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SYMBOLS AND NOTAT IONS

4rea of Sectilon

Area of web of wide-flapga section

Area of flange of wide-flange sectien
Depth of wide~flange section

Modulus of Elasticity

Unit strain

Moment of inertisa

Moment

Plagtic Moment

Modified plastic moment due to axial load
Modified plastic mement due to shear
Moment producing yield stress

4dxial load

Axial load producing yield stress
Section modulus

Unit stress

Yield stress

Angle of curvature

dngle of curvature corresponding to ylield stress
Shear

Shear producing yield stress

Thickness of web in wide-flange section
Plastic Modulus



CHAPTER I

LINTRODUCT TON

The fundamental purpose of this thesis is to employ the
plastic theory in the design of a hypothetical steel sheet pile cof-
ferdam, Prior to undertaking this work, the author had had no prev-
ious experience with the plastic theory. Therefore, a portion of
this thesis is devoted to the development of the fundamentals neces-
sary for the actual design compubations.

The theory of plastic analysis has been used as far back
as the 1920's in Hungary for the structural desigh of apartment
buildings.l It is, however, only in recent years that the theory
has been utilized to a significant degree in this country. Much
progress has been made by J. F. Baker at Cambridge University,
England and recently Lehigh University has been conducting many

large scale tests of structural members and frames.l

It is primar-
ily through these endeavors that the use of the plastic theory is
being stimulated in the United States,

Very little work has been done to date in the application
of the plastic theory to structures subjected to soil pressures. It

seems, however, that structures such as designed in this thesis are

ideally suited to be designed by the plastic theory.

1 Lyon S. Beedle, Plastic Strength of Steel Frames,
A.3.C.E, Paper 764, August, 1955, p. 1.



The temporary nature of a cofferdam justifies the concept
of deslghing for an ultimate load——deflections not being a considera-
tion. Since the soil pressures are assumed to be triangular, there
is very little possibility that the pressures would be greater than
those assumed. It is, therefore, logical to design for the ultimate
capacity of the structure, Nevertheless, a load factor is used to
insure additional asafety.

A solution to the problem of sheet pile penetration is
presented in this thesis. As far as it is known, this is a new
solution to the problem and would seem to be a significant contri-
bution to the application of the plastiec theory.



CHAPTER II

BASIC PRINCTIPLES

The fundamental difference between elastic and plastic
design is the portion of the stress-strain curve with which the
designer is working. In elastic design, only that portion below
the yield point is considered, while in plastic design the entire
curve may be utilized in localized areas. The structure is accord-
ingly designed for its ultimate strength., This does not, however,
mean a less safe structure. A4 factor to account for uncertainties
is applied to the loads so that under these loads, the stresses will

not be excessive.

Registance of Sections

4s in the elastic theory, the basic equations of equi-
librium must be satisfied. It is, therefore, necessary to determine
the resistance of a section after that section has besn stressed

beyond the elastic limit.

Noment

It is convenient to assume that the stress-strain curve
is horizontal beyond the yield point. See Figure 1. In many mater-
ials this is close to actuality and any deviation is on the side of
safety. The stress distribution of a section of a symmetrical beam

under pure bending is shown in Figure 2 for various stages of bending.
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It is now necessary to determine the resisting moment
capacity of the section under condition (¢), Figure 2. In elastic
design (condition (a)), this capacity is 0 %— orcS . In the
plastic condition (c¢) a similar relatcionship develops. For a
rectangular section, Figure 3,M=2 SG“ b(ﬂ dﬁj .

Unlike the elastic theory(: all the stress is in the

plastic range and does not vary with "y". Therefore, we can

b &

The expression be? is called the plastic modulus (2)

easily integrate: M=2

and is seen to be: +twice the static moment about the neutral

axls of the half sectional area for a symmetrical section.

