Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

BY
JOSEPH T. GILDERSLEEVE

A THESIS
SUBMITTED TO THE FACULTY OF
THE DEPARTMENT OF CHEMTCAL ENGI NEEPTNG OF
NEWARK COLLEGE OF FNGT NEERTMO

IN PARTIAL FULFILLMEM OF THE REQUIREMENTS FOR THE DEGQEE

OF

MASTER OF SCTENCE
TM CHEMICAL ENGI NFETTMO

NEVARK, NEW JERSEY
1956

APPROVAL OF THESTS

FOR

DEPARTMENT OF CHEMI CAL ENGINEERSMG
WWARK COLLEGE OF ENGIMEERING

BY

EACULTY COMMTTEE

APPROVED:

NEWARK, NEW JERSEY JUNE, 1956

ABSTRACT

The results of this work prove that the relation between total work and surface area developed in the wet grinding of pigments is an exponential function. The following equations were experimentally determined for the pigments studied:

For Zinc Oxide:
$P=.090(\Delta s)^{1.05}$
For Titanium Dioxide:
$P=.086(\Delta s)^{1.072}$
For Caleium Carbonate:
$P=.107(\Delta s)^{0.98}$
This work shows that in the grinding of sub-sieve size pigments the Rittinger and Bond theories which state that surface area developed is directly proportional to total work, are not valid and cannot be applied.

It is also shown in another plot that when a surface area developed versus total work plot is made with all the pigments starting from the same surface area, the ratio of their y-intercepts, where $\Delta s=$ $\log 1.0$, are related to the ratio of the mineralogical hardness of the pigments. In fact the straight lines of the pigments fall in the order of their hardness. Since $\Delta s=0$ refers to the unground pigment, the only plot it can have any significance in is a plot where the grinds have the same starting point.

A study was also made of each of the grinding variables and their effect on the development of surface area.

Thus by the use of a simple method of measuring surface area and a measurement of power expended, these equations can be used to predict power requirements to obtain a specific grind.

ACKNONLEDGEMENTS

The author wishes to acknowledge the ald of Mr. R. W. Jamisson, Technical Director of Benjamin Moore \& Co., by extending the use of the Benjamin Moore \& Co. laboratory facilities and materials. He also wishes to thank Professor G. C. Keeffe for his suggestions and guidance in this work.
I. Introduction 1
II. Theory of Operation
A. Theory of Comminution 3
B. Theory of Air Permeability 5
III. Experimental Apparatus
A. Design of Permeameter and Method of Operation 10
B. Grinding Equipment and Power Measurement 16
C. Pigments Studied 20
D. Variables Studied 24
IV. Experimental Results 26
V. Conclusions 31
V. Recommendetions 33
Appendix
Tables of Data 35
Graphs 44
Btbliography 47

1. Photograph of Permeameter 12
2. Photograph of Plug Forming Equipment 12
3. Draking of Equipment 13
LIST OF TABLES
4. Permeameter Data on Runs with Zine Oxide 35
5. Permeameter Data on Rיns with Zinc Oxide and Pitanium Dioxide with Variables other than Time 36
6. Permeameter Data on Runs with Titanium Dioxide and Calcium Carbonate 37
7. Power Readings on Westinghouse Watthour Meter for Slurries of Zinc Oxide, Titanium Dioxide and Calcium Carbonate grinding in a Pebble Mill 38
8. Data on Surface Development and Power Expended(Zinc Oxide) 39
9. Data on Surface Development and Power Expended (Titanium Dioxide and Calcium Carbonate) 40
10. Effect of Variables on Surface Developed 41
11. Results of Log-Log Plots of Surface Developed vs Power and Time consumed 42
12. Data used in plotting all pigments starting from the same base Surface Area 43
10 Results of Log-Log plot with all Digments starting from the base Surface Area 43
LIST OF GRAPHS
13. Plot of Time of Grind versus Surface Area Developed 44
14. Plot of Total Work (Power) versus Surface Area Developed 45
15. Plot of Total Work versus Surface Area Developed with all pipments referred to the same starting surface area 46

I. INTRODUGTION

In the paint industry one of the most important operations is the grinding of pigments. In contrast to the minerala field where much of this grinding is done dry, paint manufacturers invariably grind pigments in some liquid. The lack of Information on this type of grinding has led the author to reaxamine the current theoretical approaches. It was found that the theories of Pittinger, Kick and Bond are of Iittie use in this type of work as they fail to predict the time necessary to reach a certain average particle size or the power necesaary to develop a certain amount of surface area.(1)

In aporoaching this study three facets of the problem were kept in mind, first how to measure the surface developed, second how to measure the power and third which mill would give the greatest surface development. For the routine measurement of pigment surfaces the air-permeability apparatus in the form used by Carman (h) is very satiafactory, especially when the apmaratus is standardized with the results obtained through the more reliable absorption of gases method.

Power measurements were made with 2 Watt-Hour Meter through which the power supplied the rollers was measured. This instrument was capable of reading the small difference in power which were handled. Readings were taken with the mill empty and loaded, with the various pigment slurries and at the various speeds. The difference between no lond and loaded readings were taken as the power used to develop surface.

The pebble mill was chosen as the most efficient mill in developing surface, especially for a water system which was studied.

Among the variables studied were mill time, wetting and antifoam agents, grinding media, speed of the mill and solids of the slurry. Three widely different pigments were studied, Zinc Oxide, Titanium Dioxide and Calaium Carbonate.

The pigments were ground, dried and measured and the surface area developed correlated to the power input and time of grind.

II THEORY OF OPERATION

A. Theory of Comminution

Energy requirements are a matter of considerable concern in size reduction as the energy consumption represents a large portion of the total cost in such operations. In the past Kiek's law and Pittinger's law have stood as the laws of grinding but with Bond's 3rd Law of Comminution there are now three such concepts.

Rittinger's theory postulates that the useful work done in crushing and grinding is directly proportional to the new surface area produced and inversely proportional to the product djameter. Speaking of this law Gaudin says: "The efficiency of a comninution operation is the ratio of the surface energy to the kinetic energy expended. "(10) By this theory, even the best values for surface energy indicate that 99% of the work input is wasted. Bond also points out that PIttinger's theory ignores the distance factor (particle deformation before breakage) although work is the product of force multiplied by distance. All size reduction of solids, by whatever means, starts with an inftial crack whioh spreads through and across the particle by the flow of resident energy to the crack tips.(1)

Kick's theory is based primarily on the stress-strain diagram of cubes under compression. It states that the work required is proportional to the reduction in volume of the particles.(12)

But Bond contends neither Rittinger's theory (concerned only with surface) nor the Kick theory (concerned only with volume) can be completely correct. The Bond theory states that the total work useful

In breakage is (a) inversely oroportional to the square root of the diameter of the product particles, (b) directly proportional to the length of the crack tips formed, and (c) directly proportional to the square root of the surface area formed.

Bond's equations on his 3rd Theory of Comimution are:

$$
\begin{aligned}
& W_{t}=W\left(\frac{\sqrt{F}}{(\sqrt{F}-\sqrt{P})}\right. \\
& W_{1}=W\left(\frac{\sqrt{F}}{(\sqrt{F}+P}\right) \sqrt{\frac{P}{100}}
\end{aligned}
$$

If F and P are in inches:

$$
W_{1}=W \quad(\sqrt{F}) \sqrt{\frac{P}{.003937}}
$$

Or by simplifying the second equation:

$$
W_{1}=W \quad\left(\frac{\sqrt{R}}{(\sqrt{R}-1}\right) \sqrt{\frac{P}{100}}
$$

where:

$$
\begin{aligned}
W_{t}= & \text { work input to reduce from infinite feed } \\
F= & \text { diameter which } 80 \% \text { of feed passes (microns) } \\
P= & \text { diameter which } 80 \% \text { of product passes (microns) } \\
W_{1}= & \text { work index, total kwhr per ton to reduce from } \\
& \left.\begin{array}{l}
\text { infinite to } 80 \% \text { passes } 100 \text { microns (} 65 \% \text { passes } \\
\\
\end{array}\right)
\end{aligned}
$$

$W=W a c k$ input kw-hr per ton
$R=$ reduction ratio, F / P
The work index can be calculated from laboratory tests or from plant operation using the last three equations where W, F and P are known. When the work index $1 s$ known the work input required for any size reduction can be calculated. The work index therefore is an all inclusive constant containing surface area, grindability and the other properties of the material and the performance of the mill on which the
index has been calculated. The term 80% passes is the most significant method of expressing a screen analysis in one termy it can be found easily from the plotted size distribution.(1)

Since most of this work has been done in the minerals field it pertains to larger particles than are usually found in paint pigments. Here the larger portion is sub-sieve sized particles and this study was undertaken to see if any or all of the above theories hold in the sub-sieve range.

