## Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If $a$, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

3Y

## PTLLTAN WDOLA

```
A Tress
SUBMTTTED TO THE EACTTY OF
```



```
MATARE COLLBEE OF TTITLRRTMG
```

```
IN PMTTAL FULETLLONT OF THE
```



```
                    OF
        *ASTER OF SCLENCE
    IN CWOTC L FWCTNFORIMG
```

        NK世KK, NE: JESCY
        1955 , 5
    
# APROV L OF THLETS 

## FOR

Department of chertcol Letmerntig
NEMRE COLWM OF BTOTMMRTM

BY

FACULTY COMMTTGE

APPROVED:

NGMAR, NET JRRe $P$
JUW, 1955

ABSTRECT

This peper covers two methods for the prediction of liquidliquid equilibriwn data in ternary gystene conesting of two hydrocarbons and a solvent and forine two ILquid phases. One nethod is that of Pemincton and Marmil (11) and the other is that described by Treybal (16), with some simpifyine assumtions by the author. Both methons were applied to soven teraary systers in the present study. Five of the systers investicated were found to give good areement with experimental results. The assurvtions made in deriving the equations for the two methods of prediction did not hold for the obher two syetens and that is wh these two systens showed disagreenent between redicted and exterimental results. As for comarison between the two wethode of prediction, they both gave good results, when aplicable. The method of pemincton and tamil (11) is recomended, bocause it is the cimyer of the two methods.

## ACK OHLLDOLSEM

The author wishes to acknowlede his thanks and appreciation to Professor Joseph Joffe, whose help was indispensable in the preparation of this thesis. Professor Joffe sugeested the simplifying assumptions used by the author in his analysis.

## TARLE OA COMTETS

Pace
Introduction. ..... 1
Frocedure. ..... 7
Derivation of Equations. ..... 8
Discussion and Conclusions. ..... 15
Table VII Average Deviation of Predicted Results from xperimental hesults ..... 15
Sample Calculations ..... 18
Table I - VI, Part of Sample Calculations
Table VIIT Ixperimental and bstimated
Aquilibrium Concentrations. ..... 26
Table IX van Laar Activity Coefficient Constents ..... 37
Nomenclature. ..... 33
Titerature Cited. ..... 39

## IMTRODUCTIOR

In liquid-extraction process evaluation and equipment desicn, the importance of having accurate liquid-liquid equilibrium data canot be overemphasized. There is a great amount of data published on binary systems but very little on ternary and other more conplex systens. It is, therefore, necessary to either have nore experimental wor: done on these complex systems, which at present is a laborious task, or else find some means of predictine the equilibrium data required from properties of the substances involved, which are readily available in the literature. Several methods for predicting equilibrium data have been published. Wost of the publiched material has been for the prediction of binary data, but some mention is made of ternary systems.

Some of the early work done on the prediction of equilibrium data was by Carlson \& Colburn (1). They explained how vapor-liquid equilibrium data can be evaluated and extended when they are correlated in terns of activity coefficiente. The equations proposed by van Laar (9), Zarcules (10), and Scatchard \& Hener (13), which exprese the activity coefficients of both components of a binary mixture as functions of the liquid composition and empirical constants, are capable of fitting most of the available vapor liquid data.

Both vapor-liquid and liquid-liquid equilibrium data are calculated from the binary van Laar equations 6 and 7, which
gives a means of finding the activity coefficients of the two components from empirical constants and the component concentrations, and equation 4 , which states that the ratio of the concentration of a component in the light phase to its concentration in the heavy phese may be evaluated from the inverse ratio of the activity coefficients of the same component in the two phases. Taking equation $l$, as an sxamole, the concentrations $x$ and $y$ are defined as follows:
> 7. Vapor-Liquid bquilibrium data $x=m o l e$ fraction of the component in the liquid. $y=m o l e$ fraction of the component in the vapor in equilibrium with $x$.
> 2. Liquid-Liquid Equilibrium data $x=$ mole fraction of the component in the solvent phase.
> $y=m o l e$ fraction of the component in the hydrom carbon nhase.

Carlson and Colburn (1) used these equations for the prediction of binary equilibrium data. They surested that, when interpolatine for the activity coefficients of a component in the presence of two others, a lop-weignted average be used instead of a straight-weighted averase. They mentioned briefly a Eraphical method for predicting ternary equilibriur data, but found that it was not a very satisfactory method.

Colburn, Schoenoorn, and Shilling (3) did some experimental work on binary equilibrium systems. They used the equations of

Carlson \& Colburn (1) to predict the equilibrium date for one of these systens, but these did not amee very well with their experimental results. The systens they used for their calculations fave van Laar constants that differed wisely and the method of Carlson $\&$ Colburn (1) was derived for systems where the van Laar constants are nearly the same.

