Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.
EFFECT OF TEMPERATURE ON RATE OP ABSGAPTION
OF AMMONLA BY WATER TN PACKBD TOUCR
$B Y$
CHHOTU B. PATEL
A THESIS
PBESEREED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR TGE DEGREX
OF
MASTEE OF SCIENOE IN CHEHICAL ENGINEERING
AT
NBUARK COLLEGE OR ENGINEERING

This thesis 1 s to be used only with due regerd to the rights of the author, Bibliographical references may be noted, but pessages must not be copied without permission of the College and without credit being given in subsequent written or pub11shed work.

TABLE OP CONTENTS

Page No.
INTRODUCTION 1
LITEnATUSE SUnvex 4
EQUIPREWT 9
PRCORDURE 16
SARPLING AND ADALUTICAL FOCQDURE 18
ILJUSTRATEVE CALCULATTON 19
GRAPHICAR RESULTS AND DATA 23
DTSCUSSION AND MESULTS 35
CONCLUSTONS ADD ELCOFHENDATIONS 38
GIDLIOGRAPHY 39
APFEMDIX
calibration of Ais rotometar 41
Table of Nowenclature 42

Abstract

Mesturement of the rate of absorption of amonia in water have been made using $4-1 n c h$ diameter lueite colum mith f-inch poroelain aaschig ringe paced to height of 3 feet. Tests were made with water rates of 462 and 695 1bs./ $h x-f t^{2}$ and a onstant gas rate of $130 \mathrm{lb} . / \mathrm{mr}-\mathrm{f}^{2}$ with 11quid temperature verying from $72^{\circ} \mathrm{F}$. to $110^{\circ} \mathrm{F}$.

At constant liquid and gas rate, the mast transfor coerficient, $\mathrm{K}_{\mathrm{G}^{*}}$, decreazes with increasing liquid temperature and is represented by straight Lines on plot of K_{G} versus temperature. The veriation of $K_{G}{ }^{2}$ with ilquid temperature zanged from 6.05 at 72° p. to 2.5 at 104°. with a constant 11quid rate of 462 Jbw . $\mathrm{hr}-\mathrm{ft}^{2}$ and a constant gas rete of $130 \mathrm{lbs} / \mathrm{hr}-\mathrm{ft}^{2}$. At the same ges rate of $130 \mathrm{lbs} \cdot / \mathrm{hr}-\mathrm{ft}^{2}$. K_{G} varied from 6.55 at $78^{\circ} \mathrm{P}$. to $5.28 \mathrm{at} 100^{\circ} \mathrm{F}$.

It was also found that K_{G} increases with an incrense in water rate, and may alzo be reprosented by straight ines on a log-log plot.

APPFOVAL OF THESIS

For
 Department of Chemical Engineering Mewark College of Engineering

BY

FACULTY COMMITTEE

Approved: \qquad

NEWARK, NEW JEREEY

1964

ACKNOWLEDGEMENT

The guidance of Dr. John W. Axelson of the Department of Chemical Engineering was most helpful in the completion of this project.

ETST 02 F1GOPES

Figuxe PageMo43120No1Sapport Plate
12
Qquipment Diagras
Coluwn 1314
2 C Luaste Tlances 15
3Effect of Temperature on Vass-Transfer coewfficiont Expeximental $\mathrm{K}_{\mathrm{G}} \mathrm{VB}$. TO F^{F}.29
6
Sifeet of Temperature on Masemransfor coe- ficalent, rom Dryer and Dodse. 32
45
7Correlation of cas rate ve. $\mathrm{K}_{\mathrm{G}}{ }^{\text {a }}$30
uffect of Liquid Rate on Overall Massm Tranefer Coetcicient temperature - $85^{\circ} 7$ 31
琹fect of Liquid Rate on Mass-Transfer Conficient at various Temperatures 33
8Efect of Tompersture on MasismangferCoefficient at the Flooding Velceity34
9Calibration of Air notometer43
Tabla Hage
No. Title NO.
1 Sumwary of Investigation of Absorp- tion in Eacked tower 7
2 Data and Calculations at Liquid Date of $695.0 \mathrm{lbs} / \mathrm{hr}$ eq ft 23
3 Data and Caloulations Et Euid nate of 462.0 ibs/hr sq ft. 25
4 Data and Caloulatione at the plood- ing velooity 27

INTRODUCRISOX

One of the most widely used industrial methods to bring vapor and IIquid phases into intimate oontact for the purpose of transferring mass or heat is by meant of a packed tower. The device consiste of a cylindrical colum, equipped With ages inlet and alstributing apece at the bottona 1Lquid inlet and distributor at the top, and wapportad mass of packing consisting of inert solla shapes. The packing provides a large area of contact betweon the liquid and gas and encourages intinate ontact between the phases. The solute in the rioh gat is absorbed by the fresh liquid ontering the colum, and dilute, or lean gas lases the top.

Absorption of the solute by the 1iquid is accompenied by the volution of the heat of condenatation and of solution of the solut that is absorbed. The absorption rate is usually a maxinum at the botton of the colum, and if the inlet gas in rieh, the heat reloased in that tection of the colum causes the temperature to rise appreciably above that In most of the apparatur.

