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SYMBOLS AND NOT

A 	 Area of Section

Aw 	Area of web of wide-flange section

Af 	Area of flange of wide-flange section

d 	 Depth of wide-flange section

E 	 Modulus of Elasticity

θ 	Unit strain

I 	 Moment of inertia

M 	 Moment

Mp 	Plastic Moment

Mpc 	Modified plastic moment due to axial load

MilsMps 	Modified plastic moment due to shear

My 	Moment producing yield stress

P	 Axial load

Py	Axial load producing yield stress

S 	 Section modulus

σ 	Unit stress

σy 	Yield stress

φ 	Angle of curvature

φy 	Angle of curvature corresponding to yield stress

V 	 Shear

Vy 	Shear producing yield stress

w 	 Thickness of web in wide-flange section

Z 	 Plastic Modulus



CHAPTER I

INTRODUCTION

The fundamental purpose of this thesis is to employ the

plastic theory in the design of a hypothetical steel sheet pile cof-

ferdam. Prior to undertaking this work, the author had had no prev-

ious experience with the plastic theory. Therefore, a portion of

this thesis is devoted to the development of the fundamentals neces-

sary for the actual design computations.

The theory of plastic analysis has been used as far back

as the 19201 s in Hungary for the structural design of apartment

buildings.1 It is, however, only in recent years that the theory

has been utilized to a significant degree in this country. Much

progress has been made by J. F. Baker at Cambridge University,

England and recently Lehigh University has been conducting many

large scale tests of structural members and frames. 1 It is primar-

ily through these endeavors that the use of the plastic theory is

being stimulated in the United States.

Very little work has been done to date in the application

of the plastic theory to structures subjected to soil pressures. It

seems, however, that structures such as designed in this thesis are

ideally suited to be designed by the plastic theory.

1 	 Lynn S. Beedle, Plastic Strength of Steel Frames,
A.S.C.E. Paper 764, August, 1955, p. 1.
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The temporary nature of a cofferdam justifies the concept

of designing for an ultimate load—deflections not being a considera-

tion. Since the soil pressures are assumed to be triangular, there

is very little possibility that the pressures would be greater than

those assumed. It is, therefore, logical to design for the ultimate

capacity of the structure. Nevertheless, a load factor is used to

insure additional safety.

A solution to the problem of sheet pile penetration is

presented in this thesis. As far as it is known, this is a new

solution to the problem and would seem to be a significant contri-

bution to the application of the plastic theory.

3
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CHAPTER II

BASIC PRINCIPLES

The fundamental difference between elastic and plastic

design is the portion of the stress-strain curve with which the

designer is working. In elastic design, only that portion below

the yield point is considered, while in plastic design the entire

curve may be utilized in localized areas. The structure is accord-

ingly designed for its ultimate strength. This does not, however,

mean a less safe structure. A factor to account for uncertainties

is applied to the loads so that under these loads, the stresses will

not be excessive.

Resistance of Sections

As in the elastic theory, the basic equations of equi-

librium must be satisfied. It is, therefore, necessary to determine

the resistance of a section after that section has been stressed

beyond the elastic limit.

Moment

It is convenient to assume that the stress-strain curve

is horizontal beyond the yield point. See Figure 1. In many mater-

ials this is close to actuality and any deviation is on the side of

safety. The stress distribution of a section of a symmetrical beam

under pure bending is shown in Figure 2 for various stages of bending.
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Figure I. 	 Idealized Stress-Strain Curve

Figure 2. Stress Distribution Under Various
Stages of Loading.

Figure 3. 	 Integration Diagram for Plastic Modulus.



It is now necessary to determine the resisting moment

capacity of the section under condition (c), Figure 2. In elastic

design (condition (a)), this capacity is σI/c or σS. In the

plastic condition (c) a similar relationship develops. For a

rectangular section, Figure 3,M = 2∫coσbydy

Unlike the elastic theory, all the stress is in the

plastic range and does not vary with "y". Therefore, we can

easily integrate: 	

M = 2|coσbc2/2=σbc2.

