sequence Is given as

W(t) - U(t) + e2W2 (t)
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Substitution into the above equation yields,

W(t) = CoW (t) -
«_2 180

w2(t)

2 180 + aTH
0 At4 (r2-4) (r2-l)r

W(t) 2 -

0n2  180 ~

0 At4 (_r2-4)(r2-l)r
2 _______ 180 . TH
0 At4 (r2-4)(r2-l)r

180 jjx2 -

At2 (r2-4)(r2-l)r

(r2-l)
' 'I’d '

The mean squared error for the optimum acceleration 
estimate Is given as

mse a2 null2
®o(U,W2 )2

o2 I|W2||2 +  ™T

720a*
At4 (r2-4)(r2-l)r

720ao
At*1 (r2-4)(r2-l)r

720ao
At4 (r2-4)(r2-l)r

a„H , TH/ 4 + "T"/
Using the same parameter values as in 6.1 Figure 2 

shows a plot of the acceleration mean square error as a 
function of arpjj. The dashed line is the mean square error 
for the usual quadratic smoother acceleration estimate.
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Note that for aTH ** 0, the mean square error equals zero. 
This Is true since complete a priori knowledge of the 
acceleration is available.

6.3 Optimum Estimate of a Constant when True Value is a 
Sample of a Random Variable With Known Statistics 
As a further example, consider the case of estimat­

ing a constant signal, x(t) = aQ, given a set of meas­
urements of the signal. The usual procedure, assuming 
zero mean measurement noise, is to take an average of 
the observations. This corresponds to a zeroth order 
polynomial smoother whose weighting sequence is simply

The mean square error of this estimate is given as o*/r.
If, however, we have a priori information concerning the
signal, an improvement can be obtained. Suppose we know
that aQ is a sample of a random process whose variance 

2is a1 and whose mean value is zero. Using the results 
developed in Chapter 5.0, the dynamic error coefficient 
for the optimum smoother is given as
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and the optimum weighting sequence is

1
n * i )  - f  - -s

°o/r + «!

The mean squared error of the optimum estimate is

_2 4 /y,2
°o °o/r mse ■ —  - -57— 5 

°o/ r + a l

The first term in the above equation is the mean 
square error of the zeroth order polynomial smoother. 
Since the second term is positive, the resultant'error 
is, as it should be, always less than for the zeroth 
order polynomial filter. To illustrate with some 
numberical results, consider a measurement accuracy 
of the standard deviation of the random variable from 
which aQ is a sample. The dashed line represents the 
mean squared error obtained using the usual polynomial 
smoother.

»
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7.0 OPTIMUM ADAPTIVE FILTER DESIGN FOR 
INCOMPLETELY SPECIFIED SIGNALS 

We discuss in this chapter the design of the opti­
mum* filter given initial uncertainties about the form of 
the input signal. The input signal is assumed known 
except for some parameter, a,.-which might represent a 
specific parameter value or some range of values of a 
particular parameter.* It is known a priori that a can 
take on only a finite number of values (or ranges of 
values). If one knew the actual value of a, a priori, a 
filter could be designed to obtain a minimum mean square 
estimate of the input signal.
Let

x actual value of a state of the physical world 
we wish to estimate 

x > estimate of the state, x, given a set of measure­
ments, Y.

The minimum mean square error estimate of x, given a set
20of observations, Y, is the conditional mean of x given 

as
x - E[x | Y] - £ x P ( x  | Y) (7-1)

X
♦Optimum is defined as the conditional mean of x which is 
equivalent to minimum mean square error.
*A similar approach to the problem is taken using Hilbert 
Space Theory in reference (24) for continuous systems using 
expanding memory recursive estimation. Only considered 
however, are cases when the unknown parameter takes on 
specific values. The transient behavior of these filters 
is not examined in (24) but is included in this paper.
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Let a be a parameter of the input signal whose value is 
unknown a priori. Assume a can take on only a finite
number of values, given as o^, for 1 < i £  L. Each
may represent a range of values of a signal parameter. 
Summation of the Joint conditional probabilities of x and
c^, given Y, yields P(x | Y). i.e.

L
P(x | Y) . £  Pfx,^ I Y)

i”1

Using the theorem of compound probability the 
following result is obtained

r»

I Y) - £  p (* I i r . a ^ . p ^  I Y) (7-2)
1-1

where x, Y and may be vectors. Using (7-1)

a £  P(x|Y,0l) P(at | Y) (7-3)
x i»l

Interchanging the order of summations yields,

£ jc P(x I Y.a^.pfoj I Y) (7-4)
i»l X
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Define

^(a±) " Y j X  P(x | Y,a± ) (7-5)
x

$(0̂ ) is the conditional mean of x, given a set of obser­
vations, Y, assuming that actually is true. Hence,

ft - £  f t ^ )  I Y) (7-6)
1=1

AThe above equation states that x, the conditional 
mean estimate of x, is the weighted sum of the L condi­
tional mean estimates of x (i.e. x{a^), i » 1,2,...L). 
weighting function is the conditional probability of 
given Y (observations). Schematically, equation (7-6) 
corresponds to Figure 4.

For an increasing memory filter*, as the observed 
data increases P(a | Y) converges to B (°i"atrue^ wl:iere 
delta (5) is T;he Kronecker symbol. Note that in the 
usual adaptive procedure using multiple smoothers, the 
estimate is taken as

ft - ft(°k) -

^Minimum mean square error.
♦Smoothing time increases as more data is observed.

The
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where p(ak | Y) is the maximum for all values 1 < i ^  L. 
This estimate is optimum only when

P(«k | Y ) - l

The schematic representation of the usual adaptive 
switched smoother is shown in Figure 5»

The significant point to note with regard to the 
above theory is that no restrictive assumptions for 
distribution functions were made in the derivation. 
Moreover, equation (7-6) was derived in general, for 
any values of smoothing time or filter bandwidth, so 
that the estimation technique is optimum for the 
transient situation as well as for the infinite data 
steady-state condition.
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8.0 GENERATION OF THE OPTIMUM ADAPTIVE 
SUB'FILTER WEIGHTS

The adaptive or nonlinear nature of the optimum 
smoothing filter, as derived In Chapter 7.0, Is embodied 
In the weighting functions applied to the Individual sub­
filter outputs. These weighting functions, (which are 
the conditional probabilities that the Individual sub- 
filters should be used, given a set of observations), 
are functions of the observed data, so that a nonlinear 
operation Is Introduced, Letting represent a particu­
lar state of the Input signal, we have from Bayes1

. . 1

Theorem that the a posteriori probabilities of a^,
P(ai | Y), are given as*

(8-1) Is correct since the components of the random 
variable, Y, are not discrete. (See Harmon, W. W., 
Principles of the Statistical Tneory of Communicationsn 

equation 10-17.)

) p(Y| aj) P(aj)
(8-1)

^Although Bayes' Theorem Is usually written as
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where Y is the observation vector (set of measurements) 
and P(cij) are a priori probabilities of the parameter 
values aj. If the P(oij) are known, the optimum weighting 
functions are determined by obtaining the conditional 
probability density functions of the observation vector,
Y, given that some a,j is.true, evaluated at the particu-

s' , .lar value of the observation vector, Y. If the P(ctj) are
unknown, then j Y) must be estimated from the data 
alone. Examples are given in the next chapter assuming 
the P(aj) are known a priori and also assuming they are 
unknown.