The deaign of paeked towers for gas absorption should involve the determination of the most coonomical combination of the various factore affeeting thim operation. The variables would be the type of packing, tower diameter, tower helght, quantity of 1iquid and concentration in the oxit gas. The
individual filn ooefficients of mas transfor in packed colum are affected by the following:

1. Licuid Bate
2. Phyaical Properties of Elquid
3. Gas hate
4. Phyaleml Properties of Gas
5. Operating Temperatures
6. Operating Prosemre
7. Nature of Paoking
8. Diffusion Coefficient for Solute in the InertGs
9. Diffumien Coefficient for solute in the Liquid

Hewevar the situation it complicated by the facts that the resistances are not entirely independent, sinee the liquid and gam are not separatad physioally, ad also that chemical reactione may ocour.

To aescribe the absorption precese quantitatively, the following must be determined:

1. Material Balance: The law of conservation of matter applies to the overall systen and to *oh materidel around the entire tbsorber or any portion of it.
2. Energy Ealance: Likewide, the energy balance can be applied to the abserber in its ontirthy or to any part.
3. Squgisbrium Belationshipsi These otablish the maximul transiter that can be effacted in a specirie struation.
4. Transfor fate: As in other transfer procesmes, the rate at whioh the solute mover from ont phase to the other 1 a detaralned as the quotient of potentiml and realstance.

The additivity of the mase tranarer reaiatance is shown by the relation: ${ }^{1}$

$$
\frac{1}{\mathrm{~K}_{G^{a}}}=\frac{1}{\mathrm{~K}_{G^{a}}}+\frac{1}{\mathrm{BK}_{L^{Q}}}=\frac{1}{\mathrm{HK}_{L^{2}}}
$$

where the eymbols have the maning shown in the Table of Nomenclature.

The equation used in the evaluation of equilibrium parpressure of amonia for inlet and exit gas is (8)

$$
\log \frac{p^{*}}{C}=4.699-\frac{3460}{\left(\theta_{R}^{\circ}\right)}
$$

where the symbols have the meanine ahown in the rable of Nomenclature.

This equation was used by various workers $(2,12)$ whe stuated masentranser coefficients with varying temperatures of ilquid and with paoking of warying nature.

This work is an extension of their investigation with the temperature of the ilquid varying from $60^{\circ} \mathrm{F}$. to 110° F. in a 4 -inch diameter column with -inch unglazed poreelain haschig rings in a bed 3 feet high. Run were made at constant gas rate with two different ILquid rates.

LITEGAATURE SURVEY

In the oaxiy days of ohemical engineering: information on the operation of gas absorption equipment was quite inedequate to pernt proper atimutes and design for new operations. Lewis and Whitoman ${ }^{10}$ coneluded that the rate of absorption i a controlled by the rate of diffusion of solute through the aurface film of oas and liquid at the gac 11quia boundary. They stated that the ratio of Visoosity to density of the filn fluid is probably the controlling factor in determining film thickness:

The effect of temperature on the overall coefficient K_{G} is composed of three indivinual effacts on k_{G} on k_{L} and on solubility (measured by H). Sherwood ${ }^{14}$ conoludes that ${ }^{4}$ is proportional to the square root of the absolute temperature at given seynolas-Mumber. From the thililanam Sherwood ${ }^{5}$ aquation for filu thickness, the definttion of ges IIIm coefficient based upon the Noxwell diffusion ooncept, and the faet that denstry in Inversely proportional to absolute temperature, it is Cound that diffusivity is proportional to sbsolute temperature for a fen masg velocity, prescure and size of paoking, and ssaving Ideal gates and low concentration of solute gas.

$$
\frac{(T)^{0.23}}{(\mu)^{0.39}}
$$

Since Tideosity of air is approximately proportienal to
$\mathrm{T}^{0.75}{ }^{7} \mathrm{k}_{\mathrm{G}}$ should be neariy independent of tomperature. 3 However, experimental determinations have shown that this is not true.

Haslam, Hershey and Keon ${ }^{6}$ found that K_{G} for absorption of ammonia in water deareased as tomperature inoreased and from their results dedueed the fact that \mathbf{k}_{G} waried inversely as T. Kowalke, Hougen and vitson ${ }^{8}$ oonelfued the fact that K_{G} decreases tempersture increases.

The effect of different packings is also important to consider at this point. Sherwood compared eleven different phokings, and the overall coofficients \mathbb{K}_{G} at $C=L=500$ varted from 21.3 to 8.2 with an area ratio of 5.6 . For similar mhepes Chilton, Duffey and Vernon ${ }^{2}$ found that $K_{G}{ }^{\text {a }}$ inoreased as the $0.5-0.6$ power of the supertialal packing aree per unit volume. At $G=L=500$ they obtained $\mathbb{K}_{G^{a}}$ valuen of $10-$ 12 for packing (olay sphores and orushed stone) with an area of 60 square feet per oubie foot. Sherwood and nolloway ${ }^{15}$ reported $K_{G^{Q}}$ of about 12 for 1 inch arbon Raschig ringa, which also have an area of about 60 square feet per oubic foot.

The most reliable and complete set of experimental date are those of Fllilnger ${ }^{4}$, whose data cover ceramic kaschig ringe ranging in size from $3 / 8$ to 2 inches; Berl badales from $1 / 2$ to $1-1 / 2$ inch; and triple spiral tile, cas rates
range frow $200 \mathrm{lb} /(\mathrm{hr})(\mathrm{sq} \mathrm{ft})$ to the flooding point or to $1000 \mathrm{lb} /(\mathrm{hr})(8 q \mathrm{f})$) and 1 lquid ratea range from 500 to $4500 \mathrm{lb} /(\mathrm{hr})$ (se ft). The erfoct of packing size fas found to be manal.

