Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

HEAT TRANSFER BY NATURAL CONVECTION IN HORIZONTAL FLUID LAYERS

A STATISTICAL CORRELATION OF EXPERIMENTAL DATA

BY JOHN L. O'TOOLE

A THESIS SUBMITTED TO THE FACULTY OF THE DEPARTMENT OF CHEMICAL ENGINEERING OF NEWARK COLLEGE OF ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CHEMICAL ENGINEERING.

APPROVAL OF THESIS

For Department of Chemical Engineering Newark College of Engineering

FACULTY COMMITTEE

APPROVED

Newark, N. J. June, 1959

37087

Library Newark College of Engineering

SUMMARY

THE RATE OF HEAT TRANSFER DUE TO NATURAL CONVECTION IN CONFINED, HORIZONTAL, FLUID LAYERS CAN BE EXPRESSED BY EQUATIONS INVOLVING THE DIMENSIONLESS PARAMETERS NUSSELT No., RAYLEIGH No., AND PRANDTL No., WHERE RAYLEIGH NO. EQUALS THE PRODUCT OF GRASHOF AND PRANDTL NOS.

STATISTICAL CORRELATION BY STEPWISE MULTIPLE REGRESSION OF EXPERIMENTAL DATA OBTAINED FROM FOUR DIFFERENT INVESTIGATORS, ON BOTH GASES AND LIQUIDS, YIELDS THREE SEPARATE EQUATIONS CORRESPONDING TO THREE DISTINCT REGIMES OF CONVECTION. THE TOTAL RANGE SPANNED BY THE DATA IS FROM THE ONSET OF CONVECTION TO RAYLEIGH = 10^9 .

THE EQUATIONS ARE

REGIME	Ra Range		E	QUATION	Sto of E	STIMATE
INITTAL	1600≈3000	Nu	3	0.00238(RA)	÷	4%
LAMINAR	3000 - 10 ⁵	Nu	and the second s	0.221 (RA) 256	4	7%
TURBULENT	10 ⁵ -10 ⁹	Nu	21 .	0.0891(RA).316 (PR).0853	t	12%

THE STANDARD ERROR OF ESTIMATE, WHICH IS THE PROBABLE ERROR IN THE PREDICTION OF NU FROM A REGRESSION EQUATION, IS OBTAINED FOR EACH REGIME. A VERY HIGH DEGREE OF ACCURACY WAS OBTAINED FOR ALL CORRELATIONS.

TABLE OF CONTENTS

SUBJECT	PAGE
INTRODUCTION	
THEORY	3
Experimental Data	8
THE CORRELATION	11
TABLE I - Sources of the Data	8
TABLE II # FEATURES OF THE APPARATUS USED BY	
Sources' of the Data	17
TABLE III @ EXPERIMENTAL DATA	18⊜26
TABLE IV - SUMMARY OF REGRESSION ANALYSIS	13
TABLE V - RESULTS OF COMPUTER ANALYSIS	27
TABLE VI - COEFFICIENTS OF CORRELATION AND	
DETERMINATION	28
FIG. 1 - PRANDTL NO. OF AIR VS TEMPERATURE	Between 28 & 29
FIG. 2 - THERMAL CONDUCTIVITY OF AIR VS TEMPERATURE	jë.
Fig. 3 - Nusselt No. vs Rayleigh No.: Experimental	
Data	
FIG. 4 - NUSSELT NO. VS RAYLEIGH NO.: REGRESSION	
EQUATIONS	
Fig. 5 - Nusselt No./(Prandtl No.). ⁰⁸⁵³ vs	
Rayleigh No.: Turbulent Regime	
Appendix I - Dimensional Analysis	29
APPENDIX 11- DERIVATION OF THE COEFFICIENT OF	
THERMAL EXPANSION OF AIR	31

TABLE OF CONTENTS (CONT "D)

SUBS	DECT		PAGE
Appendix		- Correction of the Data of	
		MULL AND RETHER	33
Appendix	10	- STEPWISE LINEAR MULTIPLE REGRESSION	35
TABLE OF	Ѕүмв	OLS	39
BIBLIOGRA	PHY	and References	40

HEAT TRANSFER BY NATURAL CONVECTION

INTRODUCTION

HEAT TRANSFER BY NATURAL CONVECTION IN CONFINED, HORIZONTAL, FLUID LAYERS WAS FIRST INVESTIGATED FORMALLY BY BENARD (1)* IN 1901 AND ANALYZED BY LORD RAYLEIGH IN 1916 (2). SINCE THAT TIME A CONSIDERABLE AMOUNT OF WORK HAS APPEARED IN THE LITERATURE CONSISTING LARGELY OF MATHEMATICAL ANALYSES DEFINING THE CONDITIONS UNDER WHICH A HEATED LAYER FIRST BECOMES UNSTABLE AND BEGINS TO CIRCULATE. PRIOR TO 1950 ONLY A SMALL AMOUNT OF EXPERIMENTAL WORK HAD BEEN DONE. SINCE THEN, HOWEVER, THREE PAPERS HAVE BEEN PUBLISHED (12, 20, 21) REPORTING EXPERIMENTAL HEAT TRANSFER DATA OVER A WIDE RANGE OF THE PHENOMENON AFTER THE ONSET OF CONVECTION. WORKING INDEPENDENTLY, WITH DIFFERENT FLUIDS, AND IN DIFFERENT RANGES, THE AUTHORS DIFFERED IN THEIR CORRELATIONS AND NO COMPREHENSIVE RELATIONSH&P WAS DEVELOPED.

This thesis presents an engineering correlation by stepwise multiple regression of the available data. This method is a powerful statistical tool that provides a correlating equation for a multiplicity of parameters and, at the same time, yields an estimate of the accuracy of the correlation and the significance of the individual parameters. To the author's knowledge, this thesis is the first use of stepwise multiple regression in the analysis and correlation of heat transfer DATA.

e 1 e

0 2 0

Three of the four sets of data (12, 20, 21) were obtained directly from the authors in the form of the dimensionless parameters Nusselt, Rayleigh, Grashof, and Prandtl numbers. (These will be abbreviated Nu, Ra, Gr, Pr hereafter.) The other set (5) was calculated from raw data tabulated in the paper.

* NUMBERS IN PARENTHESES REFER TO REFERENCES LISTED IN THE BIBLIOGRAPHY.

👄 3 👄

THEORY

THE SYSTEM

WHEN A TEMPERATURE DIFFERENCE IS APPLIED ACROSS A HORIZONTAL LAYER OF FLUID THAT IS INFINITE IN EXTENT AND CONFINED BETWEEN CONDUCTING HORIZONTAL SURFACES, A TEMPERATURE GRADIENT WILL BE ESTABLISHED ACROSS THE LAYER AND HEAT WILL FLOW BY CONDUCTION (AND, IN THE CASE OF GASES, BY RADIATION) ACCORDING TO FOURIER'S LAW $Q = \frac{1}{RA}(T_1 + T_2) - 1 - \frac{1}{RA}(T_1 + T_2)$

IF THE HOT SURFACE IS BENEATH THE LAYER, THE FLUID WILL TEND TO CIRCULATE DUE TO A DENSITY GRADIENT ACROSS THE LAYER INDUCED BY THE TEMPERATURE GRADIENT. THIS CIRCULATION - CONVECTION - RESULTS IN AN INCREASE IN THE RATE OF HEAT TRANSFER OVER THAT DUE TO CONDUCTION ALONE. THIS THESIS CONSIDERS THE MAGNITUDE OF THE HEAT TRANSFER DUE TO CONVECTION.

ONSET OF CONVECTION

LORD RAYLEIGH (2) FOUND BY ANALYSIS THAT NO CONVECTION WOULD TAKE PLACE UNTIL A CRITICAL VALUE OF THE RAYLEIGH NUMBER (RA = GR x PR) WAS EXCEEDED. HIS ANALYSIS HAS BEEN CONFIRMED AND EXTENDED BY OTHERS (3, 4, 9, 11) AND THE CRITICAL RA OF 1707.8 CALCULATED BY JEFFRIES (3) HAS BEEN VERIFIED EXPERIMENTALLY (6, 7, 10, 12, 14, 20).

HEAT TRANSFER - DIMENSIONAL ANALYSIS

THE RAYLEIGH - JEFFRIES ANALYSIS DOES NOT YIELD A FUNCTIONAL RELATIONSHIP BETWEEN THE RATE OF HEAT TRANSFER AND THE SYSTEM VARIABLES AND CONSTANTS AFTER CONVECTION HAS BEGUN. THERE HAVE BEEN VERY FEW ATTEMPTS IN THE LETERATURE TO DERIVE SUCH A RELATIONSHOP CHIEFLY BECAUSE THE DIFFERENTIAL EQUATIONS DERIVED FROM THE BASIC FLOW EQUATION DO NOT YIELD TO LINEARIZATION (16, 19). However, Batcheler (16) HAS DERIVED THE FOLLOWING EXPRESSIONS FOR THE CASE OF CONVECTION IN VERTICAL LAYERS:

> LAMINAR REGION - NU = F of $(R_A)^{\circ 25}$ = 2 = TURBULENT REGION - NU = F of $(R_A)^{\circ 33}$ = 3 =

THE RAYLEIGH - JEFFRIES CRITERION SUGGESTS THAT THE RATE OF HEAT TRANSFER IS SOME FUNCTION OF RA AND SUCH A FUNCTION CAN BE DERIVED BY DIMENSIONAL ANALYSIS.

IF WE POSTULATE THAT AT STEADY-STATE CONDITIONS THE OVERALL RATE OF HEAT TRANSFER PER UNIT AREA H IS A FUNCTION OF $\frac{KT}{L}$, $\frac{P}{2}$, $\frac{1}{2}$, $\frac{1$

AREA BY CONDUCTION AND

K = THERMAL CONDUCTIVITY OF THE FLUID
T = TEMPERATURE DIFFERENCE
L = THICKNESS OF THE FLUID LAYER
Ø = DENSITY OF THE FLUID
M = DYNAMIC VISCOSITY OF THE FLUID
C = SPECIFIC HEAT AT CONSTANT PRESSURE OF THE FLUID
Ø = COEFFTCIENT OF THERMAL EXPANSION OF THE FLUID
G = GRAVITATIONAL CONSTANT
(ALL CONSTANTS ARE EVALUATED AT THE MEAN

TEMPERATURE OF THE LAYER)

THEN THE FOLLOWING EXPRESSION CAN BE DERIVED BY DIMENSIONAL ANALYSIS: (23) (SEE APPENDIX 1)

$$\frac{H}{\kappa T/L} = F \text{ of } \left(\frac{\beta G T \mathbb{R}^{3} P^{2}}{\mathcal{A}^{2}}\right)^{N} \left(\frac{\mathcal{A} C}{\kappa}\right)^{P} \text{ or } Nu = F \text{ of } (G_{R})^{N} (P_{R})^{P} = 4 =$$

$$When N = P, Nu = F \text{ of } (R_{A})^{P} \qquad \Rightarrow 5 \Rightarrow$$

RATE OF HEAT TRANSFER DUE TO CONVECTION AND CONDUCTION TO THE RATE OF HEAT TRANSFER DUE TO CONDUCTION ALONE. WHEN IT IS EQUAL TO ONE, NO HEAT IS BEING TRANSFERRED BY CONVECTION.

$$\frac{\beta_{g T 1} \beta \beta^2}{M^2}$$
 is the Grashof number. It can be regarded as the matter of buoyant forces, ($\beta_{g T}$), to the viscous forces (\mathcal{M}/β), of

THE FLUID (22).

THE SIGNIFICANCE OF THE CRITICAL RA DISCOVERED BY LORD RAYLEIGH THEN, IS THAT THE BUOYANT FORCE DUE TO THE TEMPERATURE GRADIENT IS BALANCED BY THE VISCOUS FORCES IN THE LAYER UNTIL THE BUOYANT FORCE ATTAINS A VALUE REPRESENTED BY THE CRITICAL RA. WHEN THIS HAPPENS, Majur FLOW COMMENCES.

<u>MC</u> IS THE PRANDTL NUMBER, WHICH IS THE RATIO OF MOMENTUM DIFFUSIVITY K

TO THERMAL DIFFUSIVITY IN THE FLUID; I.E., THE RATIO OF THE FLUID PROPERTY GOVERNING THE TRANSFER OF MOMENTUM BY VISCOUS FORCES TO THE FLUID PROPERTY GOVERNING TRANSFER OF HEAT BY TEMPERATURE DIFFERENCE. THE DIMENSIONAL ANALYSIS ASSUMES THAT HEAT TRANSFER THROUGH THE LAYER IS NOT AFFECTED BY THE PARTICULAR GEOMETRY OF THE FLOW PATTERNS OR THE ABSOLUTE MAGNITUDE OF THE TEMPERATURE DIFFERENCE. IN ADDITION, IT ASSUMES THAT THE PHYSICAL CONSTANTS CAN BE EVALUATED AT THE MEAN TEMPERATURE OF THE LAYER.

