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ABSTRACT

Although the change in the conductance of blood resulting from

changes in its velocity has been noted by several investigators

working Trrith electrical impedance techniques, this parameter of

measurement has heretofore not been investigated from the viewpoint

of practical application to blood flaw measurement.

In certain regions of the body such as the tooth pulp and the

cranial cavity, the volume of the contained blood cannot fluctuate

during a cardiac cycle because of the rigid wall of the chamber.

Therefore, impedance pulses which have been obtained in studies on

the tooth pulp, must be attributed to the rhythmical fluctuation

of the conductance of the blood resulting from changes in its

velocity.

The scope of this paper is concerned with a theoretical

analysis of several factors accounting for the above phenomenon

and comparison of the theoretical results with experimental data

obtained for different types of circulatory models.
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PREFACE

There are several lines of evidence to support the idea that the

change in conductance of blood as a function of its velocity is due

to alterations in the cross-sectional arrangement of the red blood

cells in a blood vessel or tube. The alterations which occur due to

velocity are:

1) Axial accumulation of the cells.

2) A uniform orientation of the cells in relation to the

vorticity lines.

The changes both in the orientation of the red blood cells, and

in their patterns of distribution occur simultaneously, but will be

discussed separately in this paper for the sake of simplicity.

In chapter I the red blood cells will be regarded as perfect

spheres, and the longitudinal conductance will be calculated as a

function of the density distribution alone. The shape of the density

distribution function for several rates of flow (the hematocrit profile)

will be calculated using the viscosity profile which can be derived

from the blood flow-pressure curves.

In chapter II the problem of a preferred orientation of flowing

blood cells will be discussed and an experiment will be described

which proved the existence of such orientation and some of its char-

acteristics. The change in conductivity due to change in angular

position of the cells will be computed using data obtained from a

model representing the blood cell and its environment.



iv

The maximum impedance change predicted on the basis of cell

accumulation is 6.58%, whereas that predicted on the basis of cell

orientation is 5.47%. A total maximum change of about 12% is therefore

expected which is close to the experimental results of more than 10

% in a steady flaw.

The techniques used in the experimental measurements are described

in chapter III. The results obtained with steady flaw are conpared

with those predicted on a theoretical basis. However, most of the

experiments were done with pulsatile blood flaw which approximates

more closely the in vivo conditions. The results differ from those

obtained with steady flow, but because of the inability to handle the

time parameter mathematically-pulsatile flaw is not included in the

analysis.
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CHAPTER I

THE EFFECT OF AXIAL ACCUMULATION OF CELLS ON THE CONDUCTIVITY OF BLOOD.

Introduction.

In order to study the density distribution of the cells in flowing

blood, we must first consider the behavior of blood as a total fluid.

It is not feasible to examine the behavior of an individual moving cell,

or the population changes in different parts of the blood vessel, especial

ly in capillary tubes. We shall therefore analyze the experimental results

concerning the macrorheological phenomena of blood in order to obtain in

formation about the microrheological behavior in each part of the vascular

cross section.

The pressure-flaw curves of human blood flowing in glass tubes, for

a wide range of radii and hematocrits 1,2, produce several families of

curves, each family being a set of pressure-flaw curves over the hemat

ocrit range for a tube of given radius. Fig. I shows a typical set for

a tube radius of 183 microns which corresponds in size to a small artery

or arteriole (Fig. I.).

The curves are linear at moderate pressure gradients, and bend in

toward the origin at very low pressures. The curvature of the lines at

the law range of the pressure gradient is an indication of a non-Newtonian

property of blood. If for a Newtonian fluid we assume a constant co

efficient of viscosity (μ) connecting the gradient of velocity (dv/dr) with

the tangential component of the stress tensor (t zr ),

* Hematocrit is defined as the volume ratio of the red cells to the total
fluid*
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Fig. I - Typical Flow - Pressure Curves

(After Haynes)



where tzr is the stress across a plane perpendicular to r, and in the

z direction. The z axis is coincident with the axis of the tube, and

the velocity (v) is parallel to z at all points, and a function only

of the distance (r) from the axis. Then in the equilibrium condition

for steady laminar flaw the resultant of the tangential stress acting

on the boundary surface of each cylindrical lamina and the driving

inertial force is zero. tzr. 2πr + πr 2p = 0

where r is the radius of the observed lamina, v is the velocity in

the z direction and P is the pressure gradient per unit length of

tube.

The velocity gradient dv/dr becomes linear with r, and vanishes at

the center of the tube.

The velocity profile can be easily found by integration, with

the boundary condition: v(R) = 0

The total flow Q (cm3/sec) is:

For a Newtonian fluid the flow-pressure graphs are straight lines,

passing through the origin, and having the slope:

3



The viscosity coefficient ris expres7ed as:

If we compute from the experimental flow-pressure curves (Fig. I) the

quantity R4/8 P/Q and plot it against the pressure, we Shall not get a

constant, but a curve similar to that of Fig. II.

Applied to a non-Newtonian fluid the quantityπR

4

/8 P/Q is called

the apparent viscosity and represents the equivalent Newtonian vis

cosity which the blood would have to have in order to obtain the same

rate of flow under the same conditions. Obviously, the apparent vis

cosity of blood is not constant, it has its maximum value at low pres

sure, and asymptotically reaches a final value at a higher level of

pressure. We shall denote the asymptotic value of the viscosity byμ∞

The above phenomena can be explained by the formation of a

"marginal zone" of fluid, free of particles, surrounding an "axial

stream" of cells. This distribution is the result of a transverse

pressure acting on the cells and forcing them to move toward the center

of the tube. The alteration results in a decrease of the net viscosity.

Axial accumulation increases the fluidity in those regions of the tube

where the rate of shear is greatest, and reduces the fluidity near the

axis of the tube wherethe rate of Shear is close to zero. The net

effect is an increase in fluidity, and so the viscosity of the blood

is decreased as the pressure is increased.