9.0 EXAMPLES OF OPTIMUM ADAPTIVE FILTERING 
In Chapters 7.0 and 8.0 a generalized approach to 

optimum adaptive data smoothing (filtering) is discussed.
It is shown that the conditional mean optimum adaptive 
estimate is comprised of a weighted sum of the outputs 
of a hank of smoothers, each designed to be optimum for
some specific possible state of the input. We note that

onKalman shows that conditional expectation is equivalent 
to unbiased minimum mean square error linear estimation for 
Gaussian statistics. These results in conjunction with 
the optimum linear (and constant plus linear) filters 
derived in Chapter 5.0 will form the basis for the 
examples considered in the following paragraphs. The use 
of optimum linear subfilters is justified by the results 
of Kalman20 who shows that "results obtainable by linear 
estimation can be bettered by nonlinear estimation only 
when 1) the random processes are non-Gaussian and even 
then only 2) by considering at least third order prob­
ability distribution functions". Also in the same paper 
a heuristic Justification for the common use of Gaussian 
statistics Is given. Kalman shows that: "Given any
random process with known first arid second order aver­
ages, we can find a Gaussian random process with the same 
properties. Thus Gaussian distributions and linear dynamics 
are natural, mutually plausible assumptions particularly 
when the statistical data are scant."

The examples presented In this chapter illustrate 
the adaptive subfilter design and determination of the
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system subfilter weights. In 9.1 the specific example 
of estimation of a constant signal when a set of noisy 
observations are made, is explored in detail. A compari­
son of the resultant mean square errors obtained using 
a usual polynomial smoother, an optimum linear smoother 
(Chapter 5*0) and an optimum adaptive smoother are given.

In 9.2 a method is presented of estimating the 
a posteriori probabilities (subfilter weights) using 
only the observed data. Various suboptimum smoothing 
techniques proposed in the literature are also considered 
for comparison with results obtained in this paper.

9.1 Adaptive Estimate of a Constant Signal
As an example consider the following problem; A 

set of measurements Yfy-j^yg^y^.. .yr) are made on a sig­
nal, x(t), where x(t) is equal to some unknown constant 
value aQ. There is noise, n(i), associated with each 
measurement y(i), such that

y(jL) a a0 + h C1) (9-fl)

Assume n(i) has a zero mean Gaussian probability density
' 2function with variance equal to a£, and successive samples 

of n(i) are uncorrelated. Although aQ is constant during 
the set of r measurements, it is known that aQ is a sample 
of either one of two Gaussian random processes. The 
probability that aQ is a sample from process 1 is given
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as and from process 2 is Pg where P^ + Pg - 1. The 
means and variances associated with process 1 and pro­
cess 2 are ^0, and ^0, c|^ respectively. The optimum 
adaptive estimate of aQ, &Q, is required.

Before obtaining a solution to this problem, let us 
consider some possible applications. The quantity aQ 
might be a transmitted voltage level in a binary com­
munications system where the binary signals are samples 
of one of two random processes. The estimate would 
be the optimum estimate of the voltage level aQ. In the 
solution to the above problem, by-products are estimates 
of the probabilities that the sample aQ is from either 
process 1 or process 2.

Another application might be the estimation of a 
reentry vehicle parameter in a missile defense system. 
Suppose that a particular reentry vehicle is from either 
one of two specific classes, either decoy or warhead, 
with known a priori probabilities Pp or P^. A set of r 
independent measurements of the unknown parameter are 
obtained and the optimum estimate of the parameter is 
required along with an estimate of the a posteriori prob­
ability that the reentry vehicle is either a warhead or 
a decoy.



The solution for the optimum adaptive filter for the
above problems is shown in Chapter 7.0. The optimum esti­
mate of aQ, is obtained as the weighted average of the out­
puts of two subfilters designed to estimate the conditional 
mean (which is equivalent to unbiased minimum mean square 
error estimation since statistics are Gaussian) assuming 
that aQ is a sample of process 1 and that aQ is a sample 
of process 2. [The unknown parameter, a, to be learned 
is which random process aQ is taken from.] In this 
particular example, using the notation of Chapter 7.0, 
c^, represents the case when aQ is a sample of process 1 
and a2 the case when aQ is a sample of process 2.

For this situation the optimum subfilters are zeroth 
order optimum polynomial smoothers designed with known 
variances of the aQ coefficient. Hence the results of 
Chapter 5.0 are directly applicable and since the mean 
of aQ = 0 for both processes, the weighting sequences for 
the subfilters are from Chapter 6.0, given as,

All that remains now is to find the optimum weights 
for the subfilter outputs which are, as shown in Chapter 
8.0, given as

and

(9-2)

(9-3)



Since P-l and Pg are known, only p(Y | a1) and p(Y | gig) 
need be evaluated. We note that

p(Y | ox)
00

p(Y,X1 | a j  dX^ (9-6)
— 00

where P(Y,X1 | a 1) is the Joint probability density func­
tion of the observation vector, Y, and the random vari­
able X1,t given that the sample aQ is taken from process 
1. Using the theorem o%f conditional probabilities,

p(Y,Xx | a x) = p(Y | X1,a1) p(Xx | a ±) (9-7)

Substituting equation (9-7) into equation (9-6) we have

P(Y 1 cx-l) p (Y I X1,a1) p(Xx I a x) dXx (9-8)

^X^ and Xg are the random variables associated with 
random processes 1 and 2 respectively.
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We are given that process 1 is Gaussian, with zero mean 
2and variance a hence

P(X,)
y/2w a^

exp
2d^ (9-9)

Since the n(i) are uncorrelated samples from a Gaussian, 
zero mean random process, the Joint density function of 
the observations, given a particular sample of X.̂  and
is

p(Y I X1»a1) - n  « p
°o

[yt - xx]' (9-10)

which can be written as,

P(YI xl 'c‘1) - (-gir)r/a gr es[P

■“ r-1 —CV1 tH 
fc* X1 L yl _y2

1 . rxl
2<C ... 2—  + — 5cT 2af0 0 0 <

(9-11)

Substituting (9-11) and (9-9) into (9-8) and simplifying 
we obtain,
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p(*l ô ) -
CO

r+1 
(2*) 2 ojo

exp , V <
2 a ao o *°o 2ol

(9-12)
v» 1Making the substitution 7, - — 5- + —=*• in equation (9-12)

2ao 2alyields 0 x

1 P(Y| o^) r+1
2 „r rrV l

exp
(2*)

r—1 » *

Z*Si r I* '---g-
2af j exp

• VS' T - 3̂O “1
0 •40 O

- _

(9-13)

Completing the square in the exponent of (9-13) and-sim­
plifying yields

P(Y| 0̂ ) r+l 
C2*)2 °o°l

exp

1
1 
Ĥr
o

1 —
—

!2i
.

j ” >•̂ 0
•v rX. - 1

2°f ^ 1
^1 ^  2y 2 1̂ 0

.

ax.

(9-1̂ )

1
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Integrating equation (9-1*0 yields the following results,

p(Y | a,) = 7— r-/£ y---1 (2ir)r/ v 0g 1 ‘/ 2 y {
exp

“V x
(9-15)

In a similar manner, we obtain

p(y 1 “2 ) "
exp

E yf ( I  y0i
2c‘

(9-16)

where

y-2
r , 1+ — j2a0 20g

and

v , 2
r
V  ,.2

L yi * 1  yi ’i i«i

Cl
2 “ rc—i

I yl M I  yi_i..i
■ square of the sum of the observations.
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Using (9-l6) and (9-15) we can obtain the optimum weights 
for the subfilter outputs,

p(Y | a.) P.
p(<*l I Y) - p(Y I 'a’T'fY + P(Y J a2) *2 (9-17)_

and

, , ^
p(a2 I Y) * p'(tf I'ap" F~ + p(Y I ag )' 71 (9-1®)

where P1 and P2 are known and p(Y | a 1) and p(Y | a2) are 
given by (9-15) and (9-16). Therefore aQ, the optimum 
estimate of aQ, is given as