Treybal (15) explained how the aethod of Hildebrand (7) is used in predicting the usefulness of solvents in solvent extraction processes. This nethod is based on the departure from ideality of the two binary solutions of the distributed solute and the imaiscible solvents, and utilizes the fact that the activity of the distributed solute must be the same at equilibriun in the two immiscible solutions. In his paper, he investigeted the general reliability of the method and certain of its modifications when the activity coefficients were calculated from varor-liquid equilibrium data of the two binary solutions. Treybal (15) gave reference to Carlson $t$ Colburn (1) and used their surcestion for inter olation of the log of the activity coefficients when finding the activity coefficients of a component.

[^0]arcomplishing the first objective is shown to be, in case of partially miscible acents, the apolication of mutual solubility data. The relationship of activity coefficients in ternary mixtures to binary data is explored and plots of activity coefficients of avallable ternary data aro provided wifch five an indication of the trend of values fron simele interpolation prom cecures. They used matual solubility data of binary mixtures to calculate the van Lear constants and then predictod binary equilibrium and ternary equilibrium data.

Scheibel and Friedland (14) sugcested a method for the prediction of vapor-ilquid equilibrium data for non-ideal ternary systens. They classified the various non-ideal systems into three distinct classes based on the qualitative deviation from Rault's law which are observed in the different binary systems. They used a graphical method for determining the activity coefficients and then, using hault's law corrected for non-ideal solutions, cslculated the vapor in equilibrium with the liquid. This method involvas trial and error calculations.

Pennimeton and varwil (11) used solubility data of binery systens for predicting ternary equilibrium data in systems consisting of two hydrocarbons and a solvent. They used the van Laer equations for binery systems to calculate tho activity coefficients. The activity coefficients in the ternary system were calculated fron $t$ ose of the binary sustems with the aid of the following simplifyine assumptione:
(1) the activity coefficient of each hyarocarbon in the ternary is obtained from the corresponding hydrocarbon-solvent binary at the solvent concentration in the binary which the solvent possesses in the ternary system.
(2) the activity coefficient of the solvent in the ternary is taken as the molal avernege of the activity coefficients of the solvent in the two binary hydrocarbon-solvent systems at the same solvent concentrations.

Their paper was analyzed in detail in the present study. A sample calculation showing their nethod of calculation is included in this roport and Table VII conrares the equilibrium data of seven syetens usine their method of calculation, the method used by the author, and actual exerinentel results.

Treybal (16) summarizes the vork done on the prediction of both binary and termary equilibriun data. He gives an equation for calculatimg the activity coefficients for ternary systems in terms of the van Laar constants for the three components resent in the system. The constants are defined in terms of the binary systens only.

Treybal (16) points out that none of the methods of prediction is capable of a hich order of accuracy; nevertheless, they are useful. In tryine to find a solvent to use in a given
systen, the "selectivity" of the solvent is very important. The selectivity of $B$ for $C$ is defined as follows:-

$$
\beta=\frac{x_{C} L_{A G}^{x}}{x_{\operatorname{CR}}{ }^{x} A}
$$

where the concentretions are those in the equilibrium layers. For a satisfactory process, $\beta$ must exceed unity; therefore, if the equilibrium concentrations for a given systen can be predicted with some degree of accuracy, the selectivity of the solvent can be determined. This will indicate whether the solvent chosen will provide a succeseful extraction process. If this shows that the solvent is not a good one, it can be eliminated from any more consideration and a new one tried. Once a good solvent is found, experimental equilibrium data can be found so that accurate data will be used in the calculations theresfter.

Therefore, both of the methods for the prediction of equilibrium deta discussed in this report are very useftil tools. They eliminate the necessity of doing a great deal of experimental mork, which is very tedious and time consuming.

## procenem

The present investiation was undertaken to determine to what extent the assumptions of Pemincton and tawil (11) were consistent with a themodynamic aproach based on the temary van harr equations. It was assumed in the present study that the ternary van haar constants would apoly to the systoms treated by Pennington and Sarmil (11). It was further assumed that the two hydrocarbons of the ternary form an ideal and symetrical binary systen. This makes the van Laar constants for the two hydrocarbons essentially equal to zero and their ratio equal to one.

As in the mothor of Pennineton and Marwil (11) the only data used in the present work to predict ternary equilibrium data was the solubility data of the binary systeas. The procedure involves a trial and error calculation and is described in the sampe calculations on page 10. The derivation of the equations used by Femington and Harwil (11) and those used by the athor follors.

Treybal (16) points out that deviations fron idenlity of real liquid solutions manifests itself by departure of the various characteristics such as partial pressure, fugacity, and activity, from the sinple linear relationchips that hold for ideal solutions. Of particular interest for this report is the activity coefficient $V$.

