Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

```
                    DIFB:TO OM &T<
```



```
                            H
                        OH:% Smpry %a,
                        4 matats
```



```
    OF
```



```
    ST
```


the minte of the athor. Bhtioomahiont meore
enoes may be notm, but hacseres wat not we con ot

$$
\begin{gathered}
\text { Towere Temes } \\
104
\end{gathered}
$$

APPROVAL OF THFSIS

FOR

 BYFACMTY COMTM

A Provid: \qquad

MEDART, Mos Jwary JTME, 1964

ABgreact

The purpose of this investigation was to dotermine the siffusion coefricionts of several sinvie-ans miti-comonont solnton, ant to establich the relations betwen the drepusivity, the solute composition, and the affusion rate. Such information mortinent to the extrection and lesching omerations, an not be fome in litatatare.

The mocertre tercloyed by Piret, bol, Hient, and Armetronc (s5), involving observetion of the axtration rete of twomban mixturas
 chlorise-mater system.

In the course of the arominatel why dracion coeptintonta
 wethrl isobutyl retone. The resulta comged well tith veluag estimated by the enoirical ilke correletion (31). Oiffusion conficints of sonima chlowio, potasime sulfate, curic mulfete phtahytrate, and aucrose in mior wo also dotrotins, am fown to be in armont wh the values rometor by the other invectimetore.

To evalute diffucion confistinta or wixe golntes for experipontal deta, the concet os the fretive interface comoostion, rovamot the thelative aftusion whe of comments in the rixture, wes intromed. Th this basis a ptratpht line ration was obtinot betwan the affreivity ant th solute composition. The ratation mes Foun to amply well to most systons to tod.

To corvelate difusion coefficients with the exprimentel extraction rate data, introduction of a factor correcting for the deviation from Fick's Tem wes romd to be neassary. Thto factor, bosed on the solutility of solutes, is anslosous to that rovosed by Amole (1,3,) for licuia-vanor swotems.

Proctagl value of the eathblimod relationg liss in the ability to werint the aperaton cooptathts and the extrection rat of solnts in licat.
The author wishes to express his mptitwots to Professor G. C. Keefe of tho Tewark Gollege of Bugineering for advice ont guidence without which this ork would not hove been vossible.
The use of the facilities of the 9 . T. Panick: Compeny is also meateully acknowedred.

TABIE OF COMTEYMS

Page
Abstract 14i
Acknowletrment v
List of Fitures. viti
List of Tables. It
List of Sample Qeleuletions $x i$
Introfuction. 1
Theory of a Tro-Phase Dffurion Prom Capillarass. 4
Diffuston of Sincle-Component Solutes 4
Diffusion of Tult-Gomonent Solutes 12
Brperimental 15
Apoaretus and Procedure. 15
Evaluation of Exprimental Prooenture 19
Discuration of Results. 25
Dfersion of Stn-le-Comoonent Solvtes 25
Diffusion of tultaromont golntes 20
Direusion Conestant ve Frametion hete 46
Conclusions 52
A pendix 54
onxee and cuality of Chemieals Tged. 54
Physjecl Dota 55
Smple Gelculations. 61
Tomenclature 73
Reterenees 76

LTTT OF BTATES

Paoe
Finure 1. Formetion of Zones in Diffuston of a Tro-Phate Solute from a Cawillary 5
Figure 2. Adaptation of Conventionel Solution of Pree Diffum sion in an Infinite fube to the Gase of Tiffucion of a Tro-Phase Solute From a Canliary 9
Ficure 3. Apqaratus en bxtraction of Solit 3olites from Canillaries. 16
Firure A Extraction Tabe 17
 Curate suleote pontohyrete, snd rucrose nrom Canilamios rith ater - Introfecc Drop ve. Tine Polation. 23
Fioure G. "xtraction of Dalmitic nold, "Irsolic ncti, ent Trimamtin from Thoilaries ath Tethrl Tanoutul cetons - Int wace Dros va. Fime elation. 27
 tom Capilleries att ethyl teotucyl vetone - Tntertace lros vo Tino Retetion 32
 ath etht Toobutyl Petnne - Tretrefece Tron ve. Time elatim 33
Finure 9. Fxtraction of a Temary Auture of Damitic Acid - Vreolic Acidmotymatth rom a Tomitary with obhal Trobuyl retone - Intruface brop vs. Fime Re- letion 34

Page

Fiture 10. Difouston Cosficient vs. Domstion of Palmitic Acti-Trionmitin ixtures in "ethyl Toontrl retone 37
Fimme 12. Disfusion Coerticint va. Comoation of Trolte Acid-Petmitic foid, on tolic Acin-Trion tith Ixtures in ethel Tobutvl totone. 38
Ftome 12. bipmon Coefretent ve. Comation of patutic Tobonty? tatone. 39
 Gotium Chlnace-smorose ixtmea ron Gantrates Tith tater - Intrface Dron vs. Time Talation. 60
Firgere li, Dis?usion Cosericint vs. on osttion of Sotum - Fueroze Jutures in 13
 oound in ater. 45
Fimare 15. Doviation from Pictis Ima an Puntion of solute solubility. 50
Table I. Evaluation of the Exparinental "ethod - Tfect of Variables on the Diffusion Coefficient of Sotim Chlorice in tater. 20
Table II. Evaluation of the Experimental ${ }^{\text {Sethod - Comperi- }}$ son of the Diffusion Coefficients of Solium Chlorice, Potassim Sulfate, Curic Bulfate Penta- hydrate, and Surose in Water. 24
Table 1II. Diffusion Coefficients of Palmitic Acid, Irsolic Acid, and Trionlmitin in Pethyl Isonutyl Ketone. 2 2
Table IV. Difuaion Coefficients of tulti-Component lixtures of Palmtic Acti, Jrsolic Acid, and Tripelmitin in ethyl Isobutyl Retone. 35
Table V. Disfusion Coefficionts of mlti-Comonent sxtures of Solim Chlonide, Potasstism Sulote, and Sucrose in fater. 41
Table VI. bionsion Cosficients of Ions and Ionic Comoonds in ater. 14
Table VII. Comparison of Rxporimontal Difeusion Coefficient with Awarent Difrusion Coefficient setimater from 8xtraction Bte Data sing Fick's First Law Eruation. 49
Table VIII. Comarison of Factors Indiatine Deviation from Fick's Law for Difacion in Liquids and Vapors. 51
Table TX. Density of solutes at $25^{\circ} \mathrm{C}$ 56
Table X. Soluhility of Solvtes in eater at $25^{\circ} 0$. 57
Page
Table XI. Solubility of Solutes in hethyl Toobutyl Petone at $25^{\circ} \mathrm{C}$ 5 ?
Table XTX. Density of Setomater hater Solutions at $25^{\circ} \mathrm{C}$ 59
Table XIIT. Vensity of Saturated ethyl Isobutyl Retone solutions at 2500 60
Sample Caloulation 1 -Dffusion Coeffictint of a Sinfle -Component Solate Celoulated from Expormantel Deta. 61
Gamga Galcolation $\%$ - Dieneinn Coeffictut of a Sinale $6!$
Samle Celcalation *3 -Darmeton coorselnt of a "alti 65
Bamle Calculation $/$ - Devistion Prow pick's Law Bstimated from mapermental Extraction bte Deta. 70

14T00TVTM

Diforeton in limuid gleys an inowtert pale in mon theoreticel
 tion, meraction, ijstilation, me chatert wrations.

 owos to rotatn sum rsta.

 \therefore antanta.

 chlownombhim chlownomat mixtras.
 Qnoty, intomation on the gepuston of nixer sotutas from a solie
 o? the polhowing invertimtion thereiore as to sturs suoh syatem,

 on the solat comostion.

 MOE CGLEATS
1. Difension of Sincle - Comonent Solutas

Abstract

 mental orty, wrict etseuseton of theory, mothot of tertwation, and netiton an be fount in the wonta.