Table 1 mumarize some of the work done with packed colume of difterent sizes, with vartou packings and for number of syntens.

ABSOREPION IM PACKED TOWER

Investigators Ref.	$\begin{aligned} & \text { Col. } \\ & \text { Dia. } \end{aligned}$	$\begin{aligned} & \text { Packed } \\ & \text { Helght } \end{aligned}$	Packing Material (Inches)	$\begin{aligned} & \text { hqurd Rate } \\ & \mathrm{lbs} / \mathrm{hr}-\mathrm{ft}^{2} \end{aligned}$	$\begin{aligned} & \text { Cas Rate } \\ & 1 \mathrm{bs} / \mathrm{hr}-\mathrm{rt}^{2} \end{aligned}$	Solvent	Temp. ${ }^{\text {Op. }}$
Sherwood \& Kilgore (Ind. \& Eng.							
Chem. 13 744-6							
(1926)	4	42	Coke-0.35-0.63	323	149-507	water	70-90
Kowalke, Hougen							
Kowalke, Hougen							
Kowalke; Hougen \& Watson	16	41	Partition Eings-4	25-800	6-240	Water	68-110
Johnstone and singh	16	41	Wood Grids	21-670	19-240	0.3 N	-
Johnstone and							
Singh -	16	41	Wood Grids	1100	1180-2780	HAC.	-
Chilton, Duffey,							
Chilton, Diffey,							
and Vernon 1	6	48-54	Spheres, 1/2-3/4	495	400-500	Water	72-81

TABLE 1 (CONTNUED)

Investigators	Ref.	$\begin{aligned} & \text { CoI: } \\ & \text { DLa. } \end{aligned}$	$\begin{aligned} & \text { Paexed } \\ & \text { Helsht } \end{aligned}$	Fhering macermal (Inehes)	$\begin{aligned} & 1 \square a I n n^{2} \\ & 1 b a / h x-f t^{2} \end{aligned}$	$\begin{aligned} & \text { GKs Bate } \\ & 1 \mathrm{bs} / \mathrm{m}-\mathrm{t}^{2} \end{aligned}$	Solvent	Temp. ${ }^{\circ} \mathrm{P}$.
Chilton, Duffey, and Vernon	-	11.3	45	Spheres: $1 / 2-3 / 4$	500	400-500	Water	72.81
Sherwood Holloway	15	10.0	19-31	Ringe - 1	570-830	55-530	water	77
Sherwood Hol.1.oway	15	10.0	19.31	成Ang* - 1	$660-710$	65 -700	Water	54
$\begin{aligned} & \text { Sherwood - } \\ & \text { Holloway } \end{aligned}$	15	10.0	19.31	nings - 1	1520-1850	211	$0.5-4.51$	77
$\begin{aligned} & \text { Sherwood - } \\ & \text { Hollomay } \end{aligned}$	15	10.0	19.31	Bexl Sadales	75-400	3330	$\mathrm{H}_{2} \mathrm{SC}_{4}$	-
Broden and Squires		PInST	vonk on	anschio riwas				
Dwyer: and Dodge	8	12	5	1" Carbon Raschie Bings	100-1000	100-1000	Water	$70-95$

EqUIPMEX

The equipment used in this work was designed by the author and was oonstructed in the machine ghop of the Chenical Engineering Department of Newari College of Engineering. A schamatie diagram of the apparatus is shown in Figure 1. The spparatue is summarized in three main sections: (1) Gas Inlet symtem; (2) Colum; and (3) Liquid Inlet System.

Gas inlet systax

Alr, the phese used, was obtained after humidification from the inlet gas line of a wetted wall colum apparatus and was passed through an arr flow ontrol vaive before entering the air rotometar. The amonia gas was introduced Into the $1 / 4$-inch air flow line after the rotometer with a $1 / 4-1 n \mathrm{~h}$ glass tee as shown in Figure 1 . The amonia flow rat was metered by a gas rotometer. A mercury manometer was connected into the airmamonia line to measurs the statio pressure at the bottom of the colum. Inlet gas masaed through a $1 / 4$-inch X with the sampling tap connected to the X. The thermometer for measuring the inlet gas temperature was located between the Y and the conneotion to the column.

Columin
The colum was mede with two sections of $3-3 / 4-1 n o h$ I.D. Iucite pipe joined with split flanges. The packing
support plate was stainless steel grid with 9/16-inah dismeter opening and $3 / 32-1 n o h$ webs, and had about 70 free aren. It was held between the flanges. The top of the colum wes sealed with flange plate through which the $1 / 2-$ Inch water inlet 1 ine and the $1 / 4-$ inch exit gas 11 ne with control valve were conected. The oxit gaz ganpling line was coansoted to the exit gan line with e $1 / 4-1 n o h$ tee. The botton seetion of the colum was sealed with flange plate with a watar outlet connaction. The $1 / 4-1 n c h$ gas inlet line entered near the top of this section. Preasure tapa above the paoking and below the support plate were conneoted to a U type manometer fillea with water. The colum was packed with 1/4-inch unglazed porcelakn Raschig rings with a packed bed height of 3.073 feet.