Several factors are involved in the explanation of this phenome

non. Rivlin3 has shown that if the pressure-flow curves of a fluid

l4



Fig. III - Typical viscosity - presure curves(After Kümin)



are non-linear, the normal component of the stress tensor does not

vanish. In the case of blood, which may be considered as a suspension

of small discs, the non-vanishing of the normal components of the stress

tensor is reflected in the existence of a transverse force which causes

the red cells to accumulate near the axis of the tube. The existence

of this force can be explained in terms of the Magnus effect. The

velocity on the axial side of the cell is greater that the velocity on

the peripheral side (Fig. III), Applying Bernoulli's theorem to stream-

lines on the axial and peripheral sides of the cell, the existence of

the radial drift force becomes apparent.

The difference in velocity also results in a couple, causing the

cell to rotate around its axis. The couple plays a great part in the

orientation of the cells which will subsequently be discussed in more

detail. G. B. Jeffery4, in his fundamental article on motion of small

ellipsoids in a viscous fluid, stated the following hypothesis:

"Particles immersed in a viscous fluid, will tend to adopt that
motion which, of all the motions possible, corresponds to the least
dissipation of energy."

The viscous energy dissipation associated with each particle depends

upon the rate of shear in its environment. Each particle will tend

to move from a place where the shear is high to a place where the shear

is low, which means, from the periphery to the center of the tube.

The motion of the particles toward the center is limited by other

forces tending to disperse them. The most important among them is

the "diffusion pressure". As a result of random mutual collisions of

6
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Fig. III

The velocity field results in centripetal 	 force

and 	 rotational 	 couple acting on a red cell



the cells, they will tend to move from a dense to a dispersed environ-

ment. Other forces which would tend to disperse the particles, are

Brownian movement and electrical forces. However, both are too small

to have any significant effect, the first because of the relatively

large dimensions of the red cell, and the second because of the high

ionic concentration of the medium,

Moreover, this effect becomes saturated at finite pressures, and

so there is a limit to the increase in fluidity as the pressure is in-

creased, The slope of the pressure-flow curves bends upward, as shown

in Fig. I., and the curves become linear when the apparent fluidity

reaches its maximum possible value.

By means of a mathematical analysis we shall calculate the

viscosity profile and the hematocrit profile across the tube, as a

function of the pressure and the diameter of the tube. Knowing the

density distribution, we shall be able to compute the resultant

electrical conductance.

The assumptions made in the following argument are:

a) Axial accumulation contributes the major share of the non-

Newtonian behavior, and so the viscosity is a function only of

the volume concentration (or the rate of shear).

b) Axial accumulation gives rise to the major share of the electrical

impedance changes. The contribution of the orientation effect

to changes in electrical impedance will be discussed separately.

8



1. The Viscosity Profile.

Algebraic representation of the 	 flow-pressure curves. Many

workers tried to use a polynomial to represent the observed data,

but this representation is not suitable because the fluidity does

not increase indefinitely. This becomes evident by examination of

the curves which become linear at higher pressures.

Haynes2 used an exponential representation:

(6) Q = M(R.0).P - B(R)[1 - e-K(R,0)P]

where Q is the volume rate of flow, P the pressure gradient.

The parameters M, B, and K depend on the tube radius, R, and the

hematocrit 0. This representation is fairly close to the observed

data, but has the disadvantage of not being universal, and including

too many undetermined parameters. However, Taylor5 used the following

expression:

πpp = π∞(1+K|s|-1/2)

where S = 1/2PR is the applied wall stress, π∞ is the apparent

viscosity at high speeds.

This representation has the advantage of being universal; if the

apparent viscosity is plotted against PR, we get one curve for

different radii. Examining the data of Kumin1, K remains almost

constant over the range R = 2.5 min to R = 0.2 mm. This emphasizes

the importance of the variable PR as a means of characterizing the

blood flow.

9



We shall use Taylor's representation with a slight modification:

In order that the viscosity will be finite at the lowest value of

pressure, a new parameter (S 0 ) will be used.

The value of 	 μ app at zero pressures μ(0),will now be:

which is quite large but not infinite.

The representation also agrees with Kumin's data, as shown in Fig. IV.

K is close to 0.6 [(dynes) 1/2/cm], SOhas the value of 2 [dynes
/cm2], and

μ∞ is 0.0333 (poises).

10

Fig. IV. Data from Table I of Mmin (tube diameter 4.955 mm, hematocrit 40%),
The ordinate gives the apparent viscosity in poises, while the
abscissa gives the wall stress (1/2 PR) in dynes/cm2. The solid line
has the equation μapp = 0.0333 [1+0.6(S+2) -1/2]. The dots represent
the experimental data.



TABLE NO. 1 (For Fig. IV)

Apparent Viscosity Versus Wall Stress

S = 1/2PR (dynes/cm 2) μapp (Poises)

59.5 0.0339

39.5 0.0358

36.0 0.0374

28.2 0.0351

16.8 0.0371

14.2 0.0395

11.1 0.0391

4.2 0.0438

Data from Kümin's Table I.

Tube diameter 4.955 mm, Hematocrit 40%.

U



Derivation of the viscosity profile. If we substitute equation (7) in

(5), the expression for the rate of flow becomes:

The equilibrium condition for steady flow leads to the same differential

equation as before (2).

However, the viscosity is no longer a constant but depends on the rate

of shear or velocity gradient (dv/dr),

If we set s = -1/2 Pr and g = dv/dr, we can write

Solving for g

The rate of flow through the tube is given by

integrating by parts gives

Setting the boundary condition v(R) = 0, the first term will vanish

Changing the variable r = 	 2s/p, dr = 2s/P 	 ds yields to

Q can now be represented by (9)

12

Differentiating both sides with respect to S

Solving for F(S)



And by (ll) we find

By integrating F(δ) we can find the velocity profile v(r).