It it nemum that a whant oapllywy of unform oxomsmotio- Goon at oprtant is ostant than betren the onn ont of the onthlary and the solvent, diturion botine. As solute atifuses rom tho caoillary, solynt mose into the ongitamy solte solute ty the solute bed dispolves ant the intrafoce betwen solfa ond solution craduatly resedes into the envillary.

 ntstang of a sota soluto orasum frection (a) ant of a
 (1-a) ; zono ? is comed by the solvition, the solvent on Wheh eme from the motwe bed; zone 3 conctist of a solution the onvert of hioh atprum wor the infinte resorvoit.
 monor (ftmme I.): when the tnterpoo betroen the onlute tur the

 concontation $\mathrm{O}_{\text {s }}$ remen, and fablec. of solvent of zoro conantwation, o, flos into the dapilam. The (1-a) (b)ec. of solution nomba art of zore a, an (abloc. of golvent beone
 zone 2, hy volume bance, te (1-a) (w)on. or (1-e) (x) or. in 1 noth.

Finme 1. Fomation of zones in sifrevion of a two-whase solute rora a caplllery.

It is clear that El solvent in the difension oth is at rant with mspect to the boumary betwen zonss 2 and 3. lick'a secone taw therefore my be wtata wath romed to this bomeny

$$
\begin{equation*}
\frac{\partial c}{\partial t}=D \frac{\partial^{2} 0}{\partial x^{2}} \tag{1}
\end{equation*}
$$

Whre D is the terusion conffigent fefinct as the ro ortion nellty Eactor betwon the rate of dimazion en the orestant of the potential cessing difturion (1). Sines comomtration or solnte in sone 3 at any mint inomoros wh the, $\partial d / \partial t$ is a waitive sunction. By Betion (1), dro/ex aust he also a mo atcive furtion, and the emve of concentration vs. distence in zone 3 is conotve unard, hoplying biniter meason̉ny to zone 2, a conove dommard ourye of omontration ve. distonce is surgaster. Decause 0 ofore is onitive in sone 3 and nevative in zone 2 , the point of inflocion mut lie on the bommary of theao to zones.

The prohlem is to Beydlos on eutation sor the rate et wh the Intwrece wows in relation to the gatllaw ontrmen, Bince the goLute and the solvent gove in the panvite dixemtions, the ownall
 eqnation.

$$
\begin{equation*}
n=-\left(\frac{\partial c}{\partial x}\right)_{x}-\mathrm{VO}_{\mathrm{s}} \tag{2}
\end{equation*}
$$

ano path rative to the raotiang all. 3 is birectly rele-
ted to the rete st hion thateremoe mov. If intrrece mover
intene , ant f a is the armeront donaty of the so-

lane the tntorros.
Preverom

$$
H_{\mathrm{av}} \Delta t \quad=\quad\left(\rho \mathrm{a}_{\mathrm{S}}\right) \Delta \mathrm{x}_{\mathrm{a}}
$$

0.

$$
\frac{d x_{3}}{d t}=\frac{4}{(\rho-g)}
$$

ting thet tho Mow of antrat to egur to the monot of the guntity
(a) mi the limer volocity of tho interence, there reanlth the exrassion

$$
\begin{equation*}
\left.\frac{d x_{3}}{d t}=\frac{-D}{\rho_{a}-(1-a) c_{a}} \right\rvert\, \frac{\partial c_{x}}{\partial_{i}} \tag{3}
\end{equation*}
$$

The solution to the statet mothem met be satiapted by the following onnetions:

3. A pint of Inmention whet oocur at a zistanes axg from the casiluer ntrene.

1. Ith the oint 0 inclotion at the ort in of the repornee haw the moverine relation in the difusion nath wet be Pcustion (I).
2. The trelocity of intortane pasarion molative to the cadilary ntwane and the concontration modiont at the Interfres mast te menten by quation (3).

$$
\begin{align*}
& 0=\frac{1}{2 \sqrt{n t}} \int_{-\infty}^{\infty} f(\mu) \text { orn }\left[-\frac{\left(x-\mu^{2}\right.}{2+\Delta}\right] a \mu \tag{1}\\
& \text { wheme } f(\mu)=i_{s} \text { sor } x<0 \\
& \text { an } \quad f(\mu)=c_{0} \text { sor } x>0
\end{align*}
$$

 tion (1), tha arbitrary conotants sre introluew, a onetant if to acon nt for hist solnte concontrathon the solth-3aturated solum tion wixtme, ent mothoz oonetont s to ooxton the yosition of the point on incuotion. The relation or thece constante to the gator is thom in vir. . Anee the Ifrmion peth is ho horizon-

 for x whes gwatur than mero, ame $f(\mu)=-+s+c_{0}$ For What lerem then zow, sontion 4 is also setiontat

$$
\begin{aligned}
& \text { Pimeme A. Ataptetion of convent tonet }
\end{aligned}
$$

Atte twote the cheo of stidetom of a
 armanemont woults in

$$
\begin{equation*}
\frac{x}{2 \sqrt{5 t}}=?\left[\frac{\mathrm{~s}+\mathrm{co} \mathrm{C}}{0}\right] \tag{5}
\end{equation*}
$$

pore ψ te me inverse 0^{*} tho aroor rumbtion

$$
\frac{1}{\sqrt{\pi D t}}=\int_{0}^{x} e x \cdot\left[-\frac{(x-\mu)^{2}}{x t}\right]{ }_{0}^{x}
$$

 Pore focomea

$$
\frac{2 \pi g}{2 \sqrt{6 t}}=\left[\frac{9}{3}\left[\begin{array}{c}
3 \tag{b}\\
-2
\end{array}\right]\right.
$$

Similary, on tho solf int-reace, gastim (r) an be writt n

$$
\frac{(1-a) v_{3}}{2 \sqrt{b}}=\psi\left(\frac{\Delta 0-3}{u}\right)
$$

Fom an identity

$$
\frac{a x_{5}}{a x_{3}+(1-2) x_{8}}=a
$$

 matinita menction 3 tho solution.

$$
\begin{equation*}
a=\frac{\psi\left(\frac{s}{\mathrm{~s}}\right)}{\psi\left(\frac{s}{x}\right)+\psi\left(\frac{\Delta-s}{x}\right)} \tag{c}
\end{equation*}
$$

The rate at wioh the fatrmece marea in reletion to the conilury entrance is armesond by

$$
\begin{equation*}
\frac{d x_{3}}{d t}=\frac{d\left(a x_{s}\right)}{d t}+\frac{(1-a) x_{3}}{d t} \tag{0}
\end{equation*}
$$

Wy than tho ampativas on mations (6) an (r) ath remont to

$$
\begin{equation*}
\frac{\Delta c_{0}}{d t}=\sqrt{\frac{\mathrm{n}}{t}}\left[\psi\left(\frac{\Delta-3}{3}\right)+\psi\left(\frac{3}{n}\right)\right] \tag{10}
\end{equation*}
$$

$$
\begin{align*}
& \left(\frac{\partial 0}{\partial x}\right)_{i}=\frac{1}{\sqrt{\pi} t} \quad \operatorname{swo}\left[-\frac{(1-)^{2} x^{2}}{\mu t}\right] \\
& =-\frac{v}{\sqrt{\pi u t}} \quad \operatorname{arc} \cdot\left[-\left(y \frac{\Delta \Delta-3}{0}\right)^{2}\right] \tag{19}
\end{align*}
$$

Fimelty, ucine arations (10) anc (11), wation (3) is trancomon into an merestion

$$
\begin{equation*}
\psi\left(\frac{0}{n}\right)+\psi\left(\frac{\Delta a-s}{\pi}\right)=\frac{a}{\sqrt{\pi}\left[\rho_{e}-(1-a) a_{3}\right]} \quad \text { axo }-\left[Y\left(\frac{a-b}{n}\right)\right]^{2} \tag{12}
\end{equation*}
$$

 tion.

 to obtanaen am Temetion (s)

$$
\begin{equation*}
\mathrm{s}_{\mathrm{s}}=\frac{2 \sqrt{\mathrm{Dt}}}{\mathrm{a}} \psi\left(\frac{\mathrm{e}}{\mathrm{a}}\right) \tag{13}
\end{equation*}
$$

 Bys.m.