B. Theory of Aix Permeability

If a fluid is percolated through a porous medium of uniform crossmsectional area, A, and thickness, L, the rate of flow, Q / t, is given by the equation,

$$
u=Q / t A=K_{1} \Delta P / n I
$$

Where: $\quad u=$ apparent 11 near rate of flow in $\mathrm{cm} / \mathrm{sec}$
$\psi / t=$ rate of flow in milliters per second
A $=$ crosswsectional area in square centimeters
$K_{1}=$ proportionality constant representing the permeability of the porous medium
$\Delta^{P}=$ pressure difference driving the fluid through the medium, in grams per square centimeter
$n=$ viscosity of the fluid, in poises
$L=$ thickness of the porous medium in centimeters
The proportionality constant, K_{1}, is a specific property of the porous medium which is independent of the dimensions of the latter, of the pressure difference, and of the viscosity of the fluid. It has been shown theoretically (5) that if the porous medium consists
of a bed of rigid grains, K_{1} is calculable in terms of the porosity of the bed and of the specific surface of the solid particles. The resulting equation is:
where:

$$
\begin{aligned}
& K_{1}=g \epsilon^{3} / 5 S_{0}^{2}(1-\epsilon)^{2} \\
& g=\text { acceleration due to gravity }(980 \mathrm{~cm} / \mathrm{sec} / \mathrm{sec}) \\
& \epsilon=\text { porosity or fractional void of the bec } \\
& S_{0}=\begin{array}{l}
\text { specific surface of the powder in square } \\
\text { centimeters per cubic centimeter }
\end{array}
\end{aligned}
$$

The porosity function, $\epsilon^{3} /(1-\epsilon)^{2}$, gives the important relationshio between permeability and porosity for any given powder. Conversely, if K_{1} and \in are known, it is possible to calculate S_{O} by the equation: (17)

$$
S_{0}=\frac{g \epsilon^{3}}{5 K_{1}(1-\epsilon)^{2}}=14 \quad \frac{1}{K_{1}} \times \frac{\epsilon^{3}}{(1-\epsilon)^{2}}=1 H_{1} \frac{\Delta P_{A}}{Q \operatorname{Ln}} \times \frac{\epsilon^{3}}{(1-\epsilon)^{2}}
$$

It has long been known that when the mean free path of molecules of a gas flowing through a capillary is an appreciable fraction of capillary diameter the rate of flow is greater than given by Poiseuille's law. (14) This is regarded as a "slip" at the capillary walls and the theory of the slip correction term was worked out by Maxwell. (4) In its application the slip term enabled specific surfaces calculated by the normal Kozeny equation as shown above to be corrected; but in the case of pigments, the uncorrected surface is often several times smaller than the corrected surface, i.e. the slip term is not a correction but is the main term.

When the mean free path is many times greater than the capillary diameter, molecular flow is obtained. This has been studied both theoretically and experimentally by Knudsen who obtained the law: (15)

$$
Q / t=8 / 3 \quad 2 R T / K M \cdot A^{2} / P \cdot L T / L
$$

When this term is used as a correction for the Kozeny equation it extends its use to pure molecular flow in porous media. Carman and Arnell (4) take a value of 0.5 for k_{0} / k and then

$$
Q_{1} L_{p} / \mathrm{tA} \Delta \mathrm{p}=\mathrm{pF} / 5 \mathrm{n} \mathrm{~S}_{0}^{2} ; 0.96 \mathrm{~F}_{2} / \mathrm{S}_{0} \sqrt{\mathrm{RT} / \mathrm{M}}
$$

As the above equation is a quadratic in S_{o}, the direct solution would give a very clumsy expression for S_{0}. It was found better to break up the calculations from the experimental data into stages. First, if one ignores the slip term, a specific surface S_{k} is obtained, this being the uncorrected surface obtained with the normal

Kozeny equation,

$$
S_{k}^{2}=t A \Delta p / Q_{1} L_{1} \quad \times \quad F_{1} p / 5 \eta
$$

ivext, if the Kozeny term is ignored, a specific surface S_{m} is calculated, which would be the corrected surface if pure molecular flow occurred in the plug,

$$
\mathrm{S}_{\mathrm{m}}=\mathrm{tA} \Delta \mathrm{P} / \mathrm{R}_{1} \mathrm{Lp}_{1} \times 0.96 \mathrm{~F}_{2} \sqrt{\mathrm{RT} / \mathrm{M}}
$$

The final form of the equation is,

$$
s_{0}=s_{m} / 2 \nmid \sqrt{s_{m}^{2} / 4+s_{k}^{2}}
$$

For routine measurements calculations are not laborious. If a plug of fixed dimensions is used L and A are constants for a particular apparatus and it is also most convenient to keep d_{1} constant. For a given material, it is desirable to use always the same weight, so that 6 and the two porosity functions F_{1} and F_{2} are always the same. If air alone is used M is constant and on any particular day p_{1}, n and RT can be taken as constant. Indeed, for most routine work no serious error is introduced by choosing values of these quantities which correspond to normal laboratory conditions and assuming them
constant. This leaves only $t, \Delta p$ and p to be inserted in the equations. Since the rroduct $t \Delta p / p_{1}$ is common to both equations it is evaluated. Pressures were measured in of Hg , and these values can be inserted in $t \Delta p / p_{1}$ directly, since this involves a ratto of pressures; but, for p, the value in of Hg must be multiplied by 1333 to convert to dynes $/ \mathrm{cm}^{2}$.

The symbols used in the above equations are:
p_{1} and p_{2} Pressures on each side of plug, in dynes $/ \mathrm{cm}^{2}$
$\Delta p \quad$ Pressure difference $p_{1}-p_{2} ;$ dynes $/ \mathrm{cm}^{2}$
$p \quad$ Mean pressure $\frac{1}{2}\left(p_{1} \not \rho_{2}\right)$, dynes $/ \mathrm{cm}^{2}$
Q1 Volume gas in ml flowing in time t, measured at p_{1}
t Time of measurement, sec.
L. Length of plug or circular capillary, cm

A Gross-gection of plug or clrcular caplillary, cm^{2}
η Viscosity of gas, poises
T Absolute temperature, ${ }^{\circ} \mathrm{K}$
R Ges Constant 8.31×10^{7} in egs units
M Molecular weight of gas
$\epsilon \quad$ Porosity, ($1 \mathrm{~W} / \mathrm{OAL}$)
F_{1} and F_{2} Porosity functions $\left(\epsilon^{3} /(1-\epsilon)^{2}\right)$ and $\left(\epsilon^{2} /(1-\epsilon)\right)$
W Weipht of the plug in grams
م Density of the powder, gr/mI
$k \quad$ Constant in Kozeny equation
$\mathrm{k}_{0} \quad \begin{aligned} & \text { Corresponding constant for viscous flow in straight } \\ & \text { capillaries }\end{aligned}$
$S_{0} \quad$ Specific surface in $\mathrm{c} \mathrm{m}^{3} / \mathrm{cm}^{3}$, 1.e. cm^{-1}
$s_{k} \quad$ Speciftc surface in Kozeny equation, om^{-1}
$\mathrm{S}_{\mathrm{m}} \quad$ Specific surface in molecular flow equation, cm^{-1}
The introduction of the term for slip flow and molecular flow into the Kozeny equation for gas permeability provides a quick, simple and reliable routine method for measuring the surface of pigments. Owing to variation with porosity, permeability surfaces have been based on the concept of a normal porosity range which for uniform equidimentional particles is $\epsilon=0.4$ to 0.5 . For non-uniform particles it can be less and for acicular, platy or skelatal particles it can be considerably higher. For this reason pigments were chosen which did not fall into this latter category as the porosities attainable are not applicable in the Kozeny type equation.