Pennington and karil (11) note that, when two imaiscible phases are in equilibrium, the activity of a given component is the sane in both phases, or

$$
\begin{equation*}
a_{t v}=a_{A h} \tag{1}
\end{equation*}
$$

The activity coefficient may be defined as the ratio of a component's activity to its mole fraction in the phase considered, or

$$
\begin{equation*}
V_{A V}=\frac{a_{A v}}{Y_{A V}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{A h}=\frac{a_{A n}}{X_{A h}} \tag{3}
\end{equation*}
$$

If equations 2 and 3 are combined with equation 1 , the following equilibrium relationshin is obtained:

$$
\begin{equation*}
\frac{V_{A h}}{V_{A V}}=\frac{y_{A V}}{x_{A h}} \tag{4}
\end{equation*}
$$

Therefore, the ratio of the concentretion of a component in the hydrocarbon phase to its concentration in the solvent phase may be evaluated from the inverse ratio of the activity coefficients of the same component in the two phases. From Gibos: (5) concent of chenical potential, equation 4 can be proved to be rigorous and applies regardless of the number of components present.

Another relation involving the activity coefficient is the Gibbs-Dunen equation

$$
\begin{equation*}
\frac{\left[\frac{\partial \ln r_{A}}{\partial x_{A}}\right]_{T, p}}{\left[\frac{\partial \ln r_{B}}{\partial x_{B}}\right]_{2, p}}=-\frac{x_{B}}{x_{A}} \tag{5}
\end{equation*}
$$

The van Laar (9) equations may be shown to be one of many possible solutions of the Gibos-Duhem equation.
$\log Y_{A}=\frac{A_{A B}}{\left[1+\left(A_{A B} X_{A} A_{B A B} X_{B}\right]^{2}\right.}$
$\log \gamma_{B}=\frac{A_{3 A}}{\left[1+\left(A_{A A^{x}}+/_{A B_{A}^{X}}^{A}\right)\right]^{2}}$
The constants, $A_{A B}$ and $A_{A A}$, are calculated from the folloming equations:

$$
\begin{equation*}
A_{A B}=\frac{\log \frac{X_{i A}}{X_{A A}}}{\left(1+\frac{1}{A_{B A} A^{X} M A}\right)^{2}}-\frac{1}{\left(1+\frac{{ }^{A} A B A B}{A_{A A} X_{B A}}\right)^{2}} \tag{3}
\end{equation*}
$$

and

Fominton and worm il (12) employed equations $2,6,7,0$ and 9
in correlating binary eretens from mutual solubility data.
Treybal (16) aves the following equations for non deal ternary mixtures:

$$
\begin{equation*}
\log v_{C}=\frac{x_{A}^{2} A_{C A}\left(\frac{A_{A C}}{A_{C A}}\right)^{2}+x_{B}^{2}{ }_{C B}\left(\frac{A C}{A_{C B}}\right)^{2}+x_{A} \times\left(\frac{A C}{A_{C A}}\right)\left(\frac{A C}{A_{C B}}\right)\left[A_{C A}+A_{C B}-A_{3 A} \frac{C B}{A_{C C}}\right]}{\left[x_{C}+x_{A}\left(\frac{A C}{A_{C A}}\right)+x_{B}\left(\frac{A C}{A_{C B}}\right]^{2}\right.} \tag{10}
\end{equation*}
$$

The expressions for $10, Y_{A}$ and $Y_{R}$ are obtained $b$ rotating the subscripts throughout the equation. The constants are defined in terns of the binary system only:

$$
\begin{aligned}
& A_{A B}=\text { init of } \text { lower }_{i}, \text { as } x_{A}-0, x_{3}-1 \text { \} } \\
& A_{\mathrm{BA}}=\text { Limit of } \log \gamma_{B} \text { as } x_{B}-0, x_{A} \rightarrow 1 \text { \} ~ b i n a r y ~ } A-B{ }^{\text {B }} \\
& \left.\left.\begin{array}{l}
A_{A C}=\text { Li it of } 100 \gamma_{A} \text { as } x_{A} \rightarrow 0, x_{C} \rightarrow 1 \\
A_{C A}=\text { Lirait of } 10 r_{C} \text { as } x_{C} \rightarrow 0, x_{A} \rightarrow 1
\end{array}\right\} \text { Diary } A-C\right\} \\
& \left.A_{C O}=\text { Limit of lo } r_{B} \text { as } x_{B} \rightarrow 0, x_{C} \rightarrow 1_{(\text {Binary } B-C}\right) \\
& \left.A_{C B}=\text { init of } \operatorname{loc} r_{C} \text { as } x_{C} \rightarrow 0, x_{B} \rightarrow 1\right\}
\end{aligned}
$$

Won (10) has sum that these equations are limited to those cases where

$$
\begin{equation*}
\frac{A_{C B}}{A_{C}}=\left(\frac{A_{C A}}{A_{A C}}\right)\left(\frac{A_{A}}{A_{C A}}\right) \tag{12}
\end{equation*}
$$

As can be seen from the equations, the ternary data can be predicted from information on the binary systems alone.