2. Disfacion of gulti-Componont Solutes.

The wererine theorticel shauston is erecterl to andy to sny to-phase extrateion rom catllates gntrmed by ree diffasion, irclutine the extrection of malt-coronent golates. To interyret erm mrimental rasults obtrined with such syotems, homever, a closec look at the mechanism o? Ame ditacion of wiva anlutag from a charp homeary shouta be givn.

Concider a moillary, fillon initally whth a mifom solid anture of two or more soltrs, en plane into a tream of plowine anlvent. If ree fifferion fron solv-ly at bompary ocous ant is rate controlling, then a ghar, cradually rocentre interface mat dernto?. This is posstble only it the cow osithon of golute leaviry the coWhlary is the ssan at the eomontion of the recritno antit ber. Stne mobility of arement molecnies throath a athment layer o? a onlvert is anfonat, th insure fymata chathem of the sutam, the nevolow intaram mat exist, the ononsition of which is a aroct, invergo of the relative thensin rate on moondes in onestion.
minimoctionel afouton rete of a ontate throubh a tem nt

$$
\begin{equation*}
n=-0\left(\frac{\partial \theta}{\partial x}\right) \tag{14}
\end{equation*}
$$

 fons wh be ashanet (1) ghowth thas the interation of Betation (14)

$$
\begin{equation*}
n=-1 \quad(\Delta C / x) \tag{15}
\end{equation*}
$$

To obtain alative dinman matm of antute f and is thoowh the was gntwent, thation (15) an be rititen for ach so-

 of onlutos in a anlunt are mom, the petative Mfruaton ratea of

Fingily, the cuestion of the protiye conowtretion matent Foteren the capllamy mensne an the mittwon mont internete mot
 interfane is egually activ, and the ofroctive omontration at that woint th that on the setwater soluthom. In case of a moti-mpronent

 of the antute. In the gymio matem asamben, thatefore, as twet aproximath n, the intmace onombontion may be asman oruit to the
 ct the interace

$$
\begin{equation*}
c_{\mathrm{sin}}=c_{\mathrm{s} \mathrm{~A}_{\mathrm{A}}}+o_{\mathrm{B} 3^{n_{\mathrm{B}}}} \tag{17}
\end{equation*}
$$

Theosen intrometion of a cormotion foctor into Buation (v) to

 st the intertace is obtanes

 ard of the offective concutantor fom the west fow the erelugtion
 of the experpontal mothot tevmomed by mret an his comorewe (os).

 int mees into the solvent.

EXGRTEETG

1. Apparatue shd Proceriume

The exmerimontal prozolure employed melting mint caokllarins, quot 0.1 om in Atametr, an $\because .0$ on in leneth. at the pacinane of oach rung a octhlum satel at one wh, was mathet acourataty on

 Gavity of golid, and gectite gravity of its atumen solution. This procture in prefromee to thet nosoriber by pret ant so-uncivers (25) Wes adoted beame of considarable proct of naperaturation obsamed when saturaton solvtim ab sublocte to vanum.

The amporas show in atre 3 and onation pgoctinuly of an
 voir. The decian to use a rolathyly lere bat fonta solvont wolme

Figure 3
Apparatus for extraction of Solid Solutes
from Capillaries

Key

A. Gagnifying plass
B. Extraction tube
C. Rotameter
D. Constant temperature bath

Key

A. Glass tube
B. Thermometer
C. Scale, calibratod in millimeters
D. Capillary, fastened to the scale

Was made for practical reason to enable better temperature control, as well as, the application of solvents other than mater.

The ten liter constant temperature bath, which served as a solVent reservoly, was ecuiz ned with an altator, submemed circulation pump, an a themostat, controlline temperature at, $25 \pm 0.011^{\circ} \mathrm{C}$ ($\left.\pm 0.02^{\circ} \mathrm{F}\right)$.

The mamifyin rlass usen was a Flash-D-Iense movnted on an adjustable stand. A seale stebed dractly on the lens enabled readings accurate to 0.0025 em .

In normal opration, a ondllary loaded with a tro-phase systom was fastoned to a scate calibrated in millimeters in auch a manner as to protrule mith the orn end one millineter above the scale, and inserted into the bottom of the aytraction tube. The circulation of the solvent was then bomm, and continued for sevral days, keaping the temerature constant at $25 \pm 0.011^{\circ} \mathrm{c}$. Whe level of solid in the capillary in relation to the capillary entrance was observed at intervels by means of the flash-0-1ense and recordec. To test the results, a logarithmic plot of levil dron of the solnte bed versus the was mrepared, 2s shom in misure 5 for mas 11 and $: 12$.

2. Waluation of Experimontal Procedure

Pefore the fmal proce are arn aboted, seyeral efecta which nitht couse expermontal aror more investrated. Factors nonomepar Were : dicection of solvent atrouletion, rate of solvat sirculation, turbulence the cavillary entrance, enallary diameter, fensity of conllary losing, and motion of canllary in the extraction tuho.

Intensity of twoblence at the capillery ntrance was studied by circulating weter throwh the extraction trbe nast oavillaries Allag oith ink. Instantensous menetration of solvent been into the onillary was observer with mactically all flow rates directod dom-

 Fhow maion. Gravation arard belon thita rate, on the othar hand, procume yry little trwblenc, cousing a meximm solvont bonetration into tha cepillary of about 0.002 cm . on y .
ouantitative moromance of the aparstus was evaluated with the

 have any influme on the erorimental iffostyity veloe.

Table I
Evaluation of the Xxoerimantal ethod

Solate :	Sodium chloride
Solvent :	Mater
Temperature :	$25 \pm 0.011^{\circ} \mathrm{C}$

Run	Water cireulation		Capillary		D_{e}
	Direction	Rate (co./min.)	Inside Dia. (mm.)	Loading a	$\begin{gathered} \times 10^{5} \\ (\mathrm{sq} \cdot \mathrm{~cm} \cdot / \mathrm{sec} .) \end{gathered}$
10	domnard	60	1.37	0.591	1.40
Ib	*	10	1.37	0.602	1.42
1 c	"	10	1.33	0.631	1.39
2	"	130	1.40	0.664	1.55
3	*	300	1.40	0.547	1.62
4	"	2000	1.37	0.612	2.22
5	uywerd	40	1.10	0.620	1.33
$6 a$	"	120	0.55	0.611	1.52
$6 b$	"	190	0.98	0.624	1.54
6 c	*	120	1.39	0.622	1.52
79	*	150	1.40	0.646	1.54
7 b	"	150	1.40	0.636	1.52
70	"	150	1.40	0.596	1.53
8	"	300	1.40	0.650	1.51
9	"	600	1.40	0.613	1.53
10	"	2000	1.40	0.620	1.88

Runs I thmon \because ifomontrated extreme sonsitivity of the appa-

 Qencnence on the tow rato.

Slon exanlation o wator omployec durinc rans 1 an " 5 mom
 stament layem immediately ontaide the ematlory entrance.

 tion into the sapillary.

Consintent Apfusivty of mover marnthate otance with all examinental ane ustre uonm cirontation botroen 120 onf/min. ant

 Mas seloctos for Matior acheriontal morto

The fate pf Thats I arest that an weellont duolicetion of

diffusion ceericionts of these meterials calculated from experimintal deta of ficure 5 compre well with values detorminod by other invertimtors ($19,25,20,30,31$).

Table II

Evaluation of the Experimental thethod

```
Solvent : Nater
Temperature : }25\pm0.01\mp@subsup{1}{}{\circ}\textrm{C
Girculation Rate : 300 cc/min., luward
```

Run \#	Solute	Capillary loading		$\begin{gathered} \text { Experimental } \\ \mathrm{D}_{\mathrm{e}} \\ \times 10^{5} \\ (\mathrm{sq} . \mathrm{cm} / \mathrm{sec} .) \end{gathered}$	From Literature $\mathrm{Dr}_{\mathrm{r}} \quad$ Reference	
		S_{a}			$\times 10^{5}$	
		(gm/cc)	(cc/cc)		(sc.cm/soc.)	
11.	Sodium clorive	1.397	0.615	1.534	1.55	25
					1.52-1.61	29
					1.526	30
11b	Sucrose	1.053	0.665	0.244	0.263-0.289	25
					0.24	19
11 c	Cupric sulfate pentahydrate	1.557	0.683	0.192	0.190-0.50	25
12a	Potassium sulfate	2.185	0.923	1.25	1.24-1.34	31

DTSCISSIO OF RESTLRS

1. Bingle - Component Solutes

The experimental work was done with three components of cranberry skins, soluble in methyl isobutyl ketone: ursotic acid, palmitle acid, and trioalmitin. The purpose of the extraction of these compounds from chillarion was to determine their dffuston coefficients in methyl isobutyl ketone, to compare these values aith ata Prora literature, and to establish in such a manner a somd basis for further experimental mork with mixed anlutes.