“ r-1 r-1
2 ^
Y, ^ ( * 0  Yi P(ax | Y) +

L  W2 (t> yi
i - r"1 i - - £ g i

(9-19)

where W^(t) and Wg(t) are given in equations (9-2) and 
(9-3) and P(a1 | Y) and P(a2 J Y) are given in equations 
(9-17) and (9-18). Obviously, from (9-17) and (9-18),

P(ai | Y) + P(o2 | Y) - 1

To illustrate the improvement of the adaptive pro­
cessing technique described by (9-19) over the usual 
nonadaptive technique let us consider the case when the 
number of measurements, r, approaches infinity (steady- 
state conditions). The nonadaptive smoother which takes
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no advantage of the measurements would consist of merely 
an averager or zeroth order smoother. The mean square 
error for the nonadaptive least squares smoother would 
be

mse (nonadaptive) ■ <jQ/r (9-20)

For the adaptive smoother, as r 00, when 0̂  is true, 
P(a1 | Y) « 1 and P(a2 J Y) « 0 and when a2 Is true,
P(a1 | Y)« 0 and P(a2 | Y) « 1. From (9-19)

r
K  - I  w i(4 ) yi

1-1

when a1 is true and

r
*0 - Z  v * )  yi 

1-1

when a2 Is true. Hence the total mean square error of 
the adaptive filter is the weighted average mean square 
error resulting from using W^(t) when a1 is true and 
W-j_(t) when a2 is true. Using the results of Chapter 5.0, 
the total adaptive mean square error is,
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mse (adaptive) ■ P, _o
r

„4/_2aQ/r
# *  *  <

+ p. o
r J k ± l

®0/r + aa
(9-21)

Noting that P1 + Pg » 1, equation (9-21) can be rearranged 
as follows,

mse (adaptive) ■ —£ -
af/r + of <Jo/r +  <

(9-22)

Since the second term in (9-22) is always positive, the 
mean square error of the adaptive system is always less

aothan ~  , the nonadaptive, zeroth order smoother mean 
square error.

For large r (as has been assumed) equation (9-22) 
can be approximated by

mse (adaptive) « ~  - (9-23)

Now_consider the use of the optimum nonadaptive 
filter described in Chapter 5.0 to estimate aQ directly. 
Let x be a random variable defined by the mutually
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exclusive selection of samples of process 1 with prob­
ability P-̂  and prpcess 2 with probability Pg. It is 
shown in Appendix V  that the variance and mean associated 
with the random variable, x, are given as

4 - v!+ vi (9-24)

and

mx *» 0 when m^ - m2 * 0

The weighting function for the optimum linear filter 
is then (from Chapter 5.0)

w(t) - i  -
2 / 2 
®0/r (9-25)

which, after substitution of (9-24) becomes,

W(t) - ±  -
2 / 2 oQ/r

0 x p x p ,r2”r + Plal + 2 2

(9-26)

The mean square error of the optimum linear filter is 
then

mse (optimum linear) " -jr - ■5
? ■ 0 X P rr2  X P rr2“  + Pl*l + 2 2

(9-27)



For large r (as assumed), (9-27) reduces to

mse (pptimum linear) - ~ 1
r

(9-28)

In order to show that the adaptive mean square error 
Is always less than or equal to the optimum linear filter 
mean square error, It Is necessary to show that the 
bracketed quantity In equation (9-23) Is always greater 
than or equal to the bracketed quantity In equation (9-28) 
I.e.

1

Using the fact that P1 + P2 » 1, the following algebraic 
manipulations oan be made.
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Pq Oi (4 - 4)+ vi (°l - °0
+ 4 - 4) (4 - 4) i 0

Dividing both sides by Pg we obtain,

4 - 4 + ps (4 -«!) i °« p2 (4 - 4) *
or

, * - ai l pa (a* -of), P2 (a? - ai) /

and finally

’ 2- r2’ ‘21 1 p „  Po (°? - ®|) *

which must be true^sinoe + Pg - 1, hence proving that 
mse (adaptive) £  mse (optimum linear). We note that for 
the case that P1 « 0 and Pg » 1 (or vice versa) the 
adaptive filter reduces to the optimum linear filter and 
no mean square error improvement is obtained. Prom

p p
equation (9-21) and (9-26), if a^ m o|, both filters are 
identical, as they should be.

To summarize, it has been shown that the adaptive 
filter mean square error is less than the optimum linear 
filter mean square error, and that both filters yield an 
improved performance over the zeroth order polynomial 
filter.
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9.2 Adaptive Estimation When A Priori Statistics Are
Not Completely Known
We now consider an example where the unknown para­

meter a, represents a range of values of some quantity 
which describes the Input signal. Further, assume 
that the probabilities of occurrence of a signal fal­
ling within the various possible ranges of parameters 
are unknown a priori. It is desired to find the adaptive 
filter which estimates the signal parameters in an opti­
mum fashion.

As an example, assume that the input signal may 
be represented by a polynomial of known degree, J. How­
ever, it is known that the highest derivative, aj, of 
the signal, x(t), falls within either one of two known
ranges, A a T or A a T . Let Aa, represent those values of 

J1 2 1 
aj such , that | aj | aTH and let Aaj represent the range
of values of aj given as | aj | > Suppose we wish to

j.1.
estimate the m derivative of the input signal at time t » t .

The solution for the conditional mean optimum adap­
tive filter requires that the individual subfilters for 
each ai (the unknown range of the highest derivative of • 
the input signal which is to be learned) be conditional 
mean estimators. Although the statistics are non-Gaussian, 
we shall use minimum mean square error, unbiased estima­
tors for the subfilters, using the Justification of 
Chapter 9.0. In particular, we must find that W-^(t)
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such that the estimate of x^m ^(T) has a minimum mean 
square error, subject to the constraint that

I aj I < aTH

with all values of aj in this range equally likely, and 
that Wg(t) such that the estimate of x^m ^(T) has a mini­
mum mean square error, subject to the constraint' that

I aj I > aTH

with all values equally likely. Note that this problem 
is a special case of the problem solved in Chapter 5.0. 
Before we consider the derivation of the optimum weights 
for the subfilter outputs, let us consider a specific 
situation and derive the optimum subfilter weighting 
sequences. Select the degree of the highest signal 
derivative to be equal to 2 (J » 2), and an estimate of 
the velocity (m = 1) at the latest data point ^i.e.,

r-l'Ni = ~2~J * is required. Bor subfilter number 1 we have 
that | ag J < aTg, where ag is the signal acceleration.
As shown in Chapter 6.0*, the optimum weighting sequence 
for subfilter number 1 is given as

*The results for linear estimation are equivalent to 
linear plus a constant estimation since the mean value 
of aj is zero.
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180 (
+ 1 At(r2-4)(r2-l)r

1 + aTH

At4 (r2-4)(r2-l)r/
54°qo ^

(9-29)

For subfilter number 2, the variance of a2 is infi-

least squares smoother where the weighting sequence, Wg(t)

Let us return to the derivation of the optimum 
weights for the subfilter outputs. Since there is no 
a priori information on the probabilities of occurrence 
of a sample of aj being from one or another of the pos­
sible ranges, we assume that aj [the acceleration in the 
above case] can take on any value, equally likely. Henoe 
the initial minimum mean square estimate of aj is obtained

I.L. t
by a J order, least squares polynomial smoother. For

nlte. Hence the optimum subfilter is the normal quadratic

is

(r2-i)rAt + At(r2-4)(r2-l)r
(9-30)
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the quadratic example, the weighting sequence for this 
filter is derived in Chapter 5.0, and given as U(t), 
where

a posteriori probability density function of aj over the 
regions | aj | < aTH and | aj | > aTH respectively.