MODES OF CONVECTION

AFTER THE ONSET OF CONVECTION, DIFFERENT MODES OF FLOW HAVE BEEN OBSERVED (6, 7, 8, 12, 20, 21). INITIALLY THE FLOW TAKES PLACE IN DISCREET CELLS THAT HAVE CROSS SECTIONS OF REGULAR POLYGONS. AS RA INCREASES THE MODE CHANGES AS SHOWN BY CHANGES IN THE SHAPE AND WIDTH OF THE CELLS. FINALLY, THE ORDERLY CELLS DISAPPEAR ALTOGETHER AS THE CONVECTION CHANGES FROM LAMINAR TO TURBULENT FLOW.

A NUMBER OF ANALYSES HAVE BEEN PUBLISHED PREDICTING THE RA AT WHICH MODE TRANSITIONS OCCUR (3, 9, 14), AND SOME EXPERIMENTERS HAVE TRIED TO CORRELATE THEIR HEAT TRANSFER DATA WITH THE CHANGES IN MODE THAT THEY OBSERVED. HOWEVER, MALKUS (15, 17) REPORTED THAT THE HEAT TRANSFER FUNCTION CHANGES ONLY WITH THE CHANGE FROM LAMINAR TO TURBULENT FLOW AND DOES NOT CORRESPOND TO CHANGES IN MODE WITHIN THESE REGIMES.

FORM OF CORRELATION

This thesis presents an emperical correlation of Nu vs three dimensionless parameters \approx Ra, Pr, and A/d^2 , where A/d^2 is the ratio of area to thickness squared of the apparatus used in obtaining the data. THESE PARAMETERS WERE SELECTED FOR THE FOLLOWING REASONS:

- I. RA IS PREDICTED BY DIMENSIONAL ANALYSIS.
- 2. PR IS REPORTED (20, 21) TO BE AN ADDITIONAL PARAMETER WITH RA IN THE TURBULENT REGION.
- 3. A/D² is designed to test the experimental data for agreement with the assumption of infinite extent of the layers

EXPERIMENTAL DATA

SOURCES

THE DATA WERE OBTAINED FROM THE FOUR SOURCES LISTED IN TABLE I. IN THREE CASES THE DATA WERE OBTAINED DIRECTLY FROM THE AUTHORS. IN THE OTHER GASE (MULL AND RETHER) RAW DATA WERE TAKEN FROM A TABULATION IN THE PAPER, AND THE PARAMETERS CALCULATED FROM IT.

TABLE 1

Source and Range of Experimental Data

	DATE		RA	No. OF
Source	PUBLISHE	D FLUID	RANGE	DATA
DEGRAAF AND VAN DER HELD(12)	1952	AER	10 ³ -10 ⁵	26
GLOBE AND DROPKIN(21)	1958	WATER, SILICONE OILS, MERCURY	10 ⁵ -10 ⁹	56
MULL AND RETHER (5)	1930	AIR	103-106	17
SCHMIDT AND SILVESTON (20)	1958	Water, Glycol, Heptane, Silicone Opls	103-105	106

APPARATUS AND PROCEDURE

ALL OF THE SOURCES OF DATA USED SIMILAR APPARATUS, DIFFERING PRINCIPALLY IN DETAILS OF CONSTRUCTION AND METHODS OF MEASURING THE NET RATE OF HEAT TRANSFER. A COMPARISON OF THE IMPORTANT FEATURES OF THEIR APPARATUS IS MADE IN TABLE II. IN GENERAL, THE FLUID LAYER WAS CONFINED BETWEEN TWO PARALLEL METAL PLATES AND AN ENCLOSING WALL OF INSULATING MATERIAL. SPACING WAS FIXED EITHER BY SMALL SPACERS BETWEEN PLATES OR BY THE ENCLOSURE. THE LOWER PLATE WAS EQUIPPED WITH ELECTRICAL HEATERS, WHILE THE UPPER PLATE WAS DESIGNED TO ACCOMMODATE A FLOW OF COOLING WATER OR AIR. TEMPERATURE DIFFERENCE WAS MEASURED BY * PG. 17

• 8 •

THERMOCOUPLES EMBEDDED IN THE PLATES. HEAT TRANSFER RATE WAS CALCULATED EITHER BY MEASURING THE POWER CONSUMPTION OF THE HEATERS OR THE HEAT ACQUIRED BY THE COOLING MEDIUM. THE PROPERTIES OF THE FLUID WERE TAKEN AT THE ARITHMETIC MEAN TEMPERATURE OF THE HOT AND COLD PLATES. IN THE EXPERIMENTS ON AIR, THE HEAT TRANSFER DUE TO RADIATION WAS DETERMINED OVER THE TEMPERATURE RANGE OF THE EXPERIMENTS BY INVERTING THE NOT AND COLD SURFACES; I.E., BY HEATING FROM THE TOP, AND CORRECTING FOR CONDUCTION BY CALCULATION. EACH OF THE EXPERIMENTAL RUNS WAS CORRECTED BY SUBTRACTING THE APPROPRIATE RADIATION VALUE FROM THE MEASURED TOTAL HEAT TRANSFER RATE.

The experimental procedure was the same for all the sources. A temperature difference was applied to the fluid layer, the system was allowed to reach equilibrium and measurements of T_1 , T_2 , and Q (or electrical power consumption) were made.

CERTAIN DISCREPANCIES IN EXPERIMENTAL TECHNIQUE ARE WORTHY OF NOTE BECAUSE THEY BEAR ON THE ACCURACY OF THE DATA.

Both GLOBE AND DROPKIN AND SCHMIDT AND SILVESTON, WHO EXPERIMENTED WITH LIQUIDS, DETERMINED THE HEAT TRANSFER BY MEASURING ELECTRICAL POWER CONSUMPTION. THE APPARATUS OF THE LATTER WAS ELABORATELY INSULATED TO GUARD AGAINST HEAT LOSS, AND CORRECTIONS, WHERE NECESSARY, WERE APPLIED. HOWEVER, GLOBE AND DROPKIN, NEITHER INSULATED THEIR EQUIPMENT NOR CORRECTED FOR LOSS. AT LEAST THE AUTHORS ARE SILENT ON THIS POINT AND THEIR DIAGRAMS AND DISCUSSIONS REVEAL NO SUCH PRECAUTIONS. IF SUCH IS THE CASE, THEIR NU SHOULD TEND TO BE HIGHER AT PARTICULAR RA. THE APPARATUS OF DE GRAAF AND VAN DER HELD WAS NOT INSULATED EITHER, BUT THEY MEASURED THE HEAT TRANSFER RATE BY MEASURING THE HEAT ACQUIRED BY THE COOLING WATER. IN ADDITION, THEY CORRECTED FOR EXTRANEOUS LOSSES AT THE SAME TIME THAT THEY GORRECTED FOR RADIATION.

• 9 •

De Graaf and Van Der Held have pointed out (12, 13) that Mull and Reiher calculated the thermal coefficient of expansion for air incorrectly, using 1/273 instead of 1/T (avg.) Therefore, the data of Mull and Reiher was recalculated before being used in this correlation. Appendix II contains the derivation of A = 1/Tavg.Appendix III describes the calculation of Mull and Reiher's Nusselt and Grashof numbers using the constants of De Graaf and Van Der Held and 1/Tavg.

THE EXPERIMENTAL DATA ON AIR (5, 12) WAS PLOTTED BY THE ORIGINAL AUTHORS IN THE FORM OF NU VS GR, SINCE PR IS NEARLY A CONSTANT FOR AIR OVER THE TEMPERATURE RANGE OF THEIR EXPERIMENTS. RA FOR THESE DATA WAS CALCULATED FROM THE ORIGINAL GR (RECALCULATED IN THE CASE OF MULL AND REIHER) USING THE PR THAT ARE PLOTTED VERSUS TEMPERATURE IN FIG. 1. ALTHOUGH THE VARIATION WITH TEMPERATURE IS NOT LARGE, THIS WAS DONE TO REDUCE ERROR IN THE CORRELATION.

~ || e

CORRELATION

METHOD

THE DATA WAS ANALYZED STATISTICALLY BY THE METHOD OF STEPWISE, LINEAR, MULTIPLE, REGRESSION (25). LINEAR MULTIPLE REGRESSION CONSISTS OF FINDING BY THE METHOD OF LEAST SQUARES THE FUNCTION OF THE FORM

$$Y = A + B_1 X_1 + B_2 X_2 + B_3 X_3$$

THAT BEST FITS THE DATA. THEREFORE, THE HYPOTHETICAL FUNCTION $Nu = A (R_A)^B I (P_R)^B 2 (A/d^2)^B 3$ was expressed in Logarithmic form.

Log NU = Log $A + B_1$ Log RA + B_2 Log Pr + B_3 Log A/ B^2 = 6 = The least squares best fit is that equation that results in the MINIMUM STANDARD DEVIATION OF THE DISTRIBUTION OF EXPERIMENTAL DATA ABOUT THE REGRESSION. A more detailed explanation of the method AND THE INTERPRETATION OF THE STATISTICS IS GIVEN IN APPENDIX IV.

IN STEPWISE MULTIPLE REGRESSION, THE VARIABLES ARE ADDED TO THE REGRESSION ANALYSIS ONE AT A TIME IN THE ORDER OF THEIR CONTRIBUTION TO THE GOODNESS OF FIT. THIS PROCEDURE HAS SEVERAL ADVANTAGES. AT EACH STEP IT PROVIDES THE FOLLOWING:

- I. A REGRESSION EQUATION FOR EACH OF THE VARIABLES INCLUDED IN THE REGRESSION UP TO THAT STEP.
- 2. AN ESTIMATE OF THE PROBABLE ERROR IN THE PREDICTION OF Y FROM THE REGRESSION EQUATION.

- 3. AN ESTIMATE OF THE PROBABLE ERROR IN THE REGRESSION GOEFFICIENTS B & B2 B3
- 4. AN ESTIMATE OF THE SIGN FICANCE OF EACH VARIABLE IN THE REGRESSION.
- 5. REJECTION OF INSIGNIFICANT VARIABLES.

THE CALCULATIONS FIRST WERE CARRIED OUT MANUALLY TO DETERMINE THE REGIMES INTO WHICH THE DATA SHOULD BE DIVIDED. THEN, FOR ACCURACY, THE DATA WERE ANALYZED ON AN I.B.M. 704 COMPUTER USING A STEPWISE, LINEAR, MULTIPLE REGRESSION PROGRAM DEVELOPED BY THE COMPUTING CENTER OF THE ESSO RESEARCH AND ENGINEERING CO. THE RESULTS OF THE TWO ANALYSES WERE IN COMPLETE AGREEMENT. TABLE III* LISTS THE EXPERIMENTAL DATA AND THEIR LOGARTTHMS, WHICH WERE THE INPUT TO THE COMPUTER. ALL THE DATA WERE ASSUMED TO HAVE EQUAL WEIGHT.

RESULTS

THE EXPERIMENTAL DATA CORRELATED IN THREE DISTINCT REGIMES OF CONVECTION - INITIAL, LAMINAR, AND TURBULENT. THE RANGE COVERED BY EACH REGIME, THE PARAMETRIC EQUATIONS FOR EACH REGIME, THE STANDARD ERROR OF ESTIMATE OF NU FROM EACH EQUATION, AND THE STANDARD ERROR OF THE COEFFICIENTS* ARE LISTED IN TABLE IV.

*COEFFICIENTS THROUGHOUT THIS PAPER REFER TO THE COEFFICIENTS OF THE LOGARTTHMIC EQUATION. THESE BECOME EXPONENTS OF THE PARAMETERS IN THE POWER MAN EQUATION.

* TABLE III - PG. 18

- 12 -

TABLE IV

SUMMARY OF REGRESSION ANALYSIS

REGIME		EQUATION	STD. ERROR of Coef. Ra Pr	STD.ERROR of Estimate %
INETIAL	1600≈3000	$Nu = 0.00238(R_A).816$	± °042	+4.32 =4.08
LAMINAR	3000 -10 ⁵	$N_{U} = 0.221(R_{A})^{256}$	5 006	+7.19
TURBULENT	10 ⁵ -10 ⁹	$Nu = 0.0891(R_A) \cdot 316(P_R) \cdot 0853$	±.007 ±.00	+13.6 44 -11.9

THE FOLLOWING CONCLUSIONS CAN BE DRAWN FROM THE ANALYSIS:

- I. CONVECTIVE HEAT TRANSFER IN HORIZONTAL LAYERS CAN BE EXPRESSED ACCURATELY BY THREE DISTINCT EQUATIONS.
- 2. NU CAN BE EXPRESSED AS A SIMPLE POWER LAW FUNCTION OF RA, AND, IN THE TURBULENT REGIME, OF RA AND PRo
 3. A/D² IS NOT A SIGNIFICANT CORRELATING PARAMETER AND THE ASSUMPTION OF LAYERS OF INFINITE HORIZONTAL EXTENT IS JUSTIFIED.