The expression be 2 is called the plastic modulus (Z)

and is seen to be twice the static moment about the neutral

axis of the half sectional area for a symmetrical section.

Since both section modulus and plastic modulus are a function of

the shape of the section, there exists a definite relationship

between them. The ratio: of these moduli is called the "shape

factor" and for most wide-flange sections, the approximate formula

can be used: Z = 1.14S. 2

Moment and Axial Load

The ability of a section to resist moment plastically

is modified under the influence of an axial load. It is, therefore,

necessary to determine a relationship between the axial load and the

modified plastic modulus. In the case of wide-flange sections this

relationship is different when the neutral axis is in the flange

2. Lynn S. Boodle, Bruno Thurlmann and Robert L. Fetter,
Plastic Design in Structural Steel, Lecture Notes, Summer Course,
Sept., 1955 (Bethlehem, Penna., Lehigh University, 1957), p. 2.13.

6
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from when it is in the web. Appendix A includes the derivation of

the equations and the corresponding curves are shown in Figure

Shear

The problem of shear is handled in a similar manner to

that of an axial load, i.e., the plastic moment capacity of a section

is modified by the influence of shear. It is reasonable, therefore,

	

to expect to find a relationship of M ps/Mp to V/Vy. 	 Since moment is

dimensionally equal to shear times a distance, a hypothetical moment

arm is used instead of "V" and the thickness of the web (shear

resisting capacity of a section) for "V y".

It is assumed that yielding of ductile materials is

caused by shearing stress. Since the material has been brought

into the plastic range by the applied moment it cannot, therefore,

develop additional shearing stresses to resist the shearing forces.

All the shearing resistance of a section must be supplied by that

portion still in an elastic condition. The remaining plastic portion,

then, is available for plastic moment resistance. The equations

used in the solution of this problem are presented in Appendix B

and the resulting curves are shown in Figure 5.

Column Buckling

The equations and curves for determining the resistance

to column buckling are based on the postulate that failure occurs

when the rate of change of internal resisting moment with respect

to curvature.is equal to the rate of change of external moment with

respect to curvature.



Figure 4. Moment and Axial Load Curves.



Figure 5. Moment and Shear Curves
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When the loading is such as to produce the above condition

before any stresses have reached the plastic range the column will

buckle according to the Euler formula.

However, it is possible under certain loading conditions

for portions of the column to be stressed in the plastic range at

the instant of buckling. It is this condition that must be investi-

gated in the plastic theory. The approach given in Appendix C is

based on the work of Ketter3 but is somewhat more direct. In addition,

general equations have been derived for wide-flange shapes. Curves

for the solution of this problem are in Figure 6.

External Moments and Shears

In the plastic theory the value of moments are of interest

primarily at the point where a particular section has exceeded the

elastic limit. When this occurs (assuming a horizontal stress-strain

curve above the elastic limit) the member will rotate about that point

with the value of the now plastic moment remaining constant. Other

sections in the structure will in turn become plastic until the struc-

ture has acquired enough "hinges" to become unstable. At this point

the structure has become a "mechanism" and is considered to have failed.

This concept can be illustrated in a fixed-end beam shown in Figure 7.

3 R. L. Ketter, Stability 21 Beam Columns Above the Elastic 
Limit, A.S.C.E. Separate 692, May, 1955.



Figure 6. Column Buckling Curves.



Figure 7. Plastic Failure of a Fixed-end Beam.

In the elastic condition MA and MC equal wL2/12 and

MB equals 	 wL2/24. As the load, w, is increased to a certain value,

points A and B will become plastic but will not exceed the plastic

moment capacity of the section. At this point the beam acts as a

simply supported structure and can support additional load until MB

becomes plastic. The structure now has three plastic hinges and is

no longer stable. See Figure 4(b).