Since both section modulus and plastic modulus are a function of
‘the shape of the section, there exists a definite relationship
between them. The ratio: of these moduli is called the "shape
factor" and for most wide-flange sections, the approximate formula

can be used: Z = 1l.1/S. 2

Momont and Axial Load

The ability of a section to resist moment plastically
1s modified under the influence of an axial load. It is, therefors,
necessary to determine a relationship between the axial load and the
modified plestic modulus, In the case of wide~flange sections this
relationship is different when the neutral axis is in the flange

2. Lynn 8. Beedle, Bruno Thurlmann and Robert L. Ketter,
Plastic Design in Structural Steel, Lecture Notes, Summer Course,
Sept., 1955 (Bethlehem, Penna., Lehigh University, 1957), p. 2.13,



from when it is in the web. Appendix A includes the derivation of
the equations and the corresponding curves are shown in Figure 4.
Shear

The problem of shear is handled in a similar manner to
that of an axiasl load, i.e., the plastic moment capacity of a section

is modified by the influence of shear. It is reasonable, therefore,

to expect to find & relationship of ?jfs to-%§~ . Since moment is
dimensionally equal to shear times a d;;tance,ga hypothetical moment
arm is used instead of "V! and the thickness of the web (shear
resisting capacity of a section) for "V&".

It is assumed that yielding of ductile materials is
caused by shearing stress. Since the materisl has been brought
into the plastic range by the applied moment it cannot, therefore,
develop additional shearing stresses to resist the sheering forces.
A1l the shearing resistance of a section must be supplied by that
portion still in an elastic condition., The remaining plastic portion,
then, is available for plastic moment resistance. The equations
used in the solution of this problem are presented in Appendix B
ahnd the resulting ecurves are shown in Figure 5.

Column Buckling

The equations and curves for determining the resistance
to column buckling are based on the postulate that failure occurs
when the rate of change of internal resisting moment with regpect
to curvature.is equal to the rate of change of external moment with

respect to curvature.
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When the loading is such as to produce the above condition
before any stresses have reached the plastic range the column will
buckle according to the Euler formula.

However, it is possible under certain loading conditions
for portions of the column to be stressed in the plastic range at
the instant of buckling. It is this condition that must be investi-
gated in the plastic theory. The approach given in Appendix C is v
based on the work of Ketter3 but is somewhst more direet. In addition,
general equations have been derived for wide-flange shapes. Curves
for the solution of this problem are in Figure 6.

External Moments and Shears

In the plastic vthaory the wvalue of moments are of inberest
primarily at the point where a particular éectiun has exceeded the
elastic limit. When this occurs (assuming a horizontal stress-strain
curve above the elastic limit) the member will rotate about that point
with the value of the now plastic moment remaining constent. Other
sections in the structure will in turn become plastic until the struc-
ture has acquired enough "hinges® to become unstable. At this point
the structure has become a "mechanism" and is considered to have failed.

This concept can be illustrated in a fixed-end beam shown im Figure 7.

3 R. L. Ketter, Stability of Beam Columns Above the Elastic
Limit, A.S.C.E. Separate 692, May, 1955.
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Figure 7. Plastic Failure of a Fixed-end Bean.

2

In the elastic condition My and Mg equal % and Mg

2
equals % « As the load, w, is increased to a certain value,

points A and B will become plastic but will not exeeed the plastic
moment cepacity of the section. At this point the beam asets as a
simply supported structure and can support additional load until Mg
becomes plastic. The structure now has three plastic hinges and is
no longer stable. See Figure 4(b).

As can be seen from the above example, the problem is to
determine the points on a structure which will become plastic and
cause a mechanism to form under minimum loading. By using the
fundamental principle that external work equals internal work,
equations relating the plastic moment to the load can be written.
Trial mechanisms are drawn and the work equations are applied to
each configuration. The mechanism producing the lowest value of
load as a functioh of the plastic moment is the correct one. A

moment diagram is then drawn and if the correct mechanism has not

12
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been overlooked there will be no moments above the plastic moment.
This last operation is known as a "plasticity check"., 4n example
of this method is shown in Appendix D.