THE VALUE OF THE CRITICAL RA CALCULATED FROM THE EQUATION OF THE INITIAL REGIME IS 1640. THIS IS IN REASONABLE AGREEMENT WITH THE ANALYTICAL VALUE OF 1707.8 (3) AND WITH EXPERIMENTAL VALUES REPORTED IN THE LITERATURE. (6, 7, 20, 21)

IN FIG. 3, NU VS RA OF THE EXPERIMENTAL DATA IS PLOTTED TOGETHER WITH THE EQUATIONS OF THE THREE REGIMES. THE TURBULENT EQUATION IS PLOTTED WITH VARIOUS PR AS PARAMETERS. IN FIG. 5 THE TURBULENT REGIME IS COMBINED INTO ONE EQUATION BY PLOTTING NU/PR^{.0853} VS RA. IT CAN BE SEEN FROM THESE FIGURES THAT THREE REGIMES COMPLETELY DESCRIBE THE DATA. CHANGES IN MODE OF CONVECTION WITHIN THESE REGIMES APPARENTLY DO NOT AFFECT THE HEAT TRANSFER FUNCTION.

IN FIG. 4, THE EQUATIONS OF THE THREE REGIMES ARE PLOTTED AS NU VS RA, SIMILAR TO FIG. 3, EXCEPT THAT THE EXPECTED TRANSITIONS BETWEEN LAMINAR AND TURBULENT REGIMES ARE SHOWN AS DASHED LINES. IT CAN BE SEEN THAT THE TRANSITION FROM INITIAL TO LAMINAR REGIME IS SHARR, WHILE THE TRANSITION FROM LAMINAR TO TURBULENT REGIME DEPENDS ON THE PR OF THE FLUID. PREVIOUS INVESTIGATORS HAVE NOT REALIZED THIS. FLUIDS HAVING A HIGH PR UNDERGO A SHARP TRANSITION, WHILE THOSE WITH SMALL PR GO THROUGH A MORE GRADUAL TRANSITION. THE DATA, ALTHOUGH SPARSE IN THIS REGION, SUPPORTS THIS CONCLUSION EXCEPT FOR MERCURY, WHICH INEXPLICABLY DEVIATES FROM ITS EXPECTED PATTERN IN THE DIRECTION OF LOWER NU.

IN FIG. 5 IT CAN BE SEEN THAT THE DATA IN THE TRANSITION REGION CORRELATES WELL WITH THE REST OF THE REGIME. EVEN THE LOWER MERCURY POINTS FALL WITHIN THREE SIGMA LIMITS AND, THEREFORE, CANNOT BE EXCLUDED ON STATISTICAL GROUNDS. THEREFORE, THE TURBULENT REGRESSION EQUATION CAN BE USED TO PREDICT NU IN THE TRANSITION REGION.

DISCUSSION OF THE ANALYSIS OF DATA

TABLE V* SUMMARIZES THE COMPUTER PRINT-OUT OF THE STEPWISE REGRESSION ANALYSIS. AN EXPLANATION OF THE STATISTICS IS GIVEN IN APPENDIX IV.

* PG. 27

e 14 e

SIGNIFICANCE OF THE CORRELATING PARAMETERS

THE COMPUTER ANALYSIS SHOWED THAT ALL OF THE CORRELATING PARAMETERS WERE STATISTICALLY SIGNIFICANT IN ALL OF THE REGIMES: T.E., THE BEST CORRELATION INCLUDED ALL THREE PARAMETERS. HOWEVER, THE IMPORTANT STATISTICAL MEASURE IS THE DEGREE OF SIGNIFICANCE OF THE PARAMETERS, WHICH IS GIVEN BY THE COEFFICIENTS OF DETERMINATION. THESE ARE TABULATED IN TABLE VING AT EACH STEP OF THE REGRESSION. THE COEFFICIENT OF DETERMINATION (EQUAL TO THE SQUARE OF THE MULTIPLE CORRELATION COEFFICIENT) MEASURES THE PER CENT OF THE TOTAL VARIANCE IN NU ACCOUNTED FOR BY THE REGRESSION AT EACH STEP; I.E., AS EACH PARAMETER IS ADDED TO THE REGRESSION ANALYSIS. THE RESIDUAL REPRESENTS THE VARIANCE IN NU THAT IS NOT ACCOUNTED FOR BY THE REGRESSION (SCATTER OF DATA ABOUT THE REGRESSION LINE) AND IS ASSUMED TO BE RANDOM ERROR. IT CAN BE SEEN FROM TABLE VI THAT RA IS VERY HIGHLY SIGNIFICANT WHILE, EXCEPT FOR ONE CASE, PR AND A/d² are less than the residual. We conclude, therefore, that Pr and A/d² are not significant PHYSICALLY AND THAT THE CORRELATION FOUND BY THE REGRESSION IS SPURIOUS; L.E., DUE TO CHANCE. THE VARIANCE REDUCTION ATTRIBUTED TO Pr and A/d^2 is regarded as error and the proper regression is the RESULT OF STEP ONE, INVOLVING ONLY RA. THE EXCEPTION IS PR IN THE TURBULENT REGIME. ITS SIGNIFICANCE IS ALSO SHOWN BY THE SUBSTANTIAL REDUCTION OF THE STANDARD ERROR OF ESTIMATE AFTER PR IS ADDED TO THE REGRESSION (TABLE V). FOR THIS REGIME WE CONCLUDE THAT THE PROPER CORRELATING EQUATION IS THE RESULT OF STEP TWO, INVOLVING RA AND PR.

* PG. 28

The multiple correlation coefficients for all three regimes reflect very high degrees of correlation. Therefore, we conclude that the functional relationship $N_{\rm e} = F$ of (Ra) or F of (Ra)(Pr) accurately describes the physical phenomenon. There is no evidence in the graphs of the data to suggest that there are more regimes than the three already described.

STANDARD ERROR ESTIMATE

The standard error of estimate is the standard deviation of the distribution of experimental values of Nu about the regression. It has the usual statistical significance; i.e., approximately 2/3 of the data is expected to fall within to one standard error of estimate (sigma) of the value predicted by the regression. In this case, the standard error of estimate is given in logarithmic form by the regression analysis. In order to express it in terms of Nu it must be stated as a percentage. This accounts for the fact that its positive and negative numerical values are different. If it is desired to calculate two or three sigma limits, then the logarithmic value must be used to calculate the appropriate percentage.

ERROR OF THE REGRESSION

THE STANDARD ERROR OF A COEFFICIENT IS A MEASURE OF THE PROBABLE ERROR (ONE SIGMA) OF THE COEFFICIENT ON THE AVERAGE. HOWEVER, IT IS A SPECIFIC PROPERTY OF REGRESSIONS THAT THIS ERROR IS NEGLIGIBLE AT THE CENTER OF THE RANGE COVERED BY THE EXPERIMENTAL DATA AND LARGE AT EITHER END. (SEE APPENDIX IV) THEREFORE, THE REGRESSION EQUATION SHOULD NOT BE EXTRAPOLATED BEYOND THE RANGE OF THE DATA WITHOUT FURTHER SUBSTANTIATION.

TABLE 11

COMPARISON OF THE APPARATUS USED By the Sources of the Data

	De Graaf and Van Der Held	MULE AND Rether	GLOBE AND Dropkin	Schmidt and Silveston
Shape of Fluid Chamber	SQUARE PRISM REC	DTANGULAR PRISM	Cylinder	CYLINDER
Area of Fluid Chamber, m ²	0.142(APPROX.)	0.617	0.013,0.014	0.031
DIAMO OR Length/Width,	420 (420			
V1 84	430/430	1010/612	127,134	199
SPACING, MM	6.9=22.9	12-196	35=66	1.45-13.0
Container Wall Material	GLASS	Wood	"PLEXIGLAS",	^m Plex relas ^m
Was AT INSULATE	D? No	Yes	No	Yes
Was There a Gua Heater?	RDNO	Yës	No	Yes
METHOD OF HEAT	NG ELECTRICAL	ELECTRICAL	ELECTRICAL	ELECTRICAL
METHOD OF COOLI	NG WATER	WATER	AIR, WATER	WATER
MAX. HOT TEMP.,	C 146	146	92	70 (est.)
Maxo Tempos Difference, C	100	29	27	50
Were Liquids Degassed?	- Mig	eile	Yes	Yes
Method of Plate Temp.Measureme	3 THERMO- INT COUPLES IN HOT PLATE; MEAN COOLING WATER TEMPO	15 THERMO COUPLES IN HOT PLATE; 6 THERMO COUPLES IN COLD PLATE	I THERMO- Couple IN Each plate	3 THERMO- couples in each plate
Method of Heat Transfer Measurement	HEAT ACQUIRED BY COOLUNG WATER	ELECTRICAL POWER CON- SUMPTION	ÉLECTRICAL Power con- sumption	ELEGTRICAL POWER CON- SUMPTION
RADIATION Correction	Yes	Yes	Řel	

TABLE 111

DATA

SOURCES:

MULL AND REIHER (5) Schmidt and Silveston (20) Globe and Dropkin (21) De Graaf and Van Der Held (12) 88890 2028