To solve for the activity coefficient of the solvent $C$, it is assumed in the present study that tydrocarbons $A$ and $B$ form a systen that is ideal and symetrical. Therefore,

$$
\begin{equation*}
A_{A D}=A_{D A}=0 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{A B}{A B A}=1 \tag{14}
\end{equation*}
$$

also

$$
\begin{equation*}
\frac{A_{C D}}{A_{B C}}=\frac{A_{C A}}{A_{A C}} \tag{15}
\end{equation*}
$$

Substitutin equations 13,14 and 15 , in equation 10 and rearranine terse ives:
$\log _{C}=\frac{\left(x_{A}^{2}+x_{A} x_{B}\right) A_{C A}\left(\frac{A_{A C}}{A_{C A}}\right)^{2}+\left(x_{B}^{2}+x_{A} x_{D}\right) A_{C B}\left(\frac{A_{B C}}{A_{C B}}\right)^{2}}{\left[x_{C}+\left(x_{A}+x_{B}\right) \frac{A C}{A_{C A}}\right]^{2}}$

Wiscere
$\log _{C}=\frac{\left(\frac{x}{4}\right)^{2}\left(x_{A}+x\right)\left[x_{A}^{A} C^{+} x_{n}^{A} C\right]}{\left[x_{C}+\left(x_{A}+x_{3}\right) \frac{A}{A_{C A}}\right]^{2}}$
totin: $x_{A}=x_{B}, x_{A}+x_{0}=1-x_{C}$ and dividine numerator and denominetor $\left(\frac{2}{2}\right)^{2}$ aves:

quation 10, can be written in the followin form:

this ergivatent to
$\log \gamma_{C}=\frac{x_{A}}{x_{A}+x_{V}} \log \gamma^{\prime}+\frac{x_{n}}{x_{A}+x^{\prime}} \log \gamma^{\prime \prime}$
mery $\gamma$ 'is the activity cooficient of in AC binary at role Fraction $x_{C}$ and $\gamma^{\prime \prime}$ is the acturity cocricient of 0 in se binary et mole arretion $x_{0}$.

Pation 29 ohotes thet wen golvire for tho activty coeficicet of the solvent, the 10 , molal avera e chould be uees and not a straint aclal average as in the netwod of pemanton atd marnil (1).

To solve for the activity coefricient of one of the hydrocarbons say $A, B$ being the other hydrocarbon, and $C$ the solvent, the same conditions holdins as men solvine for the activity coefficient of the solvent, the following equations result:
$\log r_{A}=\frac{x_{U}^{2}{ }^{2} A C\left(\frac{C A}{A_{A C}}\right)^{2}+x_{C} x_{B} \frac{A_{A C}}{A C}\left[A_{A C}-A_{B C}\right]}{\left[x_{A}+x_{D}+x_{C} \frac{A_{C A}}{A_{A C}}\right]^{2}}$
Tetine $x_{A}, x_{A}+x_{B}=1-x_{C}$ and dividing numerator and denominator by $\left(\frac{A_{A}}{A_{A C}}\right)^{2}$ dives:
$\log \gamma_{A}=\frac{x_{C}^{2} A_{A C}+x_{C} x_{B} \frac{A}{A C}\left[A_{A C}-A_{D C}\right]}{\left[x_{C}+x_{A C}, \frac{A C}{A}\right]^{2}}$
If the second term in the numerator of equation 21, is omitted, an approximation which can be justifted in many cases, there results the equation:

$$
\begin{equation*}
\left.\log \gamma_{A}=\frac{x_{C}^{2} A}{\left[x_{C}+x_{A C}, \frac{A A C}{A}\right.}\right]^{2} \tag{2le}
\end{equation*}
$$

From this equation, we may deduce the assumtion used by Peminaton and arwil (11), that the activity coefficient of a hydrocarbon in a ternary with another hydrocarbon and a solvent may be taken as the value which the activity coefficient
of the hydrocarbon would hove in the inary nydrocsabonsolvent system at the sare solvent concontration as in the ternary.

When solving for the activity coefficient of the solvent in the ternery, the author used equation 10 , which ave the log molal averace of the activity coefficients of the solvent in the two binary morocarbon-solvant systems at the same solvent concentration, whereas in the rethod of Pennington and farwil (11), the molal average of the activity coefficients of the solvent in the two binary hydrocarbon-solvent systems at the ame solvent concentration was calculated. When solving for the activity coefficients of the hydrocarbons in the ternary, the author used equation 21, whereas Peminton and Merwil (11) used a procedure which was shown above to be equivalent to employine equetion ala.

The calculated results of systems I through VII, using the author's athod, are shown in Table VIII. The calculated results of System $I$, usine the method of Pemington and Sarwil (11), was reproduced fron their paper and is shown in Table VIII. The calculated results of Sustens II through VII, as calculated by the author, using the method of Pennin ton and :arwil (11), are also shown in Table VITI.

## DRscuse TOM AMD COBLESTON

The method of predicting ternery cquilibriun data of Pennington and Merwil (11) and that used by the author rave very consistent results - the author's nethod usually showing slichtly otter results. Table VII, phich indicates the averave deviation of predicted results from experimental results shows this.