As can be seen from the above example, the problem is to

determine the points on a structure which will become plastic and

cause a mechanism to form under minimum loading. By using the

fundamental principle that external work equals internal work,

equations relating the plastic moment to the load can be written.

Trial mechanisms are drawn and the work equations are applied to

each configuration. The mechanism producing the lowest value of

load as a function of the plastic moment is the correct one. A

moment diagram is then drawn and if the correct mechanism has not



been overlooked there will be no moments above the plastic moment.

This last operation is known as a "plasticity check". An example

of this method is shown in Appendix D.

Deflections 

The computation of deflections in plastic design is for

the purpose of determining the maximum deflection prior to the

collapse of the structure. Since under normal loading the stresses

are in the elastic range, the deflections computed in the plastic

theory are larger than those that would normally occur. The magni-

tude of the computed delections, however, are usually smaller than

would result by assuming a simple beam between supports. 4

Deflection computations are made by the slope-deflection

equations and are computed at the point of failure, or just before

the last plastic hinge has developed and the structure has turned

into a mechanism.

The application of slope-deflection equations depend on

the continuity of the beam. Since in plastic design the joints are

assumed to rotate freely after the plastic moment has been reached,

continuity no longer exists. If the beam under investigation has

only one plastic moment the equation is applied to that point.

Deflection, therefore, is determined immediately prior to that

hinge developing. If, however, the beep has two or more plastic

4 Lynn S. Beedle, Bruno Thurlmann and Robert L. Hefter,
plastic Design in Structural Steel, Lecture Notes, Summer Course,
Sept., 1955 (Bethlehem, Penna., Lehigh University, 1957), p. 8.1.

13
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hinges, it is necessary to apply the equation to each hinge, the

largest deflection computed being the correct one. A sample problem

is shown in Appendix E.

Load Factor

Since the theory of plastic design considers the behavior

of a structure after the elastic limit of the material is reached, it

is necessary to apply a factor to the loads.

As shown in Chapter II, a wide-flange section can resist

a moment 1.14 times that which will produce yield in the outer fibers

before becoming completely plastic. If the yield stress is assumed

to be 33,000 psi and the working stress, 20,000 psi, the ration

between. the two is 1.65. Therefore, the factor 1.88 (1.14 times 1.65)

must be applied td the loads to obtain the same load factor of safety

against ultimate strength that the simple beam now has when designed

according to the A.I.S.G. Specification. 5

5 Lynn S. Beedle, Bruno Thurlmann and Robert L. Ketter,
Plastic Design in Structural Steel, Lecture Notes p Summer Course,
Sept., 1955 (Lehigh University, Bethlehem, Penna.) p. 11.2.



CHAPTER III

DISTRIBUTED LOADS AND SOIL PRESSURES

It is often convenient in the plastic theory to replace

a distributed load with equivalent concentrated loads. As in the

elastic theory, this method of handling distributed loads is always

on the conservative side and is often used in the plastic theory.

In order to design with more economy, there is worked out

in Appendix F equations for the determination of plastic moments for

trapazoidal loading. The resulting curve is plotted in Figure 8.

With this aid it is possible to design with rapidity and ease for

trapazoidal, triangular and rectangular loading.

An adaptation of passive soil pressure to the plastic

theory is presented in Appendix G. The basic difference between

this approach and the universally accepted theories used in elastic

design, is the inclusion of the effect of lateral movement on the

passive pressures developed. Based on Terzaghi6 it is assumed that

passive soil pressure is a function of lateral displacement of the

soil as well as the depth. This is, of course, close to reality in

a cohesionless soil and is readily adaptable to the plastic theory.

6 K. Terzaghi, Theoretical Soil Mechanics (New York:
John Wiley & Sons, Inc., 1944) .p. 346

15



Figure 8. Hinge location for Trapazoidal Loading.
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Because of mathematical complications, the concept of

passive pressure as a function of displacement is not considered in

the usual methods of determining sheet pile penetration. The method

presented here more closely follows the physical behavior of the

soil and it is considered to be superior to the procedures used in

the elastic theory.