Deflections

The computation of deflections in plastic design is for
the purpose of determining the maximum deflection prior to the
collapse of the structure. Since under normal loading the stresses
are in the elastic range, the deflections computed in the plastic
theory are larger than those that would normally oeccur. The magni=-
tude of the computed delections, however, are usually smaller than
would result by assuming a simple beam between suppurts.4

Deflection computations are made by the slope-deflection
equations and are computed at the point of failure, or just before
the last plastic hinge has developed and the structure has turned
into a mechanism,

The application of slope-deflection equations depend on
the continuity of the beam. Since in plastic design the joints are
assumed to rotate freely after the plastic moment has been reached,
continuity no longer exists. If the beam under investigation has
only one plastic moment the equation is applied to that peint.
Deflection, therefore, is determined immediately prior to that

hinge developing. If, however, the beam has two or more plastic

4 Lynn 8, Beedle, Bruno Thurlmanr and Robert L. Ketter,

Plastic Design in Structural Steel, Lecture Notes, Summer Course,
Sept., 1955 %Be'bhlehem, Penna., Lehigh University, 1957), p. 8.1.



hinges, it is necessary to apply the equation to each hinge, the
largest deflection computed being the correct one. 4 sample problem
is shown in Zppendix E.
Load Factor

Since the theory of plastic desigh congiders the behavior
of a sgtructure after the elastic limit of the material is reached, it
is necessary to apply a factor to the loads.

As shown in Chapter II, a wide~flange section can resist
a moment 1,14 times that which will produce yield in the outer fibers
before becoming completely plastic, If the yleld stress is assumed
to be 33,000 psi and the working stress, 20,000 psi, the ration
between the two is 1.65. Therefore, the factor 1,88 (l.14 times 1.65)
must be applied té the loads to obtain the same load factor of safety
against ultimete strength that the simple beam now hag when designed
according to the 4.I.8.C. Specification,’

5 Lynn S. Beedle, Bruno Thurlmann and Robert L. Ketter,
Plaestic Design in Structural Steel, Lecture Notes, Summer Course,
Sept., 1955 (Lehigh University, Bethlehem, Penna.s p. 1l.2.
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CHAPTER IIX
DISTRIBUTED LOADS AND SOIL PRESSURES

It is often convenient in the plastic theory to replace
a distributed load with equivalent concentrated loads. 4s in the
elastic theory, this method of handling distributed loads is always
on the conservative side and is often used in the plastic theory.

In order to desigh with more economy, there is worked out
in dppendix F equations for the determination of plastic moments for
trapazoidal loading., The resulting curve is plotted in Figure 8.
With this aid it is possible to design with rapidity and ease for
trapazoidal, triangular and rectangular loading.

An adaptation of passive soil pressure to the plastic
theory is presented in Appendix G, The basic difference between
this approach and the universally accepted theories used in elastic
design, is the inelusion of the effect of lateral movement on the
passive pressures developed., Based on Terzaghi6 it is assumed that
passive soil pressure is a function of lateral displacement of the
soil as well as the depth. This is, of course, close to reality in

a cohesionless soil and is readily adaptable to the plastic theory.

6 K. Terzaghi, Theoretical Soil Mechanics (New York:
John Wiley & Sons, Ine., 1944), .p. 346
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Because of mathematical complications, the concept of
passive pressure as a function of displacement is not considered in
the usual methods of determining sheet pile penetration. The method
presented here more closely follows the physical behavior of the
soil and it is considered to be superior to the procedures used in
the elastic theory.

There are two possible failure mechanisms for an anchored
sheet pile retaining wall, The governing mechanism is determined by
the proximity of the lowest support to the excavation surface. For
the case where this support is relatively near the excavation, the
piling will fail by a plastic negative moment at the support as
shown in Figure 9(a). The second mechanism is produced by the
development of a positive moment at a point below the support and
by a negative moment at the support. These two mechanisms are

illustrated in Figure 9.