Table VII. Average Deviation of Predicted Values of Mole Fractions from Experimental Values

|  | Hydrocerbon in Fydrocarbon bhese $\qquad$ a.e. | Hydrocarbon in <br> Solvent hase a.e. | Solvent in Bydroc rbon Mase $\qquad$ a.d. | Solvent in <br> Solvent <br> rhase a.d. |
| :---: | :---: | :---: | :---: | :---: |
| Method of <br> Pennineton \& Marvil (11) | 0.014 | 0.011 | 0.028 | 0.021 |
| Author's Wethod | 0.012 | 0.009 | 0.021 | 0.020 |

For systems where these two methods of proliction are aplicable, the nethod of ge nincton and marul (11) gave sufficiently accurate results.

As mentioned, either of these proccdures chould only be used where the assuptions used in deriving the equations are known to be valid. As can be seen from the results siven in Table VITI, systems I through $V$ show good agreement between predicted and experinental equilibrium data. In system VI, fair agreenent is shown between the uredicted data, as found using the author's method, vith exerinental equilibriun data,
but poor macement asing the nothod of Penam ton and marmi (11). In system VII, poor acreement is shom with both of the methods of prediction and experimental equilibriun data. In syetone VT and VII, the prediction of the distribution, as pointed out by Pennington and farwi (11), on a solvent free vasis is fair 1 y cood, but the solvent concentration in the hydrocarbon phase is not correct.

In the derivation of the equetions, one of the ascumetions made was that hydrocarbons $A$ and $B$ form a systen that is ideal and symmetrical. Based on this assumetion, equation 15 resulted. Uon substituting the van Lasx constants from Table IX for systems VI and VI in equation 15 , it is found that equation 15 does not hold. This halns to explain why poor agreoment was found for these systens, particularly syster VIT. In the case of systems I throunh $V$ equetion 15 was found to be approximately valid.

The meakness of both methods appears to be in the fact that if the solvent concentration is assumed too smell in the hydrocarbon phase in step 2, then the activity coeficients of the solvent in thet phase $\begin{gathered}\text { nill } \\ \text { come out too high in the last step }\end{gathered}$ and the calculated solvent concentration in the last stop will cone out too low, tendine to arree with the essuaed value, which wes also too low.

In conclusion it mey be stated that where the two methods of prediction are apolicable, Fennineton and Farmils(11) method is preferable to the author's, being the simoler of the two,
although slinthy lese accurate.

Method of Pomington and Marwil (11) n-heptene, cyclohexane, furfural systern

Let us assume that it is desired to estimate the furfural content of the hydrocarbon phase and the composition of the solvent phase when the hydrocarbon phase has a conposition of 0.7940 mole fraction n-heptane and 0.2060 mole fraction cyclohexane on a solvent-free basis. Trial-and-error solution follows:

Step 1. The concentretion of furfural in each of the two ternary phases is estimated by assumine that it will be the weichted average of the furfural concentration in the binary systems. For the first trial calculation, the solvent-free composition of the hydrocarbon phase is used to estimate the furfural concentration in both phases. The ectimated furfural concentrations are confirmed or rejected by subsequent calculations. The initial estination of the furfural concentration in both phases is shown in Table $I$.

Table I. Estiated Furfural Concentrations

## Hydrocarbon Phase

$$
\text { Soly. at } 86^{\circ} \mathrm{F} .
$$

## Mole

Component Frect
n-ileptane 0.7940 Cyclo$\begin{array}{lll}\text { hexane } & \frac{0.2060}{1.0000} & 0.065\end{array} \frac{0.0134}{0.0602}$ soly.
0.0468
mole fract.
Partiel furfural
0.059

Solvent phase
Soly. at $86 \mathrm{~F}_{\mathrm{F}}$, mole fract. furfural

Partial Soly.
0.936
0.7432
0.846
$\frac{0.1743}{0.9175}$

Step 2. Determine the activity coefficients for nomal heptane and cyclohexane at the furfural concentrations estinated in step 1. The binary van Lan equations 6 and 7 are used. From the activity coefficients obtained in this manner, the ratio of the activity coefficient in the solvent phase to the activity coefficient in the hydrocarbon phase for n-heptane and cyclohexane was calculated. These ratios sere used to estinate the composition of n-hertane and cyclohexane in the solvent phase. The calculations are shown in Table IT.

| Solvent Phase | Hydrocarbon Phase |  |  |
| :---: | :---: | :---: | :---: |
| n-Heptane | Cyclohexane | n-Heptane | Cyclohexane |
| $A_{B A}=1.365$ | 1.358 | 1.365 | 1.358 |
| $A_{A B}=1.334$ | 1.023 | 1.334 | 1.023 |
| $x_{A}=0.0825$ | 0.0825 | 0.9398 | 0.9398 |
| $x_{B}=0.9175$ | 0.9175 | 0.0602 | 0.0602 |

Table 11. Estination of Distr bution in Solvent Phase

| Component | nole <br> Eract. | $\nabla_{h}$ | $V_{v}$ | $\frac{r_{h}}{r_{v}}$ | istd. Fydrocarbon Conen. <br> in Solvent Phase |
| :---: | :---: | :---: | :---: | :---: | :---: |
| n-heptane | 0.7940 | 13.48 | 1.013 | 13.31 | $(0.7940)(0.7400) / 13.31$ |
|  |  |  |  |  | 0.0561 |
| Cyclohexane | 0.2060 | 7.80 | 1.016 | 7.68 | $(0.2060)(0.0400) / 7.68=$ |
|  |  |  |  |  | 0.0252 |
|  |  |  |  |  | 0.0813 |

Step 3. Check the furfural concentretion in the solvent phase calculated in step 2, arainst the value used in step 1 , to obtain the activity coefficients for the solvent phasc.

