Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

BY

JULIUS GALEMDER

A THESIS
SUEATMEB TO THE FACULIT OF
THE DBPARTMESI OR CHBMICAL ENGLAESRTNO
OF
NEWARE COLEEGE OF ENOINEXRTMO

In PARITAL FULFIECHENT OT THE

08
MASTER OF SCEENCE WIHE A MAJOR
IN CHEMEAL RNOINEERTNO

NLWARK, NEW JERSEY

1956

ABSIRACT

An alkanolamide detergent can be formed by the condenation of coconut fatty aeid and diethanolamine, A great many factors aan influence this formation. It is shown that varying the molar ratio of amine to acid, results in a change in the fraction of aaid converted. It similarly affects the molar quantities of amine converted, Molar conversion of acid or amine is dependent upon the type of atmosphere in the reaction: more acid is converted when a nitrogen sweep is employed than when it is not used. However, proportionately more amine is converted, when a nitrogen sweep is not used. When two mols of water are distilled, there is evidence of a second reaction occurring. This phenomenon is not observed when just one mol of water is removed. The most probable second reaction involves the formation of cyclic ethers.

APPROVAL OF THESIS

FOR
 DEPARXASM OP CHEMTCAL EMGIREERTNG NENARK COLLEOE OF ENGINEERIMO

BI

FACULAT CONMITIETS

APPROVIP:

\qquad
NEMARK, NEW JERSEY JUNE, 1956

ACKHOWLEDCEMENTS

The development of this investigation was made possible by the use of the equipment and facilities of the Hoffmann-La Roche Phamaceutieal Company of Nutley, New Jersey. The cooperation and adviee of Dr. Saul I. Kreps Is gratefully aeknowledged. This paper owes its success to his generous counseling.
Page
THEORY 1
EXPERTMEMMAL
Series I 5
Series II 7
Series III 8
Series IV 9
Series V 10
ANALYETCAL
Determimation of Free Acidity 12
Detexmination of Free Alkalinity 15
Calculation af Material Balances 17
DISCUSSION
Series I 19
Series II 21
Series III 23
Series IV 24
Series V 24
SUMMARY 26

Table
Number Title Page

Series I
1 Variation MoL Ratio of Reactants 28
2 Determination of Free Aoldity 29

Determination of Free Alkalinity 29 Material Belance 30 31

Series II

5 Effect of Inent Atmosphere 33
6 Determination of Pree Actidity 34
7
8 Determination of Free Alkalinity Material Balance

Series III

Variation of Thme of Reaction 38
10 Detremanation of Free Actaity 39
11 Determination of Free Alkalinity 40
Material Balance
41

Series IV

13 Varlation of Molar Ratio of Laumic 43
14 Determination of Free Acidity 44 15 Datermination of Free Alkalinity 45 Material Balance 46

Series V

$\begin{array}{lll}17 & \text { Variation of Amount of Water Removed } & 48 \\ 18 & 49\end{array}$ Determination of Eree Alkalinity 50

LIET OF FTCURES

Number THtle Page
1 Rozldual Free Meldity vs. Mols Wabew DAEtillea 52
2 Resicual Fre Aotdity as Funotion of Mol Patio of Anine to meta in Charge 53
3 Residual Free Aoidity an a Ruction of the Ratio of Lawnio Aoid to Coumut Fatty Aeld 54
4 Convervion of teta as annction of the Nol Ratio of Amine to Aeid in Chawge 55
5 Converetion of Arsine te thunction of the Nol Rutio of inine to Aesi in Chaxge 55
6 Fwaction of anine Converted Baged on Charge Ratio 56
7 Kolar Ratio of Converation of Renctants Remed on Charge Retio 56
8 Convervion of Acid, Ausine and Mol Retio of Converyion of gem as anction of Mitrogen 57
9 Voluman of Mater Distilled as munction of Speed of Remotion 58
10 Relative Values of Internal Temperature of Heaction an function of mat of Raction 59
 of sam en Anction of Tim 60

IISM OF FIGURES (continued)

Number Title Page
12 Molar Fatio of Amine Charged as A Function of Increased Amount of Lauxic Aold 61
13 Amine Convernion With Respect to Varying Percentages of Lauric Acld 61
14 Acid Conversion Based on Varying Amounts of Laurie Acid 62
15 Molar Ratio of Conversion of Reactants as a Punction of Lauric Acid 62
16 Relationship Between Ether Formation and Mount of Water Removed 63
17 Incyeste in Pot Temperature as a Function of Water Distilled Indicating Foxmation of Ether After Removed of One Nol of Water 64
18 The Removal of Water as a Function of Elapsed Time 65

LTST OF CURVES

Letter Title Page
A Experiments $\mathbf{G - 1}$ and $\mathbf{G - 2}$ 66
B Experiments $6-7,0-10$ and $0-11$ 67
C Experiments 0-19 and 0-20 68
D Experiment G-21 and Diethanolamine 69

The condensation reaction between fatty acids and secondary alkanolamines are known to produee water soluble detergents. Esaentially, the reaction between coconut fatty acid and diethanolamine produces a nonionie detergent.

Wolf Kritehevsky 1 held that the chemistry of the process wes guoh that the lausic aejd (I) and diethanolamine (II) condensed to form an amide (III) ealled a fatty alkanolamide as follows:

It was also assumed that although the amide formation predominated, it was almo possible to form ester amines (IV) snd ester amides (V) ${ }^{2}$.

Commereially, alkanolamide detergents are made by the condensation of equimolar ratios of fatty acide with amines by the removal of one mol of water. The resultant alkanolamide are not as soluble as are those in which one molar excess of amine is used, nor do they aet as foam builders and foam stabilizers. Another method of making these detergenta, is to react an equimolar amount of acid with amine and distill off one mol of water. After cooling, another mol of amine is added. It is intereating to note that a simple physical addition of the second mol of amine is not in itself enough to produce detergent with the most deairable characteristics. The batch must again be heated to 15000 without distilling off additional water. This hasting oycle apparantiy catalyzes the formation of a complex structure which has not been elucidated. Depending upon the type and amount of fatty acid and alkanolamise used, optimum results oceur when one mol of water has been removed by distillation. These results involve:
a. an optimum of viscosity
b. an optimum foam building
c. an optimum foam stabilizing
d. mininum color
e. optimum solubility

Essentially the purpose of this study was to Investigate the nature of the postulated complex structure; what optimum conditions existed when just one mol of water was removed and what effect several variables would have on the reaction. The factors which were investigated were as follows:

Series I. Variations of the molar ratio of amine to acid, wherein the amine ratio was varied over the range of 1.5 mols to 2.5 mols.