TURBULENT REGIME: RA 105 TO 109

Air 6.32 6.699 69.4 6.67 5.9007	L.		RA X 10-5	a d	A /n2	NG	Log RA	Loв Рв	Log M/D2	Loe Nus
Air 6.32 699 694 6.67 5.8007 1555 1.8414 2.75 6.09 693 694 5.875 5.7016 1533 533 533 533 533 533 533 533 533 533 533 533 533 533 533 533 533 533 533 533 533 533 533 533 533 533 533 533 533 533 533 533						Contraction of the second				
6.40 6693 69.4 6.80 5.8062 1593 52.6 700 16.2 10.415 6.7210 1512 52.6 7700 16.2 10.83 6.4116		AIR	6°32	669°	69 °4	6.67 5.75	5 8007	- 1555 - 1524	1 84 14 m	•8241 7507
6.09 6.699 69.4 6.55 5.7846 1618				ト で ひ つ つ つ つ の			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1	- 10 00 00 00
WATER 52.60 25.86 700 706 16.2 16.2 10.83 706 6.4116 -1512 10.2095 10.43 10.03 WATER 2.47 6.07 306. 5.550 5.5798 -7348 10.305 HEPTANE 1.25 6.26 3290. 4.23 5.0969 -7966 3.5172 .62 Stillcone 1.25 6.26 3290. 4.23 5.0969 .7966 3.5172 .62 Stillcone 1.25 6.26 3290. 4.23 5.0969 .7966 3.5172 .62 Stillcone 01 1.86 35.0 1224. 5.3010 3.91420 .6911 .992 Stillcone 01 1.8750. 4.91 8.38 5.1790 3.92420 .6911 .927 10000 C.s. 5.7924 3.88300 10.995 5.7924 3.88300 10.03 150 C.s. 10.995 5.7924 3.88300 10.03 .6911 .927 150 C.s. 10.995 5.7924 3.88300 1.0294 1.038 150									ŝ	
32.60 706 16.2 10.83 6.4116 -1512 -1.243 1.203 1.033 WATER 2.847 6.07 306. 5.550 5.53927 5.41512 0.03 HEPTANE 1.25 5.43 306. 5.550 5.53927 5.7832 2.4857 74 HEPTANE 1.25 6.26 3290. 4.23 5.0969 .77348 </td <td></td> <td></td> <td></td> <td></td> <td>1 () -</td> <td></td> <td></td> <td></td> <td></td> <td></td>					1 () -					
25.88 •706 16.2 10.83 6.4116 •.1512 1.003 WATER 2.47 6.07 306. 5.550 5.3927 •7832 2.4857 •74 WATER 2.47 6.07 306. 5.550 5.5927 •7832 2.4857 •74 HEPTANE 1.25 6.26 3290. 4.23 5.0969 •7966 3.5172 62 StLICONE 01 1.25 6.26 3290. 4.23 5.0969 •7966 3.5172 62 AK3 1.25 6.26 3290. 4.23 5.0969 •7966 3.5172 62 StLICONE 01 1.254 5.30 5.2695 1.5441 3.0878 •72 1000 C.S. 1.224. 5.30 5.2695 1.5441 3.0878 •72 StLicone 01 1.651 8.38 5.1790 3.9420 66911 .922 1000 C.S. 5.010 3.9294 10 9.577 3.8669 1.068 .72 StLicone 01 2			0 Z C	007.	N°0	14 10	0.712	• 104A	1 2020	101474
WATER Z.47 6.07 306. 5.50 5.3927 77832 2.4857 74 HEPTANE 1.25 6.26 3290. 4.23 5.0969 7766 3.5172 62 HEPTANE 1.25 6.26 3290. 4.23 5.0969 7766 3.5172 62 StLicone 01L 1.86 35.0 1224. 5.30 5.2695 1.5441 3.0878 72 StLicone 01L 1.86 35.0 1224. 5.30 5.2695 1.5441 3.0878 72 StLicone 01L 1.086 35.00 1224. 5.3010 3.9420 6911 .927 StLicone 01L 1.0.90 5.7794 3.8669 8 72 .923 StLicone 01L 10.90 5.7724 3.8669 8 1.003 StLicone 01L 10.90 5.7724 3.8669 8 1.003 StLicone 01L 10.90 5.7724 </td <td></td> <td></td> <td>25°8</td> <td>°706</td> <td>ء او•2</td> <td>10°83</td> <td>6.4116</td> <td></td> <td>22 1</td> <td>1°0334</td>			25°8	°706	ء او•2	10 ° 83	6.4116		22 1	1°0334
HEPTANE 1.25 6.26 3290. 4.23 5.0969 7748 4.23 StLicone 011 1.25 6.26 3290. 4.23 5.0969 7766 3.5172 .62 StLicone 011 1.86 35.0 1224. 5.30 5.2695 1.5441 3.0878 7.2 StLicone 011 1.86 35.0 1224. 5.30 5.2695 1.5441 3.0878 .72 StLicone 011 1.86 35.0 1224. 5.30 5.2695 1.5441 3.0878 .72 StLicone 011 1.274 5.30 3.9294 .6911 .927 StLicone 011 9.53 5.7724 3.8669 .72 .927 StLicone 011 0.90 5.7924 3.8669 StLicone 011 9.53 5.7724 3.8669 StLicone 011 9.5577 1.0414		WATER	2.47	6.07	306	5.50	5,3927	。7832	2.4857	. 7404
HEPTANE 1.25 6.26 3290. 4.23 5.0969 7766 3.5172 .62 SILICONE 011 1.86 35.0 1224. 5.30 5.2695 1.5441 3.0878 .72 SILICONE 011 1.86 35.0 1224. 5.30 5.2695 1.5441 3.0878 .72 SILICONE 011 1.86 35.0 1224. 5.30 5.2695 1.5441 3.0878 .72 SILICONE 011 1.51 8750. 4.91 8.38 5.1790 3.9420 .6911 .972 SILICONE 011 2.01 8500. 11 9.53 5.7724 3.8669 1.003 SILICONE 011 2.7924 3.8669 11 .927 .668 SILICONE 011 2.7924 3.8669 11.003 .9294 11.003 SILICONE 011 2.7924 3.8669 11.003 .7224 3.8669 11.003 SILICONE <td></td> <td></td> <td>000°C</td> <td>0 • 4 • 0</td> <td>306</td> <td>6°29</td> <td>5°5798</td> <td>•7348</td> <td></td> <td>8189</td>			000°C	0 • 4 • 0	306	6°29	5°5798	•7348		8189
Sthicone 0it 1.86 35.0 1224. 5.30 5.2695 1.5441 3.0878 .72 1000 C.S. 1.651 8750. 4.91 8.38 5.1790 3.9420 .6911 .92 1000 C.S. 1.651 8750. 4.91 8.38 5.1790 3.9420 .6911 .92 Sillicone 0it 2.01 8500. 11 9.53 5.3010 3.9294 1.03 2.01 8500. 11 9.53 5.7924 3.8669 1.03 2.01 8500. 11 10.900 5.7924 3.8669 1.03 2.10 16. 10.900 5.7924 3.8669 1.03 .973 3.1 10.900 5.7924 3.8669 1.03 .973 66.20 7360. 16.88 8.3243 1.003 .973 150 2.55 1 48.8 8.8300 1.0414 1.03 1810 12.65 1 42.9 8.2577 1.1761 1.63 1810 15. 8.6520 </td <td></td> <td>HEPTANE</td> <td>1 25</td> <td>6°56</td> <td>3290_e</td> <td>4°53</td> <td>5°0969</td> <td>° 7966</td> <td>3.5172</td> <td>¢ 6263</td>		HEPTANE	1 25	6°56	3290 _e	4°53	5°0969	° 7966	3.5172	¢ 6263
AK3 1,86 35,0 1224, 5,30 5,2695 1,5441 3,0878 72 1000 C,5 1,51 8750, 4,91 8,38 5,1790 3,9420 66911 92 Sill 1000 C,5 6,201 8500, 1,10,90 5,39294 1,097 97 Sill 1000 C,5 7360, 1,0090 5,7924 3,9294 1,097 97 Sill 150 C,5 7360, 1,0090 5,7924 3,8669 1,03 Sill 150 C,5 8,3243 1,2041 1,03 Sill 150 C,5 8,3243 1,2041 1,03 Sill 1001 16,0 11,0 8,3243 1,2041 1,03 Sill 1001 16,0 11,0 8,6920 1,00414 1,03 110 12,0 1,2,0 8,6920 1,00414 1,03 110 15,0 1,42,0 8,6520 1,003 1,03 110 11,0 1,0 1,0 1,0 1,03 1,03 1110 11,0 1,0		SLLICONE OIL				**				
1000 C.S. 1.51 8750. 4.91 8.38 5.1790 3.9420 6911 923 Sillicone Oil 2.01 8500. 4.91 8.38 5.1790 3.9294 9.92 Zab 6.20 7360. 7 9.53 5.3010 3.9294 9.97 Sillicone Oil 6.20 7360. 7 9.53 5.7924 3.8669 8 Sillicone Oil 15.0 6.20 7360. 8.8300 1.00.90 5.7924 3.8669 8.032 Sillicone Oil 2110 16. 7 48.8 8.3243 1.2041 7 Sillicone Oil 11. 66.9 8.83300 1.00414 7 1.663 4920 15. 77 1.1761 8.2577 1.1761 6.77		AK3	1 ° 86	35 ° O	1224°	5°30	5°2695	1 • 544 1	3 ° 0878	•7243
SILICONE OIL 1.51 8750. 4.91 8.38 5.1790 3.9420 .6911 .923 2.01 8500. 7360. 7360 5.7924 3.9294 9.53 5.3010 3.9294 9.973 6.20 7360 10.90 5.7924 3.8669 1.03 31LICONE OIL 2110 16 48.8 8.3243 1.2041 1.068 4920 12.5 42.9 8.8300 1.0414 1.653 1810 15 42.9 8.2577 1.1761 1.63		1000 6.5.								
2.01 8500. 7360. 747. 7560. 75		SILICONE OIL	1°21	8750 ₀	4.91	8°38	5 。 1790	3 . 9420	•6911	9 232
150 CoSo 7360o 10.90 5.7924 3.8669 10.90 150 CoSo 150 CoSo 1600 1600 10.90 5.7924 3.8669 10.90 Sill icone Oil 1600 1600 1600 1600 10.90 5.7924 3.8669 10.03 Sill icone Oil 1600 1600 1600 1600 10.90 10.68 4920 110 12.55 11.65 10.0414 10.82 1.82 1810 15.6 1.42.9 8.2577 1.1761 1.653			2°01	8500°	1	9 ° 23	5.3010	3 . 9294	2	1979.
150 C.S. 150 C.S. 150 C.S. 16.0 16.			6 ° 20	7360 °	È.	10,90	5°7924	3 ° 8669	*** :	1.0374
Silicone 01 2110 16, " 48,8 8,3243 1,2041 " 1,68 6760 11, 65,9 8,8300 1,0414 " 1,82 4920 12,5 " 42,9 8,5920 1,0969 " 1,77 1810 15, " 42,9 8,2577 1,1761 " 1,63		150 0.52			,				ţ	
6760 11. 0669 8.8300 1.0414 1.8.830 4920 12.5 1.55 1.659 1.0969 1.77 1810 15. 1.42.9 8.2577 1.1761 1.63	-	SILICONE OIL	2110	16.	ų	48 ° 8	8°3243	1。2041	â	1 •6884
4920 12 ₆ 5 ¹¹ 59 ₆ 1 8 ₆ 6920 1 ₆ 0969 ¹¹ 1 ₆ 77 1810 15 ₆ ¹¹ 42 ₆ 9 8 ₆ 2577 1 ₆ 1761 ¹¹ 1 ₆ 63			6760	ه دعت ا	£ (66 ° 9	8 8300	1 04 14	2 (1 8254
1810 15° ⁿ 42°9 8°2577 1°1761 ⁿ 1°63			4920	12°2	ن گڑ	59 ° 1	8 ° 6920	1°0969	8	1 a 7 7 1 6
			1810	ي ع		42 . 9	8 2577	1,1761	M ,	1.6325

- 18 -

ŝ

· ·
Ω
600
CONT
TABLE

TURBULENT REGIME: RA 10⁵ TO 10⁹

.06 NU .		5353	5146	4829	5353	6128	5999	6191	6674	8129	5211	4900	4654	4533	4330	3856	2856	2504	1875	2788		3820	0000 0030	9000	1072
<u>6</u> 2		61000 61000		, <u> </u>	, 60 1997 1997 1997 1997 1997 1997 1997 199	· · · ·) () ****	, 6 ()		4 1 1 1			• •		- 6) @ *~~~				((1)) (0 0
LOG A/	169°	8 2	2,	8	2 2 (e '	(2 (.	\$	2 :	t 👹	2 14	2 (ų,		ئۇ (2	2 2 (2 (8		44	ä	* 2	° 22
OG PR		1903	. 2304	°2304	。2304	. 1903	1761	2 304	, 1761	•0792	3617	.3979	3 979	•5441	e5798	•6335	6902°	•7559	•7404	•7559	4	4757	3892		6042
		ი ი		2		6	- -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	ب	0	10	Quan	-	2	~	ento	- -	ملينو	**		0			
Loe R		8,056	7.592	7.447	7.694	7,880	7,979	7,905	8°179(8°742	8 3962	8,286	8°141	7,949	7°762'	7 5888	7°262	6,9053	6.6314	7°0674		7.0492	7,2810	6.6096	6.0719
Nu		34.3	32.7	30 ° 4	34 °3	41.0	39 8	41.6	46 ° 5	65°0	33 ° 2	30°9	29 . 2	28 . 4	27• f	24.3	ရ ှ ိရှိ	17 . 8	15°4	19 ° 0		24 . 1	26.5	16.7	12°8-
A/02	4°91	8	数 ,	201	Ŭ.	∕⊉ ,		ණය (ජය (jų.	4	ų		- 2	1	केंग्र कर्म			- 4		429 (,	2	ř.	11	i 🏙 '
Рд		15.45		17.	17.0	ູຊີ	د ک	17.	្លា	12.0	2 °3	ମ କୁ	2°2	မ က က က	တ္ရွိတို	4°3	49	5°7	റംറ	5°7		299.	245.	364	402.
0-5																									
RAXI		1140	391	280	495	760	954	805	1512	5527	2490	1934	1384	890	579	388	183	80.4	42°8	116.8		1120	101	40.7	000
010	0.5.	NE OIL									1 E R										6.5.	NE OIL			
Ľ	051	SILICO									W A										50	SILICO			
SOURCE	GD																								

4

- 19 -

TABLE III (CONT tD)

TURBULENT REGIME: RA 10⁵ TO 10⁹

Log Nu.	691- 587- 587- 587- 564-	•9818 •0378 •1418
Log A/02	で、 し し し し し し し し し し し し し	왕 : 왕 : 황 : ^함 :
Log PR	6345 66345 66345 66345 66345 664440 664440 664421 66336 66333 66333 66333 66333 66333 66936 66936 66936 60936 60937 60936	•1•6289 •1•6345 •1•6536 •1•6596
LOG RA	6 6 6 6 6 6 6 6 6 6 6 6 6 6	6.1482 6.9676 7.2276 7.5234
2	400000400F0F0040-0F00 	9,59 10,91 10,80 1
<u>A/D</u> ²	の し、 の の の の の の の の の の の の の	11 · 11 · 11 · 11 · 11 · 11 · 11 · 11
PR	00000000000000000000000000000000000000	0235 0232 0222 0219
RA x 10 ⁻⁵	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	56°0 92°8 168°9 333°7
FLUED	MERGURY	
SOURCE	G	