Since no a priori information is available describ­
ing the probabilities that the highest signal derivative, 
aj, lies within the threshold region between and aTIj,
a Bayes estimate of these probabilities must be obtained 
solely from the observations. The minimum mean square

i.u
estimate of aJ# is obtained using a J order, least squares 
polynomial smoother, since there are no restrictions on the 
coefficients. Given this estimate of aj, aJ# the best 
estimate of the probability that -aTH < < aTR,
P( I aj 1 51 aTji)» &us,fc obtained. Since no a priori 
statistics are available about aJ# the use of Bayes'
Theorem to estimate p( | aj | < aTH) requires that prob­
ability density functions be assumed and then limiting

(9-31)

It is now shown that the optimum subfilter weights,

are given by the Integrated
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arguments be used to obtain the final results. More­
over, since aj is an unknown constant, rather than a

12random variable, some mathematicians object to using 
Bayes1 techniques for estimation and instead prefer 
the use of the method of confidence intervals. It is 
shown in Appendix IV that using either approach, with 
the assumption of independent, zero mean, Gaussian 
noise corrupting the observations, the best estimate of 

p ( I aj I < aTH^ 13 Siven as

P( I aj I < aTH > " \ erfc I) - erfc
\ y/Z a / V v/5 aA /

a a
(9-32)

where

2erfc x = —
y/w t

p
e_t dt

a = standard deviation of the estimate of a,,
a J J

Therefore, the optimum adaptive filter consists of 
the siim of the outputs from filters one and two [equations 
(9-29) and (9-30)] weighted by P( | aj | < aTH) and 
P( J aj | > a ^ )  respectively.

Let us now investigate the improvement obtained in 
mean square error of the adaptive estimate compared with
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the nonadaptlve estimate. We shall make the comparison 
both for the so-called steady-state solution (r-* «) and 
for the transient (finite r) solution for a specific 
example. The nonadaptlve least squares quadratic poly­
nomial estimate of present velocity yields a mean square 
error given as approximately1 (for large r)

where T « smoothing time.

As r -» oo the adaptive filter reduces to either sub­
filter 1 or 2 depending on whether a, belongs to A a T , or

1
A a T . The resultant mean square error is given as

2

Mean Square Error (adaptive filter) « P ^ mse^

The mean square error of subfilter 1, mse^, is given 
as (from Chapter 6.0)

2 ^
2 192<yo(nonadaptlve) & — 3-^
V T r

2

*This result may also be obtained using 1-38 and assum­
ing r »  2.,
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The mean square error of subfilter 2, Is Identical 
with the nonadaptlve least squares filter, and given 
approximately (for large r)

192a!:
mse« » —  mo*2

The total adaptive mean square error Is therefore

mseADAPTIVE
192a;
T2r

• v  (% )'
2 180 , aTH 
ro X  + T■ T r

Since

192aJ
T2r (A%)

p (a s j2) + p ( * 0  * 1

and both bracketed terms are less than or equal to the 
nonadaptlve mean square error, the total adaptive mse Is 
always less than or equal to the nonadaptlve results 
[equality holds for the trivial case when both filters
are identical which results when a.TH >].



73

For the transient case when only a finite amount of 
data Is available, the closed form solution for the mean 
square error of the adaptive filter Is extremely tedious 
to obtain and leads to nontabulated Integral forms. 
Therefore a computer Monte Carlo* simulation was under-, 
taken to obtain some results for particular examples.
These examples consisted of the use of various adaptive 
filtering techniques for the above problem, to allow com­
parison of the optimum adaptive filter with other "sub- 
optimum" filtering procedures. Franklin1^ considers the 
use of the least squares ramp and parabola filter as the 
subfilters and switching between them based on an estimate 
of the acceleration. We note that for the example under 
consideration, the normal parabola filter has zero dynamic 
error and a total mean square velocity error given as1

The ramp filter on the other hand has a bias error pro­
portional to the value of the acceleration input, ag, In 
addition to a noise error given as

*The Monte Carlo simulation consisted of generating an 
ensemble of observation vectors, Y, (using a random num­
ber generator computer routine) for particular values of 
input signal acceleration. The various proposed filter 
weighting sequences and operations were applied to these 
data and ensemble averages of the resultant estimation 
errors were obtained. The IBM 7094 computer was used.

2
r+TT(r+2TPARABOLA " ^ 2  (r-2)
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\ rAMP) ^(r--l)(r)(r+l)

The total mean square error of the ramp filter is

a2T2
mse(RAMP) At2 (r-l)r(r+l)

a
where Is the contribution of the bias error. By

equating mseRAj(jp to msePARABOLA we can solve for that 
value of a2 for which both errors are equal. Doing this
we obtain (assuming a large value of r)

26.9aQ
a o —  ---

TH T v/r

If I a0 I Is gre&ter than a0 then the parabola filter 
d TH

yields the lower mean square error and If I a0 I < a0
d TH

then the ramp filter Is better. Using Frankllnfs approach,
the resultant filter consists of selecting the ramp or
parabola filter depending on whether the estimate of
acceleration, a0, Is less than or greater than a0 . It

d TH
Is also of Interest to consider the use of the ramp and 
parabolic subfilters but using the optimum weighting 
arrangement described In this chapter.
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Finally, consider the use of optimum linear sub­
filters, but with a switching procedure rather than a 
weighting technique. The following parameter values 
were assumed for the comparison. Assume J**2, m » l ,  

r = 100, At » .01 sec, a = 10 ft and that the estimate 
is obtained at t = At. Under these conditions

a0 = 26.9 ft/sec2__
TH

and to have a common base for comparison, we let

aTH = a2 a ^ / s e c 2TH

The nonadaptlve least squares quadratic polynomial 
estimate of the present velocity yields a mean square 
error given as1

i

V At
o cr

aA (nonadaptlve) - 0 12(r-2) (r+2) + I80fr-lV 
(r-1) (M)(rT(r-2,),(,r+?)

which for the above example is

a2 (nonadaptlve) =» 187 ft2/sec2.
V

For the optimum adaptive system, the mean square error is 
presented as a function of the input acceleration.
Figure 6 is a plot of the results, where mean square 
error in velocity is plotted as a function of input sig­
nal acceleration. The dashed curve is the nonadaptlve
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mean square error calculated above. Although for some 
values of Input acceleration the adaptive mse Is greater 
than the nonadaptlve mse, the average, as anticipated 
Is lower. The actual mean square error, of course, 
depends on the actual probability distribution of the 
input acceleration. Also plotted on Figure 6 is the 
suboptimum switched adaptive mean square error result, 
using the optimum subfilters. By switched adaptive we 
mean that the output estimate is either that of subfilter 
1 or 2 depending on which of the a posteriori probabili­
ties, P( | aj | < aTR), or P( | j > aTH> Is greater.

Figure 7 is a plot of the Franklin suboptimum switched 
filter and also the suboptimum weighted filter. Compari­
son of Figures 6 and 7 show that the optimum adaptive 
filter yields the lowest average mean square error. In 
addition, for each of the cases, the weighting approach 
seems to yield better results than the switching technique.
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10.0 CONCLUSIONS
10.1 Discussion of Results

This dissertation Introduces the concept of minimum 
mean square error polynomial smoothing In addition to the 
usual methods of unbiased, minimum variance estimation.
It Is shown that linear polynomial smoothers can be 
designed, taking Into account known a priori constraints 
or distributions of the Input, signal parameters, which 
yield substantial performance Improvements with no addi­
tional system complexity. The resultant smoothers are

. ' 1 obtained by finding that filter weighting sequence, such
that the average output square error, consisting of noise 
and bias (dynamic error), is minimum. Closed form solu­
tions for the optimum filter weighting sequence and the • 
resulting mean square error are obtained, and are com­
pared with least squares polynomial filter performance.
In all cases, the optimum filter yields substantial 
improvements, which are illustrated by several numerical 
examples. Also considered is unbiased, minimum mean 
square error estimation using a priori information. 
Although polynomial signals were considered in this dis­
sertation, the same approach would yield results for the 
case of a signal described by any linear combination of 
known functions.