Series II. Effect of an inert atmosphere on the reaction, wherein a nitrogen sweep was employed.

Series III. Variation of time of reaction. Comparison of slowest run with most rapid experiment.

Series IV. Variation of molar ratio of lauric acid to enhance the coconut fatty acid. These experiments were performed over the range of 25% to 100% lauric acid in admixture with double distilled coconut fatty aeid.

Series V. Variations of the amount of water removed as a function of complex formation.

With the exception of the Kritchevsky patents, there 1s no published material on the chemistry of the reaction aside from unsupported works of conjecture. Therefore, the work in this investigation is primarily an original compilation of experimental data and conclusions. The amount of investigation necessary to completely elucidate this subject is beyond the scope of this introductory study. It is recommended that future workers pressure certain plases of this subject, which were touched upon only lightiy in the present work.

EXPERTMENTAL

series I

In thin emies, seven experiments were performed wherein the molar ratio of amine to acid was varied in inorements of 0.2 of mol over the range of 1.5 to 2.5 mols of diethanolamine to one mol of coconut fatty aeid. In each aase the equipment used was identies. The only variable was the change in amine ratio. The experimental data of this series is shown in table 1.

Experiment $a-1$. Into a 1-11ter, 3-neck, round bottom flask equipped with glass agitator, thermometer, coll condenser, and Barrett distilling receiver were pleeed 217.0 grams (1.0 mol) of previousiy melted, double-distilled coconut fatty acid (commercial grade obtaned from E. P. Drew Company with a combining weight of 217). To this were added $157.5 \mathrm{grams}(2.5$ mols) of 95% commercial grede diethanolamine (obtained from Union Carbide and carbon with a combining weight of 105). The reaction mixture was heated by means of a Bunsen burner. The heating oycle was gueh that the time lapse from start of heat until the first drop of water formed at $154^{\circ} \mathrm{C}$ pot tempertture was fifty minutes. Prom the start of the wster formation until one mol of water was distilled into the Barrett apparetus, the time lapse was sixty-ive minutas. The range of tempernture was fron 640c at the staxt (due to heated coconut ratty acid) to $174^{\circ} \mathrm{C}$
pot temperature at the end. The reaction was cooled, the agitator stopped and the contents transferred to bottle.

Sxperiment G-2 was conducted in similar epparstus, the only ehange being that 178.5 grams (1.7 mols) of dethanolamine were reacted with 217.0 grams (1.0 mol) of coconut fatty acid. The time eycle was thirty minutes.

Experiment G-3 was perfommed in the ame manner: However, to $217.0 \mathrm{grams}(1.0 \mathrm{~mol})$ of cosonut fatty maid were added 199.5 grams (1.9 mols) of diethanolamine. The time eycle wam forty mimuten.

Experiment a-4 was modified mo that $210 \mathrm{grams}(2.0$ mols) of diethanolamine were reected with 217.0 grams (1.0 mol) of coconut fatty acid. the time eyole for this experiment wis twenty-six minutes.

Experiment 9.5 mas modified so that 220.5 grams (2.1 mols) of diethanolamine were reacted with 217.0 grama (1.0 mol) of coconut tatty acid. This experiment took thirty minutes to complete its eyele.

Experiment $0-6$ was performed in similer equipraent, the only change being that 241.5 grams (2.3 mols) of diethanolamine were rescted with 217.0 grans (2.0 mol) of coconut fatty mold. The time eyole for this experiment way twentym five minuten.

Experiment $0-7$ was prepsred in the same manner. The modification here was that 262.5 grams (2.5 mols) of diethanolamine were reacted with 217.0 grams (1.0 mol) of coconut fatty acid. The time cycle was twenty minutes.

Series II

Two experiments were performed in \$eries IT. The equipment used was, with the exception of the nitrogen addition tube, similar to that of Series 1 . The conditions of the reaction were such that in one experiment a nitrogen sweep was employed throughout the reaction. In the other experiment, nitrogen was used oniy at the end of the reaction. The experimental data for this series is found in Table 5.

Experiment 0-8. In apparatus similar to that of

 Series I were placed 217.0 grams (1.0 mol) of ecoonut fatty acid and 210.0 grams (2.0 mols) of diethanolamine. At the start of heating, Linde water-puaped nitrogen was bubbled in beneath the surface of the reaction from a cylinder at such a rate that the entire reaction chamber was swept completaly. The nitrogen was permaitted to bubble in throughout the reaction cycle and until the mixture was cool enough to be tranaferred. The final pot temperature rose to $188^{\circ} \mathrm{C}$ until one mol of water was removed.[^0]only after one mol of water was taken off and until the reaction was cool to the hand.

Series III

Experiment $0-4$ was used as a control in this series to determine what effect a longer reaction time would have on the alkanolamide formation. Experiment G-10 took two hours to complete its eycle. Experiment $0-4$ took twenty-six minutes. Experimental data on this series can be found in Table 9.

Experiment a-10 was performed in equipment similar to that used in the other serles. To the flask were added $217.0 \mathrm{grams}(1.0 \mathrm{~mol})$ of coconut fatty acid and 210.0 grams (2,0 mols) of diethanolamine. The heat was applied slowly. Forty-five minutes elapsed before there was evidence or water formation, The time lapse for one mol of water to distill over was seventy-five minutes.

Series IV

The four experiments in this series were all performed in equipment identical with that of the other series. The variable changed in this series was the laurie acid content of the fatty acid. This acid was used to determine what enhanced effect it would have on the final product. The laurio acid ratio to coconut fatty acid was varied in incremerits of 0.25 mol per experiment over the range of 0 to 100%.

Experiment G-4 was again used as a control in this series as the compound with no added lauric aeid. Experimental data for this series is found in Table 13.

Experiment G-11 was conducted in equipment similar to that of the other series. Into the flask were placed 162.8 grams (0.75 mol) of coconut fatty acid and 52.8 grams (0.25 mol) of 96% laurie acid (containing 2% palmitic acid and 2% myristic acid from El Durado Oil Corpany). To this mixture were added 210.0 grams (2.0 mols) of diethanolamine. Heat was applied and one mol of water was distilled off in fifty minutes.