SAquid inlet syttom

 with the rate controlled by manul adjustment of a control valv. After the flowator, the water passed through a Fower's hot and cold fluid pixture valve where it wat heated by continuous low preasure steam injection. The water temperature was manually controlled by adjustment of the stean injection presture with pressurg reduckng valve. The water atstributor whin the columa consisted of a 3 minoh 0 . D. chower hasd. 1/8-inch holes were made near the outer partphery for better dietribution.

The gas inlet and outhat sampling line were connected by rubber tubing. The packing tested was $1 / 4 \times 1 / 4 \times 1 / 16=$ Inch unglazed porcelain Rasenig rings (1).
(1) A product of 0.3 . stonewsre corp.

EQUIPMENT DIAGRAM

FIGURE - NO. 1

SUPPORT PLATE

FIGURE NO.2B

SCREWED JOINT

PLAIN FACE

4"DIA. PIPE
g"outside flange dia.
$\frac{15}{16}$ flange thickness
$7 \frac{1^{\prime \prime}}{}{ }^{\text {BoLT CIRCLE DIA. }}$
8 bOLTS $\frac{5}{8}$ "DIA.

FIGURE NO. 2 C

PROCEDORE

政 packing wa placed in the oolum by firnt filling the colum with watar and then dropping the clean gaschig rings into the toy of the column by hand. The welght of packing charged was meagured and the denstyy of the Raschig ring wos determined. The volume of the bed was deterwined and the void space was alculated. The ratio of pecing surface area to bed rolume was determined by measurexents on the packing and found to be $\mathrm{A}_{\mathrm{p}} / \mathrm{s}^{3}=713 \mathrm{ft}^{2} / \mathrm{ft}^{3}$. The value from freybel ${ }^{16}$ for $1 / 4-2 n c h$ stoneware Rasoris rings 1 e 719 st t^{2} / t^{3}. Arter placing the dewixed hefght of rings in the colum, the water was arained and the top plate was gealed.

To gtart up the colum, the alr and water flow rates were set to the desired value and a liquid level was maintained at the bottom of the inlet gas section of the colum to prevent inlet gas from oscaping through the ilquid outlet: The pressure reduclng velve in the gteam 11 ne wes adjusted for each run to give the desired inlet water temperature. once the tesimed gas and mater wates were obtained along with the selected water temperature, the ammonia supply was turned on and adjusted to give the chosen concentration.

Steady stat oonditiona were obtained mowe quickiy by opening the bottom $11 q u i d$ dxain valve in the beginning of ach run. tioading of weter rate and temperature gag rate


```
taken about every five to ten minutes until all xeadinge
were constant.
    During each run, the following raading* were taken
before and after enoh sampllng and recorded:
```



```
    2. Air Motometer Meading
    3. Ammonia notovivter Readung
    4. Inlat Ga| "emperature
    5. Gutiet Gas Temperature
    6. Inlet ritter Tempemature
    7. Outlet Hater Temperature
    8. Outlet Liquia mete
    9. Gas Line Manowebar Meadines
    10. Coluwin Pressure Drop
    11. Baroweter Reading*
```

The amonia contents of the gas mixture ontering and leaving the tower were found by drawing a one to two liter sample through an sbeorption bottle containing measured mount of standardized sulphurio acid and collecting and meaguring the volume of the residual air. The excegs acid was then titrated with dilute sodium hydroxide solution using phenolphthalein as the indicator.

Por IIquid analyais, a sample was taken at the tower outlet and titrated with sulphuric acid with a methyi orange indicator.

ILLUSTRATIVE CALCULATION

$$
\begin{aligned}
L-1 b s / h r-t^{2} & =A_{L} c e / \min \times 62.4 \frac{1 b}{17} \times \frac{1}{0.0764} \mathrm{ft}^{2} \\
& \times \frac{60 \min \times \frac{1 r t^{3}}{h r}}{28516 c 0} \\
& =A_{L} \times 1.732
\end{aligned}
$$

Where $H_{L}=$ Liquid volume measured at exit of column cumin.

$$
L=L \text { Liquid rate }-1 b s / h r-t^{2}
$$

$$
\begin{aligned}
0-1 b s / h r-f t^{2} & =3_{C} \frac{\mathrm{ft}^{3}}{h r} \times 0.0808 \frac{1 b}{\mathrm{ft}^{3}} \times \frac{1}{0.0764 \mathrm{ft}} \\
& =(1.06)\left(\mathrm{R}_{\mathrm{G}}\right)
\end{aligned}
$$

Where G_{G} - Gas rat a-ft ${ }^{3} / \mathrm{hr}$ (from Figure 9)

$$
\mathrm{G} \quad-\text { Gas rete - } 1 \mathrm{~b} / \mathrm{hr}-\mathrm{pt}^{2}
$$

yow

$$
\mathrm{x}_{\mathrm{F}}=\left(\mathrm{N}_{\mathrm{L}}\right)(0.017)
$$

$$
\text { sher } X_{\mathrm{g}}-\text { content of ammonia at exit of tower }-
$$

$$
\mathrm{ib} / \mathrm{NH}_{3} / \mathrm{ib} \text { water }
$$

$N_{L}-N o x a l i t y$ of Liquid at exit of tower
$y_{1}=V_{a}\left(N_{v}-N_{1}\right) / V_{a 1}$

$$
-c-3
$$

$$
z_{2}=\left(v_{0}-50\right)\left(N_{1}-N_{2}\right) / v_{02}-c-4
$$

$$
\text { Where } \xi_{1} \cdot \bar{y}_{2}-\text { we } \mathrm{NH}_{3} / 14 \text { as } \mathrm{r}
$$

$$
\nabla_{8} \quad-\quad \text { Initial charge of sulphuric acid -mi }
$$

$$
\mathrm{N}_{\mathrm{s}} \quad \text { - Normality of sulphuric acid before exit }
$$ ga passed