By difference, the furtural mole fraction is 0.9107 , which compares favarably with 0.9175 estimated in step 1. Therefore, a second approximation of the furfural concentration in the solvent phase is not necessary.

Step 4. Check the furfural concentration in the hydrocaroon phase estinated in step 1, usine the activity coefficients of furtural in n-heptane and furfurel in cyclohexane. The activity coefficlents are evalua ad the estimated furfural concentration in the hydrocarbon phase from step 1 , and the celcalated furfural concentration in the solvent phase from step 3. The activity coefficient of furfural in each of the ternary phases is estinated by assuming that it will be the wei hted average of the furfural activity coefficients in the binary system. The calculations are ehom in Table III.

Solvent Phase
n-leptane Cyclohexane $\begin{array}{llll}A_{B A} & 1.334 & 1.023 & 1.334\end{array}$
$A_{A 9}=1.365$
1.358
1.365
1.358

| $x_{A}=0.9187$ | 0.9187 | $0.060 \%$ | 0.0602 |
| :--- | :--- | :--- | :--- |

$x_{0}=0.0613 \quad 0.0813$
0.9398
0.9398

Table III. Estimated Furfur I Cuivity Coefficients in Equilibriun Phases

| Corponent | Hydrocarbon Pase <br> 0.0602 sole Frac. Furfural |  |  | Solvent Phase 187 Mole Frac |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Solvent- Partial |  |  | Solvent- Prtial |  |  |
|  | free <br> Comp | $r_{V}$ | activity | free | $r_{h}$ | activity |
|  | Comph. |  |  | Compn. |  |  |
| n-Heptane <br> Cyclo- | 0.7940 | 16.0 | 12.70 | 0.6900 | 1.030 | 0.711 |
|  |  |  |  |  |  |  |
| hexane | 0.2060 | 11.2 | 2.93 | 0.3100 | 1.020 | 0.316 |
|  | 1.000 |  | $\underline{15.63}$ | 1.0000 |  | 1.027 |

The ratio of the activity coefficient of furfural in the hydrocarbon phase to the act vity coefficient of furfural in the solvent $p$ ase is $15.63 / 1.027=15.22$. Then the calculated furfural concentral in the hydrocarbon phase is equal to the furfursl concentration in the solvent phase divided by the inverse rotio of the activity coefficients, or $0.917 / 15.22=$ 0.0604 . The calculated concentration of 0.0604 provices a satisfectory check with the concentration of 0.0602 estimated in step 1; therefore, a second trial calculetion is not necessary. The resulta are shown in Table TV.

Table IV. Comparison of Calculated and Xperimental Equilibrium Data

Composition, Mole Fraction
texperimental

| Hydrocarbon <br> Fhase | Solvent <br> Phase |
| :--- | :--- |
| 0.745 | 0.050 |
| 0.104 | 0.020 |
| 0.061 | 0.930 |
| 1.000 | 1.000 |

Bstimated

| Hydrocarbon <br> Phase | Solvent <br> Phase |
| :--- | :--- |
| 0.746 | 0.056 |
| 0.194 | 0.025 |
| 0.060 | $\mathbf{0 . 9 1 9}$ |
| 1.000 | 1.000 |

Author's Method
Step 1. Same as step 1, in mothod of Peminton and Harwil (11).

Steo 2. Deteraino the activity coefficients for normal hentane and cyclohexane at the furfural concentrations estimated in step 2. This was done using equation 21. Since equation 21 requires values of the mole fractions of the hydrocarbon in the solvent phase, the values from Table II were used as trial values. From the activity coefficients obtained in this manner, the ratio of the activjty coefficient in the solvent phase to the activity coefficient in the hydrocarbon phase for n-heptane and cyclohexane was calculated. Thase ratios were used to estimate the composition of n-hentane ard cyclohexane in the solvent phase. The calculations are shown in Table II.

| Golvent Phase |  | Hydrocarbon Phase |  |
| :---: | :---: | :---: | :---: |
| n-Heptane | Cyclohexane | n-Heptane | Cyclohexane |
| $\nu_{\text {A }}=$ ? | $?$ | ? | $?$ |
| $\mathrm{x}_{\mathrm{C}}=0.9175$ | 0.2175 | 0.0602 | 0.0602 |
| $x_{B}=0.0252(\text { from }$ | 0.0561 (from <br> Table II) | 0.1936 | 0.7452 |
| $x_{A}=0.0561 \text { (from }$ | $\begin{gathered} 0.0252 \text { (from } \\ \text { Table II) } \end{gathered}$ | 0.7462 | 0.1936 |
| $A_{A C}=1.334$ | 1.023 | 1.334 | 1.023 |
| $A_{C A}=1.365$ | 1.358 | 1.365 | 1.358 |
| $A_{8 C}=1.023$ | 1.334 | 2.023 | 1.334 |
| $x_{A 1}=0.0025$ | 0.0825 | 0.9398 | 0.9398 |

Table V. Ustimation of Distribution in Solvent Phase

## Activity Coefficient



Eince the c-lculated hyoroc rbon mole fractions check aproximately the assumed viuce, reckeulation is not necessary.