Experiment 0 - 12 used 103.5 grams (0.50 mol) of coconut fatty acid and 105.5 grams (0.50 mol) of lauric acid. To this were added 210.0 grams (2.0 mols) of diethanolamine. The time oycle for this experiment was thirty minutes.

Experiment G-13 used 54.3 grams (0.25 mol) of coconut fatty acid and 158.2 grams (0.75 mol) of lauric aeld, to which were added 210.0 grams (2.0 mols) of diethanolamine. The reaction time for this experiment was thirty minutes.

Experiment 0-14 required that 211.0 grams (1.0 mol) of lauric acid be reacted with 210.0 grams (2.0 mols) of diethanolamine. No coconut fatty acid was used at all. The time for this reaction was twenty-five minutes.

Using the equipment as previousiy described, the only modification in this series of seven experiments was the variation of the amount of water removed by distiliation. Water was removed from each reaction in increments of 0.2 mol per reaction over the range of 0.6 to 2.0 mols. Experimental data for this series is shown on Table 17.

Experiment $0-15$ was conducted in the equipment as previously described. In this reaction 214.0 grams (1.0 mol) of coconut fatty acid was rescted with $210.0 \mathrm{grams}(2.0$ mols) of diethanolamine. Heat was applied and 0.6 mol or 10.8 ec of water were removed by distillation in sixty minutes.

Experiment G-16 was essentially the same wherein $214.0 \mathrm{grams}(1.0 \mathrm{~mol})$ of coconut fatty acid and 210.0 grams $(2.0 \mathrm{mols})$ of diethanolamine were heated together with the removal of 0.8 mol or 14.4 ce of water. The time cycle for this reaction was twenty minutes.

Sxperiment $0-17$ was performed using 214.0 grams (1.0 mol) of coconut fatty acid and 210.0 grums (2.0 mols) of diethanolamine. 1.2 mols or 21.6 ce of water were distilied in thirty-five minutes.

Experiment a-18 used 214.0 grams (1.0 mol) or coconut fatty acid and 210.0 grams (2.0 mols) of dethanolamine.

The reactants were heated and 1.4 mols or 25.2 ec of water were removed by distiliation in twenty-five minutes.

Experiment a-19 was prepared by reacting 214.0 grams (1.0 mol) of cocomut fatty acid with 210.0 grams (2.0 mols) of diethanolemine. The heating eycle took forty minutes wherein 1.6 mols or 28.8 cc of water were distilled.

Experiment $0-20$ was conducted whereby 214.0 grams (1.0 mol) of coconut fatty acid were added to 210.0 grams (2.0 mols) of diethanolamine. 1.8 mols or 32.4 oc of water were distilled in thirty minutes.

Fxperiment 0-21 was performed by adding 214.0 grans (2.0 mol) of coconut fatty acid and 210.0 grams (2.0 mols) of diethanolamine together and heating until 2.0 mols or 36 oc of water were removed. This reaction took thirty minutes.

ANALYTICAL

Determination of Free Acidity
(a) Determination of acid number. A sample of the product alkanolamide of Experiment a-1 (used in this case as an example) was accurately weighed into a tared 125 ml Erlenmeyer flask on an alytical balance. The sample was dissolved in 25 ml of 95% neutral ethanol and warmed slightiy to effect solution. Four drops of 1% alcoholic phenolphthalain solution was added and the sample titrated with 0.1 N sodium hydroxide until the clear solution showed a pink end point.

The acid number of the sample was calculated by use of the expression:

$$
\frac{\mathrm{ml} \times \mathrm{N} \times(\mathrm{MgKOH} / \mathrm{Meq})}{\mathrm{gms} . \operatorname{sample}}=\text { acid number }
$$

expressed in the usual terms of mgm of KOH per gram of acid where
ml ml of sodium hydroxide used
$\mathrm{N}=$ normality of sodium hydroxide
(b) Calculation of percent free acid and percent conversion of actd. The acid number of 100% coconut fatty acid was calculated as follows:

One equivalent weight of fatty acid requires $56,100 \mathrm{mgm}$ of KOH for complete neutralization, One gram of the acid
would therefore require

$$
\frac{56,100}{217} \text { or } 258.53 \mathrm{mgm} \mathrm{KOH}=\text { acid number }
$$

where 217 is the equivalent weight of coconut fatty acid. Therefore:

$$
\frac{\text { acid number found }}{\text { acta number for } 100 \% \text { coco FA }} \times 100=\% \text { free acidity }
$$

From the experimental data (TABLE I) it is shown that In Experiment $0-1,217.0$ grams of coconut fatty acid was condensed with 157.5 grams of diethanolanine with the subsequent removal of one mol of water. The final weight of the product was 356.5 grams . By dividing the weight of acid initially present was calculated thus:

$$
\frac{\text { weight of acid used }}{\text { final weight of product }} \times 100=\% \text { acid intially present }
$$

In order to calculate the percent of acid which was converted, the following expression was used:
\% initial acid-\% free acid $\times 100=\%$ acid converted \% initial acia
(c) Sample calculation: Experiment a-1. A 2.0322 gram
sample from Experiment G-1 required 6.20 ml of a 0.1048
normal sodium hydroxide solution for complete neutralizetion. The acid number of this sample was therefore:

$$
\frac{6.20 \times 0.1048 \times 0.561}{2.0322}=17.94 \mathrm{mgm} \mathrm{KOH} / \mathrm{gm} \text { acid }
$$

Hence, the percent of free acid in the product was:

$$
\frac{17.94}{258.53} \times 100 \text { or } 6.94 \% \text { free acia1ty }
$$

The percent of acid present inftially was:

$$
\frac{217.0}{356.5} \times 100 \text { or } 60.9 \% \text { initial acid }
$$

The percent of conversion of acid was calculated thus:

$$
\frac{60.9-6.94}{60.9} \times 100 \text { or } 88,7 \% \text { conversion }
$$

The malytical data for the determination of the free acidity and percent conversion of all the experiments are shown in tables 2, 6, 10, 14, and 18.
(a) Determination of free alkalinity. A sample of the resulting alkanolamide of Experiment a-1 (used in this case as an example) was accurately weighed into a tared 125 ml Erlenmeyer flask on an analytical balance. The sample was dissolved in 25 ml of 99% neutral isopropanol and warmed slightly to effect solution. A mixed indicator consisting of 3 drops of alcoholic 0.1% methyl orange and 1 drop of 0.4% bromphenolblue was added and the sample titrated with 0.5 N aqueous hydrochloric acid until the blue solution changed to a faint amber end point.