The viscosity profile is given by:

Fig. V. shows the distribution of the velocity gradient over the cross-.

section of the tube which turns to be very close to the linear distri-

bution found for the case of a Newtonian liquid. Hence the velocity

profile will again be close to a parabola, and will differ slightly

from it in a very narrow region near the center of the tube.

Fig. VI. shows the viscosity profile, which closely resembles the

apparent viscosity curve plotted above (broken line) for the equivalent

shear values (P R/2). The maximum viscosity occurs at the center, and

is 1.424 times bigger then the asymptotic value μ∞



	 Fig. VThe velocity gradient



	 Fig. VIThe viscosity distribution



TABLE NO. 2 (For Fig. V, VI)

s(dynes/cm2)
μapp/μ∞ -μ∞ dv/dr (Poises/sec)

μ(s)/μ∞

0 1.424 0.75 1.424

1 1.346 1.565 1.33

2 1.30 4.16 1.28

5 1.227 6.85 1,20

8 1.19 15.9 1.17

18 1.135 44.5 1.13

48 1.085 93.3 1.079

98 1.060 1.05

200 1.0425 1.028

2000 1.020 1.012

1.000 1.000

16

Computed by the formulas:
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2. The Hematocrit Profile.

In computing the hematocrit profile over the tubes cross—sectioned

area, the following considerations were taken into account,

a) The equilibrium condition between the accumulating force and

the scattering "diffusion force".

b) The conservation of the cells' number in a fixed volume.

c) The relation between the viscosity and the hematocrit (near

the periphery).

a) The accumulating force which tends to move each particle toward

the center of the tube depends upon the rate of shear in the neighbor-

hood of the particle. As previously discussed me can for a first

approximation assume linearity between this force and the velocity

gradient dv/dr. The random collisions of the cells are too complicated

to be accurately described especially in such a dense medium as the

blood. For simplicity, we assume the resultant average force due to

collisions to be proportional to the density gradient d0/dr.

In a steady flow, the accumulating force will be equal to the

spreading one. This relationship is represented by

The hematocrit will tend to adopt the profile of the velocity.

Remembering that the velocity distribution is close to a parabola, 0 (r)

will have the form



The parameters A and 11 are functions of R andP, and will be computed

using the following arguments.

b) At a steady flow the number of cells entering the tube in a

second must be equal to the number of cells leaving the tube in the

same amount of time. At the output of the tube the total volume of

fluid leaving the tube in a unit of time is Q. The volume occupied

by cells will therefore be O oQ,

where 0o is the average hematocrit of the blood. The volume of the

cells which pass through any cross-section of the tube is equal to:

Eauating (17) and (18)

Substituting 0r = A - Br2 and v = C(R2 r2 )

We get the following relationship between A and B

Substituting in (16) we get

At the distance r = R 1/√3 the hematocrit does not change.

c) The effect of concentration on viscosity has been investigated

by many workers. Einstein
6 
tried to estimate moleculardimensions by

gas viscosity. He obtained the following formula:

18



where μ is the viscosity of the suspension,

μ. = the viscosity of the pure medium containing the particles,

0 = the volume ratio of the particles to the total fluid.

The above formula derivedfor a very dilute system, also agrees with

Jeffery's method of finding the viscosity by computing the amount of

energy dissipation associated with each particle.

J. Happel7 , using hydrodynamic considerations, evolved the

formula:

This formula is in a good agreement with data on suspensions of small

spherical particles up to concentrations of 40 to SO per cent by

volume of solids. Above this concentration, particles are no longer

free to move with respect to each other, and friction due to inter-

particle contacts will result in a higher viscosity than that which

was predicted from purely hydrodynamic considerations.

In Fig. VII equation (23) is plotted together with an experimental

blood viscosity curve deduced from Haynes
2 
data. Fig. VII shows that

as the concentration approaches a certain limit, the viscosity goes

up to infinity. From geometrical reasons this limit will be 0 = 0.53

for spheres, and 0.785 for circular discs.

The average hematocrit of normal human blood is 0 = 0.4. From

the graph of Fig. VII it can be seen that below this value the viscosity-

density curve is quite linear, while above 0 = 0.4. it resembles an ex-

ponential curve. A small increase in hematocrit will result in a

15'



Fig VIIViscosity - Hematocrit curves



TABLE NO. 3 (For Fig. VII)

Viscosity Versus Hematocrit

Suspension of spheres 	 Human blood

0% μ/μ. 0% μ/μo

0 1.000 0 1.00

5 1.281 9 1.31

10 1.605 20 1.81

15 1.997 29 2.I3

20 2.486 43 3.55

25 3.115 65. 9.45

30 3.942

35 5.062

40 6.621

45 8.861

5o 12.200

The data for suspension of spheres was obtained by Rappel's formula

The data for human blood was derived from Haynes2 data (Fig. I).

21



large increase in viscosity. In order to make use of the linear

relationship between viscosity and hematocrit, we shall apply it only

at the periphery of the tube, where the hematocrit drops below the

average, and therefore it is in the linear range. The linear represent-

ation is also justified by the fact that the maximum viscosity change

is 30% (Fig. VI). This is caused by hematocrit variations of a maximum

of 12%. The latter are still in the linear range. The, linear approxi-

mation of the viscosity-hematocrit curve, in the range between 0 = 0.4

and 0 = 0,3, is expressed in the formula,

Near the point 0 = 0o = 	 0.4 the straight line can be approximated

again by neglecting the constant term 0.107.

The error involved is no greater than 3%. Instead of using the para-

meter NI, the viscosity of pure plasma, we shall use μ(0), the viscos-

ity when the blood is at rest. Assuming that at rest the cells are

uniformly distributed and therefore 0 = 00 , we have the condition

Substituting in (25)

where f(R,P) is the viscosity at the periphery, and can be found by

substituting r = R into the viscosity distribution function (1)4).

22



In order to find the parameter B(R,P) we substitute r = R in (21)

and equate with (26).

Substituting BR2/3 in (21) gives the final density distribution function

Fig. VIII shows the distribution for several values of the applied

wall stress, S = PR/2.