The permeability suriace provides a quick, simple and reliable method for obtaining the surface of pigments. The absorption method is more accurate but is quite unsuited for routine. (3) (7)

III EXPERI MENTAL APPARATUS

A. Design of Permeameter and hethod of Operation

The outstanding features of the air permeability apparatus for measuring the surface area of pigments are: (a) formation of a selfsupporting plug of pigment in a precision-bored tube with a small hand-press, and (b) direct measurement of air flowing through the plug with a graduated tube.(2) The formation of self-supporting plug offers no difficulties with paint pigments or finer particles. The main advantage of (b) is that the permeability apparatus is very simple and gives direct readings of the volume of air passing through the plug for very small rates of flow under a constant pressure head. A serious error in previously used apparatus is that as the conflning liquid rises up the measuring tube air enclosed between the liquid surface and the plug expands, since its pressure decreases. This is easily overcome by leveling the liquid inside and outside the tube. The error increases with the enclosed volume and in this modified apparatus has been reduced to a minimum. It must be emphasi zed that the pressure drop across the plug is generally so large that it is little changed by the head of liquid rising in the measuring tube, so that the error is not due to change in the mass rate of flow through the plug, but in time taken for a given volume to be recorded.

The equipment for this test is shown in Figures 1 and 3. The plug of compressed pigment is in the small tube located within the glass bulb at the top of the pipette. The top end of the plug is connected to the glass tubling and pressure tubing by means of a
rubber stopper. The pressure tubing is connected to a manometer and a pump for maintaining a constant pressure difference across the plug. In the laboratory a Cenco-Pressovac 4 Pump was used which gave a constant 12 of Hg vacuum which was checked after each run with a manometer.

To maintain the gas confined in the graduated measuring tube, made from a 10 ml . pipette, constantly at atmospheric pressure, the confining liquid is allowed to flow from a reservoir and is controlled by a screw-clip so that the levels in the two arms of the small manometer remains the same. The sidemarm and stop-cock is used for introducing the air and to avoid complications from vapors from the confining liquid, dibutyl phthalate was used in the open end manometer and mercury was the confining liquid and was used in the closed end manometer. The closed end manometer permits a continuous check on the constant vacuum and can be used to oheck when the equipnent has reached equilibrium. The glass tube with the cotton plug is a safety device for non-plug forming pigments so they will not be sucked into the vacuum pump.

The plug forming equipment consists of a stainless steel tube which has an internal diameter of 0.636 cm and the plug was formed by compressing the pigment between stainless steel plungers of $1 / 4^{\prime \prime}$ stock in a hand press. The sliding fit plungers are fixed into the jig, giving a fixed length when they are squeezed in a vice untfl the plunger ends remain flush with the end faces of the jig. (fig. 2) Details of this hand press were obtained from the New Jersey zinc Company.

FIGURE 3

Procedure:

1. Weigh the clean, dry sample tube.
2. Weigh out in a tared aluminum dish a sample of the pigment equal to some intermediate amount which will give porosity of 0.4 to 0.5 in the plug. Break up any lumps by means of a spatula. The pigment plug is prepared by transferring small portions of the pigment to the sample tube of which one end has been closed by the insertion of the plunger. The other plunger is inserted and the pigment squeezed by hand pressure. A small funnel is helpful in making these additions. Additional portions of the pigment are adder at alternate ends of the tube, pressure being applied after each addition, unt11 all the pigment is in the tube. The assembled tube and plungers are placed in the fig and slowly compressed in a vise until the plunger's ends are flush with the side of the jig. The plunqers are removed and any feather edges of pigment at the ends of the tube are cleaned out. The tube with the plug of pigment is weighed. The difference between this welght and the welght of the empty tube, is the weight of the pigment plug. One end of the tube containing the pigment plug is inserted into the end of the rubber stopper of the permeameter and the rubber stopper pressed carefully into place. The vacuum pump is started and allowed to run until practically all the air in the connections up to the plug has been removed, as indicated by the closed end manometer. The stopcock is closed slowly and the mercury allowed to rise a short distance in the caltbrated tube; mearwhile the open end manometer is kept level by means of the screw-clip. At a suitable distance, after the rate of rise of the mercury has become constant, the stopwatch is
started as the mercury level passes a graduation line. The seconds required for the mercury to travel one and two cubic centimeters are recorded.

The mtorcock is opened, the vacum pump stopned, the samole tube reversed, and the determination repented. The two sets of reaults shonid check very closely. If signiffant differences occur, a romplete new determination is made. 3. Gurface determination on the standardizing aample of Kadox XX? 7ine Oxide:

Standardization: The above computations cover a sample which was supnlifed the author by the Hew Jersey Zinc Sales Company. The specific surface of this sample of XX-2 Zine Oxide was checked in their laboratory using both the Air Permeability and the Nitrogen Absorption methods and found to be $4.2 \mathrm{sq} . \mathrm{m} / \mathrm{gr}$. This checks very well with the value of $4.22 \mathrm{~m}^{2} / \mathrm{gr}$ as shown above. This sample was used to check the accuracy of readings on the modified air permeameter as suggested in the ifterature. (4) B. Crinding Equipment and Power Measur ament.

Pebble mills have been widely adopted for pigment dispersion in the last two decades. In the most commonly used design, a cylindrical chamber, mounted horizontally, is partially filled with pebbles or porcelain balls together with the components of the mixture for grinding. Rotation of the cylinder causes the balls to be lifted to the point where they cascade, rolling over each other, crushing any particles caught between the contacting balls and subjecting the mixture to a highly turbulent shearing action in the spaces between the balls. (18)

The efficient use of pebble mills requires the balance of a number of vartables. Although the analysis of performance of any given mill operation is difficult, requiring in some cases careful and systematic observation over an extended scries of trial runs, there are, nevertheless, data from standard practice and experimental work which can be applied to many special cases. It can be seen that the construction of the mill and its driving mechanism establishes permissable loads and speeds, but other conditions well within the
control of the onerator determine actual grinding efficiency.
The pebble mill which has a non-ferrous $11 n i n g$ of porcelain and the grinding media of flint or porcelain pebbles was chosen for this work. Since the vehicle for the slurries studied was water, work could not be done with the ball mill and its metal mill and prinding media, since rusting would cauge contamination.

The speed of the mill is one of the important operating factors In the operation of the pebble mill. The following equation oxpresses the relation between mill diameter and the speed at which the balls would be held by centrifugal force to the interior of the mill cylinder: (9)

$$
S=\mathbf{X} / \sqrt{\mathrm{D}}
$$

$S=\operatorname{md} 11$ speed RPM
$K=$ constant
$D=$ diameter of mll ft.
This speed has been designated as the "critical speed" and has been quite cenerally adopted as the reference point in describing mill operation. Theoretically, the balls in a rotating mill centrifuge if the speed exceeds that given by the equation: (6)

$$
\begin{array}{ll}
S=54.19 / \sqrt{r} & r=\text { radius of mil1 ft. } \\
S=54.19 / \sqrt{.172}=54.19 / .414 & r=\frac{4.125^{\prime \prime}}{2 \times 12}=.172 \mathrm{ft}
\end{array}
$$

$S=130$ RPM for the lab pebble mill

It should be noted that this equation is based on a mill containing the balls only with no grinding charge present. When the latter is introduced, the limiting speed is lower in value. The amount of the decrease from the critical speed will depend directly on the
wiscosity of the grindin charge. It is obv'ous that the lower the riscosity, the nearer the speed may be to the critical speed value, and the higher the viscosity, the greater the deviation therefrom. (13)

Commercial practice has been based on the properties of the mixture being ground and the characteristics of the grinding media. Commercial mills for pigment dispersion thus usually operate at speeds 50 to 65 vercent of critical speed. (8) In the case of the laboratory nebhle mill this gives operating speeds of 65 to ${ }^{\circ} 5$ RPM.