The second class of problems considered is that of 
adaptive polynomial smoothers. The input signal is assumed 
known except for some parameter which can take on a finite



number of values or ranges of values. It Is shown that 
using a generalized mean square error performance Index, 
the optimum estimate consists of the weighted sum of 
estimates from each' of several subfliters, each designed 
assuming the unknown parameter takes on a different spe­
cific value or ranges of values. The weights for the 
individual outputs are the respective conditional prob­
abilities that a parameter takes on a specific value, given 
the set of observations of the signal plus noise. Since the 
weights for the individual subfilter outputs are func­
tions of the output measurements, the optimum adaptive 
filters are obviously nonlinear. Various examples illus­
trating the improved performance of adaptation are given 
in Chapter 9.0.

10.2 Suggestions for Future Work
20-22It is well known that for signal estimation

problems, the minimum mean square error estimate is always 
obtained using the conditional mean estimator. However, 
when the statistics associated with the signal are non- 
Gaussian, the optimum filter is in general nonlinear and 
consequently difficult to derive or requires a complex 
realization. This problem is generally skirted by either 
one of two methods (which lead to equivalent results), 
namely assuming the statistics are Gaussian or finding 
the optimum linear filter.



81

. In this dissertation a special class of non-Gaussian«•

statistical signals was considered, consisting of sig­
nals described by a probability law obtained by the selec­
tion of samples from various Gaussian distributions with 
known selection probabilities. It was shown that the 
optimum filter consisted of the weighted sum of estimates 
obtained from a set of linear subfilters. Although the 
class of signals considered appears restricted, a 
slightly different point of view may lead to a more gen­
eral approach to non-Gausslan signal estimation.

Specifically, the density function, p(x), of a 
random variable constructed by a selection procedure 
described above is easily (Appendix V) shown to be

L
p o o  = y , V i M *  i pi °  t10-1)

i-i

i-W
where is the probability of selecting from the 1 
distribution and P-^x) is the 1 Gaussian probability 
density function. p^x) is given as

p (x) - — . - exp
y/2 TT

) 2
(10-2)
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where
<j£ - variance of the i distribution

i.u
» mean of the i distribution.

Since the selection procedure is mutually exclusive,

Consider now the general estimation problem where 
a non-Gaussian signal with probability density function,

) = 1, can be determined such that p(x) equals
i=l
or approximates Ps(x), then P3(x) can be assumed to be 
of the form considered in Chapter 7.0 and 8.0 and the 
optimum nonlinear filter is determined.

Various questions must be considered before this 
approach proves useful. Specifically, how are P^, m^, 

and L determined so that p(x) « pg (x)? What are the 
convergence properties of the series expansion represen­
tation of (10-1)? One possibility might be to use a 
least squares fitting procedure, i.e. minimize

L

i«l

oPa(x), is given. If P^, m^ and oj for 1 £  i < L and
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-00 I»1
(10-3)

subject to the constraint that Pj ■ 1. This approach
i»l

seems attractive since p^(x) are linearly Independent and 
hence can be orthogonalized, which generally simplifies 
the curve fitting problem. In order for this technique . 
to be practically feasible, L must be kept small so 
that only a few subfilters are needed. However, under 
these conditions it is not clear if It is worthwhile 
to use this approach over the optimum linear filter tech­
nique .

Another possible approach would.be that of matching
the moments of pa(x) and p(x). The noncentral momentss
of p(x) are given, very simply, as

L
”n * I  plm ln (10-4)

i»l

where is the n^*1 moment of p(x) and mln Is the n*1*1 
moment of p^(x). Since p^(x) Is Gaussian, all of its
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2moments can be expressed in terms of m^ and a£. For
i.u L U

example, the o through 5 noncentral moments of Ps (x) 
can be identically matched using L«? (i.e. two subfilters). 
However, six nonlinear simultaneous equations must be
solved to obtain the unknown parameters, P^, Pg, m^, mg,
2 2 c^, and Og.



APPENDIX I. POLYNOMIAL SMOOTHERS
a) Derivation of Polynomial Filters

Consider a sampled signal, x(t^), which is disturbed 
by noise,. nft^/, such that

y(t± ) - x(t± ) + n f t ^  (1-1)

Assume

E Qi(t1), n(t£)J - 6ije°o
and

E [»<*!>]
and

ti+l ” ti “ At

We are interested in determining the optimum finite 
memory discrete linear filter to estimate the function, 
x(ti), or any of its derivatives, x ^ ( t ^ ) ,  given a 
finite number, r, of noisy samples, y(t^), extending over 
a smoothing (or filtering) time, T, where T » (r-l)At.

A linear estimator of the m derivative of the
input signal is defined as

r-1
T

4 g"li a - - -g- ■
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We shall be concerned with the question of estlmat-

some time, t ■ t , for the case In which x(t) Is either a 
polynomial of known degree, J, or can be approximated by 
a polynomial over the time Interval, T. The results are 
obtained In an extremely useful form using an orthonormal 
polynomial expansion signal representation rather than 
the usual Taylor1s series approach.

18These polynomials, fj(n), are described by the fol­
lowing recursive formulas,

i.1.
ing the ra derivative of the input

(1-3)

where
P0 (") “ 1 

?!<») - n

2,2 ,2
k ±  1 ___ (1-4)

where

and

* *  1 ,, (1-5)

Table 1 lists the first several of these polynomials.



TABLE I 
Orthogonal Polynomials

* < > >

»a(n)

P3(n)

^ ( n )

F5 (n)

n

n -

■ n-' -

r2-l
- n r

n - *a ♦

X T - 5 (r2-7) 
“ 10 •’  n3 + p15r^ - 230r2 +

 T O O B ---- J

B o - r

B _ (r2-l)r1 Tz

.2 i, \ /_2Bg . ,(> ,1?>

B3 ~ (r2-9)(r^ (rg~1)r

B 4 - ( ^ - ^ ) ( r 2-g)|r2-4)(rg-l)r

where n
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In the development of the theory we shall use the 
following theorem which Is proven in Appendix II.

Theorem 1 : Every polynomial, x(t), of degree J, 
can be expressed as a linear combination of the

orthogonal polynomials fj •

Using Theorem 1

(tj) - £  bj fjftj/At) (1-6)
J-0

where

r-1

V  fjc(t1/At) - eJlc (1-7)

* ■ - ( ¥ )

and 6jk Is the Kronecker delta symbol.
Let x *(t ) be the estimate lof x(t^) at time t « t where

J,
x *(t ) - £  b* fjCr/At) (1-8)

J-0

*where J Is the smoother order and the b^ coefficients are 
to be determined. To satisfy the least squares error 
criterion, the expression for the sum of square errors 
given by
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r-l

Sum of squared errors - 2R £  [ r t V  - x*(t±)]

(1-9)

Is minimized with respect to the coefficients, bj. Sub­
stituting equation (1-8) into (1-9) we obtain

> o

Expanding equation (1-10) we have

(1-10)

I R ' I  - 2 A  bJi i  i-o i

*x£ f1 > 0  k-0
b*b* * ‘ ^ 4 ) rk (s i)T k  *J VST.