The weight percent of free amine as diethanolamine or free alkalinity was calculated using the expression

$$
\frac{\mathrm{ml} \times \mathrm{N} \times \mathrm{Meq} \mathrm{DEA}}{\text { gm. sample }} \times 100=\text { free alkalinity }
$$

where
$\mathrm{ml}=\mathrm{ml}$ of 0.5 N hydrochloric acid used
$N=$ normelity of hydrochloric acid
Meq DEA = milliequivaient weight of diethanolamine
(b) Calculation of percent amine converted to amide. From the experimental data (TABLE I) it is seen that in Experiment G-1, 157.5 grams of diethanolamine was reacted with 217.0 grams of coconut fatty acid with the subsequent removal of one mol of water. The final weight of the product was therefore 356.5 grams. By diviaing the weight
of amine used inftially by the final weight of the product, the percent of amine present initially was calculated thus: weight of amine used $\times 100=$ omine present initially final weight of product

Hence, to calculate the percent of amine which was converted to amide, the following expression was used:

Winitial amine - क free amine $\times 100=\$$ amine converted \% initial amine
(c) Sample caloulation. A 2.1051 gram sample from Experiment $0-1$ required 6.0 ml of a 0.5336 N hydrochloric acid solution for complete neutralization. The free alkaInity in this product, therefore, was

$$
\frac{6.0 \times 0.5336 \times 0.105}{2.0151} \times 100 \text { or } 15.7 \% \text { free alkalinity }
$$

The percent of amine used initially was calculated as

$$
\frac{157.5}{356.5} \times 100 \text { or } 44.2 \% \text { initial amine }
$$

The percent of conversion of amine to anide was calculated thus:

$$
\frac{44.2-15.7}{44.2} \times 100 \text { or } 64.5 \% \text { converted to amide }
$$

The analytical data for the determination of the free alkalinity and the percent conversion of all the experiments are shown in TABLes 3, 7, 11, 15, and 19.

CALCULATION OF MATEEREAL BALAMCES

Since in each experiment exactiy one mol of coconut fatty acid was taken, it is obvious that the percent acid converted corresponds to the fractional mols of acid converted (X).

Similarly, fractional molar conversion of amine is calculated by multiplying mols of amine taken by percent amine converted (\mathbf{Y}).

Assuming that equimolar amounts of acid and amine react, the value of (Y) can also be asgigned to the mols of acid converted to amide (Y^{\prime}). The difference then, between (X) and (Y^{\prime}) may be considered as that mol fraetion of acid which is presumably converted to ester (Z). Hence the expression

$$
(x)-\left(y^{\prime}\right)=z
$$

where:
X mola of acid converted
Y' mols of acid converted to amide
\mathbf{Z} = mols of acid converted to "ester".

Using the values found in Exp. $a-1$, the percent of acid converted was found to be 88.7% or 0.887 mols. The percent of amine converted was 64.5% or 0.645×1.5 mols of amine charged; or 0,968 mols. The mols of acid converted to amide was therefore 0.968 mols.

Substituting for the values of (X) and (x^{\prime}) one arrives at (z).

Hence:

$$
(0.887)-(0.968)=-0.081
$$

which is the value of mols of acid converted to ester. The negative sign for the value of the ester indicates that since more than one mol of amine reacted per mol of acid, there is no evidence for ester formation. The numerical value of z can be attributed to analytical uncertainty.

The data for the material balanoes of all experiments 1s mhown in Tables 4, 8, 12, 16, and 20.

DIscussion

Series I.

A comparative study of the experiments in this series requires an examination of the variable change in molar ratio of amine to acid. The five factors entering into this examination are:
a. free acidity
b. acid conversion
c. amine conversion
d. molar conversion of amine per mol amine changed.
e. molar conversion of amine per mol acid changed

An examination of Pigure 2 Page 53 shows a decrease in free acid as the mol ratio of amine to acid is increased to 1.9. From that point, the acid value pise and finally tapers off all the amine ratio approaches 2.5 mols. Figure 4 page 55 indicates that acid conversion reaches a maximum of 91 per cent at an amine ratio of 1.9 mols and a minimum conversion of 86.5 per cent at 2.05 mols.

Why there should be more free acid when there is excess amine (at 2.0 mols) may explained by the fact that there is only 91 per cent acid conversion when there is less free acid. Knowing that only one mol of water
was removed in each case, it can be assumed that 91 per cent of the water came from the primary reaction:

The other 9 per cent of water could come from the postulated reaction:

or:

wherein a cyclic ether is cormed by heating with the coconut fatty acid as the catalyst. The cyclic ether III can be called a p-isoxazine ring or more exactly, morpholine. Definate evidence for the possibility of this ether formation is given by Hampton and Pollard ${ }^{3}$ wherein they state that morpholine is made by heating two mols of diethanolamine in the presence of a mineral acid until the water is removed. This is strictly analogous to what has been done in these experiments; in that an excess of amine has been

Heated in the presence of an acid and water has been removed. Hence it can be stated with some assurance that morpholine is formed in the alkolanide reaction to some extent. This would explain the fact that 110.91 mols of the water came from the acid and thereby obtaining a 91 per cent conversion, 9 per cent of the acid would be unconverted and would exhibit free acidity the postulation would sppear to hold true because of the fact that there 18 less acid conversion as the mol ratio of amine is increased.

It follows, therefore, that where there is maximum acid conversion, the amine conversion should approach theory. It is clearly seen in Figure 5, Page 55that at the point of higheat acid conversion, the amine convergion stands at one mol. It is further show (Figure 6, Page 56) that the mol fraction of mine converted per mol amine charged is converted at a constant rate to the point of maximum seld conversion (1.9 mols amine/mol acid). The rate then drops off as the ame ratio is increased. Figure 7, Page 56 indicates the fact that the fraction of mol anine converted per mol of ad converted is at a maximum whth the range of 1.9 to 2.1 mols amine per mol acid.

Series II.