The recommended ball load is 40 to 55 per cent of the total mill volume. Higher loads reduce the cascading giving in effect a choked mill. Lover loads may contribute to slipping of the ball charge with excessive wear and deformation of the grinding media. (6) The laboratory mill was loaded to 50 ner cent of its total volune or about one pint of pebbles.

The optimum dispersion volume is 18 to 20 per cent of mill volum ((8) A charge which is slightly in excess of that which fills the ball woids is most rapidly dispersed. This is the type of charge used on the laboratory mill and amounted in each case to about one half pint.

The pigment slurries were kept as simple as possible to keep the variables at a minimum. They consisted of:

	53.8\% Mx	63.7\% 14.8	
Pigment	240 gr	290 gr	170 gr
Water	200 ce	150 ec	270 cc
Tamol 731 (25\%)	3 cc	3 cc	3 co
Nodeo JMK	3 mr	3 gr	3 gr

The grinding equipment used was the Paul 0. Abbe Single Tier Jar Molling Mill (Revo-Charge Motor Drive) described as follows:

| H.P. | $\frac{\text { Floor Space }}{1 / 3}$ | $13^{\prime \prime} \times 72^{\prime \prime}$ |
| :--- | :--- | :--- |$\quad \frac{\text { Height }}{16^{\prime \prime}} \quad \frac{\text { Rol1s }}{3^{\prime \prime} \times 48^{\prime \prime}}$

The jars are easily placed on or removed from the rollers and no bands are required to hold them in place. Standard rollers are steel, the rubber covering of which is carefully ground to size. All rollers are directly driven to insure positive action and eliminate danger of binding.

The jar mill is a straight side porcelain jar cemented in a steel can for protection against breakage. Its dimensions are:
$\frac{\text { 0.Do }}{5.13^{\prime \prime}} \frac{\text { Outside Height }}{5.50^{\prime \prime}} \frac{I . D .}{4.125^{\prime \prime}} \frac{\text { Inside Height }}{4.125^{\prime \prime}} \frac{\text { Operating Capacity }}{0.25 \mathrm{gal} .}$

The main grinding media was Selected Prench Flint Beach Pebbles with a long dyameter averaging about $3 / 4$ inches and a short diameter averaging about $1 / 2$ inch. Beach pebbles, rounded and free of pits, have long been amployed as grinding media. In this work Borondum Cylinders of hiph density ceramic with $3 / 4$ inch diameter and $3 / 4$ inch height; and spherical $1 / 2$ inch diameter porcelain high density balls, were also studied.

Dower requirements were measured on a Wegtinghouse Watt-Hour Meter, Tre $0 B$, Single Phase, $K_{h}=1 / 3,5$ amps, 115 volts. The constant of this meter was $3.56 \times 10^{-14} \mathrm{kw}-\mathrm{hr}$ per revolution of the wheel and the number of seconds per revolution was checked using a stop-watch. This meter was connected directly to the line and the mill drew its power through it.

Power readings were taken with the mill loaded with its ball charge and this figure subtracted from the readings obtained when the figment slurry was also present. The difference between these two readings gave the power used in developing surface area. These readines were so small that any heating losses were not considered as they were constant for any set of runs and would have made the Dower feadings that much smaller.

The method of making the grinds consisted of first slurrying the pigment in the water and agents under a high speec agitator and adding this slurry to the pebble mill which had been loaded with the ball charge. The far mill was then put on the rollers and allowed to grind for the predetermined time. After this period was completed the jar mill was removed from the rollers and the slurry removed from the mill. The power was checked and recorded for the run. The slurry was then spread out in shallow trays and allowed to dry in a constant temperature-humidity room for 24 hours. It was then used to prepare a plug to be run in the permeameter.

C. Pigments Studied

This study covered three widely different pl.gments in order to get a wide range of values. It was the plan that by testing pigments of widely disferent hardness, specific gravity and reactivity, a correlation would be obtained that would hold over the entire range.

The first pigment studied was a Zinc Oxide, which is a white pigment, nodular in shape. It has high brightness, its refractive index is 2.08. It is relatively low in tinting strength and hiding
power but has special nroperties which make it a very desirable pirment. It is relatively opaque to ultraviolet light. It is slightly chemically reactive and foms reaction products with paint vehicles. The chemical reaction is taken advantage of in paint formulation to ohtain certain properties in some paints but ex ludes its use in some types.(16) Listed below are some of the constants on: XX-2 7inc Oxide (Hew Jersey Zinc Company)

Particle Shape	Nodular
Insoluble in HCl	$.03 \%$

SO_{3} (total S as) $\quad .25 \%$
Water at $110^{\circ} \mathrm{C} \quad .20 \%$
Water soluble salts $.57 \%$
PbO (total Pbas) . 19%
ZnO over 98.00%
0.1 Absorption $\quad 3.2 \mathrm{ec}$

Ge pound bulks .0214 gal
Tho Hardness li - 1.5
Specific Gravity $\quad 5.606$
The second pigment studjed is the most important white pigment, Pitanim Dioxide. Its most outstanding property is its extreme opacity, which is much higher than that of any other white pigment. Tinting strength as determined by the Reynolds method ranfes from 1200-1300 and one pound of pigment in linseed oil will hide 115 square feet of black surface. It has an index of refraction of $? .70$, average mean particle size diameter of 0.3 microns and a total dry brightness of 98 to 99 per cent. It is very resistant to acids and alkalies, it

Is not discolored or otherw?se affected by gases, and is non-reactive with practically all types of vehicles or media in which white pigments are used.

The mitanium Dioxide used in this study had the following constants:

Titanox RA (Titanium Pigment Corp.)

Crystal
Hefractive Index 2.70
Specifle Gravity
$11 b$ bulks .O286 gal Ibs per solid gal. 34.99
Tinting Strength 1600
Oil Absorption
Pho Hardness
$\mathrm{THO}_{2} \quad(m i n)$
SiO_{2}
0.15%
$\mathrm{Fe}_{2} \mathrm{O}_{3}$
0.006%
$\mathrm{Al}_{2} \mathrm{O}_{3}$
1.3\%
$\mathrm{Sb}_{2} \mathrm{O}_{3}$
0.028

M
$.1-.2 \%$
Pb
0.015%
Average Particle Size:Mean Diameter Microns
$0.3-0.4$
Transmission Range 420.-600mm
Thermal Conductivity:

cal/ $\mathrm{cm} / \mathrm{sec}^{\circ} \mathrm{C}$	perpendicular to e axis	. $01214-.0136$
	parallel to c axis	. $0200-.0216$
Specific Heat	e / g	. 1707-. 179
$\mathrm{kg} \mathrm{cal} / \mathrm{mol} /{ }^{\circ} \mathrm{C}$	$200-1000^{\circ} \mathrm{C}$	13.?
Coefficient of	linear expansion $25^{\circ} \mathrm{C}$	axis 7.19 x

Molal Heat Capacity ($25^{\circ} \mathrm{C}$)	$13.16 \mathrm{cal} /{ }^{\circ} \mathrm{C}$	
Dielectric Constant	114	
narallel to c axis	500 kc	190
Power loss parallel to c axis	500 kc	0.025
Electrical conductivity(room temp)	$\times 10^{-1}$	per cm
Melting Point	$1825^{\circ} \mathrm{C}$	

The Third pigment examined is a white extender pigment, natural whiting, Calcium Carbonate. It varies from pure white to dirty cream in color. It is a bulky pigment, quite stable to light, and is unaffected by hydrogen sulfide. It is practically insoluble in water but more soluble in water containing carbon dioxide forming calcium bicarbonate. It is soluble in all dilute actds with the evolution of carbon dioxide. The calcium carbonates exhibit little covering power in wet ofl or varnish films. Their ofl absorption varies widely and is dependent on particle size and surface treatment, which may change the characteristics of the pigment markedly to improve gloss, increase ease of wetting, prevent penetration and lower oil absorption. (16)

The calcium carbonate used was Calwhite. It is a high brightness, relatively low particle size natural calcium carbonate pigment produced from pure crystalline marble. It is manufactured under rigid control by system of water grinding and centrifugal classification. Some of its other properties are listed below:

Calwhite (Georgia Marble Co.)