Differentiating equation (I-ll) with respect to bj and 
using the orthogonality relation of equation (1-7) we 
obtain

bk - £ > 1 >  fk(tl/'A t > (1-18)
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Substituting (1-12) into (1-8) we have

*•(»> - i
J - 0

.fj(T/At) (1-13)

Rearranging (1-13)

x -(t ) y(tt) £  ^(tj/At) fjfr/At) (1-14) 
i 3-0

1.U
Prom (1-14) we note that the J order smoother weighting 
sequence for the estimate of x *(t ), Wj(i), Is given as

Wj(l) - L V *  i/At) fj(T/At)
J - 0

(1-15)

iiU
We now consider the optimum estimate of the m 

derivative of the input signal, x*^m ^(r/At). Blum10 has 
shown that the optimum estimate is simply the m deriva­
tive of the optimum estimate of x (t ), given as

(m) ■m
M  - ~ H  X*(T >dr

(1-16)
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Substituting (I-l4) into (1-16) we have

Simplifying (1-17) and using the notation

-  f j “ > ( * / A t )

we obtain

X*(®)(t) - ^ y ( t i )  I  f(” )(T/At) (1-18)
1 J-0

iiU

Hence the weighting function for the m derivative esti- 
mate of a J order smoother at time t ■ t is given as,

J
w(“)(i) - I r,(VAt) f(“ ’(T/At) (1-19)

J - 0

b) Properties of Polynomial Smoothers
Aside from the curve fitting properties of poly­

nomial smoothers, as illustrated by the method of deriva­
tion in Appendix 1(a), polynomial filters have other 
desirable properties which we now consider.
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We note that the estimates of the orthogonal poly- 
nomial coefficients, bj, given in equation (1-12) are 
unbiased estimates of bj, since

E
i

(1-20)

which from equation (1-6) yields

(1-21)

Therefore, since x*(m )(r) - V  ^  fjj.m  ̂(t/At)
J-0

E [**<” >(t )] U  4 m ) ( ^
J-0

x(m )(T ) (1-22)

if x(t) is a polynomial of degree, K, which is equal or 
less than J. Hence under these conditions polynomial 
estimates are unbiased estimates for all derivatives if
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the input signal order is less than or equal to J, the 
smoother order. Consider the situation where the input 
signal is a polynomial of degree K, where K > J. Hence

x W ( t )
i  bj f $B)w
J - 0

(1-23)

Under these conditions dynamic or hias error i's intro­
duced into the estimate. We shall define dynamic error
in the estimate of the m derivative, D asm

Dm - E - x W ( T ) } ( 1 - 2 4 )

Substituting equation (1-8) and (1-23) into (1-24) we 
obtain

D - E m
K

L  '  I  bJ
J - 0  J - 0

Rearranging the above equation yields

D - E m . f,J-J+l
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{ 4
Since E 1*«r - bj we can simplify the above to yield

K

Dm - - £  bj f1- ^ )
J-J+l

A Taylor’s ‘series expansion of the Input signal, 
x(t), about t ■ 0 yields

x(t) - ^  aj t^ (1-26)
j-0

Using (1-26), equation (1-25) can be rewritten to yield

K

J - 0

where the emj are called dynamic error coefficients and 
In particular for the above situation, em j - 0 for J - 0  

to J - J. Hence

K

Dm -  I  aJ amJ ( I u a 8 >
J-J+l

Therefore for discrete polynomial filters, the dynamic 
error Is zero If the Input signal order, K, Is less than 
or equal to J, the smoother order.
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The e 4 coefficients may be obtained by noting that mj
for an input signal described by equation (1-26), the 
total dynamic error is equal to the sum of the dynamic 
errors [since we have a linear filter] associated with 
each of the terms of equation (1-26). Hence from (1-27), 
our definition of dynamic error coefficients, we note 
that em j is Simply the dynamic error due to an input 
equal to t^, which is

where the first term on the right side is the filter out­
put and the second term is the true value. Equation (1-29) 
can be rewritten in terms of the inner product notation 
as

We now concern ourselves with the effect of poly­
nomial filters on the input noise; in particular, some 
measure of the output' noise associated with a particular

r-1

(1-29)

(1-30)

We also note that ^t , W^ 
weighting function, wjm .̂

^t*^, W^m ^  are the moments of the filter
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estimate, x*^m ^(T), using a order smoother is desired. 
Consider a general linear filter which is described by 
some weighting function (impulse response), W(i), such 
that the output is given by, ft, where

x - ) y(i) W(l)
1

(1-31)

and
y(i) = x(i) + n(i).

Equation (1-31) may be rewritten as ,

ft - £ x ( i )  W(i) + £ n ( i )  W(i) (1-32)
i i

where the second term on the right is the noise term 
associated with the estimate, ft. Let us consider the 
properties of this term, N, where

N - £ n ( l )  W(i) (1-33)

A measure of the "size of N is the mean square value of
QNj that is to say, the expectation of (N) .

E(N ) - E ( £ n ( i )  W(l))



Therefore

E(N2) - E Y  n (1  ̂ W ^ )
1 *

and so

E(N2 ) ][¥ (i) W(J) E{n(i)n(J)) (1-34)
1 J

By assumption, the input noise samples are mutually inde-
2pendent with mean value zero and variance aQ . Hence

E(n(i)n(J)) - o25tJ. (1-35)

Equation (1-35) into (1-34) we obtain

E(N2 ) -  o 2 £ w 2 ( i )  -  crI  | |W ( i ) | | 2 (1- 36)
i

This result is significant since it states that the out­
put noise variance is equal to the input noise variance,
2

aQ, multiplied by a constant equal to the square of the 
norm of the filter weighting function. Therefore, using 
(I-36) and (I-19) we obtain for the variance, of the

f hestimate of the m derivative using a J order smoother.



1-14

pwhich Is our desired result, may be expressed directly
In terms of the orthonormal polynomials as follows,

r-l

- °o X  X X  fj")(T/ 4 ” ><T'A t > f A /At) w At>
. (r-D j=o k=o 

. 2

r-l4  ■ °o X X fjm)(T/it) 4”W*o X fj(ti/At> fk<vAt)
J=0 k-0 . _ (r-l)

1 2
(1-37)

Using the orthogonality relationship of f*j (“t^/ t) given 
by equation (1-4), (1-37) reduces to

X [4m)<T/At)]S (I’38)
which is another useful form of the results.
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Theorem 1. Every polynomial x(t) of degree j can. be ex­
pressed as a linear combination of the polynomials f^t )  
[described by equations (1-3), (1-4), (1-5)]

Proof. The proof follows from the fact that f^(t) is a

polynomial of degree k with nonzero coefficient of tk, 
where k - 0 , 1 , For k > 1, fk(t) is of the form

where A = constant and ^ ^ ( t )  is a polynomial of degree

Atk +

k-1. If we replace t in x(t) by

’  K j - l W  
------- 5------- (n-2)

the result will be of the form

Cjfj(t) + Uj^tt) (II-3)

where Uj_^(t) is a polynomial of degree J-l. Now replace
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which transforms equation (II-3) into an expression of 
the form

where Uj_2(t) is a polynomial of degree JV1. Proceeding 
in this way, we will finally arrive at an expression of 
the form

x(t) = Ojfj(t) + ... + C ^ t t )  + C0 (II-5)

which is the required linear combination (since 
fQ (t) = constant).