Step 3. Check the furfural concontration in the solvent phase calculated in step $a$, against the value used in step 1 , to obtain the activity coefficients for the solvent phase. iy difference, the furfural mole fraction is 0.9104 , which comares favorably with 0.9175 , estimated in step 1. Therefore, a second aporoximation of the furfural concentration in the solvent phase is not necessary.

Step 4. Check the furfural concentration in the hydrocarbon phase estimeted in step 1 , using the activity coefficionte of furfural in $n$-heotane and furfural in cyclohexane. The activity coefiicients are evalueted at the esti ated furfural concentration in the hydrocarbon phase from step 1 , and the cal-- culated furfural concentration in tie solvent phase from step 3. This was done using eqeation 18.

Hydrocarbon Prase
Solvent Fhase

| $V_{C}=$ | $?$ | $?$ |
| :--- | :--- | :--- |
| $x_{A}=$ | 0.7462 | 0.0558 |
| $x_{B}=$ | 0.1936 | 0.0258 |
| $x_{C}=$ | 0.0502 | 0.9184 |
| $x_{A}=$ | 0.9398 | 0.0616 |
| $A_{A C}=$ | 1.334 | 1.365 |
| $A_{C A}=$ | 1.365 | 1.358 |

The entimated furfural activity coefficient in the hydrom carbon phese is 15.88 and in the solvent phase 1.020. Then the celculated furfural concentration in the $h$ drocarbon phase is oqual to the furfural concentration in the solvent phase diviced by the inverse ratio of the activity coefficients, or $(0.9184)(1.020) / 15.88=0.0590$. The calculated concentration of 0.0590 provides a satisfactory check with the concentration of 0.0602 estimated in step 1 ; therefore, a second trial calculation is not necessary. The results are shown in Table VI.

## Teble VT. Comericon of Cleulated and Experi ental Equilibrium Data

## Composition, Mole Fraction

## Experimental Estimeted

Hydrocarbon Solvent Fydrocarbon Solvent
Component Phase Phase Phase Phase

| n-Heptane | 0.745 | 0.050 | 0.747 | 0.056 |
| :--- | :--- | :--- | :--- | :--- |
| Cyclohexane | 0.194 | 0.020 | 0.194 | 0.026 |
| Furfural | 0.051 | $\underline{0.930}$ | 0.059 | 0.918 |
|  | 1.000 | 1.000 | 1.000 | $\overline{1.000}$ |

## TBLE VIII

Treerimental and Estinated Equilibrium Concentrations in the following systems.

System I - n-Heptane - Cyclohexane - Furfural at 860F


Exnerinental tquilibrium Concentrations, fole Fraction (11). llydrocarbon hase

| n-Heptane | 0.745 | 0.190 | 0.180 |
| :--- | :--- | :--- | :--- |
| Cyclohexane | 0.194 | 0.450 | 0.761 |
| Furfural | 0.061 | 0.060 | 0.059 |
|  | 1.000 | $\boxed{1.000}$ | $\frac{1.000}{}$ |

Solvent Phase

| n-Heptane | 0.050 | 0.038 | 0.016 |
| :--- | :--- | :--- | :--- |
| Cyclohexane | 0.020 | 0.060 | 0.114 |
| Furfural | $\underline{0.930}$ | $\underline{0.902}$ | 0.370 |
|  | 1.000 | 1.000 | 1.000 |

Fstimated Equilibrium Concentrations, Mole Fraction ${ }^{\text {a }}$ Hydrocarbon Phose

| n-Hoptane | 0.746 | 0.490 | 0.179 |
| :--- | :--- | :--- | :--- |
| Cyclohexane | 0.194 | 0.449 | 0.757 |
| Furfural | 0.060 | 0.061 | 0.064 |
|  | 1.000 | $\frac{1.000}{1.000}$ |  |

Solvent Phase

| n-Hoptane | 0.056 | 0.042 | 0.018 |
| :--- | :--- | :--- | :--- |
| Cyclohexane | 0.025 | 0.064 | 0.120 |
| Furfural | 0.919 | 0.894 | 0.862 |
|  | 1.000 | $\underline{1.000}$ | 1.000 |

## T BLE VILI (cont.)

Systen I - nmeptane-Cyciohexane-Furfural at $36{ }^{\circ}$ (cont.)