Dry brightness 96%
Hardness (Mo) 3.0
011 Absorption $G-C$ $23-7.5$
pH$9.1-9.2$

Specific Gravity		2.71
Particle	Size distribution	2-30 microns
		75\% minus 10 microns
Mean par	ticle size	6.5 microns
Specific	Resistance	20,000 ohms
Bulking Value		
	One pound bulks	0.0443 gal
	Weight per solid gallon	22.57 lbs
Typical Chemical Composition:		
	CaCO_{3}	98.00\%
	MgCO_{3}	1.01\%
	$\mathrm{Al}_{2} \mathrm{O}_{3}$	0.02\%
	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	0.08\%
	Mn	Trace
	SH_{2}	0.38\%
	Cu	None
	Motature	0.40% (max)

D. Variables Studied

While this study pertajned to surface area and power requirements, it was felt that several of the operating variables other than time should be checked in order to get the optimum grind on each run. This was accomplished by checking the effect of five other variables on the Zinc Oxide and Titanium Dioxide grinds.

The first variable studied was mill speed. Operating within the 50 to 65 per cent of critical speed range mentioned in section B, runs
were checked at $65 \mathrm{RPM}, 75 \mathrm{RPM}$ and 85 RPM . The time, mix and all other conditions remajned constant.

In the first runs because of the water system and the fact that the wetting agent was a detergent type material there was some foaming. This foaming would have oushioned the cascading of the pebbles and cut down on grinding effictency, Therefore an anttfoam agent was added, a silicone soap, Nopoo JMR (Nopco Chemical Co.) and also ohecked in a grind to note its effect on the development of surface area.

Also checked was the effect of the wetting agent. This was done by running the organic, anionic, Tamol 731 (Mohn ${ }^{3}$ Haas) against an inorganic agent, Potassium Tripolyphosphate and also a grind with no wetting agent. Tamol 731, which is the sodirm salt of a carboxylated polyelectrolyte,was chosen from among many organic types because of it's good performance in the type of system boing studied. The mix was kept thin to prevent rheological side effects. (13)

With a 24 hour grind, using flint pebhles, Tamol, Antifoam and 65 RPM, the solids effect was checked. Slurries with about 40,50 and 60 per cent solids were ground to determine its effect on surface develoment.

Finally the grinding action of the random shaped flint beach pebbles was compared with that of unfformly shaped cylinders of a high density ceramic and spherically uniform porcelafn balls.

IV. EXPERI MENTAL RESULTS

At the outset it was necessary to drop one of the pigments which had been chosen for this study, Silver Bond Silica. It was found that this pigment when ground did not form a self-supporting plug and this would have made it impossible to measure surface area by means of the air permeameter.

Investigation of the possible sources of error in the use of the permeameter equations showed the following: (11)

Variable Accuracy Assumed in Measuring Max. \% deviation in so
Volume of Air $\left(Q_{1}\right) \quad \pm 0.1 \mathrm{ml} \quad \pm 1.0$
Δp
Time (t)
Length of Plug (L)
Area of Plug (A)
$\pm 25 \mathrm{~mm} \mathrm{Hg}$
± 1.7
$t 1 \mathrm{sec}$
± 0.4
$\pm 0.01 \mathrm{~cm}$
± 0.3

Porosity of Plug (\in) $t 2.3 \times 10^{-3} \mathrm{~cm}^{2}$ ± 0.5

$t 2.3 \times 10^{-3} \mathrm{~cm}^{2}$	$\notin 2.0$
$t 0.01 \mathrm{~cm}(\mathrm{~L})$	$\notin 2.0$
$t 0.001 \mathrm{gr}(\mathrm{W})$	± 0.5
$\pm 0.02 \mathrm{gr} / \mathrm{ml}(\mathrm{p})$	$t 1.2$

Since this method is also dependent on the porosity of the plug being between 0.4 and 0.5 , it was first determined what the range would be in weight for each pigment, as follows:

$$
\begin{array}{ll}
\quad W=\rho A L(1-\epsilon)= & 0.5 \rho \mathrm{AL}-0.6 \rho \mathrm{AL} \\
\text { For Zinc Oxide: } & 1.455 \mathrm{gr}--1.745 \mathrm{gr} \\
\text { For Titanium Dioxide: } & 1.09 \mathrm{gr}-\mathrm{m}-1.31 \mathrm{gr} \\
\text { For Calcium Carbonate: } & 0.70 \mathrm{gr} \\
\hline
\end{array}
$$

An average of the above high and low figures was taken and that was the amount weiphed out for compression into the plug.

The power requirements were found to be the same for each type of pigment slurry as the viscostty for each was just about the same due to the solids content and the efficient fob done by the wetting agent. (13) The slurries were in reality practically water thin and because of this there was no measurable difference in their power requirements. These Dower requirements were measured at each speed but since most of the data was run at 65 RPI, the optimum arind speed, they were the only readings required. Only the actual work used in grinding was used and this is why the power readings were so low. Work done in revolving the mill and the pebiles was not considered as having part in the development of surface.

The drying of pigments had to be handled very carefully as it was found that if they were heat forced or allowed to pack the results would be erratic due to cindering or mocculation. It was also not possible to dry them in the laboratory on days whon the humidity was high as they carried over surface water which caused the plug to be impervious to the air stream flowing through it. It was found that the best method was to spread a thin layer of the ground slurry on a large tray and dry in a constant temperatureconstant humidity room($\left.77^{\circ} \mathrm{F}-50 \% \mathrm{R}, \mathrm{H}.\right)$ In this way all the pigment grinds reached the permeameter in the same condition and moisture content was the same for all samples.

In an attempt to check the theories of Rittinger and Bond, the power expended in each grind was firbt plotted on arithmetio graph
paper against the surface area developed and the square root of the surface area developed. Since each of the pipments failed to yield a straight line relationship, we found that the Rittinger and Bond theories of direct proportionality did not hold. The data was also plotted on semi-log paper and again did not yield straight lines. This proved the relationship was not of the type, $y=n 10^{m x}$, where m and n are constants.

The data when plotted on $\log -10 g$ paper ylelded straight lnes with each of the pigments, as shown in Curve 2. This meant they Were power functions of the general type $x=A y^{n}$. These lines cross ach other because of their different slopes and the Ines and the equations derived therefrom show no correlation with other propertles of the pigments such as specifle gravity, hardness or prinding resistance. The equations from this plot are as follows:

For Titanium Dioxide: $\quad P=.086\left(\frac{\Delta}{4}\right)^{1.072}$
For Zine Oxide: $\quad P=.036(\Delta s)^{0.678}$
For Caloium Carbonate: $\quad P=.076(\Delta s)^{0.894}$
However, when each of the pigments was plotted on log-log paper* starting with the same surface area (that of Titanium Moxide) it yielded a family of straight lines oxtending radially from the same origin and displaced in the order of their hardness. The y-intercepts where $\Delta s=\log 1=0$, which can be considered the condtion of the pigments before grinding, were in ratios very close to the ratios of the Mo hardness of the pigments. Since this did not show up on the previous plot, it points out the fact that the $\Delta s=0$ intercept only have significance where all the $\Delta \mathrm{s}$ start from the same place, in other
words where all the $\Delta s=0$ have the same base surface area.
In this plot the surface areas and power required to develop them for the pigments which did not start at the same particle size as the Titanjum Dioxide, were obtained by interpolating the origtnal experfmental data as shown in Curve 2. The plot of these internolated values of Zino Oxide and Calcium Carbonate and the expertmental values for Titanium Dioxide is shown in Curve 3.