The effect of an inert atmosphere upon the reaction is shown in Figure 8, Page 57 . From this evidence it can be stated that a nitrogen sweep throughout the reaction cycle is benefleial. Graph A shows that the mols of acid
converted approaches theory when nitrogen is used throughout. The partial use of nitrogen more closely approximates theory than does experiment G-4 where no nitrogen was used at all. Similarly, when nitrogen was employed throughout the cycle as in experiment $0-8$, the mols of amine converted mowe closely approaches theory than does 0-4. Whereas a-9 again lags slightiy behind am. In Graph C, it 1 shown that the mol fraction of amine to acid converted is nearer to theory with the full use of nitrogen than when it is used partially or not at all.

Referring again to Figure 2, Page $53 i t$ can be meen that the full use of nitrogen in the reaction effects a drop in free acidity of approximately 2.5 per cent; whereas the partial sweep lowers the free acidity approx1mately 1.5 per cent. It may be asmumed, therefore, that if a full nitrogen sweep were employed when the mol ratio of amine to acid was at 1.9 (experiment a-3), the free acidity would have been appreciably lowered. The raason for the lower free acid value may be postulated on the premise that the nitrogen sweep excludes oxygen from the reaction chamber thereby reducing the chance that oxidation of the reactants could inhibit more complete conversion. It was observed that the color of the product in undergoing reaction was 11 ghter when nitrogen was used. However, When the nitrogen was removed, the solution darikened in color: This darkening in color may be atmibuted to the
oxidation effect.

Moreover, when nitrogen is used throughout the reaction, it may be that it more fully mweeps the water and with it at a lower pot temperature, thereby lessening the possibility of ether formation and increasing the efficiency by which the wher is removed from the acid. Hence more complete acid converaion and decreased free acidity.

Series III.

A comparative analysis of this series points out two significant facts, First, from an examination of Pigure 11, Page 60 , it is obvious that if the reaction is conducted over a two-hour period, as in experiment a-10 the mols of acid converted closely approaches theory, Similarly, the amine conversion also approximates theory, as does the mol fraction of anine to acid converted. Secondly, Figure 2, Page 53, indicates that the free acidity of the two-hour reaction is one per cent lower than that of experiment $0-4$ whose time cycle was twenty-six minutes.

When the reaction is prolonged over a two-hour period, the average pot temperature is approximately $25^{\circ} \mathrm{C}$ less than that of the fast reaction. This is shown in Figure 17, Page 64. As previously noted the lower the pot temperature, the less chance there is for ether formation, hence there is increased acid conversion and lower free acidity. This has been show in Figures 11, Page 60, 17 Page 64, 2 Page 53.

An examination of Figures 12 and 13, Page 63 shows that the addition of lauric acid to the coconut fatty acid content within the range of 25 to 50 per cent lauric, gives a product wherein the amine conver: ion is almost theoretical. In a similar manner, it can be observed, from Figures 14 and 15, Page 62, that the acid converaion is at a maximum within that range. The mol fraction of amine to acid converted approximates theory within the 25 to 50 per cent range. Because of the fact that the main constituent of coconut fatty acid is lauric acid, it is obvious that increasing the lauric content, would have an enhanced effect on the product of the reaction. Hgure 2 , Page 63, shows that within the range, the free acidity is minimized and by inoreasing the lauric acid content, the free acid of the product is also increased proportionally.

Series V.

This series of experiments definately shows that by increasing the molar quantities or water distilled after one mol has been removed, further evidence is obtained for postulating the formation of the ether as a second reaction. An examination of Figure 16, Page 63, indicates that when the factors of acid and amine conversion and final pot temperature are plotted againgt mols of water distilled, there is a derinate linear relationship established between the point where one mol of water has been
removed at that point, the slopes of the lines indicate that the initial reaction is occurring, namely the formation of the alkanolamide. Beyond that point, the slopes of the Iines change abruptiy. This would be indicative of second reaction or ether formation. Support for thi evidence would sten from the fact that it is possible to remove more than one mol of water from the reaction. The second mol is found, therefore, when ring closure is effected to produce the ther amide. This ther is shown on infrared curve C; Page 68. The instrument used was a Perkin-miner model 2l, double beam, infrared recording spectrophotometer; using a Neinst Glower enitter. The samples were run as amear in the sodium chloride cells using air as the reference bean. Curve C shows an adsorption at $1155 \mathrm{~cm}^{-1}$. This is indicative of ether amides ${ }^{4}$, This adsorption at $1155 \mathrm{~cm}^{-1}$ is also observed on Curve D, Page 69. It is not noticed in Curves A or B, Pages $66 \% 67$ These curves refer to mamples in which only one mol of water has been removed. Hence there would be a minimum anount of ether formation which cannot be shown on an infrared graph. Curves C and D, Pages $68 \& 69$ have adsorptiona in the range of 1120 to $1125 \mathrm{~cm}^{-1}$ which are indicative of free amine. This 1s naturally due to the excess molar ratio of amine to acid.

Figure 17, Page 64 shows dearly the formation of ether amide when final pot temperature is function of quantities of water removed.

SUMAARY

The factors which affect the fatty alkanolamide reaction are:
(a) The use of a nitrogen aweep converts more acid and amine to amide thereby lowering the free acid content.
(b) Evidence has been given that there is possibility of foming either morpholine or cyclic ether amide when more than one mol of water is removed.
(c) Prolonging the reaction time over a two-hour period reduces the pot temperature by approximately $25^{\circ} \mathrm{C}$. It has been shown that a lower reaction temperatase results in decreased ether formation, and decreased free acidity thereby increasing the percent of amide formation.
(d) A molar ratio of 1.9 to 2.0 mols of amane to 1.0 mols of acid was observed to result in highest amide formation.
(e) Addition of between 25 to 50 per cent lauric acid to the coconut acid leads to higher acid and amine conversion to amide.