- 20 -

\sim
0
A.
5
0
ŏ
5
~~~ {
~ ]
إلىا
<u> </u>
Щ
4
j

Laminar Regime: Ra 3000 to 10⁵

LOB NU.	1818 2404		<b>3</b> 979	•2122	•2553	<b>3054</b>	• 3522	<b>3</b> 748	<b>3729</b>	<b>3</b> 766	•5224	e5705	e031	• 5809	• 5888	•6085	<b>6</b> 042	<b>3692</b>	•4502	•5416	•5527	<b>\$</b> 5502	•5944	•5922	.3324	•3284	•3483	<b>3483</b>	• 5551	• 5611	•5855	●5866
Loe A/D ²	2.8814	2,8814	2°8814	2 <b>.</b> 8814	2,8814	2 <b>.</b> 8814	2.8814	2 <b>.</b> 8814	2。8814	2 <b>.</b> 8814	2 <b>°</b> 3636	22	<b>2</b> 1	<b>61</b>	4	çina (	<b>2</b> 5 (	2.8814	2 <b>°</b> 3636	1	11	<b>8</b>	<b>1</b>	-	3°0374	2 <b>°</b> 7348	2 <b>.</b> 4330	2 <b>°</b> 1335	2.4133	¥2		çar i
Loe PR	• 1487	1518	- 1530	<b>a</b> .1494	- 1500	<b></b> 1506	•• 1524	<b>⇔</b> ∎1537	- 1552	<b>–</b> 1561	<b>-.</b> 1494	<b>*</b> •1512	1530	<b>=</b> 1537	- 1549	- 1568	e. 1574	<b>-,</b> 1543	•• 1487	<b>–,</b> 1494	<b>**</b> 1500	<ul><li>1520</li></ul>	••• 1530	<b>••</b> 1549	<b>●</b> 1580		<b>-</b> , 1580	<b>••</b> 1580	<b>••</b> 1543	<b>**</b> 1625	<b></b> 1605	<b>•••</b> 1580
Log RA	3.55 4	0010°C	3.9740	3.6021	3.7226	3 <b>.</b> 8494	3 <b>°</b> 9405	4 ₆ 0043	4 <b>°</b> 0414	4 <b>0</b> 453	4 <b>.</b> 3692	4 <b>6</b> 085	4.7160	4°7642	4 ₆ 8007	4 ₆ 8235	4 8332	4 °0 253	4°2201	4°3748	4 • 5527	4 °6444	4.7380	4 8136	3 <b>°</b> 9850	3 <b>°</b> 9841	3 <b>.</b> 9745	3 <b>.</b> 9764	4 <b>.</b> 9269	4,9315	4°9479	4 <b>•</b> 9600
Nc	- - - - - - - - - - - - - - - - - - -	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.50	69	1 <u>8</u> 0	2°05	,2° 25	2°37	2 <b>°</b> 36	2 <b>°</b> 38	3°33	3.72	4 <b></b> 01	ဒီစီ	3 <b>°</b> 88	4 <b>°</b> 06	4 <b>.</b> 02	2° 34	2°82	3.40 840	3 <b>°</b> 57	ວ <b>ູ</b> ຄວ	ຕິ ອີອີອີ	3.91	2 <b>.</b> 15	2 <b>°</b> ]3	2°53	2°23	3°59	3.64	3°85	3.81
A/D2	761.	101°	761	761	761.	761	761	761.	761。	761	231	2310	231。	231°	231	231。	231	761 °	2310	231	231。	231	231	231	1090	5435	271	136.	259 e	259°	259 e	259 <b>°</b>
D B	°710	107.0	° 703	109	, 708	707	°704	°702	, 699	698	e07.	° 706	, 703	°702	, 700	<b>697</b>	€96°	°70	e 7 10	601	a 708	, 706	.703	• 700	\$692°	695	695	695	,101°	688°.	<b>69</b>	695
RA	3560	6490 0000	0020	4000	5280	7070	8720	10100	11000	0011	23400	40600	52000	58100	63200	66600	68100	10600	16600	23700	32600	44100	54700	65100	9660	9640	9430	9470	84500	85400	88700	91200
FLUID	AIR																								Atr							
SOURGE	DV																								aw							

- 21 -

TABLE 111 (CONT^{1D})

Laminar Regime: Ra 3000 to 10⁵

ŵ

Log NU.	5366 5752 5403	2406 2015 2015 2015 2015 2015 2015 2015 2015
Loe A/D ²	2.4133	2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
Log PR	- 1512 - 1580 - 1625	
Log RA	4 _e 6580 4 _e 9345 4 _e 9058	3. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5
2	3,44 3,76 3,47	
A/02	259 <b>.</b> 134 <b>.</b> 134 <b>.</b>	32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 32290 3200 320
PR	• 706 • 695 • 688	00000000000000000000000000000000000000
RA	45500 86000 80500	3510 3510 3430 5330 5330 53310 53310 53390 53390 53390 53390 53390 53390 53390 53390 53390 53390 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 55200 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 552000 5520000 552000 552000 5520000 5520000 55200000000
FLUID	AIR	WATER
Source	MR	ŝ

- 22 -

TABLE III (CONTID)

LAMINAR REGIME: RA 3000 TO 10⁵

Source	FLUID	RA	PR	A/D ²	Nu	LOG RA	Log PR	Log A/D2	Loe Nu.
S	HEPTANE	3210 3230 3830	6 6 6 7 7 7 7 7 7 6 6 7 7 7 7 7 7 7 7 7	14570 14570 14570	1.661 1.60	3 5005 3 5005 3 5002 3 5005 3 5005 2 5005 3 5005 5005	• 7945 • 7945 • 7952	4,1635 4,1635 4,1635	2068 2380
		4470	6.23	14570	85	3.6503	°7945	4.1635	. 2601
		6040	6 ° 26	14570	26.1	3.7810	• 7966	4. 1635	2945
		9460	6°28	14570	202	3,9759	1980	4.1635	• 3444
		14800	6 8 8	14570	2,38	4.1703	0167	4.1035	00/2°
		23500	6°22	3290	2.52	4.3711	°7938	3.5172	\$4014
		29400	6 °23	3290	2°66	4°4684	°7945	3.5172	•4249
		35900	6°23	3290	2 <b>.</b> 84	4.5551	• 7945	3 <b>.</b> 5172	•4533
		50400	6°50	3290	3°23	4°7024	。7924	3 <b>.</b> 5172	\$5092 \$
		83700	6°26	3290	3°70	4°9227	°1966	3 <b>.</b> 5172	•5682
SS	SILICONE OIL								
)	AK3	3360	35°8	13600	1°73	3°5263	1 5539	4.1342	•2380
		6140	35°2	3290	2°21	3.7882	1 • 5465	3.5172	。3444
		8020	35°7	3290	2°30	3 <b>°</b> 9042	1.5527	3.5172	• 3617
		9750	35 ° 8	3290	2.41	3 <b>°</b> 9890	1 5539	3 <b>.</b> 5172	• 3820
		19500	35°4	3290	2°89	4°2900	1.5490	3.5172	<b>4609</b>
		28200	35°2	3290	ິລ <b>ູ</b> ∦ ຍ	4.4502	1 • 5453	3 <b>.</b> 5172	•4983
		31300	35,5	1224	3 <b>°</b> 15	4°4955	I • 5502	3 <b>°</b> 0878	•4983
		49600	35°7	1224	3 <b>°</b> 57	4 <b>6</b> 955	1.5527	3 <b>°</b> 0878	•5527
		00686	35°2	1224	<b>4°</b> 39	4 <b>。</b> 9727	<b>1</b> 5465	3°0878	.6425
С. С.	SEFCONF OF						×		
)	AK 350	3200	2630 e	628	1.60	3 <b>.</b> 5052	3.4200	2.7980	• 2041
	ĸ	5160	2580°	628	2°00	3 <b>°</b> 7126	3.4116	2. 7980	.3010
		4500	3650°	306	1 <b>.</b> 96	3,6532	3 <b>.</b> 5623	2 <b>.</b> 4857	•2923
		6490	3560 _°	306	2°53	3 <b>°</b> 8122	3.5514	2.4857	• 3483
		9140	3400°	306	2.45	3 <b>.</b> 9610	3 <b>.</b> 5315	2.4857	• 3892
		7310	3080°	181 6	2° 35	3 <b>,</b> 8639	3 <b>.</b> 4886	2。2591	•3711
		12100	3050 °	181 6	2 <b>.</b> 63	4 <b>0</b> 828	3 <b>。</b> 4843	2 <b>°</b> 2591	•4200
		17000	3060 °	181 6	2° 95	4°2304	3 <b>.</b> 4857	2。2591	•4698
		22800	3120°	181 <b>°</b> 6	3 <b>° 1</b> 5	4 3579	3 4942	2.2591	• 4983
		29200	3050.	181 <b>6</b>	3°39	4°4654	3 <b>.</b> 4843	2°2591	\$530Z

- 23 -

(CONT ^t D)
TABLE

LAMINAR REGIME: RA 3000 TO 10⁵

SOURCE	FLUID	RA	PR	A/0 ²	Ne	LOG RA	Log Pr	Log A/D ²	Log Nu.
SS	ETHYL ENE -								
	GLYCOL	3940	1260	3290	1 03	3 <i>°</i> 5955	2.1004	3 <b>.</b> 5172	<b>~</b> 2648
		3183	52°2	3290	1 68	3 <b>6</b> 5024	1.7202	3 <b>.</b> 5172	<b>2253</b>
		4460	53°5	3290	1,94	3 <b>6</b> 593	1 °7284	3,5172	<b>2</b> 878
		7960	53°0	3290	2°28	3° 9009	I.7243	3.5172	<b>3579</b>
		4080	136.	1224	1 86	3,6107	2.1335	3.0878	2695
		4590	133 <b>°</b>	1224	2 <b>°03</b>	3,6618	2。1238	3,0878	<b>3075</b>
		6620	120.	1224	2°24	3,8209	2 <b>.</b> 0792	3 <b>0878</b>	<b>3502</b>
		12100	54 <b>°</b> 0	3290	2 <b>.</b> 61	4.0828	1.7324	3.5172	•4166
		13000	134.	1224	2¢65	4.139	2.1271	3.0878	•4232
		21500	ە تى ا	306	3°05	4 • 3324	2 <b>°1</b> 238	2,4857	.4843
		29600	130	306	3 <b>°</b> 28	4 4713	2°1139	2.4857	•5159
		43300	l 3.4 ₀	306	3 <b>°</b> 64	4 6365	2 <b>。</b> 1271	2 ₆ 4857	<b>5611</b>
		80600	132.	306	4 <b>°</b> 23	4,9063	2,1206	2.4857	•6263

e
Δ
<b>0</b> 22
þ
~
(Co
TABLE

INITIAL REGIME: RA 1600 TO RA 3000

Loe Nu.	053 I	0086 0170 0253 0374 0682 0682 0682 0582 1903 1903	00413 0253 0414 0864 1173 0414 1973 19173 1847	• 1673	•0212 •0645 •1399
Log A/D ²	3 <b>.</b> 4048	4 6 6 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8	3。5172 3。5172 3。0878 3。0878	4 <b>e</b> 1635	4 e 1 342 n
Log Pr	🔹 , 1555	6639 66400 66440 664400 6100 6100 6100 100 100 100 100 100 10	2.1238 2.1238 2.139 2.139 2.139 2.1399 2.1399 2.1399 2.1399	• 7931 • 7945	1。5514 1。5527 1。5563
Log RA	3.2014	3,2122 3,2122 3,2118 3,2118 3,2218 3,2202 3,2202 3,2202 3,2202 3,2202 3,2202 3,2202 3,2202 3,2202 3,2202 3,2202 3,2218 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,2122 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,22123 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2223 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2233 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,2333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,23333 3,233333 3,23333 3,23333 3,23333 3,23333 3,233333 3,233333 3,233333 3,233333 3,233333 3,233333 3,233333 3,2333333 3,2333333 3,233333333	3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°2502 3°	3°3502 3°4346	3 _* 2380 3*2923 3*3766
2	(*) ***	0000-000000 0000-000000 0400-40-000		1。29 1•47	8002 9002 9002
A/02	2540	14570 8570 3290 \$	の 2011年、1月、1月、1月、1月、1月、1月、1月、1月、1月、1日、1日、1日、1日、1日、1日、1日、1日、1日、1日、1日、1日、1日、	14570 #	13600 11
Ря	669°	4444440404 ****************************	000 000 000 000 000 000 000 000	6°21 6°23	35° 35° 33° 33° 33° 33°
RA	1590	1630 1870 1870 2230 2650 2650 2650	1680 1900 2180 2240 2670 2670 2480 2780	2240 2720	1730 1960 2380
FLUGO	ABR	WATER	ETHYLENE GLYCOL	HEPTANE	SILICONE OIL AK3
Source	۵۷	လ			

- 25 =