	 Fig. VIIIThe Hematocrit	 Distribution



3. The Effect of Cell Distribution on the Electrical Conductance.

Before studying the change of blood conductance for the particular

cell distribution of flowing blood, the behavior of the conductance for

different types of distribution will, be discussed on a qualitative

basis.

a) Blood at rest. It will be proved that the conductivity of

blood has a stationary value for a uniform distribution of cells.

Then the medium is a better conductor then the cells, of all the pos-

sible configurations, a uniform distribution will result in the high-

est resistivity, which means that any disturbance in the uniform den

sity of the cells will result in an impedance drop.

Let us consider a tube 1 meter long, with a cross sectional

radius R. The specific conductivity (g) is a function of the distance

(r) from the center.

g(r) in mhos
/meter

The total longitudinal conductance of the tube will be

The specific conductivity g is a function of the density of the cells,

The density 0 is again a function of r, and if the total number of

cells in the tube does not change, the average hematocrit 0 0 is constant.



The problem before us is to find that density function 0(r) will

minimize the conductance.

subject to the constraint

To solve this problem, we consider the integral

where

λ is a parameter to be determined.

Since the integral I1 must remain constant, the integral I0 will

be stationary only if G is stationary. The Euler differential

equation that satisfies the above conditions is: 8

Fo does not include the derivative of 0 with respect to r, and

therefore

and equation (33) becomes

Therefore 0 = constant = 00 for any function f(0).

b) Flowing blood. 'When the fluid is moving through the tube the

condition which is imposed on the cells is not that the total number

of cells in a certain area of the tube remains unchanged but that

26



the number of cells passing through any Cross section of the tube per

unit time is constant or,

0(r) is now subject to another constraint,

Fo becomes

and Euler equation becomes

f'(0) is always negative since an increase in the number of cells must

result in less conductivity of the fluid. However, v(r) reaches zero at

r = R, and in order for f'(0) to reach zero, 0 must approach infinity at

this point. Consequently the function (0)r which will minimize the con-

ductance is a function having a singularity at the periphery, or0(R)→∞.

But 0 can never exceed the value of 1. Therefore, the derived

distribution function cannot exist. This result is explained by the

fact that the net conductance is minimized when the total number of cells

in the cross sectional area is maximal. This condition will be attained

when the majority of the cells are concentrated at the periphery where

the velocity- is least.

The reason is that the number of cells entering and leaving the

tube must be equal, and in the above state the majority of cells in-

volved in the exchange are Moving at low velocities. As a result the

.27



required number of cells in the cross-section must be greater in order

to compensate for the lower velocities. In contrast, when the majority

of the cells accumulates in the axial stream where the velocity is high,

the required exchange of cells is accomplished with lower total cross

sectional concentrations. In other words, the average hematocrit in the

tube is lower than the average hematocrit in the blood reservoir, and

the conductance is greater.

The reduction of the average hematocrit of flowing blood can be

quantitatively shown for the case where the velocity and the hematocrit

both have a parabolic profile. If according to (3)

then according to (21) condition (19) is satisfied by

and the average hematocrit in the tube is

The change in the average hematocrit is therefore negative

and using (27) the amount of reduction is

Maxwell's formula and its limitations. In the preceeding discussion the

relationship between the conductivity and the hematocrit f (0) I remained

undetermined. The problem of calculating the conductivity of a hetero-

genous system was first solved by S. C. Maxwell9 using the following

argument,

28



Consider a sphere having a specific conductivity g2 being sur-

rounded by a medium with a specific conductivity g 1. If a uniform

electric field (E0 ) is applied to this model, the field distribution

will not be uniform because of the non-uniformity of the conductivity.

The boundary conditions which the actual field must satisfy are:

1) The electric field must be uniform at infinity

2) The potential must be continuous at the surface of the sphere

V1(a) = V2(a)

3) The normal component of the current density (j) must be con-

tinuous at the surface of the sphere.

g1δV1/δrr = g2δV2/δr (r = a)

Where V1 and V2 are the potentials inside and outside the sphere

respectively, and a is the radius of the sphere. These boundary con.

ditions are fulfilled if the field outside the sphere is considered as

being produced by the applied field (E0), and by a dipole placed in

the center of the sphere having the intensity

and when the field inside the sphere is uniform and equal to

The resultant potential at any point outside the sphere and in a

distance r from its center is given by

29

where θ is the angle between the applied field and the radius vector r.



If n spheres are placed in a unit volume of the medium, the potential

at a great distance from a certain element of volume can be considered

as being produced by n dipoles all placed at its center, and will there-

fore be equal to:

But a3 is the volume ratio of the spheres to the total volume a 3n = 0.

Equation (44) can be written as

An equivalent homogenous sphere which can replace the volume element

and will result in the same field must have a specific conductivity

g which satisfies the equation:

The equivalent conductivity g of the system is therefore

In human blood the conductance of the red cells (g 2 ) is negligable with

respect to the conductivity of the plasma (g 1), and equation (47)

becomes

It is important to mention the basic assumptions this argument was based

upon.

1) 

	

The system was constituted of homogenous perfect spheres, and there

fore the volume ratio (0) was the only parameter, excluding the

effect of orientation which takes place when the solids are not

perfect spheres.
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2) The distances between the spheres were considered big enough so that

the field near one of them was not effected by its neighbors. The

boundary conditions which were imposed on the electric field were

sufficient only under this assumption. The continuity of the elec-

tric current at the surface of separation is fulfilled by super-

position of the applied uniform field and a dipole at the center of

that sphere, but will no longer hold when dipoles are placed in the

environment. If the effect of close spheres has to be taken into

account, a forth boundary condition should be fulfilled; the current

normal to the plane of symmetry between any two spheres must vanish.

The conductance calculation. Applying Maxwell's formula (48) for con-

ductivity of a dispersed system of non-conductive spheres,

where (g) is the equivalent specific conductivity of the system, and

(g1) is the specific conductivity of the conducting medium (plasma).