There are two possible failure mechanisms for an anchored

sheet pile retaining wall. The governing mechanism is determined by

the proximity of the lowest support to the excavation surface. For

the case where this support is relatively near the excavation, the

piling will fail by a plastic negative moment at the support as

shown in Figure 9(a). The second mechanism is produced by the

development of a positive moment at a point below the support and

by a negative moment at the support. These two mechanisms are

illustrated in Figure 9.

Figure 9. 	 Sheet Pile Failure Mechanisms
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Case (b) in Figure 9 involves the simultaneous solution

of five extremely complicated algebraic equations which are derived

in Appendix G. Because of their complexity no solution is presented

in this thesis.

Case (a) in Figure 9 is the more usual method of failure

and a complete solution is presented in Appendix G. It is interesting

to note that the necessary penetration is a function only of the dis-

tance from the lowest support to the excavation surface and is in all

cases 55% of this distance.
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CHAPTER IV

SHEET PILE COFFERDAM

Introduction

The structure designed in this section is a hypothetical

steel sheet pile cofferdam. The overall dimentions were chosen to

be 40 feet long, 13 feet wide and 48 feet deep. The soil was assumed

to be a drained, cohesioriless sand. The plastic design computations

resulted in the selection of MP115 steel sheet piling and four waler

frames composed of wide-flange shapes.

A problem similar to sheet pile penetration as described

in Chapter III exists if each successive excavation is carried below

the design elevation of the waler frame prior to the installation of

the frame itself. In this thesis it is assumed that each waler frame

will be installed when excavation has proceeded not more than four

feet below the lowest waler. When the excavation has been carried

one foot below the design elevation, the waler is lowered and wedged

into position. It is, therefore, permissible to design the sheet

piling for the final position of the waler frame.



SHEET PILE COFFERDAM
Design Diagram

SECTION



Soil Properties

Wood Factor

Sheeting

Modular length of each sheet - 19.63 in.

Soil Pressure



Waler Location
See Chapter III and Appendix

F for formula and curve.

1st Waler

2nd Waler



3rd Waler

23

4th Waler



Unit Load of each waler

Elev. -10.0

2 4



Elev. - 43.5

From above

25

Summary-Waler Loading

Waler Elev. -10.0 -22.5  -33.5 -43.5

Load- K/Fr 7.6 14.3 19.2 25.4

compute Mp  beam with rectangular
loading.
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M p for 10 ft. and 13 ft. span at each elev.

10ft. span

Summary Mp  (external)

Elev
Span -10.0 -22.5 -33.5 -43.5

10(EW) 47.51-k 89.51-k 120 1-k 1591-k

13' (NS) 80.0 1-k 151 1-k 202 1-k 2681-k

Summary- Moments and Forces
Member Mp P V

Elev.-10.010' - EW
47.5 49.5 38.0

13' - NS 80.0 38.0 49.5
Elev -22.5
10' - EW S'F..0 5734 7/5
/ 3'- Ni /51.4 7/5

Elev.- 33.5
10' - EW /20 let, g&-a
/3' - /V,5 00Z 476.0 /Z0.0
Elev. 43.5
10' - EW /59 /5 /e7
/3 1- /145 eag /e7 /66"



Compute members for each

walerWaler- Elev. -10.0 - EW beam

27



Waler- Elev. - 10.0 - N3 beam

28



Waler- Elev. -22.5 -EW beam

29



Waler- Elev. -22.5, NS 22 beam

30



Waler - Elev. - 33.5, EW beam

31



Waler- Elev. -33.5, N5 beam

32

Try 12WF65



Waler- Elev. -43.5 EW Span

33



Waler- Elev. -43.5, N5 Spam

34



Strut Design

Elev.
Load
Member

-10.0
76k

8WF24

-22.5142k8WF24
-33.5
192k8WF24 -43.5254k8WF24

r / 6/ /. 6/ e. e,./ 0. el
A 7 e, . 7 .06. 9. /e 712

L/r ?.7 97 775 775
P/Py Allowable 4.75 4.7.5- /..0 A a

A do a / 40, 33 a. 6/ g 03 67. e 95
CY

7 Aram R L Ir'e tier; 5i b2,4Lgf8earn ‘27/-
C/7775 /44ave /1?e 	 /./127/71, 4.5c.E
eporde c 92, /Wag 	 ..94
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Waler Corner Reinforcing