From this set of curveg were obtafned the following equations:

For Zinc Ox:dez
$T=.090\left(\lambda_{s}\right)^{1.05}$
For Calctum Carbonate:
$P=.107\left(L_{s}\right)^{0.98}$
The very important relation between the $\bar{F} \boldsymbol{m}^{2}$ ntercept and the mineralofical hardness of the materials is listed below:

Hardness Ratio Y-intercept Ratio

For Titanium Mioxide:	6.0		16.8	
For 7inc Oxide:	4.25	1.41	1.33	
For Calcium Carbonate:	3.0	1.41	12.6	1.37

In the study of the relation $s^{\circ}+1 m s$ of grind to surface area developed, the function was again a power one as show in Curve 1. Equations for this correlation of time of grind to surface area developed are:

```
For Titanium Dioxide:
\[
t=22(\Delta s)^{.609}
\]
For Zinc Oxide:
\(t=11(\Delta s)^{.60205}\)
For Calctum Garbonate:
\(t=20\left(\Delta^{3}\right)^{869}\)
```

The check on the grinding variables was nade by comparing the surface areas developed when each in turn was removed or replaced.

The results checked for both pigments studied, Titanium Dioxide and Zinc Oxide. They showed that for this particular system and the particular mill, the best way to develop optimum grinding conditions was to grind at 65 RPM with 53.8 per cent solids, adding Tamol and Antifoam, the grinding media to be flint beach pebbles. These were the conditions under which all of this experimental data covering grinding time and power effect on surface area development was collected.

A check of the results obtained with the air permeameter against those obtained by other investigators showed the rasults were in the same range and in most cases comparable where the same type of pigment was studied. This served as a double check on the valldity of the surface area reaults which had already been checked using the standardizing Zine Oxide. In the Carman paner (4) the values of s_{0} of Zinc 0×1 de as obtained by air permeability were $1.49-1.77 \mathrm{~cm}^{-1} \times 10^{5}$ and by ibtrogen Absorption $1.81 \mathrm{~cm}^{-1} \times 10^{5}$. The values obtained in this experiment for a particular grads of Zinc Oxide range from 1.5325 to $2.342 \mathrm{~cm}^{-1} \times 10^{5}$. In the case of Titanium Dioxide, Carman shows a range of 3.26-3.82 on air permeability and 4.4 on nitiogen absorption, while the experimental values ranged from 2.006 to 2.892 . With the Calcium Carbonate, Carman had no figures for natimal Calcium Carbonate, just the precipitated type which is much iner. A letter from the pigment supplier quotes a figure of . 21 which compares to the experimental range of .1684 to .753 . This type of check cannot be held too closely since this naper deals with a specific pigment while Carman's naper does not identify the types studied. In dealing with Zinc Oxide it could be nodular or acicular, fine or coarse grade; with Titanium it could be Rutile or Anatase; Calcium Carbonate could be natural or precipitated.

V. CONCLUSIONS

In the field of wet pigment grinding the theory of grinding has not kept pace with the practical developments. The theories of Rittinger and Bond, developed for use in dry grinding of larger sized materials, cannot be used when studying sub-sieve size pigments. Experimental results indicate the development of surface area in this range is a more complicated phenomena than the direot relationship of total area developed to power expended as postulated by fittinger. Here, too, the formation of crack tips as mentioned by Bond is difficult to imagine in particles whf ch are less than a micron in diameter.

To fill the need for some method of predicting the power requirements to develop a certain amount of surface area, the following equations were derived from the plots of the experimental results:

For Zine Oxide: $\quad P=.090\left(\Lambda_{s}\right)^{1.05}$
For Titaniun Dioxide: $\quad P=.086(\Delta s)^{1.072}$
For Calcium Carbonate: $\quad P=.107(\Delta s)^{0.98}$
In the log-lox plots from which these equations were developed, the y -intercepts (where $\Delta s=\log 1=0$) of the three straight line plots were in the same order and ratio as their hardness. These lines were based on all the plgments having the same starting surface area. When the pigments started from different surface areas the correlation did not hold. Therefore the $\mathbf{L}=0$ point, or the unground pigment starting point, only has significance when all the pigments are studied from the same base.

With these equations one could predict the power necessary to reduce a certain feed pigment to a definite surface area or to a certain average particle size by use of the equation:

$$
\begin{aligned}
& d_{a v}=6 / \rho s d_{a v} \\
&=\text { average particle diameter }, \mathrm{cm} \\
& 0=\text { density gr/cc } \\
&=\text { specific surface } \mathrm{cm}^{2} / \mathrm{gr}
\end{aligned}
$$

These equations could also be used in testing the efficiency of a grinding operation, for when a grind did not bring up the predieted surface area, it would be necessary to check the grinding variables to see where they could be changed to get the optimum grind.

In some cases the time of grind alone would be very valuable Information in scheduling production and the following equations derived from plots of these experdmental results can be used to predict the mill time on the pigments studied:

```
For Pitanium Dioxide:
\(t=22\left({ }_{4 s}\right)^{.609}\)
    For Zinc Oxide:
    \(t=11(4 \mathrm{~s}) \cdot 60205\)
    For Calcium Carbonate
    \(t=20(19)^{.869}\)
```

This work has given the paint manufacturer a simple method of evaluating his grinding procedures and bringing them up to the point of optimum grind by the use of a simple set of measurements.

VI. RECOMMENDATTIONS

Fine pigment grinding in water or solvent systems, using small amounts of wetting agents, is quite widely used today. Pebble mills are one of the popular mills in this type of operation, especially in the grinding of Whites. Since the m111 time and power consumption are the all important factors in this type of grinding, any method of cutting down either would be decided advantage.

Using the author's equations on production size mills the manufacturer could check the efficiency of his grinding methods and in the cases where an optimum grind is not being obtained, check out the variables involved and their effect on surface development.

In this type of grinding also, the paint manufacturer should make a study of the mineralogical hardness of the pigments, as well as their starting particle size range, with a view to simplifying the grinding procedure by replacing coarser pigments with finer ones and harder pigments with softer ones, whenever it is feasible.