The average conductance of the tube is:

The density distribution function 0(r) is given by (27)
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Substituting (so) in (49)



Substituting in (51):

From the last formula the average conductance (Go ) can be plotted as

a function of the applied wall stress S = PR/2. The value μ(s)/μ(o) can

be found according to Fig. VI. When the blood is at rest μ(s)/μ(o) = 1

and at this paint,

as is expected.

In Fig. IX the relative change of G o will be plotted instead of G o

Fig. IX indicates a maximum change of 6.58% in the average conductance,

at infinite rate of flow. The graph also indicates a clear saturation

which occurs above S = 20 [dynes/cm 2].



	 Fig. IX

Change in electrical conductance



TABLE NO. 4 (For Fig. IX)

Relative Change in Conductance Versus Applied Wall  Stress

S dynes
—;77— 	

Go

0 0

1 1$95

5 3.40

18 4.49

100 5.72

6.58

Obtained by formula (52) and (53)

314.

for 0a: 40%



CHAP= II

THE EFFECT OF CELL'S ORIENTATION ON THE CONDUCTIVITY OF BLOOD.

The Hydrodynamic Problem.

In the preceeding chapter (Fig. III) it was shown that a spherical

solid placed in a viscous fluid is subjected to translatoric pressure

acting parallel to the viscosity gradient, and to a couple acting in

the direction of the vorticity lines. * The direction of the velocity

gradient for a fluid moving in a tube is radial while the vorticity

lines are azimuthal and therefore spherical solids will tend to accumu-

late toward the center of the tube and rotate around an azimuthal axis.

Dealing with non-spherical solids such as ellipsoidal spheroids

the question arises whether these are the only forces acting on the

solids, or whether other forces exist which tend to arrange the solids

in a particular orientation with respect to the vorticity lines.

This problem was first presented by G. B. Jeffery (1922) who by

stating the hypothesis of minimum dissipation of energy came to the

conclusion that a second couple is operating on the solids forcing

them to line up in a position which causes the minimum energy dis-

sipation. In the case of ellipsoidal spheroids this position is ob-

tained when the axis of symmetry is parallel to the vorticity lines.

*The vorticity lines are the lines perpendicular to the velocity and
to the velocity gradient at any point. They are parallel therefore
to the vector V x grad→ V.
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Many workers tried to observe this phenomena by constructing

different types of models but the results were inconclusive. Saffman 10

examined ellipsoidal spheroids between two rotating concentric cylin-

ders and observed a preferred orientation after more than six minutes

of rotation. Again examining Jeffery's equations, he came to the con-

clusion that the effect described by Jeffery is too small to account

for this phenomena, and referred it to the inertia terms which Jeffery

neglected. As a conclusion the orientation of the ellipsoid is mainly

dependent on its initial position and a preferred orientation is

attained only after a long time.

At this point it is important to mention another factor which was

not considered by Saffman and which concerns a multi-particle system

such as human blood. In such a system particles are never in complete

equilibrium because of repeated random collisions between them which

results in a continuous change of momentum. But some of the particles

are more stable than the others in the sense that more force is required

to change their position. All the particles are forced to rotate around

the vorticity lines, but those which are able to do so around the axis

of higher moment of intertia are less effected by random collisions, and

will continue their rotation about this axis undistrubed. The moment of

inertia of a circular disc with respect to its axis of symmetry is two

times greater than the moment of inertia with respect to an axis coinciding

with one of its diameters. As a result more cells will be found with their

axis of symmetry lying in the direction of the vorticity lines than in any

other direction.
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Experimental evidence. An experiment was set which as far as blood

is concerned proves three points:

1) Red blood cells do prefer a certain orientation when the blood

is moving.

2) The preferred orientation is such that the axis of symmetry

coincides with the vorticity lines.

3) The preferred orientation is attained the moment the blood

starts to move,

Citrated human blood was driven by a dual-cyclic pump through a flat

walled chamber 1 mm. in height. The chamber was constructed of trans-

parent plastic and the volume was fixed. A narrow light source threw

light on one of the chamber's walls, while a photo-transistor was

attached to each side of the chamber in order to detect the intensity

of the reflected and transmitted light. The electric signals from the

photo-transistors were recorded simultaneously with a signal from a

flowmeter indicating the velocity pulse.

The results are shown in Fig X. The light transmitted through

the blood has the same shape as the velocity pulse which means that

more light is transmitted when the blood is moving than when the blood

is at rest. However, the light reflected from the blood has exactly

the opposite shape to the transmitted one which means that more light

is reflected when the blood is at rest than when the blood is moving.

Fig. XI presents a magnified model which will help to explain the

observed phenomena. The upper portion of Fig. XI represents the blood

at rest. The red blood cells are in random orientation, and a certain



WHOLE BLOOD * FLAT-WALLED CHAMBER

Fig. X
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Fig. XI Orientation of Blood Cells in Flat Walled Chamber



amount of light energy is absorbed in the cells which have a higher

optical density than the plasma, another part of the energy is reflec-

ted back from the cells, and a third part is transmitted through the

plasma to the other side of the chamber. The lower picture represents

4 moving blood; the red cells are arranged with their narrow side

against the light source, a smaller number of light beams has to pass

through the cells and therefore the transmitted light is increased

and the reflected and absorbed light is decreased.

In order to be sure that the light variations are only due to

orientation of the cells and are not caused by any mechanical vibra-

tions or wiping effect, the same experiment was done with hemolyzed

blood where the red cells lose their rigid structure and their content

is mixed with the plasma. The transmitted light did not change as

shown in Fig. XII. (The spikes which occurred on the transmitted

light tracing are due to sediment passing in front of the photo

transistor.)

The blood velocity in the flat-walled chamber is zero at the

walls and maximal in the middle of the chamber. The vorticity lines

are therefore horizontal lines perpendicular to the direction of flow.