Fmploying the previnusly iescribed method, two-mase mixtures of palmitic acid, ursolic acte, ond tingalmitin wore extracted from captllaries duriny Runs $21 a, 21 b$, and $21 e$, respectroly. In the course of extraction sharp gradually receling solid-licuid boundaries were ontained enabling an accurate roaing of the rate of interface drop with time. Plotted in Figure 6 these date peve gtraight linss of 0.5 slope reguired by Equation (13) to verify that diffusion took place and was rate controllinc.

Dffusion coefficienta of almitic acid, ursolic acid, and tripolmitin wero calculated from experimontal data, and somaron ath values fotmana by means of the ancirical ilike correlation (31). Samle Calculations 41 and "? descotbe the methods. Posults sumarized in Table III indicate a satisfactory acreement beteen the
experimental and the estimated velues. Slightly lower diffusion coefficients of palmitic ant and tripalmitin obtained experimentally surgest the effect of solute on the viscosity of solvent which was neglected by the Wilke correlation. On the othar bsnd, himer exporimental diffustivity of ursolic acid can be explajned by the abowal behavior of its solid-saturated solution maxture, which in the presence of a limited amount of methyl isobutyl ketone had a tencency to traneform into a hard, semi - transparent, quasi homogenous substonce. Apparently, the solubility of ursolic acti in methyl isobutyl Ketone under such conritions is somehow effected.

The offomance of the apparatus with methyl isobutyl ketone was Sound to be as satisfactory as with water. The experimental diffum sion coefficients of different solutes obtained in these two solvents inficated also that the method is aplieble, equally well, to polar and non-polar systems.

Table III
Diffusion Coefficients of Single-Comonent
Solutes in Sethyl Isobutyl Ketone at $25^{\circ} \mathrm{C}$

Run ${ }^{\text {\% }}$	Solute	ρa	a	${ }^{\text {c }}$	$\begin{gathered} D_{e} \\ \times 10^{5} \end{gathered}$	$\begin{gathered} D_{\text {स }} \\ \times 10^{5} \end{gathered}$	$\left(\frac{D_{\theta}-D^{\prime}}{D_{e}}\right) \times 100$
		$\left(\frac{\mathrm{cm}}{\mathrm{cc}}\right)$		$\left(\frac{\mathrm{gm}}{\mathrm{cc}}\right)$	$\left(\frac{\mathrm{sq.cm}}{\mathrm{sec}}\right)$	$\left(\frac{\mathrm{sq} . \mathrm{cm}}{\mathrm{sec}}\right)$	中oviation

2la	Plmitic acid	0.723	0.782	0.1124	1.110	1.162	-4.7
21b Trsolic acid	0.717	0.741	0.00413	1.037	0.903	+12.9	
21c	Tripalmitin	0.629	0.683	0.00443	0.567	0.593	-2.8

2. Multi-Comonent Solutes

Abstract

The primary objective of current investigation was to find a relation betwag the diffusivity and the composition of solutes diffuatne from a solid-linuid interface. To stwiy such systems, samples of palmitsc acil, ursolic scid, and tripalutin wore blended in various proportions, placed into the oapillarios, then extracted With nethyl isobutyl ketone in a manner similar to that apoliod to sinole-comporent gotutes. In each ense the intrut capillary oferge consist a of a tro-phase mlxture of a solvte of tenom sompostion, and of its seturated methol isonityl betone solation. It should be noted that the trm "mati-comonent solutell or "mixed anl to" gas urod in this parer to describe the mixture of two or more aincle -componat solates only. The solvent, althourh peaent in the solid -Ifain nixtme initially ohsrod into the capillary, as not conaicered as one of the solutes because it did not difone in the same dimection sith other solutes during the extraction.

Fivares 7, s, and n present expelnentel neta from sums 22, an ${ }^{2}$
23 नuring hich oeveral two-comsonont, and one thee-romonent mixture of pimitic acid, ursolic acid, se trimimtin mere extracted. Formation of sharv, grarually recentine bomdaries mas observed, indicating that extraction of each cowoment in the mixture has taken place foom the solid-1iguid interfoce at the rate poportional to the conposition of the solute bed, ae postulated. On this basis diffusion coefficints of mixed zolutes more commted from exprimental data

Runs I thmon \because ifomontrated extreme sonsitivity of the appa-

 Qencnence on the tow rato.

Slon exanlation o wator omployec durinc rans 1 an " 5 mom
 stament layem immediately ontaide the ematlory entrance.

 tion into the sapillary.

Consintent Apfusivty of mover marnthate otance with all examinental ane ustre uonm cirontation botroen 120 onf/min. ant

 Mas seloctos for Matior acheriontal morto

The fate pf Thats I arest that an weellont duolicetion of

31

The verification of the experimantal results by the data from ilterature enhamces their validity. It not only proves the relation between the diffusivity and the comosition of solutes, but also justifies, indirectly, the use of the proposed concept of the interface conposition for the calculation of the diffusion corfficients of mixed solutes from experimental data, as well as, substantiates the mechanism of diffusion of mixed solutes from a solid-llonid interface. In such a manner a better insicht into the nature of this phenomenon is secured.

The eatablished relationship between the diffusivity and the composition enables mediction of the diffusion coerficients of solutes. The method should prove especially valuable to multi - comonent som lutes where experimental data are practially non - existont.

Table IV
Diffusion Coefficients of kuti-Component solutes in tethyl Isobutyl tetone at zeac

Run	solute	In 301 (moltht	mposition to Heat (mole 5)	$\begin{aligned} & \text { S Soluta } \\ & \text { At Interfoce (} x \text {) } \\ & \text { (wipht y) } \end{aligned}$
21a	Palnitic acta -Tripalntyin	100 m	100-0	100-0
$22 a$	"	$75-25$	c0.4-9.6	1.0-98.1
22 b	"	$5-20$	$75.9-2.1$	0.6)-97. 36
22 c	"	$25-75$	51.2-13.0	$0.22-90.70$
21.	"	0-100	0-100	$0-100$
23a	$\begin{aligned} & \text { Trsalye acid } \\ & \text {-Trinhith } \end{aligned}$	$50-0$	$43.8-36.2$	25.0-71.0
23b	$\begin{aligned} & \text { Trsolic acio } \\ & \text { Palmitic gety } \end{aligned}$	50-50	$35.9 \mathrm{mb2} .1$	$93.11-1.09$
230	almitic acta -Trsolic acis -Tripalmitin	$\begin{gathered} 33.3 \\ -33.3 \\ -37.3 \end{gathered}$	$\begin{aligned} & 53.2 \\ & -x .9 \\ & -15.9 \end{aligned}$	$\begin{aligned} & 0.19 \\ & -25.1, \\ & -7 / 4.10 \end{aligned}$

(x) Interfece buteen the solute bed and the solvent; composition of interfse astionted on the basis of relative diffugion retes of solntes in stature.