Series 1
 VARIATHON OF MOLAR RATIO OF REACTANPS

Table 1. Experimental Data
Table 2. Detemination of Free Acidity
Table 3. Determination of Free Alkalinity
Table 4. Material Balance

Table of Experimental Data

for Series 1
Variation Mol Ratio of Reactants

$\begin{aligned} & \text { Fun } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Mols } \\ & \text { Coco FA } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Grams } \\ \text { coco FA } \end{gathered}$	Hols Amine	Grams Amine	Mols Laurie	Grans Laumic	Mols $\mathrm{H}_{2} \mathrm{O}$ Distilied	Total Reax Time Min.	Atmosphere of Reax	Final Pot Temp ${ }^{\circ} \mathrm{C}$
G-1	1.0	217.0	1.5	157.5	-	-	1.0	110	O_{2}	174
G-2	1.0	217.0	1.7	178.5	-	-	1.0	30	O_{2}	182
Q-3	1.0	217.0	1.9	199.5	-	-	1.0	50	0_{2}	190
G-4	1.0	217.0	2.0	210.0	-	-	2.0	26	O_{2}	192
G-5	1.0	217.0	2.1	220.5	-	-	1.0	30	0_{2}	189
G-6	1.0	217.0	2.3	241.5	-	-	1.0	25	0_{2}	202
G-7	1.0	217.0	2.5	262.5	-	-	1.0	20	O_{2}	202

Table 1

Table of Analytical Data for Series 1
 Variation Mol Ratio of Reactants

Determination of Pree Acidity

Run No.	\% Acid Based on Wt. of Prod.	Wt. of Sample Taken	Titration ce	Mormality of MaOH	Acid No. of 100\% Coco PA	Acid Wo. Found	\% Free Acid1ty in Product	\$ Acid Charged Converted
6-1	60.9	2.0322	6.20	0.1045	258.53	17.94	6.94	88.7
Q-2	57.5	2.0165	5.70	0.1045	258.53	16.62	6.43	88.9
a-3	54.5	2.0320	4.45	0.1045	258.53	12.88	4.98	90.8
G-4	53.1	2.0048	6.14	0.1045	258.53	18.01	5.96	86.9
0.5	51.7	2.0289	6.20	0.1045	258.53	17.97	6.95	86.7
G-6	49.3	2.0427	5.05	0.1045	258.53	13.82	5.34	89.2
G-7	47.0	2.0462	4.65	0.1045	258.53	13.36	5.17	89.0

Table 2

Table of Analytical Data
for Series 1
Variation Mol Ratio of Reactants
Determination of Free Alkalinity

$\begin{aligned} & \text { Run } \\ & \text { Mo. } \end{aligned}$	\% Amine on Wt. of Product	Wt. of Sample Taken	Trtration ce	Normality of HCI	Heq of Acid Used	Grams of free Amine	Wt. of Free Amine (DEA)	\$ Amine Converted to Amide
G-1	44.2	2.1051	6.00	0.5336	3.2018	0.337	15.7	64.5
G-2	47.3	2.0784	7.55	0.5336	4.0287	0.423	20.4	56.9
Q-3	50.1	2.0192	8.55	0.5336	4.5623	0.479	23.7	52.7
Q-4	51.3	2.0262	8.20	0.5336	4.3760	0.460	22.7	55.8
Q-5	52.6	2.1136	10.90	0.5336	5.8160	0.611	28.9	45.1
a.6	54.8	2.0284	11.40	0.5336	6.0830	0.639	31.5	42.5
$a-7$	56.9	2.0059	12.65	0.5336	7.500	0.788	39.3	30.9

Table 3

Table of Analytieal Data

for Serries 1
Variation of Mol Ratio of Reactants

Material Balance

Ron No.	Gram Wt. of heactant:	Gram Wt. of Final Prod.	Gram Wt. of H2O Dist.	Mola Reid Converted	Mols Amine Converted	Mols Acid Conv. to Amide	Mols Aeid Conv. to Ester
G-1	374.5	356.5	18.0	0.887	0.968	0.968	-0.081
G-2	395.5	377.5	18.0	0.889	0.967	0.967	-0.078
a-3	416.5	398.5	18.0	0.908	1.001	1.001	-0.093
G-4	427.0	409.0	18.0	0.869	1.116	1.116	-0.247
G-5	437.5	419.5	18.0	0.867	0.947	0.947	-0.080
G-6	458.5	440.5	18.0	0.892	0.9775	0.9775	-0.086
G-7	479.5	451.5	18.0	0.890	0.773	0.773	+0.117

Table 4

Series 2

EFPECT OF TNERT ATMOSPHERE ON RRACTION

Table 5. Experimental Data
Table 6. Determination of Free Acidity
Table 7. Determination of Free Alkalinity
Table 8. Material Balance

Mable of Experimental Data
 Por Sertes 2
 Effect of Ineret Atmosphere

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Wols } \\ & \text { Coco FA } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Grams } \\ & \text { Coro BA } \end{aligned}$	$\begin{aligned} & \text { Mols } \\ & \text { Amine } \end{aligned}$	Arams Amine	$\begin{aligned} & \text { Mols } \\ & \text { Lauric } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Grans } \\ & \text { Lauric } \end{aligned}$		Total Reax 	Atwosphere of Reax	$\begin{aligned} & \text { Final } \\ & \text { Pot Temp. }{ }_{5} \text { P } \\ & \hline \end{aligned}$
a-4	1.0	217.0	2.0	210.0	-	-	1.0	26	${ }_{2}$	292
$a-8$	1.0	217.0	2.0	210.0	-	-	1.0	40	N_{2}	188
0-9	1.0	217.0	2.0	210.0	-	-	1.0	35	$\begin{aligned} & \mathrm{H}_{2} \\ & (\text { partial }) \end{aligned}$	188

Table 5

Table of Analytical Deta

For Series 2 Effect of Inert Atmogphere

Determination of Free Acidity

Run YO.	\% Aesid Based on wh. of Product	wt. of Sample taken	$\begin{aligned} & \text { Titration } \\ & \text { ec } \end{aligned}$	$\begin{aligned} & \text { Mormality } \\ & \text { of HaOH } \end{aligned}$	Aeta ${ }^{2}$ of 100% Coco FA	Acta Ho. found	\% Free Acidity in Product	$\%$ Aela Charged Converted
Q-4	53.1	2.0048	6.14	0.1045	258.53	18.01	6.96	86.9
G-8	53.1	2.0529	4.01	0.1045	258.53	11.48	4.44	91.6
6-9	53.1	2.0592	5.10	0.1045	258.53	14.56	5.63	89.4