When the blood is moving the cells are so oriented that their axis of

symmetry is parallel to the vorticity lines as is shown in Fig. XI.

In analogy, the blood cells in a circular tube will set their axis

of symmetry in an azimuthal direction.(Fig. XIII)

	

Fig. X shows a complete synchronization between the light pulse

and the velocity pulse (1 cyc/sec) which indicates that the orientation



ERMOLYZED BLOOD * FLAT-WALLED CHAMBER

Fig. XII



Fig. XIII 	 Orientation of blood cells

in a circular tube



process occurs together with the blood flaw. Consequently this

phenomena is essentially different from that observed by Saffman

which required a time constant of more than six minutes.

The Resultant Conductivity.

The change of conductivity as a result of change in the angle

between the cells and the applied electrical field is quite apparent.

When the cells line up with their narrow edges facing the electrical

field the total current flowing between the cells is greater than that

flowing when their surfaces are facing the field.

The exact function of conductivity versus angular positions of

the cells can be worked out by several methods. The direct method

which was carried out by Hugo Fricke11 involves exact solution of

Laplace's equation for a model of a single ellipsoidal spheroid between

two parallel infinite plates. Having the electric field at any point

in space, the ratio between the total current and applied voltage can

be calculated. Unfortunately, Laplace's equation can be solved only

for those particular cases where the applied electrical field is par-

allel to one of the three principal axes of the ellipsoid. Furthermore,

assuming the above boundary conditions, namely that the distance be-

tween the cells is much larger than their diameter, is far from repre-

senting blood where the diameter of the cell may occupy up to 80% of

the total distance between two neighboring cells.

Better results might be obtained by an indirect method, first put

forth by Lord Rayleigh12 . Since the current density distribution that
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satisfies Laplace's equation is the one which results in minimum heat

dissipation (or maximum total resistance for a given voltage) the

resistance is stationary for this distribution of current density.

Near a stationary position the change of resistance due to a deviation

of the density current function will be very small. This fact permits

us to calculate the resistance by assuming any arbitrary current den-

sity function which satisfies the boundary conditions.

The resistance computed through this function is fairly close to

the actual one, even if the function is only close to satisfying

Laplace's equation. However, the current density function which ful-

fills those boundary conditions is quite complicated and the calculation

of resistance can hardly be accomplished in terms of elementary functions.

In order to approach actual boundary conditions, the following

experimental method was carried out.

A non-conductive circular disc was placed in a cubic-shaped bath

(Figure XIV) of conductive liquid. A uniform applied electrical field

was produced by aluminum plates covering two opposite walls of the cubic

container, while the other walls were insulators. The boundary con-

ditions imposed by the non-conductive walls are identical to those

produced by many particles uniformly distributed around the observed

cell. The ratio between the disc diameter and the side of the cube was

•725 and the ratio of the width of the disc to its diameter was 0.24.

The electrical impedance between the plates was measured as a function

of the angle between the applied electrical field and the axis of



Fig: XIV 	 Model of Blood Cell



symmetry of the disc. The ratio of the conductance at an angle

to the maximal conductance at σ 	 = π/2 is plotted on figure XV.

The resultant curve can closely be represented by the formula

where Δg is the maximal relative change in conductance

In order to compute the average conductance for a random orien-

tation of the cells a uniform probability density function P is

assumed, i, e. the probability of finding the end of vector in

a certain element of area dS is directly proportional to the magnitude

of dS,

where a is a unit vector coinciding with the axis of symmetry, and

dS is an element of area of a unit sphere around the center of the disc

as shown in figure XVI.

In the spherical coordinates φ and θ

Substituting (57) into (56) gives the probability density function in

the φ; θ plane

In the φ; θ plane P is no longer uniform but sinusoidal.

The average conductance is given by:
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Fig. XV - Conductance vs. Angular position



TABLE NO. 5 (For Fig. XV)

Conductance Versus Angular Position of a Cell.

θ (degrees) G (m mhos) G/Gmax% 100 - 17,3 (co2sθ)

0 0.666 82.7 82.7

15 0.675 83.8 83.9

30 0.698 86.8 87.0

15 0.738 91.5 91.35

60 0.769 95.5 95.68

75 0.797 99.0 98.82

90 0.805 100.0 100.0

14.7



Fig. XVII 	 System of Coordinates



substituting g(θ) from equation (54)

Substituting Δg from equation (55) gives

gmax is also the average conductivity of blood in the extreme case

of infinite rate of shear when all the blood cells present a minimal

resistance to current flow, as described in Fig. XIII. However, Gav

is the average conductivity of blood at rest, when the cells have a

random distribution. Hence the maximum change in conductivity of

flowing blood due only to orientation is one third of the maximum

change of conductivity which was obtained in the model of Fig. XIV.

The graph of Fig. XV indicates a maximum relative change of

Δg = 17,3%

We might therefore expect a maximum relative increase of 5,46%

in conductivity of moving blood, with respect to its conductivity at

rest. If this rate of change is added to the one computed for axial

accumulation, a total maximum change of about 12% is expected which

is close to the experimental result of about 10% in a steady flow.
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Of course, the extreme case of complete order can never be

achieved because of mutual collisions and local turbulences -which

occur at higher rates of flow and which upset the equilibrium position

achieved in a steady laminar flow. Nevertheless, in the laminar range

of flow the number of cells which obey the effects of axial accumu-

lation and orientation, increases monotonically with the rate of flow,

and hence the electrical impedance method can be used for detection

of blood flow as is described in the following chapter.
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CHAPTER III

EXPERAMENTAL METHODS AND DATA.

1. The Hydraulic System.

In order to evaluate and analyze the resistance changes in blood

resulting from periodic velocity changes, a circulatory model was

utilized incorporating the conditions of a fixed volume of blood in the

segment in which the electrical impedance measurements were made.