Table IV (Continued)
Diffusion Coeffictints of Dulti-Component Solutes in Methyl Isobubyl Retone at $25^{\circ} \mathrm{C}$

Run	$\begin{aligned} & c_{s m}^{\prime} \\ & \left(\frac{\mathrm{gm}^{2}}{\mathrm{c}}\right) \end{aligned}$	$\begin{aligned} & \rho a \\ & \left(\frac{\mathrm{~cm}}{\mathrm{co}}\right) \end{aligned}$	a	$\begin{aligned} & \mathrm{D}_{\mathrm{e}} \mathrm{x} 10^{5} \\ & \left(\frac{\mathrm{sq} \mathrm{~cm}}{\mathrm{sec}}\right) \end{aligned}$	$\mathrm{n}_{\mathrm{s}} \times 10^{-6}$ $\left(\frac{\mathrm{sccm}}{\mathrm{sec}}\right)$	$\begin{aligned} & \left(\frac{D_{e}-D_{s}}{D_{s}}\right) \times 100 \\ & \text { (gDeviation) }^{x} \end{aligned}$
$21 a$	0.112	0.723	0.792	1.110		
22 a	0.00600	0.783	0.847	1.068	1.040	+0.8
22 b	0.00/74	0.720	0.79	0.950	0.90	$+1.1$
22 c	0.00431	0.76	0.950	0.0 ± 2	0.003	-2.6
210	0.001%	0.639	0.693	0.567		
23a	0.00507	0.748	0.799	0.228	0.83\%	-1.2
23b	0.00313	0.891	0.726	1.093	1.020	$+1.2$
23 c	0.00381	0.166	0.497	0.978	0.970	+0.8

(xx) Deviation from straitht line relation hetwen the affustion coeffeient and the solute composition (refor to Firures 10,11, and 1?).

Table V

Diffusion Coefficients of Multi-Component
Solutes in Water
at $25^{\circ} \mathrm{C}$

Run\# Solute
Composition of Solid Solute

In Solute Bed	At Interface (x)
(Meight \%) (Mole $x)$	(Heicht \%)

12b Sodium chloride - Rotassium Sulfate $\quad 50-50 \quad 74.9-25.1 \quad 9.24-90.76$

12c Sodium chloride - Sucrose 25-75 66.1-33.9 1.90-98.10
(x) Interface between the solute bed and the solvent;composition of interface estimated on the basis of relative diffusion rates of solutes in mixture.

42
Table V (Continued)
Diffusion Coefficients of Multi-Component
Solutes in Hater
at $25^{\circ} \mathrm{C}$

Rum ${ }^{\text {P }}$	CSm_{5}	Pa	a	$\begin{gathered} \mathrm{D}_{e} \\ \times 10^{5} \end{gathered}$	$\begin{gathered} D_{s} \\ \times 10^{5} \end{gathered}$	$\left(\frac{D^{-n} s}{D_{s}}\right)$	x 100
	$\left(\frac{\mathrm{gm}}{\mathrm{ce}}\right)$	$\left(\frac{\mathrm{gm}}{\mathrm{cc}}\right)$		$\left(\frac{\mathrm{scc} \cdot \mathrm{cm}}{\mathrm{sec}}\right)$	$\left(\frac{s q . c m}{s e c}\right)$	SDeviation	(cx)

$\begin{array}{lllllll}12 b & 0.1243 & 1.420 & 0.599 & 1.46 & 1.44 & +1.4\end{array}$
$\begin{array}{lllllll}120 & 0.827 & 1.023 & 0.591 & 0.604 & 0.825 & -27.2\end{array}$
(xx) Deviation rrom straisht line relation between the diffusion coefficient and the solute composition (Refer to Figure 14).

Table VI

Difíusion Coerficients of Ions and Ionic Compounds in Water at $25^{\circ} \mathrm{C}$ (Ref.29)

$\mathrm{H}+$	100	9.32
Na^{+}	100	1.332
$\mathrm{Ba}^{+}+$	100	0.856
Cl^{-}	100	2.025

Hydrogen chloride	$50-50$	2.94	4.30	-31.6
Sonium chloride	$50-50$	1.61	1.65	-2.4
Berium chloride	$33.3-66.7$	1.4	1.51	-4.6

(x) Deviation from straight line relation betmeen the diffusion coeffictent and the solute corposition (Refor to Figure 15)

3.Diffusion Coefficient vse Extraction Rate

The proper use of the diffusion coefficients to practical problems requires knowledpe of thair relatinn to the diffusion rete. An attempt was made to Eind auch a relation. For this purpose the rate equation, represented by Fick's First Lain, was emoloyed. The applicability of the latter to the diffusion of solutes rom a receding interface has been mentioned on Page 13, and discussod by other investigators (18).

The procedure described in Samole Calculation \#4, involved calculation of diffusion ratos, , directly from known composition of the solute bed and the rate of its level drop during the extraction. The values thus obtained were substit ted into the Fick's First Law aquation

$$
\begin{equation*}
N_{e}=D_{f} \quad\left(\frac{\Delta^{c}}{x_{a v}}\right) \tag{15}
\end{equation*}
$$

and the apparent diffuston coefficiente, D_{f}, determined. These coefficients were comoared wth the experimental diffusion coefficionts in Taile VTI. The discropancy between the two values indicated that for conditions encosnter d during leaching operation a cortain deviation from Fick's Law exista. Motton in Pigure 16, this deviation tha foun to be a function of solmbilaty. On this basis a generalized factor, $\dot{\phi}_{\mathrm{f}}$ correctin for the feviation from Fick's Law, was established

$$
\begin{equation*}
\phi_{L}=\left(1+c_{s}^{1.6)}\right. \tag{19}
\end{equation*}
$$

Litrature gearch revealed that a aimiler factor correcting for the Teviation from Fick's Scond Law has been oronsed by Arnold (1,3) for firfanion in an ovaporating syatem. Foth factoms are onparen in Tohn HTE.
 a sfuge rolation betaron the expmimentol firfustin coeficiont, De , and the sotual ciffustom rate, "e of a solinte diffum sing rom a sotid-licuid interface, vas obthime?

$$
\begin{align*}
\eta_{\theta} & =\left(\frac{\Delta C}{x_{a v}}\right) D_{f} \\
& =\left(\frac{\Delta C}{x_{a v}}\right) D_{e} \phi_{L} \\
& =\left(\frac{\Delta C}{x_{a v}}\right) D_{e} \quad\left(1+c_{s} 1.6\right) \tag{20}
\end{align*}
$$

The necesaity for the correction factor lise in the fact thet D_{e} romesents iffusivity et infinita dilution, whereas, furine the extraction twide atrasion has taken glace betmen the saturated soIution at the interfece ant the solution of neg? itible conontration at the ontillary atranoe.

It is to be noted thet the osthonthad deviation from Fick's lam Tas found to hold equally whl to sinelew, as whl as, multi-component soluts. In the latter sase, an cond be expected from previous ris-
cuscion, to calculate overall averare extraction rates of mixed solutas, the use of the efrective intertace enncontrotion, \quad am was necescary.

Table VII

Compatison of Txentrental Thtusion Coorpatata

120	"otansfum 3nlote	0.11^{90}	1.25	1.9	3.2
115		.31\%	0.10%	0.565	1\%.3
11a	307un charthe	0.319	1. 23	1.76	17.6
110	surrose	0.9000	0.244	0.48	77.7
218	Tomato ant	0.17%	1.120	1.10	3.1.
20b	watio amin	0.0913	1.0\%	1.08\%	1.0
le	9xamom	S.00ta	0.567	0.590	2.3

Lob antm onemade

12. ona bnoma -heman, remy nt. 1.18 0.3ht 0.953 110.0

Table VIII
Comparison of Factors Indicating Deviation from Flok's Law for Diffusion in Lhaudes and vepors.

0.0	1.00	0.0	1.00
0.25	1.109	0.25	1.108
0.50	1.330	0.50	1.295
0.75	1.596	0.75	1.564
1.00	2.000	1.00	∞

chavety

The value of current inveatigations lims in the sompehensive stady of the lisutid phase extmotion from oentlaries, furing whoh
 lutes rare ietrathe, an the welmbins betwen the fiemaivity, the solute conacition, and the e traction rete eatablisho.
 sentod for the evalutation of the riptram coefrictuts of solutes, was throahly teotot wh mom sotiw chloried - water systen. The procejowe, thyolving atreotion of twomese nixtwre from sapillaries,
 The cuplication o the wrult whth $\pm 0.65 \%$ woved the reliantity
 of sevoral shlts and of aurose in wher athrined expmantally Were of the some once of whitho as thone fome in litemature.

 of potarsim ion in water at $20^{\circ} \mathrm{C}$ can be astimeted at $2.23 \times 10^{-5} \mathrm{eg} . \mathrm{cm} .1$ ser., as shom in ficure 15. The mothot chorty jove en seatily
 solutes there equatrntal dwte wro ractially non-existent.
rene relation between the exrerimntal difrasivity and the
 tion. Introinction of a factor, onrrectine for the deviation from thet law, wh found to be neoessary. In the bamia of this relation, ertretion rates of solntes hom ervinartea om be hetrmined it thelr diffusion ooffictents are man.
 onmwittra, and the btponston rate ara on wationl value to the extrection and lenotinc overations. Whetr priejostion and further develoment ere threrone recommende.