APPENIIX

$\frac{\text { Variable }}{\text { Grind }}$	$\begin{aligned} & \mathrm{p}_{1} \mathrm{Hg} \\ & \mathrm{~mm}^{2} \mathrm{H} \end{aligned}$	$\begin{aligned} & p_{2} \\ & \text { mimg } \\ & \hline \end{aligned}$	Δ^{p}	$\begin{aligned} & \mathrm{p} \\ & \mathrm{mmg} \mathrm{Hg} \end{aligned}$	t sec	e	F_{7}		$\frac{t+1}{p_{1}}$	$\underbrace{\substack{\mathrm{m}^{\times \mathrm{m}} \text {-1 }}}$	$\mathrm{sk}_{\mathrm{k}}{ }^{2} \times 10$	$\begin{aligned} & s_{0} \times 10^{5} \\ & 8 \mathrm{~m}^{5} \\ & \hline \end{aligned}$	$\mathrm{m}^{2 / \mathrm{g}} \mathrm{gr}$	Wt. plug gr.	RPM	SOLTDS	ADDITI VES
Time 0 hrs	756	12	74.	384	140.6	. 448	. 2895	. 364	238.2	1.385	22.4	1.5325	2.73	1.6018	65	53.8\%	TA P
4 hrs	753	12	742	382.5	143.	. 476	. 393	. 4325	140.8	1.67	30.6	1.835	3.27	1.5200	65	53.8\%	TAP
8 hrs	753	12	741	382.5	152.3	. 478	. 402	. 437	150.	1.80	40.0	2.0	3.57	1.5186	65	53.8\%	TAP
12 hrs	756	12	$74 / 1$	384	168.	. 471	. 371	. 420	165.4	1.908	34.2	2.074	3.88	1.5387	65	53.8%	TAP
16 hrs	753	12	741	382.5	173.	. 483	. 423	. 451	170.3	2.11	39.9	2.297	4.08	1.5123	65	53.8\%	TAP
20 hrs	756	12	744	384	189.	. 1.74	. 385	. 14275	5186.	2.18	43.5	2.364	4.22	1.5300	65	53.8%	TAP
24 hrs	756	12	7ha	384	231.5	. 449	. 301	. 367	227.5	2.785	28.1	2.4025	4.28	1.6000	65	53.8\%	TAP
36 hrs	756	12	74.4	384	234.1	. 455	. 317	. 380	231.	2.40	40.7	2.56	4.57	1.5825	65	53.8\%	TAP
48 hrs	756	12	744	384	214.	. 4825	. 423	. 451	210.5	2.60	49.5	2.78	4.96	1.5030	65	53.8\%	TAP
1 hr	756	12	74.4	384	172.6	. 435	. 256	. 334	169.7	1.506	24.0	1.65	2.94	1.6431	65	53.8\%	T A P
2 hrs	756	12	744	384	195	. 418	. 21.5	. 301	192.	1.585	22.8	1.7205	3.07	1.6921	65	53.8\%	TAP
3 hrs	756	12	744	384	200.	. 420	. 219	. 305	196.5	1.64	23.8	1.77	3.155	1.6859	65	53.8\%	TAP
17 hrs	756	12	744	384	172	. 1488	. 144	. 465	169.	2.155	11.5	2.3325	4.16	1.4894	65	53.8%	TAP
18 hrs	756	12		384	194	. 469	.365	. 114	191.	2.17	38.5	2.335	4.17	1.5437	65	53.8\%	TAP
19 hrs	756	12	74.4	384	192	. 471	. 371	. 420	189.	2.18	38.8	2.342	4.18	1.5386	65	53.8%	TAP

Variable	${ }^{\text {P1 }}$	p2 闆	$\frac{\Delta p}{}$	祭	gee	E			$\frac{\frac{0 x i d e}{}}{\frac{t \Delta p}{p_{1}}}$	$\begin{aligned} & \mathrm{mm}_{\mathrm{m}} \times 10^{5} \\ & \hline \end{aligned}$	$\begin{gathered} 3_{k}^{2} x x^{2} \\ \operatorname{cis}^{-1} \\ \hline \end{gathered}$	$\begin{aligned} & 3_{0} \times 10^{8} \\ & \hline \end{aligned}$	m^{2} / y_{x}	Weipht Dlug gr		Solids	Add.
Antif foam	753	$1 ?$	742	382.5	152	. 162	. 307	. 300	150.	1.61	27.85	1. 767	3.15	1.5686	65	53.8	10 T
Wetting	762	12	750	387	225	. 446	. 288	.359	222.	2.185	34.6	2.3345	4.16	1.610 R	65	53.8	K A P
*	762	12	750	387	151	.178	. 399	. 1375	148.8	1.789	32.1	1.954	3.19	1.5177	65	53.8	T0
Solids	775	12	758	391	16.7.?	. 1152	.309	. 373	161. ${ }^{\text {R }}$	1.652	27.3	1.778	3.17	1.596?	65	63.7	TA 9
*	770	12	758	391	900.5	. 1459	. 326	. 387	197.5	2.091	35.2	2.251	4.02	1.5745	65	37.3	T ${ }^{\text {P }}$
Ortnding	$76 ?$	12	750	387	199.3	. 1437	.763	.339	195.3	1.82	27.8	1.952	3.148	1.6370	65	53.8	TA 3
${ }^{\prime}$	$76 ?$	17	350	387	165	. 1667	. 361	.369	162	1.73	31.9	1.897	3.38	$1.54,93$	65	53.8	TAc
M11	770	12	756	391	221. 1	.147	.292	. 362	218.	2.16	34.8	2.31	1.12	2.6091	75	53.8	TAp
	770	12	758	391	14.3 .8	.506	. 512	$\begin{array}{r} .535 \\ T i t s \end{array}$	$\begin{array}{r} 141.6 \\ \text { ing Di. } \end{array}$	2.075 oxide	39.75	2.2595	1.09	1.1.381	85	53.9	TAp
Anti foam	769	12	718	386	202	. 464	. 314	$\sqrt{101}$	199	2.19	38.7	2.355	$5.6 ?$	1.1653	64	53.8	T
Wetting	760	12	718	386	199	. 477	.395	.433	285	2.20	40.8	2.372	5.64	1.1373	65	53.8	A
	760	12	748	386	176. 6	. 463	. 344	. 398	174	1.90	33.4	2.06	1.91	1.1659	65	53.8	TO
Solids	760	12	748	386	156.8	. 189	.1 .36	. 1497	154	2.055	37.5	2.222	5.29	1.1176	65	63.7	TAP
"	760	12	748	386	210.	. 1.50	.301	.368	207	2.09	34.8	2.215	5.35	1.1978	65	37.3	FA ${ }^{\text {P }}$
Orinding	760	12	748	386	256.3	. 118	. 216	.330	252.3	2.08	30.3	2.218	5.78	1.2651	65	53.8	TAS
*	760	12	7 l 8	386	224	. 4156	. 322	.383	221.	1.95	47.0	2.165	5.16	1.1829	65	53.8	iAc
M111	760	12	748	386	179	. 1465	. 388	. 429	176	2.07	39.?	2.238	5.33	1.1676	75	53.8	T A
Speed	760	$1 ?$	748	386	230	. 133	. 267	. 331	227	2.06	33.9	2.215	5.27	1.2353	85	53.9	T ${ }^{\text {a }}$

TABLE 3

m
PERMEAMFTER DATA ON RINS WITH TYTAMUM DIOXIDE AND CALCIUM CAREONATE

TABLE 4

POWER REALI NGS TAKEN ON WESTHNGHOUSE WATTHOUR METER FOR SLURFTES OF
ZINC OXIDE, TITANIUM DTOXIDE AND CAICIUM CARBONATE GRINDING IN A

PEBBLE MLL

RPM	Empty Mill sec/rev	Loaded sec/rev	$\begin{aligned} & \text { Empty } \\ & \text { rev/sec } \end{aligned}$	Lorded rev/sec	To Load rev/sec	To Load rev/hr	K kwhr/rev	Total Work $\mathrm{kw}-\mathrm{hr} / \mathrm{hr}$
85	5.32	5.28	.1880	.1894:	.0014	5.04	3.56×10^{-4}	17.9424
75	5.44	5.111	. 1838	. 1848	. 0010	3.60	'	12.8160
65	5.49	5.46	. 1825	. 1932	. 0007	2.52	\%	8.9712

RPM	Watts 4 hrs	Watts 8 hrs	Watts 1? hrs	Watts 16 hra	Watts $20 \mathrm{hrs}$	Watts 24 hrs	Watts $36 \mathrm{hrs}$	Watts 48 hrs
85	7.18	14.35	21.55	28.75	35.83	43.15	64.70	86.20
75	5.14	10.25	15.40	20.55	35.65	30.80	46.20	61.60
65	3.565	7.17	10.70	14.26	17.82	21.40	32.10	42.80

RPM	$\begin{aligned} & \text { Watts/gr } \\ & 4 \mathrm{hrs} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{W} / \mathrm{gr} \\ & \mathrm{~g} \mathrm{hrs} \end{aligned}$	$\begin{aligned} & \mathrm{W} / \mathrm{gr} \\ & 12 \mathrm{hrs} \end{aligned}$	$\begin{aligned} & \mathrm{W} / \mathrm{gr} \\ & 16 \mathrm{hrs} \end{aligned}$	$\begin{aligned} & \mathrm{W} / \mathrm{gr} \\ & 20 \mathrm{hrs} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { W/gr } \\ & 24 \mathrm{hrs} \end{aligned}$	$\begin{aligned} & \mathrm{W} / \mathrm{gr} \\ & 36 \mathrm{hrs} \end{aligned}$	$\begin{aligned} & \mathrm{W} / \mathrm{gr} \\ & 48 \mathrm{hrs} \\ & \hline \end{aligned}$
85	. 0299	. 0599	. 0899	. 1197	. 1492	. 1795	. 2690	. 3590
75	.0214	. 04275	. 0642	. 0857	. 1069	. 1282	. 1923	. 2567
65	. 01482	. 0298	. 04446	. 0594	. 0743	. 0892	. 1337	. 1785