A dual-cycle pump with a constant frequency was used to propel

citrated human blood through a system of polyethylene tubes, schema-

ticaly described in Fig. XVII. The impedance measurements were made

in segments of tubing of varying diameters, ranging from 0.76 mm to

16 mm. The flow rate through the segment was varied by the use of

proximally located tunnel clamps. A shunt was used in conjunction

with the smaller tube segments. An electrical impedance flow meter

was included in the circuit to indicate the pattern of blood flow.

The volume flow per unit time was determined by collecting the blood

at the outflow in a calibrated vessel.

The flowmeter, Fig. XVIII, consist of two glass tubes of 16 mm

diameter, interconnected by two polyethylene tubes, A and B. The glass

tube through which the blood flowed was divided into two segments by a

rubber stopper having a narrow opening in it s center. The other glass

tube was divided into two segments by a flexible membrane with a metal

contact centrally located on the membrane. This contact was free to

move towards a metal screen placed near the membrane.



Fig. XVII The Hydraulic System
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FIG. XVIII

FLOWMFTER DIAGRAM



Because of the difference in diameters the velocity proximal to

the rubber stopper is less than the velocity distal to the narrow

opening. Therefore, the pressure in tube A is higher than the pres-

sure in tube B. The pressure difference, PA - PB depends on the velo-

city of the stream and is reflected by a decrease in the distance bet-

ween the membrane and the screen. The impedance between the metal con-

tact on the membrane and the screen will therefore decrease as the

velocity increases and will unbalance an impedance bridge. The elec-

trical signal coming from this bridge is an indication of the velocity

pattern of the stream.

2. The Impedance Measurements.

a) Arrangement of Electrodes. In order to eliminate resistance changes

due to a "wiping away" effect of the red blood cells from the elec-

trodes, tetrapolar electrodes were used in conjunction with a bridge

circuit resembling that of a Kelvin double bridge (see appendix I).

In all the measurements the longitudinal resistance was measured by

setting the electrodes along the tube in such a way that the two extreme

electrodes supplied the current and the other two electrodes detected

the voltage drop.

In the wide segments four hypodermic needles were inserted in the

tube and used as electrodes. In the narrow tubes, cylindrical con-

nectors were used to avoid interfering with blood flow (Fig. XIX).

The distance between the current electrodes should be long enough to

provide a uniform field in the' middle of the segment, and the distance

between the voltage electrodes can be adjusted so that the transfer



Fig. XIX 	 	 	 ELECTRODES

	 	 	 	 	 ARRANGEMENTS
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impedance will be within the range of measurements of the bridge.

b) The Bridge Circuit. All the impedance measurements were carried

out using a transistorized device originally designed by Bagno and

Liebman13, for impedance measurements of living tissues.

The schematic of the circuit is sham in Fig. XX, Transistor Q 1

in conjunction with T o constitutes an oscillator that generates ap-

proximately 50 kc. The output of To is fed to emitter follower Q2

which isolates the oscillator from the rest of the circuit. Trans-

former T1 supplies a constant voltage to the bridge circuit, con-

sisting of R1, R2 , R
3
 the 25,000 ohm potentiometer and the blood

segment. A bridge ratio of 40:1 provides a constant current in the

blood segment independent of it s resistance. The voltage drop across

El and E2 is counteracted by the voltage from T 2 to form a null circuit.

The secondary of step-down transformer T3 matches the input impedance

of a grounded-emitter stage Q3 while the primary presents a high im-

pedance so that practically no current flows between points E 1 and

E2 . Common-emitter amplifier Q3 amplifies the unbalanced potential

of the bridge. Impedance matching transformer T 4 couples the amplifier

to a phase detector. Variable capacitor C 1 in conjunction with the

core of To, adjusts the phase of the unbalanced bridge signal to a

reference coming directly from the generator. Both signals feed the

phase-sensitive detector (see appendix II). The output signal from

the phase detector is directly proportional to the rhythmic changes

in blood conductivity which unbalance the bridge.



Fig. XX The Electrical Circuit of the Bridge

(After Bagno and Liebman)
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The above circuit provides a signal to noise ratio of 40:1 for

a resistance change of 0.1%, and has a sensitivity of 50 mv per

resistance change of 1%. The instrument can be easily balanced by

the 25 k potentiometer and is extremely linear.

3. Experimental Data.

The phenomena which account for the conductance changes of blood

with changes in its velocity occurred with such rapidity that the im-

pedance pulse was correlated with the velocity pulse (Fig. XXI).

This was true in all the tubes employed.

When plasma or hemolyzed blood was circulated through the system

the velocity pulse had no effect on impedance as shown in the lower

portion of Fig. XXI.

The amplitude of the impedance pulse was directly proportional

to the velocity in the entire range below saturation level. Above

this level a further increase in velocity resulted in no significant

change in impedance. Figures XXII, XXIII, XXIV demonstrate a gradual

increase in the impedance pulses as a result of gradual increase 6f

velocity. Fig. XXIV indicates that above saturation the wave form

changes in this tube but the amplitude remains the same. The wave

form change during saturation is attributed to momentary turbulance

which upsets the laminar flow at the peak of the pulse.

In all of the tubes, except the largest, in which a sufficiently

high velocity could not be produced, saturation occurred at a velocity

of approximately 5 cm/sec (Fig. XXV).
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Fig XXI. Impedance and Velocity Pulse

for Whole Blood and Plasma
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Fig. XXII 	 Fig. XXIII 

Fig. XXIV

Gradual Increase of Impedance Pulses



In Fig. XXVI the velocity is on a semi - log scale which gives

a somewhat clearer picture of the variations at very low velocities.

When the impedance measurement was made after a relatively long

period of steady flow, saturation occurred in the same range of

velocity. However, the ultimate impedance change went as high as

10% (Fig. XXVIII) in contrast to a MAXIMUM change of approximately

2% in pulsatile flow. The difference in these results is to be

attributed to the fact that a certain period of time is required for

the blood cells to respond to the accumulation and orientation forces.

The relative number of cells that succeed in reacting to these forces

therefore depends on the time interval that the blood flows at a

specific velocity.