Aprent

1. Source and nelis of Chenten isea

Solum chlociga, potassim sulete, curic sulfote pentahyer te, End sucros3 wore of a regalax roogent mode mality.

Montie nev, pects a, care prom athenon-Colomen end Bell
 eraphy: 90. mantio acio, 7.5N steacic acid, 1.0 myristac acia (014 ismor, mobaty), 0.5 pentadecylic actr, and 0.01% mergarie anda.

Pripelmitin, tochnicals supliad by Distillation motucts In-
 from three to sirs apeort of apolating and to heve a rettong point of $50-60 \%$.

Trsolfo acie, orate trede, was boht prom hins taoratoriss. Bofore its age in the erarimental wory, materisl wes arifiod sollominv proce wre cescmino by retional tranbercy Association's besearch Labomtory wort Tr-I 155. The ghtine mint of parifed protuet
 $29500-2400$ rence guoted by literature (10).

The aintillation range of the latter wes from $12.0^{\circ} \mathrm{C}$ to $126.5^{\circ} \mathrm{G}$.
2. Physical Date

In the aveluation of exy imontal rearits, mowlode of the donalty of solutes, the solability of antmes, and the fencity of som lations was necessary, henever postille, deta rom Ittoreture pere 4tises.

 mictures in etar.

Donsity of stumpori soluthon as detramina by mane of the oor-estron belene (os).
 nory is aiven in foblen $I X, x, x+$, XI, ene XTTT.

Meble Ti

> Denetity of Solutes
> st $25^{\circ} 0$
Solute $\quad\left\{\begin{array}{l}\text { Denaity }\end{array}\right.$

Cupaic sulpte . 54no

Potassing anlente 2.66?
sontum ohlonizo 2.163
Sucrose
1.59
(7)

Palmithe asio	9.025	Experimentel (Tote 1)
Trionelmitifn	0.922	- "-
Tresole cera	0.069	- "m

Note 1. Deteminna by mryer anc zeoton methor (e;)

Table X

Solubility of Solutes in Water

$$
\text { at } 25^{\circ} \mathrm{C}
$$

| Solute | Composition | Soluhility |
| :--- | :--- | :--- |\quad Source

Mote 1. Determined by Reylly and Ree mothod (27).

Table XI

Solubillty of Solutes in Wethyl Isobutyl Ketone at $25^{\circ} \mathrm{C}$

Solute	Composition (\% by wt.)	Solubility $\mathrm{C}_{\mathrm{s}}(\mathrm{gm} / \mathrm{cc})$	Source
Palmitic acid	100	0.1124	Experimental (Mote 1)
Tripalmitin	100	$0.0014{ }^{4}$	-"-
Trsolic acia	100	0.00413	${ }^{\text {\# }}$ -
palmitic acid -Tripalmitin	75-25	0.1070	- 7
-"-	50-5	0.1070	-"-
-"-	25-75	0.1070	-".
Palmitic acin -Trsolic actd	50-50	0.06/27	-"-
Tripalmitin -Insolic acid	50-50	0.00995	-"-
$\begin{aligned} & \text { Palmitic ef } \\ & \text { Tripalmitin } \\ & \text {-Trsclic acio } \end{aligned}$	$\begin{aligned} & 33.3 \\ & -33.3 \\ & -33.3 \end{aligned}$	0.0937	-"-

Note 1. Determined by Reylly and Rae mothod (27).

Teble KII

> Density of Satur tod solutions
> at $15^{\circ} \mathrm{C}$
> Solvent : Seter

Solute	Composition (sby sto)	$\begin{aligned} & \text { Donelty } \\ & S(\mathrm{~m} / \mathrm{cc}) \end{aligned}$	Source
Cumic surnte 5 ? ${ }^{\text {a }}$	100	1.211	(13)
Potassom sulate	100	1.086	(30)
Sotum chlorta	100	1.1979	(30)
Sucrose	100	1.3340	(∞)
$\begin{aligned} & \text { Solium ohlontte } \\ & \text {-Potossim sulente } \end{aligned}$	$50-50$	1.249	Mrpertmentel (Yote 1)
$\begin{array}{r} \text { Sotim wharise } \\ \text {-sumore } \end{array}$	25-75	1.445	-"-

Mote 1. Determined on a oore estphal belence (o).

Table XIII

Density of Saturated Solutions
at $25^{\circ} \mathrm{C}$
Solvent : Tethyl Isobutyl tetone

Solute	$\begin{aligned} & \text { Composition } \\ & (\% \text { by wt.) } \end{aligned}$	$\begin{aligned} & \text { Density } \\ & \rho(\mathrm{gm} / \mathrm{cc}) \end{aligned}$	Source
Palmitic acit	100	0.9072	Exporimental (l (te 1)
Tripatmitin	100	0.7975	-"-
Trsolic acid	100	0.7077	-"-
Pomitic acie -Tripolmitin	75-25	0.8071	-7-
-"-	50-50	0.8071	-"-
- ${ }^{1-}$	25-75	0.9072	-"-
Palmitcacia - Mrsolic acta	50-50	0.8040	-"-
Tripalmith -Trsolia acio	50-50	0.7983	-"-
$\begin{aligned} & \text { Palmitic aid } \\ & \text {-Triplmitin } \\ & \text {-Trsolic acid } \end{aligned}$	$\begin{aligned} & 33.3 \\ & -33.3 \\ & -33.3 \end{aligned}$	0.5062	-"-

Note 1. Determinod on a foor-mestohal balance (26).

3. Sample Gelonletions

Samole Caculation \# - Diffusion coefficient of a single-comoonont solvte calculated from experimental data.

Basis: Run \#2le
Solute: Tripelditin
Solvent : Rethyl Isotatyl Yetone
Trmerature : $25^{\circ} 0$

Calculation of \int and a

$$
\text { Data: } \begin{aligned}
\rho_{t} & =0.922 \mathrm{gm} / \mathrm{cc} \\
\rho_{\mathrm{s}} & =0.7076 \mathrm{gm} / \mathrm{cc} \\
\mathrm{C}_{\mathrm{s}} & =0.0044 \mathrm{gm} / \mathrm{cc}
\end{aligned}
$$

Canillary volume $V=0.01735$ oc
Weinht of total eenllemy lociang $0=0.01530 \mathrm{sm}$

Ey meterial benance

$$
\frac{-s_{s}}{\rho_{t}}+\frac{w_{s}}{\rho_{s}}=\mathbf{v}
$$

Solving for u_{s} and substituting:

$$
W_{s}=\frac{\rho_{t} v_{i t}}{\rho_{t} / \rho_{s}-1}=\frac{(0.022)(0.01735)-(0.01530)}{0.922 / 0.7076-1}=0.00439
$$

Then fractions oocoried of solis and sotarota solution, are

$$
\begin{aligned}
v_{g}=n_{s} / \rho_{s}=0.90130 / 0.7076 & =0.00550 \mathrm{cc} \\
v_{t}={ }_{t} / \rho_{t}=0.01001 / 0.020 & =0.01755 \mathrm{cc} \\
v & =0.01735 \mathrm{co}
\end{aligned}
$$

ons

$$
\begin{aligned}
& \gamma_{a}=t^{\prime} V=0.01001 / 0.01 \% 35=0.699 \\
& Q=v_{t} / v=0.0115 / 0.01535=0.603
\end{aligned}
$$