M_{1} - Normality of sulphuric acid after exit gas passed

$$
\begin{aligned}
& N_{2} \quad-\quad \text { normality of sulphuric acid after inlet } \\
& \text { gat passed }
\end{aligned}
$$

Pressure

ming $=$ of water / (13.6)

Bun $\mathrm{MO}, \mathrm{B}-3$

Packing: 1/4-inch unglazed porcelain Rachis rings.
Packed Height: 3.073 feet.
cross sectional area of colum: 0.0764 sq. feet.
Observed Data:
$L=462 \mathrm{ib} /(\mathrm{hr})(2 \mathrm{ct})$
$G^{\prime}=130 \mathrm{Ib} /(\mathrm{hr})(\mathrm{eq} \mathrm{ft})$
Temperature: $90^{\circ} \mathrm{F}$.
Inlet Gas: $81^{\circ} \mathrm{F}$
Exit Gas: 87° 保。
Exit Liquid: 90°.

Fressure drop through pecing: 13.6 m of water
Baronetar: 760 鞇
static pressura at botton of packing $=22.8$ Hg
Inlet airs $\mathbf{Y}_{1}^{*}=0,00630$ 10 $\mathrm{NH}_{3} /$ 10 air
"xit ar: $\mathrm{X}_{2}=0.00050 \mathrm{ib} \mathrm{NH}_{3} / \mathrm{ib}$ air
Liquid at tov of macking; $\mathrm{K}_{2}=0.000013 \mathrm{Ib} \mathrm{NH}_{3} / \mathrm{Lb}$ wter Molality: $e_{2}=N_{1}=0.00075$ moles/1uter

$$
N_{1}=\text { Normality of inlet liquid }
$$

Liquid laving tower, $\mathrm{X}_{\mathrm{E}}=0.001589 \mathrm{ib} \mathrm{NH}_{3} / \mathrm{Ib}$ water

$$
c_{\mathrm{E}}=\mathrm{N}_{\mathrm{L}}=0.0935 \text { noles/11ter }
$$

Caleulation of the pertial pressure of mmonia in equilibrium mith 1iquid wain made by using the following equation, derived by molstad, Ho Kenney and Abbey ${ }^{12}$, The oquation is based on Henry's Law*

$$
\begin{aligned}
\log \frac{p^{*}}{c} & \left.=4.699-\frac{3460}{\frac{3}{0}}\right) \\
& =4.699-\frac{3460}{550} \\
\frac{p^{*}}{e} & =0.025 \\
p_{1}^{*} & =(0.025)(0.0935)(760)=1.780 \\
p_{2}^{*} & =(0.025)(0.00075)(760)=0.0142
\end{aligned}
$$

Total preasure at bottom of pacining
$p_{1}=$ Barometer and static prescure at botton or peoking
$=760+22.8$

$$
=782.8 \mathrm{~mm} \mathrm{H}
$$

Total presaure at top of packing w

$$
\begin{aligned}
F_{2} & =P_{1}-F \\
& =782.6-1.0=781.8 \mathrm{~mm} \mathrm{Kg}
\end{aligned}
$$

partial presure of amonia at botton of packing $=$

$$
\begin{aligned}
P_{1} & =\frac{(0.0063 / 17)}{(0.03485+0.0063717)}=(782.8) \\
& =8.46
\end{aligned}
$$

Partial presmare of monia at top of peoking $=$

$$
\begin{aligned}
P_{2} & =\frac{(0,0005 / 17)}{(0.03485+0.0065717)} \times(781.8) \\
& =0.664
\end{aligned}
$$

Caloulation of (p) 2m

$$
\begin{aligned}
& \frac{(8.46-1.780)(0.664-0.0142)}{760 \ln \frac{6.68}{0.65}} \\
& =0.0034 \text { atm. } \\
& \mathrm{a}_{\mathrm{G}}{ }^{a} \quad \frac{6\left(y_{1}-Y_{2}\right)}{\left(y_{1}\right)}=\frac{(130)(0.005850)}{(3.073)(17)(0.0034)}
\end{aligned}
$$

GRAPUTCAE RTGUTMS AND DATA

TABLE -2
data amo calculations
$\mathrm{A}=1$
400
78
122.5
751.0
20.0
7.62
695.00
138.00
1.270
1.188
6.073
1.520
106.00
758.62
757.15

$\mathrm{A}-2$	$\frac{\mathrm{~A}-3}{}$	$\mathrm{~A}-4$
400	400	440
90	100	110
123.5	122.5	122.5
751.0	751.0	751.0
19.0	23.0	26.0
7.60	7.60	7.60
695.00	700.00	765
130.00	130.00	128
1.280	1.27	1.28
1.045	0.96	0.873
6.073	6.073	5.850
1.630	3.270	6.300
100.00	90.5	98.5
758.60	758.6	758.6
757.14	756.8	756.0