TABLE 5

DATA ON SURFACE DEVELOPMENT AND POWER EXPENDED

$\begin{aligned} & \text { Grinding } \\ & \text { Time hrs } \end{aligned}$	Specific Surface m ${ }^{2} / \mathrm{gr}$	Surface Developed $\mathrm{m}^{2} / \mathrm{gr}$	Power Expended Watts/gram
Zine Oxide			
0	2.73	--	--
1	2.94	0.21	. 003705
2	3.07	0.34	. 00741
3	3.155	0.425	. 012115
4	3.27	0.54	. 01482
8	3.57	0.84	. 0298
12	3.88	1.15	. 04446
16	4.08	1.35	. 0594
17	4.16	2.43	. 063
18	4.17	1.44	. 0668
19	4.18	1.45	. 0705
20	4.22	1.49	. 0743
24	4.28	1.55	. 0892
36	4.57	1.84	. 1337
48	4.96	2.23	.1785

TABLE 6

DATA ON SURFACE DEVELOPMENT AND POWFR EXPENDFD

Grinding Time hrs	Specific Surface $\mathrm{m}^{2} / \mathrm{gr}$	Surface Developed $\mathrm{m}^{2} / \mathrm{gr}$	Power Expended Watts/gram
Titanium Dioxide			
0	4.78	T\%	--
4	4.94	0.16	. 01482
8	5.11	0.33	. 0298
12	5.29	0.51	. 0446
16	5.50	0.72	. 0594
20	5.68	0.90	. 0743
24	5.89	1.11	. 0892
36	6.41	1.63	. 1337
48	6.88	2.10	. 1785
Calcium Carbonate			
0	0.622	--	--
4	0.860	0.238	. 01482
8	1. $\mathrm{OL}_{4} 2$	0.420	. 0298
12	1.193	0.571	. 0146
16	1.335	0.713	. 0594
20	1.537	0.915	. 0743
24	1.937	1.315	. 0892
36	2.355	1.733	. 1337
48	2.78	2.158	. 1785

TABLE 7

ت
EFFECT OF UAPTABLES ON SURPACE DEVELOPED

$\begin{aligned} & \text { Plot As } \\ & \text { versus } \end{aligned}$	Pigment	t intercept or P intercept	Ss intercept	Slope	Equations
P	ZnO	. 036	9.0	0.678	$P=.036\left(\Delta_{s}\right)^{.678}$
P	Tio	. 086	13.0	2.072	$P=.086(\Delta s)^{1.072}$
p	CaCo	. 076	10.0	0.894	$P=.076(\Delta s)^{.894}$
t	ZnO	10.	. 23	0.60206	$t=10 .\left(\Delta^{8}\right)^{.60206}$
t	TiO	22.	. 038	0.609	$t=22 .(4 s) .609$
t	CaCo	20.	. 065	0.869	$t=20 .\left(\Delta^{3}\right)^{.869}$

RELATI ONSHIP OF HARDNESS TO 5 INTERCEPT

Plament Mo Hardness		Ratio		Sgintercept	
TiO Ratio					
ZnO	6.0	4.25		9.0	1.11
ZaCo	3.0	1.41		10.0	13.0

TABLE 9

DATA USED IN PLOTTTNG ALL TJGMENTS STAFITNG FROI PHE SAME BASE SURFACE AREA

$\underline{\mathrm{ZnO}}$		T10			$\underline{\mathrm{CaCO}}$	
As	P	45	P		Δ_{s}	P
0.18	. 018	0.16			1.22	. 1300
0.40	. 038	0.33			2.22	. 2350
0.60	. 053	0.51			5.12	. 5500
0.80	. 072	0.72				
1.00	. 090	0.90				
		1.11				
		1.63				
		2.10				
	TABLE 10					
FESULTS OF LOG LOG PLOTS WITH SAME BASE STARTING SURFACE: AREA						
第gment	P-intercent		As intercept	Slope	Equations	
T10	. 086		16.8	1.072	$P=.086(4 s)^{1.072}$	
ZnO	. 090		12.6	1.05	$P=.090\left(\Delta^{3}\right)^{1.05}$	
CaCO	. 107		9.2	0.98	$P=.107(18)^{0.98}$	
	GEIATI ORSHP OF HARDNESS TO S SNTERCEPT					
Pigment	Mho Hardness		Ratio	As intercept Ratio		
Tio	6.0		16.8			
ZnO	4.25		1.41	12.6		1.33
			1.41		1.37	
caco	3.0			9.2		

PLOT OF TIME OF GRI ID VERSUS SURFACE AREA DEVELOPED

																					-									
9				+																										
																	T:													
																	Ti.													
B															-															
																	\%	H	\square											-
7															H															
7																														
																								I						
6					-										,											Ht				
6			-																					+						-
													1	7	$\underline{1}$								\%	+	T		T			-
		-			+		-							\bigcirc	\cdots															-
5															\cdots		I									,				
		-									H				,		-			\#		-	H	1		7				
					-																									
*																				\#										
\pm																														
							-				-									T	,	\#	+							
																				,										
																						+	\#							
																				\square										
															1															
3																														
					-	-	-		-																					
2																														
																	11													
																	1													

 y

PIOT OF TOTAL WORK (POWER) VERSUS SURFACE AREA DEVELOPED

PLOT OF TOTAL WORK VERSUS SURFACE AREA DEVELOPED ALL PIGMENTS REFERRED TO THE SAME STARTING SURFACE AREA

BI BLI OQRAPHY

1. Bond, F.C., Chem Eng., 59, p 242 (1952)
2. Blaine, ReL., ASTM Bull. No. 123, p 51 (1943)
3. Brunauer, S., Emmett, P.H. \& Teller, E., J. Amer Chem Soc., 60, 309 (1930)
4. Carman, P.C., Malherbe, P.R., J. Soc Chem Ind., 69, 134-43 (1950)
5. Carman, P.C., Symposium on new methods for particle size determination in the sub-sieve range, ASTM, p 24-33, March 4, 1941.
6. Coghill, W.H. \& DeVaney F.D., U.S. Bureau of Mines, Tech Paper 581 (1937)
7. Emmett, P.H., Symposium ASTM, p 95, March 4, 1911
8. Fischer, E.K., Rolle, C.J., 量 Ryan, L.W., Official Digest Fed P \& V rod Clubs, 20, No. 287, p 59 (1948)
9. Fisher, H.7., des Vereines deut. Ing., 48, p 437-441 (2904)

10 Gaudin, A. M. "Principles of Mineral Dressing" MeGraw-H111 Book Co. Inc., New York, N. Y. (1939)

11 Gooden \& Smith, Ind Eng Chem (Anal Ed) 12, p li79 (1910)
12 Gross, J., U.S. Bureau of Mines Bulletin 402 (1938)
13 Green, H., Ind Eng Chem, (Anal Ed) 14, p 576-85 (1942)
Il Harvey, E. N., Symposium on Baint and Paint Materials, ASTM, p 60, Feb 25, 1947

15 Lea, F.M. \& Murse, Symposium Inst of Chem Eng \& Soc of Chem Ind, p 47, Feb 4, 1947

16 Mattiello, J. J. "Protective \& Decorative Coatinge" Vol II, John Wiley \& Sons, New York; p 32-4, 393 (1942)

17 Pechukas A., Gage, F.W., Ind Eng Chem (Anal Ed) 18, p 370 (1946)
18 Underwood, C.M., Ind Eng Chem, 30, p905-8 (1938)