Chleulation of diffation cosffoient

Scuation (13) is oolved by trial and ornor usin the followin

$$
\begin{aligned}
& \text { aata }: y_{a}=0.620 \\
& a=0.603 \\
& c_{3}=0.00 / 40 \\
& c_{0}=0 \\
& \Delta 0=c_{8}-c_{0}=0.004,00 \\
& \sqrt{\pi}\left[\int_{0}-(1-6) c_{5}\right]=\sqrt{\pi}[0.620-(1-0.603)(0.00140)]=1.112
\end{aligned}
$$

evtimate $s=a 0_{s}=(0.603)\left(0.0044^{0}\right)=0.003054$
asmune $=0.0665$
colonlate $\frac{5}{5}=0.04595 \quad \frac{\Delta 0-0}{i n}=0.0214$
obtein from the mobelility triag, gefrenoe (1)
$\therefore \psi\left(\frac{3}{3}\right)=0.020752 \quad \therefore \psi\left(\frac{\Delta \mathrm{C}-8}{\theta}\right)=0.012070$
sud shortitute thoes velues into Feuetion (12)

$$
\begin{aligned}
& (0.04075)+(0.010979)=\frac{0.0665}{1.11 ?} \text { exp. }-(0.010970)^{2} \\
& 0.05073 \simeq 0.05075
\end{aligned}
$$

Teminy a , using Rouaton (s)

$$
a=\frac{0.06075}{0.06075+0.01070}=0.633
$$

Get the mationshis botwen x_{m} and t rom Pquation (6)

$$
x_{s}=\frac{2 \sqrt{D_{e}^{t}}}{a} \psi\left(\frac{s}{1}\right)=\frac{2 \sqrt{D_{e}^{t}}}{0.63} \quad(0.040723)=0.1793 \sqrt{D_{e} t}
$$

Solve for D_{e}, substituting ralnes of x_{s} and t
forn Fipure h, Fun 210 ; for instanoe

$$
\text { at } \begin{aligned}
t & =4000 \mathrm{~min} \\
x_{3} & =0.139 \mathrm{~cm} \\
D_{3} & =\frac{(0.139 \mathrm{~cm} / 0.1103)^{\circ}}{(4000 \cdot 60) \mathrm{sec} .}=0.507 \times 10^{-6} \mathrm{3y} \cdot \mathrm{~cm} \cdot / \mathrm{sec} .
\end{aligned}
$$

Semple Calculation ${ }^{4} 2$ - Diffusion coefficiont of a sfntlemcomm ponent alute onlotater from empinical flue correlation (31)

```
Solate : Tripelmotn
solvent : Methyl isobuyyl ketone
Temsarature : 250
```


$$
y_{y}=7 \cdot+10^{-0} \frac{(x \cdot 10)^{0.5}(T)}{(\eta)(w \cdot)^{0.6}}
$$

Where $x^{\prime}=1 \quad$ assectation arametor of methv1 tantoryl betone

$$
51=100.16 \quad \begin{gathered}
\text { volecular } w i \text { int of methyl isobutyl } \\
\text { tetone }
\end{gathered}
$$

$$
\eta=0.53 \% \text { ep. viscostty of solution (in this case }
$$

viscosity of pure solvent is trken
dwe to geall solubility of trimimitin in methyl isobutyl retone
$T=298$ or abolute termenature
$V^{\prime}=1190.4$ molal volume of solute at norwel boiling roint, estimated from atomic volunes
suhetituting and solvine

$$
\begin{aligned}
& \mathrm{D}_{0}=\mathrm{r}_{0} \times 10^{-5} \frac{(1 \times 100.16)^{0.5}(209)}{\left(0.539(1100.1)^{0.6}\right.} \\
& \mathrm{D}_{0}=0.596 \times 10^{-5}
\end{aligned}
$$

```
    Samole Calculstion 2 - Diffusion coeffecrmt of a tro-con ment
solute calontetad mon emmanoutal seta
    Tanis : Mun %20b
```



```
                    by maicht
    onvent : Neth 1 Tsomutyl Fetone
    Tempentore : 25\pm0.0110}
Caloulation of thr erfoctive intweace conomtration
```



```
        Dea}=1.110\times1\mp@subsup{0}{}{-5
    A = 256.12
    Sow trapulmitin }\quad\mp@subsup{C}{3}{
        D SB}=0.567\times1\mp@subsup{0}{}{-5
\[
W_{2}=90.29
\]
\[
\text { zor } 50-50 \% \text { Ixture }
\]
\[
\text { by moicht } \quad c_{s t}=0.1070
\]
Relative difmation rate of palmbio acire to that of teloctmitin is detramined from Renation (16)
\[
\frac{N_{1}}{W_{0}}=\frac{\left(1.11 \times 10^{-5}\right)(0.1124 / 256.22)}{\left(0.567 \times 10^{-5}\right)(0.0044 \% / 207.29)}=154.7 /
\]
```

Wext, om enemontion of solute in the solute ber,
 moter
fron mich aroptive tntrmeno comontration of onlute in solntion is obtaina from viretion (19)

$$
\begin{aligned}
& =\left(0.1121 \times 0.004+0.0044 \times 0.0935\left(\frac{0.1070}{0.112+0.00410}\right)\right. \\
& =0.001 \% 4
\end{aligned}
$$

Galculetion of $\int a \quad$ and

$$
\text { Sata: } \begin{aligned}
f_{t} & =(0.025)(0.50)+(0.02)(0.50)=0.0 \% 4 \\
f_{7} & =0.091 \\
V & =0.0302 \\
& =0.0200
\end{aligned}
$$

$$
\begin{aligned}
& \text { Wr antantal varat } \\
& \frac{-a}{\hat{f}+}+\frac{a}{\hat{y}}= \\
& \text { my } \\
& =\frac{X+8-}{y_{y}-1}
\end{aligned}
$$

$$
\begin{aligned}
& =06
\end{aligned}
$$

$$
\begin{aligned}
& 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { Date: } \begin{aligned}
\hat{Y}_{a} & =0.900 \\
\dot{a} & =0.099
\end{aligned} \\
& \mathrm{Cg}=0.004 \% \\
& \sigma_{0}=0 \\
& \Delta C=C_{m}-C_{0}=0.00 / 74 \\
& \sqrt{\pi}[0-1-2) 0,1 m]=\sqrt{\pi}[0.920-(1-0.00)(0.00174)]=1.450 \\
& \text { estimeto } \\
& B=20 \mathrm{sm}=(0.00)(0.00151)=0.00101 \\
& \text { ascome } \quad=0.07 \\
& \text { onlolats } \quad \frac{\pi}{6} \quad \frac{\Delta \mathrm{C}-\mathrm{s}}{6}=0.0056
\end{aligned}
$$

obtain rom movability tebles, Boferenc (u)

$$
\therefore \psi\left(\frac{s}{4}\right)=0.04706 \quad \therefore \psi\left(\frac{\Delta 0-5}{\square}\right)=0.00501
$$

and sumbitute these tuss i do quation

$$
\begin{aligned}
(0.0209)+(0.00501) & =\frac{0.020}{1.250} 6 x \cdot-(0.00501)^{2} \\
0.05307 & =0.05300
\end{aligned}
$$

Wrify a , using Reptton (o)

$$
a=\frac{0.0406}{0.0 .796+0.00591}=0.4+0
$$

Get desired relationship between $x_{\mathfrak{a}}$ and t from Ecua timon (6)

$$
\begin{aligned}
x_{5} & =\frac{2 \sqrt{D t}}{a} \psi\left(\frac{s}{w}\right) \\
& =\frac{2 \sqrt{D t}}{0.009}(0.04796) \\
& =0.1079 \sqrt{D t}
\end{aligned}
$$

Solve for D_{e}, substituting values of x_{s} an t from Figure 7, (Tun *22b)

$$
\begin{aligned}
\text { e. at. } \quad t & =2000 \mathrm{~min} . \\
\mathbf{x}_{\mathrm{s}} & =0.115 \mathrm{~cm} .
\end{aligned}
$$

and

$$
\begin{aligned}
D_{e} & =\frac{(0.115 \mathrm{~cm} \cdot / 0.1078)^{2}}{(2000 \times 60) \mathrm{sec}} \\
& =0.950 \times 10^{-5} \mathrm{sq} \cdot \mathrm{~cm} \cdot / \mathrm{sec}
\end{aligned}
$$

This is the diffusion coefficient of a $50 \%-50 \%$ by weight mixture of photic acts - tripalmitin calculated from experimental data.