Source	FLUID	RA	PR	A/0 ²	Ne	Loe RA	Loe PR	Loa A/D ²	LOG NU.
SS	SILICONE OIL					10			
	AK 350	1880	3660	628°	60°1	3.2742	3,5635	2 <b>°</b> 7980	•0374
	<i>,</i>	2170	3640 。	<b>1</b> 20 Ø40	1°26	3 <b>6</b> 3365	3,5611	<del>Çin</del> k	• 1004
		2680	3520°		-49 -	3.4281	3 <b>°</b> 5465	480 (	•1732
		1760	2630°	\$\$ *	66°	3°2455	3 <b>.</b> 4200	چې	0000
		2460	2630°	<b>1</b>	[°3]	3°3909	3 <b>.</b> 4200	2004 2004 - 2	61173
		1890	3640°	306.	60°1	3 <b>。</b> 2765	3.5611	2.4857	▲0374
		2910	3670 <b>。</b>	840 445	I 59	3°4639	3•5647		• 2014

INITIAL REGIME: RA 1600 TO RA 3000

TABLE III (CONT^{CD})

	Constant	Log A		≈2₅624 ∞2₅675 ∞2₊498	- 27	∎ ∎ 656 ∎ 524 559		•1.260 •1.050 •1.10		TV DC	
	or Con S	e B	•	¢ 008		• 006 • 006		•012		TO RES 11	
	ERROR ESSION	B2		•003 •004		.002		• 004 • 004		e no i ss	
	STD. Regri	<u> </u>		•042 •040 •032		•000 •007		*017 •007 •007		REGRE	
	FFICIENTS	ස		0°		€***024 €***022		• 024		E ENTERING	
	SSION COE	B	= 32)	010°	= 107	° 008	V = 66)	0 8 0 8 0 8 0 -	s long	VARIABL	GIME.
	REGRE	<b>a</b>	ME (N	9000 9000 9000	IE (N	• 256 • 245	IME (P	• 3168 • 3168 • 322	REGRES	DUE TO	EACH RE
TABLE V	EX AT ENTRY		TIAL REGI	376 °7 6 ° 1	VAR REGIM	16 97 98 98 98 98 98 98 98 98 98 98 98 98 98	JLENT REG	411•0 373.0 4.1	- NU FROM	CE IN NU	NATA) IN
• •	ŝ		INI	•0659 •0182 •0137 •0137	LAMI	•1219 •0302 •0281 •0270	TURBU	• 3913 • 1447 • 0554 • 0541	TIMATE OF	NG VARIAN	ATIONS (D
	MULTIPLE Correlation Coefficient			•9624 •9690 •9803		9691 9736 9738		•9320 •9320 •9920 •9908	) _e Error of Es	'JO OF REMAINI Mances	IBER OF OBSERV.
	VAR I ABLE ENTER I NG REGRESSION			RA Pr B2		RA PR		RA Pr A/02	S _Y = ST0	Fx == RA1 VAR	N = NUN
	STEP			0-00		0 <b>-</b> N M		0-00			

■ NUMBER OF OBSERVATIONS (DATA) IN EACH REGIME.

# TABLE VI

# COEFFICIENTS OF MULTIPLE CORRELATION AND DETERMINATION

Regime	STEP	Variable Entering	COEF. OF Mult.Correl.	COEF. OF Mult. Determ. %	% due to Entering Variable
INITIAL	123	RA Pr A/d2 Residual	₀9624 ₀9690 ₀9803	92.6 93.9 96.1 3.9	92±6 1.3 2.2 3±9
LAMINAR	<b>1</b> 2 3	RA A/D ² Pr Residual	•9691 •9736 •9758	93 <b>•9</b> 94 <b>•</b> 8 95•2 4•8	93•9 0•9 0•4 4•8
Turbulent	1 2 3	Ra Pr A/d2 Residual	9302 9902 9908	86.3 98.0 98.2 1.8	86.3 11.7 0.2 1.8







6	3	\$.'	1,5	ž	2	.s :	3	2	\$	5 (	3 Ì	7 8	3 1	2 1	
			114	:::[		1.					ŢŦ			1	9
<u>.</u>		Line i				· · · ·	(*: 14	-1						井	8
					l.		.::: 			199					7
27 18 		334		日							斑				6
			Ħŧ								- T			1	-
H	Т.r			alt	HT.	$\frac{1}{2}$	<u>in</u>		$\Pi^{\Pi^{\Omega}}$		ir.	ЧЩ.		ų,	5
1111				- +		-				filli.		14	2		-4
	- 1°		4		i li r		±Π			44					
	-		封	- Andrews		-		- 4		<b>F</b> .,,					.3
		-			می این ایس ایک				द्वानेत <u>ः</u>			ere i		av21	Ű
18			فليتجعب	FFT						فقيلموعد				بتعليم	.2.5
	, est		-	hat	177 . 	t t	34-33	للندوي ( ۲۰۰۱			موجد				- -
11.		and the second second	Ţ		مفصليهم							-		Si. Si. T+ S	
ĦT.	194.		ni and chin	agen		ليبهط	Ϋ́,	-444 -+++	11.000 P		аг. 	• <del>•</del> • • •			
1.000 1.000	Ļ	1 . 1	The	-	T. I	مند الم الإسرار		****	1	+++	•11			 	1.5
	- Ìr	-		للمنوار	to and		4-1 pri	+••• 		•••		( العرب الم المعالم الم	• • • •	•••	
2 arrest	X	100 m	and allow				• •		441 AV		4444	4 i - i -	÷- , i		
Ja	i ii				1Ħ		<u>i n</u>			田			5		1
						1			1,-11,1				ЪЦ		9
1.11	1											<u>.</u>	ii.		7
1	• 1				i Fi							:i	5	1)	ä
	1.11 1.12		11	11		:::;			<u>н</u> шт:			::[[	<u>тп</u>		Ŭ
TT.			T F	$\square$	<u>T</u>		14	-11- -11-							5
111	i Hi					-1 j i	ΠÌ	Į							
		11	-				litt								4
														±ц	
1			T.				÷.				<b>F</b> 11				З
 					++								·		2.5
						***	11			<b>L</b> ::					
			T	===				11			1.1.				2
r.	- 14	,		i+¦+ ;+	1 - 1 + 1 + 1	يىتى قەم مۇلغا تە		2 2				***: ***:	.uj	<u></u> ;	
-	- 4 1	·····	+++		+	-++   • •	• .1.	 •			++++ +++	***** ****	•••••	,	1.5
<b>e</b> r	16		4		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	• • • • •	1	 _i,	4	11.44	*****	•••••		••••••	
1		s. s	111	co	ne l	ot.	ا ا		ներ են հրդեն հետերուն		• • • •		• • • • •		
1	ĨŤ		1	5	4			<u>I</u>							1
1		S₀ S	111	co	ne i	10					41 -			L.T	9
	1	c	8.2.2			A.			- 4						7
	<b>819</b> .	<b>3</b> 80 <b>4</b>		,cu	1957 .	V.L.	1				1111 121	1			
S	I	lico	ne	01	L			: : : : :		,		4			0
				Hit											5
56		5111	COD		)11		Ξ`I				1.11			F	
1.	a 🕶	o c1	ven	1											4
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						1						
UT	y				E F							11.			Э
		+ + ÷ ÷	+++-			+[							. 1 1 		2.5
1	••••	· · · ·	· † ·		민민		11 1							1.1	
1.1			: 1.			• • • •			·			 , ,	 		2
			, [ ]				· • 1 • •	•			<u>1</u> 1	•			
•••				• • • • •	è						• • • • •				1.5
. 1	5	7						-	·• [···						
	U			,	• • • •										
Ę	i	1	15	2	2.	5 3	! 3	ا ـــــــ 1ء	نئ <u>۔</u> ۔۔۔۔ ۱	5 e	<u> </u> 3 <del>7</del>	l 7 E		لـــــا ۱ و	١



3		X	.5		2	2	5	3	2	4	5 (	\$	78	9 ' I	9	1
			1	î es	117	9° †	777	ai ;	ΠŢ		<u> </u>	M.	I.F	14	E.	
ê dirê Latinu		÷÷	ŧŢ		÷	2 -			67	P.P.	H.	ЩĽ,				8
	Į.				1.						L'HE			in i	ĥ.	-,
- 11-			1	91	115	i h	137	E:	1.11		HEI	EŦ	ΠĽ.		i ari	ŀ .
			Ē	- scurißs	Ħ	÷		₽÷÷				E P			h.	6
					$\mathbf{h}$						HT				0	5
	1	1		11	Ħ	Į.										-
	<u> </u>		<u> </u>			3	m						Line	, Pie		4
	8 1. J., L.	: 1	and the	147				1			a second		÷		1000	-
-	and a start and		f.		and the second	-						مسيعين				
		فبتسحط	-		H iste	المعالية	[int		Шţ		Contraction of the second			and the		ГЗ
			1		1					<u></u>		-		•		2.5
عربعتون	en parte		T		المعمل ا		1		1.1.9.950	فتطلبهمون	D:T	1	aere	a faire and	Γ.	
			hair		1+	+	-	الجلوطيني	<u> </u>	····	المتنقص				-	2
لعظم	فللمستعطية		•		-			للمعصد	and the		1.3.45	1. S.	100 AN			
	د وفير -	Alisingua	and and		1	مؤتق	and the second	F		a ja serend	and the second	4			.12	1 =
was a	- 1 - 1		1 cm	للمموعد	1		الوز	14								
لبعيي	فتعيفنان ملج	din			Se	¢.	T.		1 1					- 44 A - 14		
_	• • •	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	-	1. 1	1.	÷	+-+-+		: • · · ·	Hipup	,		,	• • • •		
201	1- <u>11</u>			Ħ	$\ddagger$	ŧ	Hit	titi	thi	संस्थित	H	1. 1.1.1.				1
			÷+	ΗŤ	甘	ħ		悑	Γπ'		$H^{+}$			ΞŢ.	: : ::.	9
		1	t÷		Ħ	H					甘甘					8
	<u>;                                     </u>		†÷		$\overline{\Pi}$		E.					i ti				7
	<u> </u>	<u>.</u>	4.1	<u>.</u>	44							ųЕ		<u>111.</u>		6
								i i i i						: 		
		11	T	111	Ħ	Ħ	HI	ĦÆ					TH:	1.	111	5
1	; <del>;</del> 4. :	121-			TT		TEI								h	
					打	1						H.	.1,1	Ιŗ		4
		-	1		臣				1		: IFF					
		<u>.</u>	-	111		÷÷								<u></u>		.3
		÷÷	1:	315		1	ht:					<u>.</u>				0.00
	• • •	Ţ:	Į Į		Ēī				171,							2.5
		: :	1	:::			****		1			•••••				
			1.			1. ý 1. ý					::::					2
	•••	: :	i ·	÷ ÷		Tİ.	<b></b>		•••			111		•••	4 	
•	· ·	· · · · ·	1	14 111	+ • •	<u>†</u> -			• • • • •				، میں ا ا	• • • • •	11 	1.5
		1 1	3 -	• +	·	ł÷	h., .			••••				• •		
	•			4 • ` 1		: * :	 			•;		••••			••••	
	t		i	+ + + + +	+	<del></del>			<del></del>	m		<del>414</del> 1				1
		+	++		14											9
			+	i i i	+++	H			1			<u>.</u>	111	<u></u>	11) 111	8
		<u>.</u>				-				<u></u>						7
												• • •			- 11	ß
		: :	ļ,	7 2 4 1 - 1 1						1.1.7					••••	Ų
	÷	÷	1	-	Hit	i	h		 111	ni di li						5
		÷	1		団								• • •	H.		
	÷	11		Ħ	Ħ		Hiti	1-1-5			hi i	<del>.</del>		1		4
			ŧŦ				H		i -				- 111			
_	·		1 1		14.	ţ.						::::		<u></u>		Э
		$\frac{7}{1}$	Į į	14												-
			<u> </u>	 			E T						· · · · ·		••••	2.5
· · ·	:.? t + '		1										· · · ·			
	• •		1		1.					• • •	11.5	1	- 1 1			2
	•	: '	Į	•••									• ••		<u>+-</u> -	
	: ·	. daa	į		1						H				μų,	1.5
7	· ·	• • •	•	ĻĻ	Ľ.		4-4 • ·		· • · ·					A	•11	
ſ.,	• ·	•	•		11	÷	• 55			••••	4 • • •	· • • •	1	24		
	1	• •		• • •		• • •						1			• • • • •	
		1.	5		2	2	5 3	3	4		5 e	3	7 6	3 5	ə 1	1



1	Q	â			1.5	i	2	2	.5	9		1		5	8	7	6	ø	۱,
	<u> </u>	1		•	- 1							Ę.,			ļ		ľ,	<u> </u>	6
					1		1	11	1	l ii	1						1.1		6
	L.		ş*				Ĩ		1.1	<b>!</b> : · .		1.1					ļ.,		
11.	11	T			Ţ		Ħ	۱. ب	<b>P</b> -1					L F		1.1		ļi i	
	÷÷	T					Ŧ			<del>أنار</del>				1	1:11	1. Juli	1	-	5
			ţ										4	-	H-1	F .:		,	R
111							Ŧ		Π		14	ere!	Ť		1			hi	
ł	12		and		4				-									1 ¹²	
		ľ			+		-	معمد مريم الم				1			E	1	T to		
		1	1	-		1	T		HT							Fii.	132	1	
-	1.T.	ł			+		+	<u>1127</u>		1			13					<u> </u>	3
		-	1		40		Ø				· · · ·	1						1	125
		1		. (			1							<b>1</b>				1	
1			•	ېنې د دې ۱۹۰۹ کې					1.1.		•••				Ш.	1.	<b>.</b>		1