Theorem 2. If U(i) is the weighting function of any 
discrete filter having zero dynamic error for all input 
polynomials of degree J, then

IIW(i)H2  <  ||u(i)||2  (I I - 6 )
with equality holding in (II-6) only if 

W(i) - U(i) - (Z < i <

where W(i) is the weighting function of the discrete 
order polynomial filter, having zero dynamic error, de­
scribed by equation (1-19).
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Proof. Denote U(i) - W(i) by V(i). Thus

U(i) = W(i) + V(i)

Hull2 -  (u,u) = (w+v.w+u)

—  Hull2 = (W,W) + (W,V) + (V,W) + (V,U)

Hull2 = llwll2 + 2(W,V) + llvll2

To say that the filter with weighting function U(i) has 
zero dynamic error for all input polynomials x(t) of de­
gree J is to say that

r-l

E [ y W t t j f ]  = £  E U(l) - x"1̂ )
i ■= -

(II-9)

for all input polynomials of degree J and all t^. By 
hypothesis, U(i) satisfies equation (II-9). By equation 
(1-2) for polynomial filters, (II-9) also holds when U(i). 
is replaced by W(l). By subtraction of the two equations, 
we obtain

r-l

x(t± )[U(i) - W(i)] = 0 (11-10)
1 = .
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I

for all 1 and all polynomials x(t) of degree J. Thus 
U(i) - W(l) Is orthogonal over the Interval

other words, by (II-7) -

(Q,V) = 0

for all polynomials Q(t) of degree J. But, W(l) Is a 
polynomial of degree J and hence Is Itself such a poly­
nomial Q(t). Hence (W,V) = 0 and thus by (II-8)

Furthermore, by (Il-ll), equality holds In (II-6) 
only If ||V||2 = 0, I.e.,

- £  1 < to all polynomials of degree J. In

Hull2 =  llwll2  +  llvll2 (11-11)

which proves (II-6)

1 -
(11-12)

2

The left side of equation (11-12) Is the sum of a nonnega 
tlve function which can only be zero If

U(i) - W(i) = 0

Q.E.D
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From (1-36), the variance of the estimate obtained 
using a J order least squares polynomial smoother is 
less than that obtained with any other filter with zero 
dynamic error for a degree input 3ignal.

Theorem 3. Let uQ,u1,...,Uj be given real numbers. Then
there is a unique polynomial, W(t) of degree J, such that

(tJ,W) = 0 < J < J (11-13)

and can be represented as

J
W(t) = ^  Uj W J(t) (11-14)

J-0

where W^(t) is a polynomial of degree J defined by its 
moments

v , rO if k ± J 
(t , )  = j (11-15)

''I if k » J

Proof. Using the orthogonality relation for fj(t/At), we 
have, from (1-4)

(fr fk) - 0 (11-16)

Supposing W(tJ of degree J to exist, let us prove the 
uniqueness of W(t). The polynomials fj(t) can bq,written 
in the form
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^(t )  = Y, tJ 0 < k < J (11-17) 
J=0

By (11-13) and (11-17) we have

(fk,W) J £  Hj Uj 0 < k < J (11-18) 
J=0

From Theorem 1 we can write for any polynomial,

J
«(*) = y, 07 fj(t) ,,

J= o

From this and (II-16) we conclude-

(fj#^> ~ °j(fj,fj) = 0 £ k < J

Hence

J

zk=0w(t> = y  fj(t) ( n - 19)

This proves the uniqueness of W(t) since, by (11-18), 
(fj,W) is uniquely determined by uQ,u1,.,.,Uj. Taking

the inner product of tk with both sides of (11-14) we 
have
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By (11-13) and (II-15)

J
u, = ) Ui 5ji = u, k j' UJ uJk k

J=0

hence proving (II-14). The existence of W(t), Is there­
fore demonstrated since a solution, (II-14), has been 
shown to satisfy the conditions of the theorem. Thus 
Theorem 3 Is proven.

Theorem 4 . Let u^u.^, ...,Uj be given real numbers and 
let Wft^) be the polynomial of degree J such that

(tJ,W) = Uj 0 < i £  J (11-21)

Then, for any function U(t) such .that

(tJ,U) = Uj 0 < J 1  J * (11-22)

holds, we have

H u ll2 -  l lw ll2 +  J l u - w l l2 (IX-23)

I
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Proof. Subtracting (11-21) from (11-22) we obtain

(tJ,U-W) = 0 0 < J < J
r, ”

Hence

(Q,U-W) = 0,

for all polynomials Q(t) of degree J. In particular, 
since W(t) is a polynomial of degree J, we have

(W,U-W) = 0 (11-24)
I

In general, for any functions F(t) and G(t),

||F+0||2 = ||F||2 + 2(F,G) + ||G||2 

Setting F = W and G = U-W, we obtain

H u l l2 = l lw ll2 + 2(W,U-W) + ||U-W||2 

which, because of (11-28), yields the desired relation

IIUll2 = llwll2 + l|U-W||2

Theorem 5 . Given an input polynomial signal of degree J, 
then of all filters with given dynamic error coefficients, 
the filter which minimizes the output noise has a weight­
ing function, W ^ )  which is a polynomial of degree J.
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Proof. The dynamic error coefficients, are given by

a V  ' (11-25)
t=T

where

Uj = (t^,W) = the moment of the weighting function

Hence the dynamic error coefficients determine the filter 
moments and therefore by Theorem 4, Theorem 5 is proven.



APPENDIX III. DERIVATION OP W 1ft) POLYNOMIALS
The W*(t) polynomials are defined by their moments 

given as,

0 i / J
- for 0 £  i £  J ( I I I - 1 )

1 i - J

k ;Using the orthogonal polynomials, Fj(t), described 
in Appendix I, where

(P J’V  " 0 J ^ k

< W  ■

and
J

Pk (t) - Y, A j tJ 0 £  k £  J (III-2)
j«0

i.u
Taking the inner product of the k orthogonal polynomial 
with W^ft) we have

’ »
J

( v w l )  ■ Z  a 5  °  ^ k  ^ j  ( m - 3 )
J-0

Using (III-l) we have

. J
(vwl) -1 4 bji - 4 <zlI-v

J“0

(t^w1)
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where Ak is the coefficient of the 1th power of t(t * iAt) 
in the orthogonal polynomial, Pjc('t).

From Theorem X, Appendix II, we can write,

J
W 1(t) - £  e t * t(t)

e-o
(xix-5)

Therefore

(Pk- wl)  - *k<pk'pk) (III-6)

and hence

i V  Cpk* wi)w (t)' Zk«=0 K K
(III-7)

Substituting (III-4) into (III-7) we obtain

J Ak J Ak”l(t) " Z p>c(t) “ Z  ̂F*(t) (I“-8)k*»0 k=0



APPENDIX IV. DERIVATION OF SUBFILTER WEIGHTS 
IV. 1 Bayes Estimate of Prob (I aj

The Bayes estimate of the probability that

-aTH ^  aJ ^  aTH* 8*ven an estimate of aj, aJ# Is required.
a thSince aj Is obtained using a J order least squares poly­

nomial smoother, and the noise samples are assumed to be 
zero mean, Independent and Gaussian, is a random vari­
able with a Gaussian distribution, whose mean value is aj 
and variance, aA is given by equation (1-38). The proba-

aJ a
bility density function of 8j for some given value of aj is

( 4  -  a j J

p (SJ I aj) - r —  e 8j (W-l)v ■ / y/£ir crA
a.

Since aj is not actually known, a priori, we shall assume 
aj has a uniform distribution between finite limits and 
finally take the limit of our results as these limits go 
to infinity. In particular we assume that

p(*j) - f  - I  £  Sj £  |  and (IV-2)

eventually let a -> ».



With the above information as introduction we are 
now Interested in finding the Bayes' estimate of

« aTH
Prob (j I £  aTH I ®j) ■ I P (a, I »j) a*, (W-3)

”aTH

Using the theorem of conditional probabilities,

r  p (®j’ *j)C*f' m*r - (IV—4)

and

P (aj> a,) - P (a, | a,) p(8j) (IV-5)

Integrating equation (IV-5)

a  00

P (*J) “ j P(8j) P (*J * *J) *** (IV"6)

Substituting (IV-5) and (tv-6) into (IV-5) we obtain
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Substituting (iV-l) and (17-2) into (17-7) yields

( a .T -  a .Texp

P ( a j  i a j )  -

da.
-a/2

P ( a j  i a j )  -

/ s r  oA
a.

exp
a.

r a/2
f t  - * 71 DID daj

-a/2 °a
J

2^a
aJ

( 1 7 - 8 )

Integrating (17-8)

|»aTH
Probability ( I I i  »TH I ajj - J p (a, | ijJ da

^ T H

Prob (j Sj | ̂  aT„ | Jj) -

A  a, \ J ?  Oa \

J a/2

la/2 J *  °a
exp

' V a
da

(17-9)
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Taking limit of (XV-9) as a-+ » yields

(IV-10)

12IV .2 Confidence Interval Method of Obtaining 
Probability (j  aj | ^  aTH)

The Bayes' approach used in the previous section makes 
the statement that "the probability of aj being situated 
between given fixed limits is equal to some e."__ If in 
fact aj is not a random variable, questions arise as to 
the meaning and sense of such a statement. The method of 
Confidence Intervals, however, makes the statement that 
"the probability that some fixed limits include between 
them the value of the parameter, aj, corresponding to the - 
actual sample, is equal to e."