	TABLE-2 (CORTINUED)		24	
	A-1	A-2	A-2	A-4
$\mathrm{C}_{1}=$ moles $\mathrm{WH}_{3} / 11 t$. Inlet	0.00075	0.00075	0.00075	0.00075
	0.07	0.0615	0.0565	0.05125
$\mathrm{F}_{1}=\mathrm{HE}$	7.750	7.75	7.75	7.75
$\mathrm{P}_{2}=$ Emg	0.195	0.344	0.425	0.803
$\mathrm{p}_{1}=\mathrm{Hg}$	1.0000	1.170	1.435	1.550
$\mathrm{P}_{2}^{*}=$ mix HE	0.01012	0.0142	0.019	0.024
$\Delta \mathrm{P}_{\text {L }}=$ atm maxitig $\times 10^{-3}$	2.390	1.750	2.70	3.36
K_{c} at Liquid temp. $\frac{\text { Ib moles }}{\mathrm{hr} \text { fitata }}$	6.55	5.80	5.28	3.96

		ABLE - 3				25	
	DATA	b calcul	(0xs				
Han No.	B-1	\#-2	8-3	3-4	B-5	日-6	8-7
Water fate $=\mathrm{ce} / \mathrm{min}$	264	264	264	264	264	264	264
Water Temp $={ }^{\circ} \mathrm{P}$.	72	84	90	95	100	104	108
Can Rate $=\mathrm{ft} 3 / \mathrm{hr}$	122.5	122.5	122.5	122.5	122.5	122.5	122.5
Barometer $=\mathrm{mmg}$	760.0	760	760	760	760	760	760
columi $p=$ min water	13.6	13.6	13.6	13.6	13.6	13.6	13.6
Statie Pressure	22.8	22.8	22.8	22.8	22.8	22.8	22.8
$L=1 b / h r-t^{2}$	462	462	462	462	462	462	462
$\mathrm{c}=1 \mathrm{~b} / \mathrm{hr}-\mathrm{ft}{ }^{2}$	130	130	130	130	130	130	130
$\mathrm{x}_{2}=1 \mathrm{bNH} 3 / \mathrm{lb} \mathrm{H}_{2} \mathrm{O} \times 10^{-5}$	1.27	1.27	1.27	1.27	1.27	1.27	1.27
	1.775	1.655	1.589	1.476	1.445	1.331	1.315
$Y_{1}=1 \mathrm{~b} \mathrm{NH} 3 / \mathrm{lb}$ air, Inlet $\times 10^{-3}$	6.3	6.3	6.3	6.3	6.3	6.3	6.3
$\mathrm{x}_{2}=1 \mathrm{~b} \mathrm{MR} 3 / 1 \mathrm{bair}, \operatorname{sxit} \times 10^{-4}$	1.78	3.8*	5.0	8.0	10.4	13.0	14.8
Cverall	103	100	96.5	95.2	95.5	95.5	95.5
$\mathrm{F}_{1}=\operatorname{mmg}$	782.8	782.8	782.8	782.8	782.8	782.8	782.8
$P_{2}=\operatorname{man}$	781.0	-9.0	781.0	781.0	781.0	781.0	781.0
$C_{5}=$ moles $\mathrm{NH}_{3} / 11 \mathrm{t}$ trat	0.103	0.0975	0.0935	0.087	0.084	0.0784	0.0774

TABLS - 3 (COMTINUED)					26		
Grm No.	$\mathrm{B}-1$	8-2	B-3	B-4	B-5	B-6	8-7
$c_{1}=$ moles $\mathrm{NH}_{3} / 11 \mathrm{t}$ Inlet	0.00075	0.00075	0.00075	0.00075	0.00075	0.00075	0.00075
$P_{1}=$ mang	8.46	8.46	8.46	8.46	8.46	8.46	8.46
$p_{2}=\mathrm{mmg}$	0.136	0.502	0.644	1.056	1.372	1.72	1.95
$p_{1}^{*}=$ max	1.239	1.618	1.780	1.90	2.125	2.15	2.33
$p_{2}^{*}=$ mg	0.00901	0.0124	0.0142	0.0164	0.01902	0.0206	0.0224
$(\triangle P)_{\text {Lm }}=$ atm multiply $\times 10^{-3}$	2.62	3.41	3.4	3.93	4.2	4.66	4.77
	6.05	4.32	4.14	3.28	2.82	2.53	2.44

WABLS - 4

DATA AND CALCULATIONS

Ema yo.	A-1	A-2	A-3	A-4	A-5	A-6
$\underline{L}=1 \mathrm{~b} / \mathrm{hr}-\mathrm{f}^{2}$	1500	1500	1500	1500	1500	1500
$G^{*}=1 \mathrm{~b} / \mathrm{hr}-\mathrm{t}^{2}$	85	85	85	85	85	85
$\mathrm{x}_{2}=1 \mathrm{bNE} / 1 \mathrm{~b}$ water $\times 10^{-4}$	3.80	3.80	3.04	2.76	2.56	2.42
$\mathrm{x}_{2}=1 \mathrm{~b} \mathrm{NH}_{3} / 1 \mathrm{~b}$ ater $\times 10^{-5}$	1.27	1.27	1.27	1.27	1.27	1.27
$\mathrm{C}_{2}=$ noles $\mathrm{HH}_{3} / \mathrm{co}$	0.0224	0.0189	0.0178	0.0163	0.0150	0.0144
Temp - icxit cas	61	67	71	77	80	98
Tenp - -xit Liquid	64	78	69	94	100	117
$\mathrm{x}_{1}=1 \mathrm{~b} \mathrm{NH}_{3} / \mathrm{Lb}$ alr $\times 10^{-2}$	1.07	1.07	1.07	1.07	1.07	1.07
$\mathrm{Y}_{2}^{*}=\mathrm{Lb} \mathrm{NH}_{3} / \mathrm{Lo}$ air $\times 10^{-3}$	3.62	5.1	5.4	6.1	6.3	6.5
Overall Matertal Balance $=$ \%	95	105	101	106	103	102
$p_{1}=\mathrm{mmg}$	14.6	14.6	14.6	14.6	14.6	14.6
$P_{2}=\mathrm{mm}$	4.680	6.590	7.050	7.790	8.420	8. 502
$\mathrm{p}_{2}^{*}=\mathrm{max}$ 碞g	0.200	0.273	0.339	0. 372	0.382	0.546
$p_{2}^{*}=\mathrm{mm}$ His	0.00672	0.0114	0.0140	0.0159	0.0191	0.0285
$P_{1}=$ mat L_{6}	792.5	792.5	792.5	792.5	792.5	792.5