		ŀ							1.						1		[]		
	-	ł		•				• • • •				,	•						
• •		1.	• ••	• • • • •	-		+		4				- 44					<b>.</b> .	1.5
	1	1	Ì					• • • • •	7 • · · ·		4.4		H		1	· · · ·			
	-	ł			1	1			••••	<u> </u>	•••		( <b>1</b> .)		1.11	ļ			
•				•	• • •		•	••••	r+++1	4	•••	• • • • • • • •	*	: .				1	1
1			Ť			1								44.				an.	
ŀ			1										ШĘ.	13	1	<u>E.</u>			
:			1						<b>!</b>		leri		Ť.	etti	即			31	
			1				T								h.				7
	-	+-	:				+					1		<b></b> -					6
.;			:		1			. : : :	1										
H			∓. ÷-										r i						5
1									(1)			15.j			-				
÷	Er							÷÷											4
	E:	1	1			1		n F			1	11.							
-	ł	4-	÷					++++	+										з
			7		+										111				25
	<b>E</b> .,				Π.		T												2.0
	1		ś.		÷			-					1 4	; !	144 • •••				_
	S	L	13	rco	TL(		71	L		••••				:.::		· · · ·	••••		2
	c		1.		1		.   . . #	1	. :		• • • •	••••  ;;					• • • •	4 4 ² - 4	
•	D	+	4.1	LCO	129	5. L	7	4	•					÷	+ ,-				1.5
••	e		1	taa	he	. 7		1			•••			* • • •		•••			
	1	-	44	669	420	2, 1	-	<b>.</b>	i			••••	••••	• • • ;	• • • •			••	
_					1				: 					.1.1.					
			-									: : :		, i i i i		1.11			1
¢	O	h	e	01	1			+	ļ										و م
	2		ľ						li,::		ij.:			::		ΞĿ:			- -
1			-			1					-				Hil				/
		t	÷		+														6
			:		Į.						,T11	:::.						; ;	
ļ			ţ.			1			L.L.		Ξü		Ľ.				1 1 1 1		0
		1				::						<u>ц</u> :							
	- <u></u>	1	į															Ъ.	-4
Ę								1						1					
-	li -	t ·	:		Ŧ						-	詽	핅	1		1			Э
			:	: : :	4			11.		<u></u>	1.,			· · · · · · · · · · · · · · · · · · ·					2.5
					1:												• - • • • • • • • •		
		-					1							++++		4.,1			3
						+ • •	;   ;	• •		 	,		•••• ••••	-4 - 1-6 					<i>K</i> .
••							1		***	· · · ·				· · ·	ه ک. ۲۰۰	، د د د د د ب د م		•	
• •		ł	8	· · · ·	1.			دید د. از د د			 •					 سد	d		1.5
	1	ρ	-					· · •		$\dot{m}$		•	:]	••••		1(	)^	.,	
			•			••••		111		***** :::::	*	• ∳• }∳ ∴	;;;]	 					
	1	1			L			. ,				1							1
ç	a -	1		1	. 55		2	2	F5 7	۹.	1		6	5 6	5 -	7 5	3	3 1	

.

### APPEND IX I

DIMENSIONAL ANALYSIS OF HEATYBY CONDUCTION AND CONVECTION ACROSS A HORIZONTAL FLUID LAYER, BOUNDED BY INFINITE, RIGID, CONDUCTING SURFACES AND HEATED FROM BELOW.

ASSUMPTION:

IF THERE IS NO CONVECTION, HEAT WILL BE TRANSFERRED ONLY BY CONDUCTION AND THE HEAT TRANSFER RATE PER UNIT AREA CAN BE EXPRESSED BY  $H_{C} = KT/L$ .

At steady-state conditions where heat is being transferred by both conduction and convection the net heat transfer rate per unit area,  $H_{\rm CC}$ , will be larger than  $H_{\rm C}$  so that

 $H_{CC} = H_{CC} = A$  function of  $T_{pL}$ , and the fluid constants.  $H_{C} = \frac{H_{CC}}{K_{ST}/L}$ 

THE FOLLOWING WILL BE THE BASIC UNITS:

TIME	<del>د</del> فته	Т	LENGTH	<b>6</b> 333	L	HEAT	QUANTITY	83	Q
Mass	<b>6</b> 13	М	TEMPERATURE	6×8	т				

THEREFORE THE PHYSICAL CONSTANTS AND VARIABLES WILL HAVE THE FOLLOWING MEASURE FORMULAE:

к		THERMAL CONDUCTIVITY	Q/TLT
T		TEMPERATURE DIFFERENCE	T
D	Chang. Kiliogr	DENSITY	M/L ³
М	and the second s	DYNAMIC VISCOSITY	M/LT
с	1	Specific heat (at constant pressure)	Q/TM
A	ejadajja; Hinakija	COEFFICIENT OF THERMAL EXPANSION	¹ /τ
G	-	ACCELERATION DUE TO GRAVITY	$L/T^2$
(AGT)		FORCE OF BUDYANCY PER UNIT MASS	$L/T^2$

(AGT) REPRESENTS THE BUOYANCY FORCE IN THE FLUID UNDER THE INFLUENCE OF A TEMPERATURE-INDUCED DENSITY GRADIENT AND IT IS CONVENIENT TO TREAT IT AS AN ENTITY HAVING THE UNITS  $L/T^2$ .

IF WE POSTULATE THAT

 $H_{CC} = F \text{ of } (D^A, L^B, M^O, K^D, C^E, (AGT)^F)$ THEN THE EXPRESSION IN PARENTHESES MUST BE DIMENSIONLESS, THAT **TS**  $Q^O T^O M^O L^O T^O (M/L3)^A (L)^B (M/LT)^O (Q/TLT)^D (Q/TM)^E (L/T2)^F$ 

THEREFORE, EQUATING THE SUM OF THE EXPONENTS OF INDIVIDUAL DIMENSIONS ON THE RIGHT TO ZERO, WE OBTAIN THE FOLLOWING INDIGIAL EQUATIONS:

 D + E = 0

 M 3A + B = C = D + F = 0
 M 0 = 2F = 0
 A + C = E = 0

RETAINING E AND F WE CAN EXPRESS THE REMAINING INDICES AS

A	<b>M</b>	2 <b>f</b>	C	 E =	2F
в	11	Эг	D	æ£	

THEREFORE

4

$$H_{cc} = F \text{ of } \left(\frac{AGTL^{3}D^{2}}{M^{2}}\right)^{F} \left(\frac{MC}{K}\right)^{E}$$

OR NU = F OF  $(@_R)^F (P_R)^E$ 

#### APPENDIX 11

For gases, the thermal coefficient of expansion is equal to  $1/T_0$ , where  $T_0$  = mean absolute temperature.

Consider a confined horizontal layer of gas, at atmospheric pressure, across which a temperature gradient  $T_2 = T_1$  has been applied.

 $T_2$  = ABSOLUTE TEMPERATURE OF THE HOT SURFACE  $T_1 =$ ^N N N COLD SURFACE  $T_0$  = MEAN ABSOLUTE TEMPERATURE = COEFFICIENT OF THERMAL EXPANSION  $T = T_2 = T_0 = T_0 = T_1 = (T_2 = T_1)/2$ 

ASSUMING CONSTANT PRESSURE THROUGH THE LAYER AND VALIDITY OF THE PERFECT GAS LAW, THEN

 $V_{1} = V_{0} (1 + \beta \tau) \qquad V_{2} = V_{0} (1 = \beta \tau)$   $V_{1} = \frac{N R T_{1}}{P} \qquad V_{2} = \frac{N R T_{2}}{P}$   $V_{2} = V_{1} = \frac{NR}{P} (T_{2} = T_{1}) = \frac{V_{0}}{T_{0}} (T_{2} = T_{1})$   $V_{2} = V_{1} = V_{0} (1 + \beta \tau) = V_{0} (1 = \beta \tau) = V_{0} (2\beta \tau) = V_{0} \beta (T_{2} = T_{1})$   $THEREFORE \qquad V_{0} \beta (T_{2} = T_{1}) = \frac{V_{0}}{T_{0}} (T_{2} = T_{1})$   $\beta = \frac{1}{T_{0}}$ 

# **~** 32 **~**

# APPENDIX 11 (CONT'D)

The expression  $V = V_0$   $(1 + \beta \tau)$  is based on the assumption that  $\beta$  is a constant. This is valid only over small increments of temperature. Taking  $\beta$  at the mean temperature instead of T₁ or T₂ is more accurate because it reduces the interval over which is assumed constant, and because errors tend to cancel out.

## APPENDIX 111

# CORRECTION OF THE DATA OF MULL AND REIHER (5)

THE DATA OF BOTH MULL AND REIHER (5) AND DE GRAAF AND VAN DER HELD (COMMUNICATION FROM THE AUTHORS) CONTAINS TABULATIONS OF THE FOLLOWING QUANTITIES: (ALL DATA FOR AIR)

GRASHOF NC. AND NUSSELT No.;

THERMAL CONDUCTIVITY OF AIR AT DIFFERENT TEMPERATURES;

T1 AND T2, THE TEMPERATURE GRADIENT ACROSS THE LAYER;

L, THE LAYER THICKNESS.

De GRAAF AND VAN DER Held have shown by recalculation of Mull and Reiher's data (I3) that these authors used 1/273 as the coefficient of thermal expansion for air and that they used different values for the constants in Gr and Nu. A more accurate value for the expansion coefficient is 1/Tavg (see Appendix II) where Tavg is the mean absolute temperature in the layer.

In order to put all the Air data on the same basis, the data of Mull and Reiher was recalculated using 1/Tavg and the constants (thermal conductivity, density, and viscosity) of De Graaf and Van Der Held, since their work was much more recent than that of Mull and Reihers

THE CORRECTIONS WERE MADE AS FOLLOWS:

#### NUSSELT NO.

$$NU = \frac{H}{KT/L}$$
 where  $H =$  measured rate of heat transfer  
per unit area due to convection  
and conduction

🖷 34 🛥

# APPENDIX 111 (CONT'D)

K = THERMAL CONDUCTIVITY

T = TEMPERATURE DIFFERENCE

ACROSS THE LAYER

L = LAYER THICKNESS

Fig. 2 shows the thermal conductivities vs temperature used by both Mull and Reiher and De Graaf and Van Der Held. The curves are plotted from tabulations in the respective author's data. Correction was made as follows:

> Corrected Nu = Original Nu x K of Mull and Reiher K of De Graaf & Van Der Held

> $\frac{\text{Grashof No}}{\text{Gr}} = \frac{\beta \text{G} \text{T} \text{L}^3 \text{C}^2}{\mu^2} \qquad \text{where } \beta = \text{Thermal coefficient of expansion}$  G = Gravitational constant

T = TEMPERATURE DIFFERENCE

ACROSS THE LAYER

- L = LAYER THICKNESS
- P = DENSITY

$$\mathcal{M} = VISCOSITY$$

TAVE = MEAN ABSOLUTE TEMPERATURE

CORRECTION WAS MADE AS FOLLOWS:

GR OF DE GRAAF AND VAN DER HELD = 
$$\frac{\beta_G \rho^2}{\mu^2} = Z$$

Z was plotted against Tavg. Then, for each observation of Mull and Reiher, Z was taken from the curve at the appropriate Tavg and  $TL^3$  of Mull and Reiher x Z = Corrected Gr

- 35 -

#### APPENDIX IV

## STEPWISE MULTIPLE LINEAR REGRESSION

References: 25, 26, 27, 28, 29

#### MULTIPLE LINEAR REGRESSION

MULTIPLE LINEAR REGRESSION BY THE METHOD OF LEAST SQUARES CONSISTS OF FINDING THE CONSTANT AND COEFF®CIENTS OF AN EQUATION OF THE FORM

$$Y = A + B_1 X_1 + B_2 X_2 + B_3 X_3$$