Table of Analytical Data

For Series 2 Effect of Inert Atmosphere
 Detemaination of Free Alkalinity

Run No.	\% Amine on wt: of Product	wt. of sample taken	$\begin{gathered} \text { Titration } \\ \mathrm{cc} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Mormality } \\ & \text { of HC1 } \\ & \hline \end{aligned}$	Meg. C Acid Used	Grama of Free Amine	wt: \& free Amine (DEA)	\& Amine Converted to Amide
c-4	51.3	2.0262	8.20	0.5336	4.3760	0.460	22.7	55.8
6-8	51.3	2.0421	9.60	0.5336	5.123	0.5379	26.3	48.7
6-9	51.3	2.0024	9.50	0.5336	5.069	0.5320	26.6	48.1

Table For Analytical Data
 For Series 2 Effect of Inert Atmosphere
 Material Balances

Series 3

VARIATION OF TIME OF REACTION

Table 9. Experimental Data
Table 10. Determination of Free Acidity
Table 11. Determination of Free Alkalinity
Table 12. Material Balance

Table of Experimental Data
 for Series 3
 Variation of Time of Reaction

Table 9

Table of Analytieal Data
for Series 3
Variation of Time
Detemination of Pree Acidity

Run no.	\$ Acid Besed on Wt. of Prod.	Wt. of Sample Taken	Titra tion ec		metd Mo. of 100% Coco FA	Acid No. Found	\% Free AcidIty in Product	* Acid Charged Converted
G-4	53.1	2.0048	6.14	0.1045	258.53	18.01	6.96	86.9
$a-10$	53.1	2.0549	5.50	0.1045	258.53	15.74	6.09	88.7

Table 10

Table of Analytical Data

for Serves 3

Variation of Time

Determination of Free Alkalinity

Table 11

Table of Analytical Data

for Series 3

Variation of Time

Material Balance

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	Gram Vt. of Reactants	Gran Wt. of Pinal Prod.	Oram Wt. of H2 Dist.	Wols Acid Converted	Mols Amine Converted	Mols Acid Conv. to Amide	Hols Acia Conv. to Ester
a-4	427.0	409.0	18.0	0.869	1.116	1.116	-0.247
a-10	427.0	409.0	18.0	0.887	1.010	1.010	-0.123

Table 12

Series 4

VARIATTON OF MOLAR RATIO OF LAURTC ACTD

Table 13. Experimental Data
Table 14. Determination of Free Acidity
Table 15: Determination of Free Alkalinity
Table 16. Material Balance

Table of Experimental Data
 For Series 4
 Variation of Holar Ratio of Lauric Meld

In No.	$\begin{gathered} \text { Mols } \\ \text { Coco FA } \end{gathered}$	$\begin{gathered} \text { Grams } \\ \text { Coco FA } \end{gathered}$	$\begin{array}{r} \text { Nols } \\ \text { Amine } \end{array}$	$\begin{aligned} & \text { Erams } \\ & \text { Amine } \end{aligned}$	$\begin{aligned} & \text { Nols } \\ & \text { Lauric } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { Grams } \\ \text { Lauric } \\ \hline \end{array}$	Mols $\mathrm{H}_{2} \mathrm{O}$ Distilled	Total Reax 	Atmosphere of Reax	Final Pot Temp ${ }^{\circ} \mathrm{C}$
G-4	1.00	217.0	2.0	210.0	0.0	0.0	1.0	26	o_{2}	192
G-11	0.75	162.8	2.0	210.0	0.25	52.8	1.0	50	0_{2}	182
a-12	0.50	103.5	2.0	210.0	0.50	105.5	1.0	30	O_{2}	189
G-13	0.25	54.3	2.0	210,0	0.75	158.2	2.0	25	0_{2}	285
a-14	0.00	0.0	2.0	210.0	1.00	211.0	1.0	25	O_{2}	191

Table of Analytical Data
 For Series 4 Variation of Nolar Ratio of Lauric Acid
 Determination of Free Acidity

$\begin{aligned} & \text { Run } \\ & \text { No. } \end{aligned}$	\% held Based on tt. of Product	Ut. of Sample Taken	$\begin{gathered} \text { Titration } \\ \text { cc } \end{gathered}$	$\begin{aligned} & \text { Normality } \\ & \text { of MaOHt } \end{aligned}$	Acid No. of 100% Coco FA	Acid No. Pound	\% Free Acidity in Product	\% Acid Charged Converted
0.4	53.1	2.0048	6.14	0.1045	258.53	18.01	6.96	86.9
G-11	52.9	2.0260	5.49	0.1045	258.53	15.93	6.16	88.4
6-12	52.1	2.0567	6.11	0.1045	256.53	17.47	6.76	87.0
G-13	52.5	2.0230	6.71	0.1045	258.53	19.50	7.54	85.6
G-14	52.4	2.0494	6.70	0.1045	258.53	19.22	7.44	85.8

Table 14

E

Table of Analytieal Data

Por Series 4 Variation of Nolar Ratio of Lauric Acid

Determination of Free Alkalinity

Run HO.	* Amine on Wt. of Product	Wt. of Sample Taken	$\begin{gathered} \text { Titration } \\ \hline \text { ec } \end{gathered}$	$\begin{aligned} & \text { Mormality } \\ & \text { of HCI } \end{aligned}$	Me. F . of Acid Used	Grams of Free Amine	$\begin{aligned} & \text { Wt. \% Free } \\ & \text { Amine (DBA) } \end{aligned}$	6 Amine convertea to Amide
$0-4$	51.3	2.0262	8.20	0.5336	4.3760	0.460	22.7	55.8
6-11	51.3	2.0366	9.20	0.5336	4.909	0.515	25.3	50.7
0-12	52.4	2.0136	9.35	0.5336	4.989	0.524	26.0	50.4
c-13	52.4	2.0203	9.20	0.5336	4.909	0.515	25.5	51.3
$0-14$	52.4	2.0185	9.12	0.5336	4.866	0.511	25.3	51.7
				Table 15				

Table for Anslytical Data
 For Series 4 Variation of molar Ratio of Lauric Acid
 Matertal Balance

Mun Ho.	Gram Wh. of Reactants	Gram Wt. of Pinal Prod.	Gram lit. of H20 Dist.	Hols Acid Converted	Mols Amine Converted	Hols Acid Converted to Amide	Mols Acid Converted to Ester
c-4	427.0	409.0	18.0	0.869	1.116	1.116	-0.247
6-11	425.6	407.6	18.0	0.884	1.009	1.009	-0.125
C-12	419.0	401.0	18.0	0.870	0.972	0.972	-0.102
C-13	422.5	404.5	18.0	0.856	1.005	1.005	-0.149
6-14	421.0	403.0	18.0	0.858	1.008	1.008	-0.150
Pable 16							