Keeping these statements in mind, we now find the 
probability that the range of values between -aTH and â ,H 
Include the value of aj which corresponds to the actual 
sample.

Consider the aj vs. atj plane shown in Figure (8).
AFor some value aj of aj, two limits of aj, y^ and 72, are



CONFIDENCE LIMITS

FIG 8
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selected, such that the probability of falling within 
this region (7^,72)- 0(lual to e * The ovirves obtained 
when this is done for all aj are called confidence curves 
for some confidence level equal to e. For a different e, 
different curves are obtained. The relationships between 

72* 6 and aJ' are oBtained using P (aj I given byA '
equation (IV-1). If an estimate of aj , Is obtained,

12 ® it may be stated that the unknown value of the param­
eter, aj, lies within the confidence interval (C1,Cg), or 
between the confidence limits C-̂  and Cg with a confidence

level equal to e, where e ■ I p j^aj | a ^  daj. Since In
*1.

equation (IV-l), aj appears only as the mean of a normal 
distribution, the (71,72 ) interval will shift linearly 
with unity slope for different values of aj if (71,72) is 
selected over the same portion of p âij | Sj^ relative to 
the mean (aj) for all values of aj. Consider Figure (9)

Awhere aj is an estimate of Sj for a given set of observa­
tions. We are interested in determining with that confi­
dence level we can say that aj lies within the confidence 
limits of aj ■» -Sfpjj and 3j ■ Confidence curves can
be constructed with unity slope passing through the points 
^aj^, aTH^  and ^aj , -aTH^  . It Is now required to find 
the appropriate confidence level, e, for the resultant 
curves. This is easily accomplished by selecting any
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arbitrary value of aj, say aj * 0, and finding the prob-
Aability that lies between the intersection of the 

confidence curves with the aj ■ 0 line. Using equation

(17-1)

K f  [SA ]

6

aJ1+aTH 2oi aTH 2o?

*/Stt oa j J
1 aJ d V aJ dA  e dOj * I e aaj

aJx'aTH aJ *TH

(17-11)

Integration yields

erfc
’aTH “ aJ,
v/2 a

- erfci
aTH “ aj,
yfS. a

(IV-12)

which is the same result as equation (IV-10) which was 
found using Bayes 1 Theorem.



APPENDIX V. DERIVATION OP STATISTICS
FOR EXAMPLE IN SECTION 9.1 

Define aQ‘ to be a sample value of a random variable, 
x. Let x be the random variable with cumulative prob- 
ability distribution, P(x) ■ Probability (x X), defined 
by the following model (function of random variables, 
x1 and x2): aQ Is a sample of either one of two Gaussian
random variables, x-̂  and Xg. The probability that aQ Is 
a sample of Is P.̂  and of xg Is Pg, where P̂  ̂+ Pg - 1 .
The means and variances of x^ and Xg are (mi> °i) and 
n̂tg, of)  respectively and P1(x1) and p2(xg) represent 
their probability density functions. The mean, m , andA2variance, o , of x Is required.

P(x) = Probability (x £  X)

which Is equivalently the Joint probability of x-ĵ being 
selected and x^ £  X, and that Xg Is selected and Xg ^  X 
I.e.

P(x) = Probability ^(l,x1 < x) and (2,Xg< x)J

Since the selection of a sample from x^ and Xg are mutually 
exclusive,

P(x) « Probability (l,x]L < X) + Probability (2,Xg < X)
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The selection of a random variable (x.̂  or Xg) is inde­
pendent from the sample values of the random variables, 
Hence

Probability (l,x1 ^  X) « Probability (1)
• Probability (x^ X)

or

Pr(l,x1 < X) - P1Pr(x1 < X)

and

Pr(2,xg < X) - P2Pr(x2 < X)

Therefore

P(x) - P1Pr(x1 < X) + PgPr(Xg < X)~

Differentiating P(x) we obtain the probability density 
function, p(x), of x.

p(x) * PiPxCx) + P2P2 (x)

The mean of x, mx is given as E[x] where

00 00 

E[x] = mx = |  x p(x) dx = |  x j V j P ^ x )  + PgP2 (x)J dx
- 0 0  -0 0
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mx
_ 00 p«°

- Pi X Px ( x )  dx + Pg x p2 (x) dx
-00 “ 00

which is

"* ■ P1B1 + P2m2

2The variance of x, ax is given as

ff! - E[x2 ] - [E(x)]2 - E[x2 ) - m2

where

-00 -00

E[x2 ] - j x2 p(x) dx »J x2 [ p iP i (x ) + P2p 2^x ^  dx
-oo -oo

-  00 -  00 

E[x2 ] = ?1 I x2 px(x) dx + P2 X2 p2(x) dx
-00 -00

E[x2 ] = px [of + mf] + P2 [of + mf|

Therefore

of - px [of + mf] + pa [of + 4] - [pA  + Pg«g]



then



APPENDIX VI. OPTIMUM UNBIASED POLYNOMIAL SMOOTHERS
In order to obtain an unbiased minimum mean square 

error estimate, we allow the form of the estimate of the 
m derivative of the input signal to be a constant term, 
Gm , plus a linear combination of the observed data, y(i).

r-1

St<m > (t ) - G,m * I (VI-1)
r-1
T "

Using the identical procedure as in Chapter 1.0, the 
dynamic error is given as,

D - G m m
J-0

'mj (VI-2)

To insure an unbiased estimate,

E[D_] - E m G + ) a. e . m l_j J mj
J-0

(VI-3)

Rearranging (VI-3) and noting that Eta,] • m,.

J»0 mj (VI-4)



VI-2

Substituting (VX-4) into (VI-l) we obtain

S M ( t )

r-1

- I- m 3 e«J + ~ T  y(1) w W ( i )> 0 - - l£gil ( v i - 5 )
The dynamic error associated with the above estimate is, 
from (VI-2) and (VT-4), given as,

Dm " t  (V mJ)J-0
'mj (VI-6)

Using (VI-6) and the fact that the output noise variance 
is given as

E[N2 ] - a2 IIW^H2

we obtain for the resultant mean square error,

E {[N+Dm ]2]' - E[N2 ) + E(2NDm ) + E

- + E 2N I  (a,-,)
J - 0

'mj

+ E 't iJ-0 k-0

(VI-7)



Noting that E[N] - 0 and that the observation noise has 
been assumed uncorrelated with the aj random variable, 
equation (VI-7) can be simplified to

J J
E [ l N+Dm32]  * Hw(m)H2 + E  E  V  ( Bl» iak] '  W

,J=0 k»0
(VI-8)

Substituting (5-1*0 into (VI-8) we obtain,

E [ j N + D j 2] - a2 ||»||2

J J
+ I  I  EmJ emk (?[ V * 1 ' » A  +j=0 k=0

+ <  1  e»j (wJ> u(m)) e*1-9 ’
J-0

Differentiating (VI-9) with respect to each of the em j
and equating to zero yields J+l linear equations In J+l

*fc tlunknowns. The n equation of the J+l total equations 
is given as



VI-4

The solution of (VI-10) yield the dynamic error coef­
ficients, em j of the optimum unbiased filter. The mean 
square error of this filter is then given by (VI-9).
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