where Y = predicted value of the dependent variable

Y = MEASURED VALUE " " " "

X = ARBITRARY VALUES OF THE INDEPENDENT VARIABLES

X = MEASURED VALUES "" " " " "

A = CONSTANT = Y INTERCEPT

B = COEFFICIENTS OF THE INDEPENDENT VARIABLES

 $\overline{Y}$  = average of measured dependent variable

X = AVERAGE OF MEASURED INDEPENDENT VARIABLE

S = STANDARD DEVIATION

 $v = variance = s^2$ 

N = NUMBER OF OBSERVATIONS OR PIECES OF DATA

SO THAT THE SUM OF SQUARES OF THE DEVIATIONS (Y 🖷 Y) IS A MINIMUMO

FOR THE CASE OF SIMPLE REGRESSION, THE CALCULATION PROCEDURE CAN BE EXPRESSED AS FOLLOWS:

> $(Y_1 \oplus Y_1) = Y_1 \oplus (A^{a} + B \times_1) = Y_1 \oplus A^{a} \oplus B \times_1$  $\geq (Y \oplus Y)^2 = \geq (Y \oplus A^{a} \oplus B \times)^2$

# APPENDIX IV (CONT'D)

To solve for a and B when 
$$Z(Y = Y)^2$$
 is a monomum  

$$\frac{\partial}{\partial A} = Z(Y = A = Bx)^2 = 0$$

$$\frac{\partial}{\partial B} = Z(Y = A = Bx)^2 = 0$$

These equations reduce to the following involving simple summations on  $y_{g} x_{g} x^{2}$ , and xy:

$$= \hat{Z}(\mathbf{x}) + \mathbf{A}\mathbf{N} + \mathbf{B}\hat{Z}(\mathbf{x}) = \mathbf{0}$$
  
=  $\hat{Z}(\mathbf{x}\mathbf{y}) + \mathbf{A}\hat{Z}(\mathbf{x}) + \mathbf{B}\hat{Z}(\mathbf{x}^2) = \mathbf{0}$ 

THE SUMMATION EQUATIONS CAN BE SOLVED SIMULTANEOUSLY FOR A AND B, BUT IN PRACTICE THESE EQUATIONS ARE COMBINED, ELIMINATING A, SOLVED FOR B, AND A IS DETERMINED FROM

$$\overline{Y} = A + B X_{\bullet}$$

IN MULTIPLE REGRESSION, THERE ARE ADDITIONAL EQUATIONS FOR EACH VARIABLE ADDED.

THESE ARE SOLVED SIMULTANEOUSLY FOR B1. B2. B3 .... AND A 15 FOUND FROM

$$\overline{Y} = A + B_1 \overline{X}_1 + B_2 \overline{X}_2 + B_3 \overline{X}_3 \cdots$$

IN STEPWISE PROCEDURE THE SIMULTANEOUS EQUATIONS ARE SOLVED FOR ONE VARIABLE AT A TIME BY MATRIX ALGEBRA, WHICH SIMPLIFIES THE PROCEDURE (25). At each step statistical information is obtained that PERMITS EVALUATION OF THE SIGNIFICANCE OF THE CORRELATING PARAMETERS.

# APPENDIX IV (CONT'D)

#### STANDARD ERROR OF ESTIMATE AND CORRELATION COEFFICIENT

THE BASIC APPROACH OF LINEAR REGRESSION MAY BE DESCRIBED AS FOLLOWS:

IF THERE IS NO CORRELATION BETWEEN THE DEPENDENT AND AN INDEPENDENT VARIABLE, THEN THE BEST ESTIMATE OF Y IS  $\overline{Y}$  AND THE PROBABLE ERROR OF ESTIMATE IS  $S_{Y}$ , THE STANDARD DEVIATION. IF THERE IS CORRELATION BETWEEN Y AND X, THEN THE REGRESSION CAN BE REGARDED AS ACCOUNTING FOR SOME OF THE VARIANCE (EQUAL TO  $S_Y^2$ ) IN Y. THE RESIDUAL VARIANCE WHICH THE REGRESSION DOES NOT ACCOUNT FOR IS REGARDED AS ERROR OR MAY BE DUE TO OTHER PARAMETERS, SUCH AS PR IN THE TURBULENT REGIME.

THE MEASURE OF THE RESIDUAL ERROR VARIANCE IS

 $\frac{(Y \oplus Y)^2}{DF} = V = MEAN SQUARE OF RESIDUALS$  WHERE DF = Degrees of freedom  $= N \oplus NO_{\bullet} OF CONSTANTS IN THE$   $REGRESSION EQUATION_{\bullet}$   $\sqrt{V} = S_{Y}, THE STANDARD DEVIATION OF THE RESIDUALS OR$ STANDARD ERROR OF ESTIMATE.

THEREFORE,

TOTAL VARIANCE IN Y # ERROR VARIANCE = VARIANCE CONTRIBUTION OF X.

IF ALL THE EXPERIMENTAL DATA WERE TO FALL ON THE REGRESSION LINE, THEN ALL OF THE VARIANCE IN Y WOULD BE ACCOUNTED FOR BY THE REGRESSION OF Y UPON X AND THE RATIO

$$\frac{S_{Y}}{S_{X}} = \frac{V_{Y}}{V_{X}} = 1$$

#### - 38 -

## APPENDIX IV (CONT'D)

WHERE SX AND V REFER TO THE Y VARIANCE CONTRIBUTIONS OF X.

 $\frac{S_X}{S_Y}$  is the coefficient of multiple correlation. It will vary between 0 and one depending on the significance of the correlation.

$$\frac{V_{x}}{V_{y}} = \left(\frac{S_{x}}{S_{y}}\right)^{2} = \text{coefficient of multiple determination}$$

IT IS A MORE ACCURATE ESTIMATE OF SIGNIFICANCE, SINCE VARIANCES

#### ERROR OF THE REGRESSION

Assuming that perfect correlation has not been achieved, the coefficients of the regression are subject to uncertainty as measured by the standard error of the coefficients. It can be regarded as the standard deviation of the population of regression lines that can be drawn through individual experimental data and the point  $\overline{x}$ ,  $\overline{y}$  since  $\overline{x}$ ,  $\overline{y}$  must be a point on the regression line. Therefore, the uncertainty in the coefficient will be zero at  $\overline{x}$ ,  $\overline{y}$  (assumed to be near the center of the range of data) and large at either end. That is, the regression line can be visualized as pivoting about  $\overline{x}$ ,  $\overline{y}$  as far as its probable error is concerned. The effect of this property of regressions is to increase the probable error of the regression at the extremes of the range of data and to make extrapolation beyond that range hazardous. Equations for estimating probable error at any point on a regression are given in the references.

# • 39 •

# SYMBOLS

Т	=	ABSOLUTE TEMPERATURE
То	aning Aning	ABSOLUTE MEAN TEMPERATURE OF THE LAYER
T ₁ = T ₂ , T		TEMPERATURE DIFFERENCE
к	8	THERMAL CONDUCTIVITY
м	2000 2000	VISCOSITY
β	60005. 60025	THERMAL COEFFICIENT OF EXPANSION
P	<b>15</b>	DENSITY
L ₉ D	<b>2</b> 22	LAYER THICKNESS
Α		Area
c	1	SPECIFIC HEAT
Q		HEAT QUANTITY
Н	HEADE HEADE	RATE OF HEAT TRANSFER PER UNIT AREA
ν	2	VOLUME
S	-	STANDARD DEVIATION
SY		STANDARD ERROR OF ESTIMATE
SB	73	STANDARD ERROR OF THE COEFFICIENT
В		DOEFFICIENT OF LOGAR THMIC EQUATION AND EXPONENT
		OF POWER LAW EQUATION
Log A	<b>#</b>	CONSTANT OF LOGARITHMIC EQUATION
Nu	<b>7</b> 2	NUSSELT NO.
RA		Rayleigh No. = Gr x Pr
GR	=	Grashof No.
PR		PRANDTL NO.
$A/o^2$	77	RATIO OF AREA TO THICKNESS SQUARED OF EXPERIMENTAL
		APPARATUS

377087

Library

#### **=** 40 👄

#### BIBLIOGRAPHY

- (1) BENARD, H., ANN. CHEM. PHYS., 23, 62 (1901) (REPORTED IN 12, 20)
- (2) LORD RAYLEIGH, PNIL. MAG., 32, 29 (1916)
- (3) JEFFREYS, H., PHIL. MAG., 2, 833 (1926) AND ROYAL Soc. LONDON, PROC. A., 118, 195 (1928)
- (4) Low, A. R., ROYAL SOC. LONDON, PROC. A, 125, 180 (1929)
- (5) Mull, W., AND Reiher, H., Beth. Z. Gesundhetts Ing., Series 1, 28 (1930)
- (6) SCHMIDT, R. J., AND MILVERTON, S. W., ROYAL SOC. LONDON, PROC. A, 152, 586 (1935)
- (7) SCHMIDT, R. J., AND SAUNDERS, O. A., ROYAL SOC. LONDON, PROC. A, 165, 216 (1938)
- (8) CHANDRA, K., ROYAL SOC. LONDON, PROC. A, 164, 231 (1938)
- (9) Pellew, A., and Southwell, R. V., Royal Soc. London, Proc. A, 176, 312 (1940)
- (10) JACOB, M., TRANS. ASME, 68, 189 (1946)
- (11) SUTTON, O. G., ROYAL SOC. LONDON, PROC. A, 204, 297 (1951)
- (12) DE GRAAF, J.G.A., AND VAN DER HELD, E.F.M., APPL. Sci. Res. A, The Hague, 3, 393 (1952)
- (13) DE GRAAF, J.G.A., AND VAN DER HELD, E.F.M., APPLI, Solo Res. A, The Hague, 4, 460 (1954)
- (14) MALKUS, W.V.R., ROYAL SOC. LONDON, PROC. A., 225, 185 (1954)
- (16) BATCHELOR, G. K., QUART. APP. MATH., 12, 209 (1954)
- (17) MALKUS, W. V. R., AND VERONIS, G., J. FLUID MECH., 4, 225 (1958)
- (18) PEARSON, J. R. A., J. FLUID MECH., 4, 489 (1958)
- (19) POOTS, G., QUART. J. OF MECH. AND APP. MATH., PT. 3, 11, 257 (1958)

BIBLIOGRAPHY (CONT'D)

- (20) SCHMIDT, R. J., AND SILVESTON, P. L., 2ND NAT. HT. TRANS. CONF., AICHE - ASME, CHICAGO, PT. 24, (1958)
- (21) GLOBE, S., AND DROPKIN, D., 2ND NAT. HT. TRANS. CONF., AICHE - ASME, CHICAGO, 58-HT-21 (1958)
- (22) "AN INTRODUCTION TO HEAT TRANSFER" BY M. FISHENDEN AND O. A. SAUNDERS Oxford (1950)
- (23) "PHYSICAL SIMILARITY AND DIMENSIONAL ANALYSIS" BY W. J. DUNCAN Edward Arnold & Co., London (1953)
- (24) HILSENRATH, J., ET AL., NAT¹L. BUR. OF STDS. CIRC. 564, 1955 REPORTED IN ^{MP}ROPERTIES OF GASES AND LIQUIDS¹⁰ BY R. C. REID AND T. K. SHERWOOD, MCGRAW HILL, N. Y. (1958)
- (25) "Stepwise Procedure for Calculation of Multiple Regression" By M. A. Efroymson Esso Research and Engineering Co., Linden, N. J. Delivered at Gordon Research Conference on Statistics, August 8-12, 1955
- (26) "ELEMENTARY STATISTICAL ANALYSIS" BY S. S. WILKS PRINCETON UNIV. PRESS, PRINCETON, N. J. (1948)
- (27) "METHODS OF STATISTICAL ANALYSIS" BY C. H. GOULDEN JOHN WILEY & SONS. N. Y. (1939)
- (28) "STATISTICAL METHODS IN RESEARCH AND PRODUCTION" BY O. L. DAVIES, OLIVER AND BOYD, LONGON (1949)
- (29) "Methods of Correlation Analysis" by M. Ezekiel, John Wiley and Sons, N. Y. (1941)