(2) (b)
Figure 9. Sheet Pile Failure Mechanisms
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Case (b) in Figurs 9 involves the simultaneous solution
of five extremely complicated algebraic equations which are derived
in Appendix G. Because of their complexity no solution is presented
in this thesis.

Cagse (a) in Figure 9 is the more usual method of failure
and a complete solution is presented in Appendix G. It is interesting
to note that the necessary penetration is a function only of the dis-
tance from the lowest support to the excavation surface and is in all
cases 55% of this distance.
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CHAPTER IV

Introduction

The structure designed in this section is a hypothetical
steel sheet pile cofferdam. The overall dimentions were chosen to
be 40 feet long, 13 feet wide and 48 feet deep. The soil was assumed
to be a drained, cohesionless sand. The plastic design computations
resulted in the selection of MP1l5 steel sheet piling and four waler
frames composed of wide-flange shapes. _

A problem similar to sheet pile penetration as described
in Chapter IIT exlsts if each successive excavation is carried below
the design elevation of the waler frame prior to the installation of
the frame itself. In this thesis it is assumed that each waler frame
will be installed when excavation has procesded not more than four
feet below the lowest waler. When the excavation has been carried
one foot below the designh elevation, the waler is lowered and wedged
into position. It is, therefore, permissible to design the sheet
plling for the final position of the waler frame.
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APPENDIX A
MOMENT AND AXIAL LOAD
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N. A= . . C = C—) C ) 2 Yo
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Flgure Al
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/noa similor way 7he rofjo of 1he
ovarloble smoment with an oxiol /oad,
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APPENDIX C
COLUMN BUCKLING
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APPENDIX D
SAMPLE PROBLEM-EXTERNAL MOMENTS

2P
L =
P— zl
I 1|
T 7T
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as llonws:

Mecharirsrn I
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Me [ i Me ?
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Mp Mp
¢ o b
Me ? Me ¢
Meécharmisrr III

Fouale Fxternal Work 7o Jrlernal Work
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Mechatrrsrmr 1
£W =Z2P @ L |
I W = Med +SMe2f + Mp b = GAed-

ZPpl= & Mpd
- 3 Me.
3

Mecharssr77 T

POL +2PBL = Mpd +Z2MpZg +Mp 24 + Mpd.
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P]L
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The Jowesl value of Frs Mechan/sm I
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| APPENDIX E
SAMPLE PROBLEM-DEFLECTIONS

P
MF’( A Bip C lZMP
TF Ik

Fgare £/ Sample Frob/esm.

Assurme /as?t foinge fo forrmm /s 4
Gh - O + £ Sz Mas - L]
ba =0, ro7ation fizs 1701 Legur
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. 2L s &/ Me) .
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= 2L
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contyrwty Is assumed af ‘B ihere wil/
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will be recessary 70 wrile eguadiivns 127
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cEL( 2 =
Bge= -8 - L
T T aET Mp
8- + Enc
2. _ s _ L N
L z g 7
O = — Zz
SEL ~

Assume He /257 /?//'yg a’ c.”
o= r*sz(M‘g’ MB)
- 2 3 _ M
0= £ ;-w_r (ZMP /j |

- -7 E{—__,__:; My, The largest? deflec-
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APPENDIX F
DISTRIBUTED LOADS

. The purpose of s seclion /s fode-
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Jar /dﬂa?)?f,

P
<~
) l‘\]ﬁ mmmmm T
"’ l
L2 | a |, /
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LW :w—ﬁ/¢ (4a) xa’zf—afﬂ (£-2) 2P/%
(7 & o <

L-a L-Z
fwé/zf/z—a)dx # | BlL-x)2dZ .
a {72



58

e wrd [ 2 2 2, 2/3 /.
bw =222 [ 3pal-La*Za%+ 3511 5/7]
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. - &L -a) ] .
% Mp/wz,ﬂ,;/;)/
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— z # ‘
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Z
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APPENDIX G
SHEET PILE PENETRATION
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W =M 4 > M L5 4
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