In figures XXV, XXVI, III the abscissa gives the absolute

value of the relative change of impedance. The actual sign of

ΔR/R is always negative, i.e. the impedance always decreases with

velocity.
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Fig. XXV
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Fig. XXVI

Resistance Changes for Pulsatile Flow



FIG. XXVII Resistance Change for Steady Flow
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CONCLUSIONS

Utilization of the velocity component of blood impedance

offers an extremely sensitive method for detecting changes in

blood flow, at least on a qualitative level, in anatomical areas

where volume changes do not occur, and especially under condi-

tions of very low flow rates.

The instrumentation methods described in this paper provide

a sensitivity of 1.5 mv per 10
-3 

c.c./sec of pulsatile flow,

with a noise ration of 40:1. The electrical impedance method

is the only method known to me by which we can indicate such

low rates of blood flow occurring in several capillary beds of

the body.



APPENDIX I

The Tetrapolar Method.

The tetrapolar method is an indirect method of impedance

measurement which was developed in order to eliminate the effect of

contact resistance. Instead of an entrance impedance between two

terminals, a voltage transfer ratio between four terminals is measured,

and it is proportional to the actual impedance.

The equivalent circuit of the system may be described as follows:
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where: U1 is a constant voltage source

Rg1 is internal resistance of the generator

r1is contact resistance of terminals (1) and (2)

r 2 is contact resistance of terminals (3) and (4)

R is the measured resistance

K is potentiometer ratio

Rm is meter resistance

If the entrance resistance is measured directly between terminals

(I) and (2), the result will be

Rin = R r1

the relative change in Rin due only to changes in the contacts

resistance r1 will be:



The error made by this method depends therefore on the ratio

between the change in contact resistance to the measured one, two

parameters which are out of control.

By detecting the voltage u 2 we gain two important factors:

a) the voltage drop across r1 is not included in the measurement,

b) by increasing Rg1 we can make i1 constant, independent of r1.

The voltage drop across r2 which at first glance seems to affect the

measurement of u2, can be also eliminated by making Rm large enough.

The voltage transfer ratio u2/u1 is given by

If we make Rg1>> r1 + Rm >> r2

u2/u1 ≈ R*K/Rg1 The voltage ratio becomes directly proportioned to R.

In the Bridge Circuit of Fig. XX the first condition is accomplished

by a bridge ratio of 40:1. The second condition is fulfilled by a toms

ratio of 8:1 in transformer T 3 which results in an impedance ratio of

64:1 between the primary and the secondary.



APPENDIX II

The Phase Detector.

The phase sensitive detector was developed in order to overcome

several noise problems involved in Radar systems. It is schematically

described on the following diagram.

A regular Gretz bridge is driven by a constant sinusoidal voltage u1,

through a D-C ameter, M. A properly biased transistor is connected to

the output of the bridge, while a sinusoidal voltage u 2 drives its base.

Since the current flowing through the meter M is alternating, and M is

a D-C meter, it will only respond when asymetry occurs between the

positive and the negative portions of the current. No D-C current will

therefore be detected if U 2 is zero. If u2 has the same frequency and

phase as u1, the current at the negative portion will be increased

while the positive will be diminished, and the meter will show a negative

deflection. The contrary will happen when u2 is 180° out of phase with

respect to ul, a positive reading will be indicated when u 1 and u2 are

900 out of phase, both positive and negative half waves will have the

same shape and amplitudes and again no D-C component will be detected.

A mathematical analysis of this circuit can be carried out assuming

linear relations:

I = ul G

6



where G is the conductance of the transistor. G depends upon the

instantaneous voltage of the base:

G = Go + A u2

therefore: I = u1(Go + A u2)

If the meter N has a long time constant, the average current is detected:

where

The meter will only respond to signals having the same frequency as u 1,

and the response will be proportional to the signal amplitude V 2 and to

the cosine of the angle between the signal and u 1.

The imaginary component of the measured impedance will therefore not

be detected and any noise potential not coming from the oscillator, will

not affect the measurement.

68.



69

REFERENCES.

1. 	 Kümin, K., 1949, Inaug. Dies.; Freiburg i.d. Schweiz.

2. 	 Haynes, R. H., and Burton A. C., Proceedings of the First National

Biophysics Conference, New Haven, Yale University Press,

1959, p. 452.

3. Rivlin, R. S., Proceedings of the Royal Society, Vol. 193 A, 1948,

p. 260,

4. Jeffery, G. B., Proceedings of the Royal Society, Vol. 102 A, 1922,

p. 161.

5. 	 Taylor, H. G., Physics in Medicine and Biology, Vol. 3 January 1959,

p. 273.

6. 	 Einstein, A., Ann, Physik, Vol. 19, 1906, p. 289.

7. 	 Happel, J., Transactions of The New York Academy of Sciences, Vol. 20

March 1958, p. 404.

8. Pipes, L. A., Applied Mathematics for Engineers and Physicists,

p. 326.

9. 	 Maxwell, J. C., A Treatise on Electricity and Magnetism, Vol. 1,

1892, p. 440.

10. 	 Saffman, P. G., Journal of Fluid Mechanics, Vol. 1, 1956, p. 540.

11. 	 Fricke, H., The Physical Review, Vol. 24, November 1924, p. 575.

12. 	 Courant, R., and Hilbert, D., Methods of Mathematical Physics,

Vol. 1, p. 174.

13. Bagno, S., and Liebman, F. M., Electronics, April 10, 1959.


	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Approval Page
	Abstract
	Acknowledgement
	Preface (1 of 2)
	Preface (2 of 2)

	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: The Effect of Axial Accumulation of Cells on the Conductivity of Blood
	Chapter 2: The Effect of Cell's Orientation on the Conductivity of Blood
	Chapter 3: Experimental Methods and Data
	Appendix 1: The Tetrapolar Method
	Appendix 2: THe Phase Detector
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

	List of Tables