Required web thickness
Diagonal stiffener thickness

Elev

Member

S

-10.0

8WF31

27.4

-22.5

10WF49

-54.6

-33.5

12WF65

88.0

-43.5

14WF8103.0

d 8.0 10.0 12.12 14.06

w 0.288 0.340 0.390 0.418

W req'd 0.857 1.09 1.2 1.05

Add Web PLSTIFFM 5/8"
3/4"

13/16" 5/8"

b 8.0 10.0 12.0 10.04

W 0.402 0.53 .578 0.616

5//fiefter 7/13"
9/16" 5/8" 5/8"

37

8. 	 L.S. Beedle, B Thurlmann, R.L. Ketter, Plastic
Design in Structural Steel,

Lecture Notes. Summer Course, Sept 1955 (Bethleham, Pa., 1957).
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APPENDIX A
MOMENT AND AXIAL LOAD

Figure A.1
Stress Composition-Moment and Axial Load

The stress pattern can be divided
into two portions. One portion as (c),
Figure A.1 to re

sist the bending moment and the second portion (d) to resist pure compression due to the axial load. The force available to resist the compression, P, would be σ y 2y ow.  If there

were no moment in the section, the
available force, P y , would be

dw*w for Aw



In a similar waythe ratio of the
available moment with an axial load

Mpc, to the moment with an axial load can
be found. If no axial load werepresent
Mp = σ(1/2 Afdf + 1/4Asdw). From Figure A.1
the available moment with an axial force
is;

Therefore:

Solving for yo in equation A.1and substituting
in Equation A.2 we obtain:

Equation A.3 shows redduction of
available plasticmoment due to an axial
load when the neutral axis is in the flange
and is plotted in Figure.

For the case of theneutral axis in
the web asimilar expression can be developed:



APPENDIX B
5HEAR

The fundamental relationship between
moment andshear is M = Vd where "d" is
thedistance along the beam to a point of
contraflexture and "V" and "d" is used.
The moment, then, to be resisted is Vd.

Figure B.1
Stress Distribution-Section Partially Plastic

Considering Figure B.1, the available
resisting moment is Mp = σ y wyo2/3. Substituting
Vd for Mpv we get:
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It is necessary now to find a relationship
between yo, σy and V. In an elementary
section , σx/σy. Therefore, in the
elastic range σ = σy y/yo. Differentiating

with respect to x.

Integrating between y and yo gives

Differentiating Equation B.12y o y oy ' = 3/σyw V (d and M are f(x)).

65/1/4/14 1/29 efc/aha/.7
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Assuming that τmax = σy9,10 and exists
in the center of the section √3 where y/y = 0,

Substituting this in equation B.1

The plastic moment (Mp) in Equation
B.3 is the available moment if there
were no shear force present and is:

Mp = [Afdf/2 + Awdw/4]σy
Substituting this value in Equation B.3

and using Mpv for Vd gives:

9 	 G. Murphy,Advance Mechanics of
Materials (New York: McGraw-Hill Book

Company, Inc., 1946), p. 76.10 	 F. B. Seely, Resistance of Materials

(New York; John Wiley & Sons, Inc., 1947),
p.273.
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APPENDIX C
COLUMN BUCKLING

A column under given lateral loads
will have an added moment increment at

its midpoint equal to the axial load times
the deflection: ΔM = ΔPyo .

Figure C.1Column Deflection

A
ssuming a deflection curve as in figure C.1,
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Multiplying Equation C.1 by Equation C.2,

Multiplying the right hand side of
Equation C.3 by the above:
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Equation C.4 represents the change in
moment with respect to curvature forthe
external moments. The use ofMy and φy
in the left hand side of the equaquation are
for convenience when considering the internalequations.