TABLE - 4 (CONTINUED) 28

Run NO.	A-1	A-2	A-3	A-4	A-5	A-6
$p_{2}=\operatorname{Hg}$	764.5	764.5	764.5	764.5	764.5	764.5
$\Delta \mathrm{P}_{\text {L }}$ - atms multiply $\times 10^{-3}$	0.01250	0.01315	0.01350	0.01392	0.01455	0.0147
$\mathrm{K}_{\mathrm{G}}{ }^{\text {at }}$ asquid temp $\frac{1 \mathrm{~b} \text { moles }}{\mathrm{hr}-\mathrm{ft}-\mathrm{atm}}$	0.870	0.725	0.643	0.568	0.505	0.466

FIGUA - 4

PICURE - 5

Abstract

ESULT two sets of runs were mede in which the temperature varied from 72° to $110^{\circ} \mathrm{F}$. The firgt det consisted of four separate runs and the second eoverod seven individual experiments. The data and results obtained in this investiga* tion are sumarized in Tabies 2 and 3 , and pigure 3.

DISCOSSIOM OF EESULTS

The most pertinent resulta are show in Pagare 3, whioh 1: plot of $\mathrm{K}_{\mathrm{G}} \mathrm{a}$ ष* temperature at a comstant gas rete of $130 \mathrm{lbs} / \mathrm{hr}-\mathrm{rt}^{2}$ and two $11 q u i d$ ratee of 462 and $695 \mathrm{lbs} / \mathrm{hr}-$ f^{2}. This plot thows that the overall mase tranafer coefflolent, $\mathrm{K}_{\mathrm{G}} \mathrm{a}$, aecreases with inereasing liquid temperature. It is also show in phare 3 that the overall ase tranfer coefriciant, K_{O} a increases with an increase in water rate. The points above 100°. havenaxmum deviation of about 20%. The point at $11 q u i d$ emperature of $110^{\circ} \mathrm{F}$. on the ourve for - Liquid rate of gea $2 b s / h r-f^{2}$ is below the line becaute of an unexpected ohange in the liquid rate and the concentration of manonia in inlet gas.

Correlations of gas rate $\forall s$, massmbanafor coefricient for this wame systes were obtained from the data of Dwyar and Dodge (3) and are represented in Plgure 3. whioh is a plot of $\mathrm{K}_{\mathrm{H}} \mathrm{a}$ ve gat rate at constant Liquid rate of 500
$1 \mathrm{bs} / \mathrm{hr}-\mathrm{ft}^{2}$, and a constant $11 q u i d$ temperature of $85^{\circ} \mathrm{F}$. These data were obtained using a 12 -inch diameter column with a packed height of 5 feet of 1 inch carbon Raschig rings.

The comparison of the results of this investigation with the date of Dwyer and Dodge(3) is shown in Figure 4, which 18 a plot of K_{G} a vs. 11quid rate at a constant gas rate of $130 \mathrm{lbs} / \mathrm{hr}-\mathrm{ft}^{2}$ and constant iquid temperature of $85^{\circ} \mathrm{F}$. The point marked as \triangle is obtained from Figure 3 at a gas rate of $130 \mathrm{jbs} / \mathrm{hr}-\mathrm{ft}^{2}$. This point is very near the line of Figure 4, and shows good correlation for the two investigations.

Figure 6 is a plot of $\mathrm{K}_{\mathrm{G}} \mathrm{v}$ v. temperature from the data of Dwyer and Dodge (3), which shows the same effect of liquid temperature on mass-transfer coefficient as shown in Pigure 3. The effects of liquid rate on mass-transfer at various temperatures and a constant gas rate of $130 \mathrm{lbs} / \mathrm{hr}-\mathrm{ft}^{2}$ are sumparized in Figure 7. From this figure, the difference of mass-transfer coefficients for each $5^{\circ} \mathrm{F}$. change of liquid temperature are shown to be 0.55 lb moles $/ \mathrm{hr}-\mathrm{t}^{3}$ - atm, at Iiquid rate of $462 \mathrm{lbs} / \mathrm{hr}-\mathrm{ft}^{2}$ and 0.3 at 11quid sate $665 \mathrm{lbs} /$ $\mathrm{hr}-\mathrm{ft}^{2}$. From these results, one may conclude that the ehange of mass-transfer coefficients with temperature is greater at a lower ilquid rate, but the actual values are always less at the same temperature.