Sample Calcnlation * 4 - Devietion from Fiok's Law estimated fron exprimontal extraction rate data

Basts : Run " 11a
Solute : Sosiam chloride
Solvent : Water

Coloulation of diffurtion coefficient frofit Enetion (15), assunting quasi-ateady-3tate conditions (Ref.17)

$$
\begin{equation*}
w_{e}=w_{p}\left(\frac{\Delta C}{x_{z v}}\right) \tag{15}
\end{equation*}
$$

Deta: $\begin{aligned} \quad \int_{a} & =1.397 \\ & =0.645\end{aligned}$

$$
x_{\mathrm{av}}=0.5 \pm 0.5 \mathrm{~cm}
$$

$$
t=2200 \mathrm{~min} . \quad \text { (from Figure 5) }
$$

If total solute extracte rom initiel solute bed in the enpllary is exarosed by

$$
\begin{aligned}
P & =(a)\left(\rho_{t}\right)+(1-a)\left(C_{s}\right) \\
& =(0.615)(2.163)+(0.355)(0.3171) \\
& =1.509 \mathrm{~m} . / \mathrm{cc} .
\end{aligned}
$$

then experimental dipustion rate we , essuring 1 sc, cm. orossmoctional area, equals

$$
\begin{aligned}
y_{e} & =\frac{(1.500) \mathrm{mo} / 00 .(1.0) \mathrm{co} . / \mathrm{sc} \cdot \mathrm{~cm}}{(2000 \times 60) \mathrm{sec}} \\
& =1.143 \times 10^{-5} \mathrm{mo} / \mathrm{sem} .-\mathrm{sec}
\end{aligned}
$$

Guoctituting this walue into Eustion (15) an solvint for De, the anpernt ctenuion coefficimt is obtainot

$$
\begin{aligned}
& D_{f}=n_{e}\left(\frac{x_{\text {av }}}{\Delta c}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =1.002+20^{\circ} \mathrm{sc} . \mathrm{cm} . \mathrm{sec} .
\end{aligned}
$$

Gunce actuat diforgion coorficiorts

$$
D_{5}=1.534 \times 10^{-5}
$$

the revigtion from Fick's Leat beonms

$$
\frac{n_{f}-0_{e}}{n_{0}}=\frac{1.00-1.534}{1.534}=0.176=17.6 \%
$$

This Coviation, poma to be a faction on solutilty, is plotted in Timere Ih, an fom the clome of the lime the following relation coterth hot

$$
\frac{D e-D_{e}}{v_{0}}=0.6
$$

 broomes
$\hat{p}_{L}=\left(2+0_{3}^{1.6}\right)$

Applyine this factor to the Ficks First inw eaution, the desires reIntonship betmen the surnamontel itpfusion coepficient of and the sctmal tifusion rate ofor solute difuglug fom a

$$
\begin{aligned}
& \theta_{0}=D_{p}\binom{\Delta \omega}{x_{\Delta V}}
\end{aligned}
$$

$$
\begin{aligned}
& =D_{e}\binom{\Delta 0}{x_{B V}}\left(1+c_{\mathrm{g}}^{1.6}\right)
\end{aligned}
$$

MOETCLTY

3	- Snactional volume of solit solnte in anlute pod
A, T	- sinclewcomonomt solutes
b	- eistance, en.
0	- concentration of solution, Fry./ec.
C_{0}	- concantration et the aenllary entrence, m./oc.
C_{5}	- solu${ }^{3}$ ility, or concontmation of a sinvie-comonont solote at the interface, gn. /oc.
$\mathrm{O}_{8 \mathrm{Sl}}$	- solubility of a mires sotinte, m./ce.
$0 \mathrm{O}_{\mathrm{m}}$	- efsctive interface concentration of a mized solute, in solution, mo/ec.
$\Delta 0$	- concentretion Arivivg force betron interface and capillary entrance, mm./eo.
$(d \mathrm{c} / \partial \mathrm{x})_{2}$	- concentration rradient at interface in stratot carillary, gm./ec./em.
D	- dipfucion conficisnt, sc.on./rec.
D_{0}	- difouston coefpintut betemined crom ornerimental data, sc.om./ssc.
If_{f}	extraction rate deta using viot's Firrt Law kuation
0	- difncinn coefet aimat from Ittoreture remntod by verinus investicotors, se.cr./sec.
D_{s}	- dirnusion confioint of mivas solute ontimated from streioht line ralation betresn dipeustivity noluta com nsition, se.on./nes.
E	(37) correlation, se. cri/sec.
m	- wulti-com oncnt solnte
\%	- conoontration constant in tromhnse ospillary ewntion

$\mathrm{n}_{8}, \mathrm{n}_{8}$	- Woitht fractions of components a ent is in mixer solizte
\%	- rate of solute leavine int refoe by dipemtor, gm./sc.0n.-anc.
\%, B	- dinminn rote of comomonts A sud $\mathrm{gm} / \mathrm{sc}_{2} \cdot \mathrm{ct}-\mathrm{sec}$.
$\%$	- experimental dicurion rate, m./Eg.en-sec.
p	- tot solute extract ? mow inicial solute bet in the onnilisy, are solute/ee. of soltre led
8	- point of in lection constant of tro-phase cavillary ocuation
t	- time, sec.
T	- absolute temperature, or
v	r-Tstive to capillery geil, on./me.
v	
∇_{s}	- volume of ecinlisy ocentioe by antureten solntion, os.
T	- volurs of eppunary oscugen by colta nolate, ce.
V1	- molal volum ne solute et nomel milime mote, co.tom.mole
\%	in ter or inlory, am.
\cdots	
t	- and of anter ontrie in tro entillery, -
x	- Nistura, \%.
$x_{\text {av }}$	- ayrode distane fron intorece to cepillam mboroo throwh fioh antus tincus tuaty tho oxtrection, em.
${ }^{3}$	
x^{\prime}	- assoctation xametor or molment

y_{0}	- mole raction of vanor at liguid intorface in an evamoratire syst $=$ m
	- vinoosity of solvent, cs.
$\rho 2$	- aummat mastiy of solnte hod, m.ler.
9	- Amatty of matanta nolution, w/ec.
ρ_{t}	- Monsity or malo solyte, em. $/ 0$.
ϕ_{i}	- Suctor comenting for deviation anon Wire's First Lot in ootid-Thatid syotmo
ϕ	in 1ionia-vepor syatere $(1,3)$
ψ	- invorse eror fuction

EESC. 9

 pery, he yowr, 10/1.

 Ombriare, ". " "ow yom, 1040 .

 401. $10,3.10 \%, 10 \%$.

13. Intamational Catical pebles, 7ol. A, 20, Samart Wabhbum, Eitor, cormorin hook Compony, Thc., 109 .
14. Jost, 4., Difeusion in Solias, fichice, Geses, Acmamic Drass, Thited printing, 1960, 2. 62.
 . $511,10 \%$.
16. Mimeoot, J.G., J.Cheme Mys., Mol. 1, p. 1\%, 1046.

 Vo1. 46, 2, 2321, 102\%.

20. Herek Incex, Seventh bition, 1060, Published by verok ond Co., Tne..
21. Tohaels, A.T., I. Im, Inct. Chce Eneme, Tol. 5, p. 290, 1959.
22. Official ant Tentetive Methods Second Wition, oricago, Tlinota, American 011 Chemista Boctety, $104-105$, ethor co $100-25$, rovishe botobr, 101.

 Chomical motnearing morass, Wol. 47, w, 1051.

26. Reylly, f., an Rae, . Pr, pysico-Chemical ethode, when mation,


```
    Yol. 2 , Van Mestranci, peinceton, v. T. 1030, P .50.
```



```
    1061.
```



```
    10/1.
```



```
        1556.
```



``` . \(625,1961\).
```