The derivation ofinternal moment
equations for wide-flangeshapes follows.
The objective in this analysis is to relate
the internal moment resisting capacity of
a section to thecurvature. By equating
the first derivative of this equation to
Equation C.4 the ratio φo/φy is obtained.
Substituting this ratio in the original
internal moment equation, M/My is obtained.
We then will be able to plot M/My versus P/Py with
various values of L/r.

Figure C.2
Stress and Strain Distribution Plastic Portion in Flange



Figure C.2 shows the deformation
and stress distribution of a wide-flange
beam under moment with the plastic
condition in the flange only.

Dividing the aboveequation by My=
Zσy and reducing,

47
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Figure C.3
Stress and strain Distribution

Plastic Portion in Flange and Web

Figure C.3 shows the deformation and
stress distribution of a wide-flange beam
under moment with plastic condition in
the web

Dividing the above equation by M=Zσy
and reducing.
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Figure C.4
Stress and Strain Distribution

Entire Section in Elastic Range

Figure C.4 showsthe deformation
and stress distribution of a wide-flange
beam under moment with the entire
section in the elastic range.
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We now have three pairs of eqautions
relating moment and curvature. We must
now add the effect of an axial load.

Multiplying both sides of theaboveequations by Z,

Equations C.5, C.7 and C.9 aremodified
by subtracting P/Py from the right hand
side. A summary of the moment-curvature
equations follows.



SUMMARY OF M-φ EQUATIONSINTERNAL EQUATIONS

51
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APPENDIX D
SAMPLE PROBLEM-EXTERNAL MOMENTS

Figure D.1 	 Sample Problem

The various failure mechanisms are
as follows:
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Mechanism III

Equate External Work to Internal Workand determine lowest value of P in terms
of M p.
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	The lowest value of P is Mechanism II
A plasticity check is now made by drawing

the moment diagram to insure that
no moments exceed the plastic moment

Loading Diagram

Moment Diagram

No moments in the above diagram
exceed the plastic moment of the member.



APPENDIX E
SAMPLE PROBLEM-DEFLECTIONS

Figure E.1 Sample Problem.

Assume last hinge to form is "A".

55

Assume last hinge "B." Eventhough
continuity is assumed at "B" therewill
be rotation at that point. Therefore, it
will be necessary to write equations for
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beam BAand beam BC and solve
simultaneously.

Beam BA

Assume the last hinge

Δ = -7/8 L 2 /EI M p, the largest deflection



APPENDIX F
DISTRIBUTED LOADS

The purpose of this section is to de
rive qeneralequations for the plastic
moment and the location of the plastic hinge
for a beam with triangular and rectangular loading.

Figure F.1

Failure Condition with Distributed Load

External Work



Internal Work

Differentiating with respect to "a"to
determine minimum value of M p.



APPENDIX G
SHEET PILE PENETRATION

59

Figure G.1
Sheet Pile Penetration-Mechanism I

Mh = Coeficient ofHorizontal Subgrade Reaction

11. K. Terzaghi, Theoretical Soil Mechanisms
(New York: John Wiley & Sons, Inc., 1947)



External WorkInternal Work

Rearranging terms,

Combining Equations G.2 and G.3
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Solve for Q:

Rearranging Equation G.1

Q = qL + ωL2/2 - 1/3mhφL(L-h)2. Equation G.1

Rearranging Equation G.2,

Solving simultaneously:



Figure G.2
Sheet Pile Penetration-Mechanism 2

62



Moment of Passive Force about Q.

External Work



External Work

Equating Internal Work to external work -
and ,solving for M p.

	 Equation G.5 should be differentiated
with respect to "a" and "b" and equatedto
zero. These two equations together with
Equations G.3, G.4 and G.5 should thenbe
solved simultaneausly for M p, Q and L.
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