Series 5

VARIATHON OF AMOUNF OF WATER REMOVED

Table 17. Experimental Data
Table 18. Determination of Free Acidity
Table 19. Determination of Free Alkalinity
Table 20. Vaterial Balance

Table of Experimental Data

For Series 5

Variation of Amount of Mater Removed

Table 17

Table of Analytical Data

For Series 5 Variation of Amount of Mater Removed

Determination of Free Acidity

Table 18

Table of Analytieal Data
 For Series 5 Variation of Amount of Hater Removed
 Detemaination of Zree Alkalinity

nun No.	\% Amine on Wt. of Product	Wt. of Sample Taken	$\begin{aligned} & \text { Iitration } \\ & \text { ce } \end{aligned}$	$\begin{aligned} & \text { Normality } \\ & \text { of BCI } \\ & \hline \end{aligned}$	Heq. of Acid Used	Grams of Free Amine	14. 曹 Free Amine (BEA)	\% Amine converted to Amide
G-15	50.5	2.0650	11.42	0.5336	6.094	0.639	31.0	38.6
0-16	50.9	2.0030	9.91	0.5336	5.288	0.555	27.7	45.6
Q-17	51.8	2.0134	8.89	0.5336	4.744	0.498	24.7	52.3
6-18	52.3	2.0222	8.60	0.5336	4.589	0.482	23.8	54.5
6-19	53.1	2.0612	8.20	0.5336	4.376	0.4595	22.3	58.0
a-20	53.6	2.0193	8.31	0.5336	4.434	0.4660	23.1	56.9

Material Balance

Run HO.	Gram Wt. of Heactants	Gram ut. of Final Prod.	Gram wt. of HeO Dist.	Wols Acid Converted	Mols Amine Converted	Mols heid Converted to Araide	Wols Acid Converted to Ester
6-15	427.0	416.2	10.8	0.745	0.772	0.772	-0.027
0-16	427.0	412.6	14.4	0.811	0.912	0.912	-0.101
a-17	427.0	405.4	21.6	0.929	1.046	1.046	-0.117
6-18	427.0	401.8	25.2	0.945	1.090	1.090	-0.145
6-19	424.0	395.2	28.8	0.969	2.160	1.160	-0.191
G-20	424.0	391.6	32.4	0.954	1.138	1.138	-0.184
6-21	424.0	388.0	36.0	0.951	2.198	1.198	-0.247
Table 20							

+1/+	\pm											
1	ater											
									2.a	cosel		
									merest	ama	dreen	were
-00			-4.er						nexn	mad	deta	-0
									Majay	dinta	a	
									Cater	Texta	6	
?									,			
			+						\cdots			
						6^{6}						
								+	,			/asa
									\cdots			
									4			
			4			7	-		16	\cdots	-	

本需	－																							T	
1 $\times 10$	－					！										．									
S $=$															！										
x ${ }^{\text {x }}$																									
4	\pm																		4\％	＋1，	$\underline{C}=$				
\％	S																								
X X－										A															
																		$x-2 \leq$	50	Pex ${ }^{2}$			8	1－	
H						－				A								＋ 4	－	－	Or	＋		域：	
，＜ 42			\square				－																		
प $\square^{\text {a }}$																									
														．											
－早建																						1.			
寺																						\％			
4 电		＋																							
$5 \pm$						！																			
	＋																！	．						\cdots	
－${ }^{\text {a }}$				，																				\because	
\cdots－ 0																								\square	
－																									
－																									
W－	\cdots	：																				－	：		
$\square 7$ 9k		4																	CH	4 4	L	T			：
Y Y－i	\cdots	\square														\％		\pm						－	
1 $x^{\text {a }}$		\cdots			\bigcirc																				
－ 0.54		\square														\square		－14M	＋2－4	\％ 7		\％：	－	－2	：－
						！											然	－${ }^{\text {a }}$	cen	－ד＇t				和年	
	H	－1																－	crer	Fos				，	
－ 0 边	Z	\％													：		\square						－		
－$\square^{\text {a }}$																									
－															C． 1	4	\square	S		＋			－	－	\pm
－								）		¢									F	－					－
－ S^{56}	T		：	．									\therefore						：	＝			C：		
－20］ 7	\square	＋		E	：						－					\square			＋07				\％	F	
W					$:$											．．	\％		3	＋			＋	－	
7－7																	\％－7		－					C	
H 1										，					5			S					＋		
－																		＋	＋				－	－	
＋－－	－				，													S		－	\because		\％	E	\square
Y e ب							象20			2		－	422	ca	4×2	Cico		－	＋	S		＋+	荘淮		\％
7 ${ }^{\text {a }}$												7				，		\％	－			\％	－		
	$\underline{0}$	$\underline{4}$				\cdots				：1	：					E．EETE	－	＋	＋10］	＋	$\underline{ }$	＋	Hin	1.	\％

			T			T				\#	I		\square	1.					
			120												-7-1	0			
			0										\cdots	1					
			16								\square		\bigcirc	A			*		
			yo										\%						
			品									0							
	$\stackrel{1}{4}$		100								+ 7								
			10								\triangle								
			-9							-	\square				Cxat		7		
														-	+				
	9		20											6, 4n	+5:		1×17		
	*		$5=$								$+$			asky	Le	4t			
														-	crict				
			8											-					
			75																
			-							\cdots	\square	-			4	π			
										4.				:	\cdots				
			40																
			35								L	+	\cdots						
			30											\cdots	\underline{G}				
			硡										1%						
			3			+													
			0																
			-																
		,	5																
			\bigcirc																
										\cdots	Matat								
			\bigcirc																

(

Curve A

Curve B

Cusve C

Curve D

REWERENCES
(1) Kritchevesky, Wole: U. S, Ratent 2,096,749, Dotober 26, 1937
(2) sandery, H. L., Libanan, O. E., Kerdish, Y. D. 3 Soap and Chmical Specialties, January, 1956. Page 33
(3) Harpton, B. Le and Pollamd, C. B.; Journal of Amprien Crisiteg pociety, Volume 58,1936 , Fage 2338
(4) Bellamy; Inrya Rea Spectra of Complex Helecules W11ey, 1954

[^0]: Experiment $G-9$ was conducted in the same manner as was G-8, with the exception that nitrogen was used as aweep