PLOODING VELOCLTY

Inftially the colum was operated under fiooding conditiong. The overall mesm-transfer coefficients have been found to mage from 0.870 lb . noles/hr-ft3matm. at aquid temperature of $64^{\circ} \mathrm{F}$ t to 0.466 1b moles/hr-ft ${ }^{3}$ atuk at a Liquid temperature of 117°. The plot of mass-transter coefficient ve. temperature is shown in Pigure 8. 5his plot Indicates that with an increase in 1 iquid temperature, the mass-trensfer ooefficient decreased. Also it shows that at a temperature of 11quid above 100° F. the slope of 1 ine ohanges. This effectis alao shom in Fiegure 2. These velues are considerably below the velues obtelned under non-flooding conditions, as would be oxpeoted aine the surfac axea of the packing in the flooded seotion is not avellable for rass-transfer.

The statio pressure wes 792 nm Hz at the botton of the colum and the preceure drovin the column was 28 mate This larger pregsure drop would be expected sinoe the ge has to roree $1 t$ way through bed of 11 quid.

The deta obtained for absorption of amonia in water using a 4-1noh dinmeter lucite colump packed with 1/4-ineh poremain kaschlg rings showed that:

1. The memtransfer coefrioient decreases ta the temperature of liguid increase
2. The messmtransfer coefficient decreases an the 1squid rete docroames.
3. The ohange of masmetrenser coeftioients with comperature is greater at the lowar lim guid rate, but the cetual waluea are always Less at the sademperature.

Becomennations

It it recomended that additional absorption data be obtained for thit ayctem in a tenperature xanze above $100^{\circ} \mathrm{P}$.

DTBLTOGEAPHE

1. Chilton, t. H., H. Z . Duffey, and H.C. Vernon, mhe absorption of Gasses in Facked Tower" Ind. and Fnga Chere. Vol. 29, 1937, 1. 298-301.
2. Coom, G. Ammonia Absorption in peds of fotal and Ceramio Rasehle ulnes, " Thesi Dept. of Chemioal Enginearing: Mewtrk college of Engineering (1959)
3. Dryex, 0. , and 3.F. Dodge, Mate of Abeorption of Ammonia by Heter in paoked Tower", Ind. and Enge Chene, VoL 23, 1941, P. 485-491.
4. Fillinger. L.: "Absorption of Ammonla by Water and Acld in wexious stendard packing", whest Department of Chemical Figinaering, Faseachusetts Institute of Tecmology, 1941.
 Into Air" Ind, and gne cheme, Vod. 26, (1934, p. 516
 Teloedty and Terperature on Pate of Absorption". Industrial and Engineering chemistry. Vol. 16. (1924) D. 122
5. Jesse, C., and . . . Jrossburs, Chem. ync. sept. 5. 1960 . P. 140.
6. Kowalke. O.L. O.A. Mougen sad K. M. Natson, eabsorption of Amonia in Towers, Ghericel and Hetellurgical Enaincering: $22(1925), 7 p, 32,443$ and 506.
7. Leva, H. wower Paoking and Froked powar Desken, 2na Siltion, Sew Yoxk: U.S. Btoneware, 1953.
8. Levis and whiteman, "rinctple of Gst Aboorption"; Ind. and eng. Chem. Voi. 16 (1924) . p. 1215
9. 能Cabe, W. and J. Smith, "Unit Operation* wiow York: HeGrav Mil1 Co. Tnc. 1956
 of Drop Point Grid Tower Faokinge " Transactions A1che $29(1943)$. $227-228$
10. Tarry, J.M. ${ }^{\text {WhemLoal Fnglneering Handbook, New Xork }}$期Graw hill co.. Inc., 3 ri sdition, 1950
11. Sherwood, T.K. and R.L. Pigford, "Absorption and x . trantion," Now York: MeGraw hill Book Co., Tno., 1952. p 281-286

15 Sherwood, T. K. and F.A, Hollowey, "Performano of Facked Towers: irans. Amer, Inst. Chom, siger. V02. 26 1940, $21-36$
16. Trepbal, R.E. "Hase Transfer Operation", Yew York, WoGraw H 111 Co., Inc., 1955

APPENDTX

RABLE OF ROSGCLATUBE

```
A
c = Liquid phase amonia ooncentration - meNHy /ml.
G Gas rlow rate, 2b/hr-ft2.
\mp@subsup{G}{0}{a}=0verall volunetric ges filu mase-tranefer.
    coefficient, 1b moles/hr-ft3-atm.
KLs = overall volumetrio 1iquid film mass-transfer
    coefficient. Ib moles/hr-ft3-atm.
\mp@subsup{k}{G}{\prime}=Volumetrio gas, film mass transfer ooeffielent,
    Ib moles/hr-ft3-gtr.
kLa = voluxetrio liquit fils was-trensfer ooefítolont*
    Ib moles/hr-ft*-atm.
L = Lquid flow rate lb/hrmft2.
M Molecular meight.
P =Total pressure.
p = Partial preseure.
p* = sartial prossure at equilibrium.
x = Liquid phase ammonia conoentration Ib NH,/ Ib water.
Y Ges mase mmonia ooncontratien, Ib NHy/ Ib aiz.
z = Helght of paoking.
\rho = Denalty of Iluld - 1b mass/ft3.
(\Deltap) lm = Log mean pressure drop*
```