Estimated Lquilibriun Concentrations, Mole Fraction
Hydrocerbon Phase

| n-Ifeptane | 0.747 | 0.491 | 0.130 |
| :--- | :--- | :--- | :--- |
| Cyclohexane | 0.194 | 0.450 | 0.761 |
| Furfural | $\frac{0.059}{1.000}$ | 0.059 | 0.059 |
|  |  | 1.000 | 1.000 |

Solvent Phase

| n-Heptane | 0.056 | 0.041 | 0.016 |
| :--- | :--- | :--- | :--- |
| Cyclohexane | 0.026 | 0.063 | 0.109 |
| Furfural | $\frac{0.918}{1.000}$ | $\frac{0.896}{1.000}$ | $\frac{0.075}{1.000}$ |

Systen II - Iro-octane-n-Hexane-Furfural at $86^{\circ} \mathrm{F}$
Xperimental Fquilibrium Concentration, Mole Fraction (11)
Hydrocarbon Fhese

| Iso-Octane | 0.790 | 0.495 | 0.194 |
| :--- | :--- | :--- | :--- |
| n-Hexane | 0.149 | 0.44 | 0.749 |
| Furfural | 0.061 | 0.061 | 0.057 |
|  | 1.000 | 1.000 | 1.000 |

Solvent thase

| Iso-Octane | 0.040 | 0.027 | 0.011 |
| :--- | :--- | :--- | :--- |
| n-ilexene | 0.012 | 0.036 | 0.060 |
| Furfural | $\frac{0.948}{1.000}$ | 0.937 | 0.929 |
|  |  | 1.000 | 1.000 |

## TERE VIII (cont.)

Syster II - Iso-octane - n-Hexane - Furfural at $36^{\circ} \mathrm{F}$ (cont.)


Bstimated Equilibriur Concontrations, Fole Fraction a Hydrocarbon Phase

| Iso-Dctane | 0.790 | 0.490 | 0.189 |
| :--- | :--- | :--- | :--- |
| n-Hexane | 0.149 | 0.410 | 0.728 |
| Furfural | $\frac{0.061}{1.000}$ | $\underline{0.070}$ | 0.083 |
|  |  | 1.000 | $\mathbf{1 . 0 0 0}$ |

Solvent Phase

| Isomotane | 0.046 | 0.031 | 0.013 |
| :--- | :--- | :--- | :--- |
| n-liexane | 0.012 | 0.036 | 0.064 |
| Furfural | $\frac{0.942}{1.000}$ | $\underline{0.933}$ | $\underline{0.923}$ |
|  |  |  |  |

Estimated dquilibrium Conceatrations, Mole Fraction $b$
Hydrocarbon Phase

| Iso-octane | 0.788 | 0.138 | 0.188 |
| :--- | :--- | :--- | :--- |
| n-Hexane | 0.149 | 0.139 | 0.727 |
| Furfural | 0.063 | 0.073 | 0.005 |
|  | 1.000 | $\frac{1.000}{1.000}$ |  |

Solvent Phase

| Isomoctane | 0.041 | 0.028 | 0.011 |
| :--- | :--- | :--- | :--- |
| n-Hexane | 0.012 | 0.038 | 0.068 |
| Purtura1 | $\frac{0.947}{1.000}$ | $\frac{0.934}{1.000}$ | $\frac{0.921}{1.000}$ |

System III - n-Hexane-Vethylcyclopentane-Aniline at $77^{\circ} \mathrm{F}$


Experimental Equilibrium Concentrations, Wole Fraction 4 Hydrocarbon hase

| n-ilexane | 0.736 | 0.480 | 0.136 |
| :--- | :--- | :--- | :--- |
| Tethylcyclopentane | 0.107 | 0.430 | 0.744 |
| Aniline | 0.077 | 0.090 | 0.120 |
|  | 1.000 | $\frac{1.000}{1.000}$ |  |

Solvent hase

| n-llexane | 0.073 | 0.050 | 0.028 |
| :--- | :--- | :--- | :--- |
| Fethylcyclopentane | 0.022 | 0.080 | 0.141 |
| Aniline | $\underline{0.905}$ | $\underline{0.870}$ | $\frac{0.831}{1.000}$ |

Estimated Equilibrium Concentrations, Fole Fraction ${ }^{\text {a }}$
Hydrocarbon Phase

| n-llexane | 0.736 | 0.479 | 0.136 |
| :--- | :--- | :--- | :--- |
| Methylcyclopentane | 0.187 | 0.129 | 0.744 |
| Aniline | 0.077 | 0.092 | 0.120 |
|  | 1.000 | 1.000 | $\mathbf{1 . 0 0 0}$ |

Solvent Phase

| n-Hexane | 0.078 | 0.063 | 0.024 |
| :--- | :--- | :--- | :--- |
| Methylcyclopentane | 0.035 | 0.092 | 0.196 |
| Aniline | $\frac{0.887}{1.000}$ | $\frac{0.845}{1.000}$ | $\frac{0.780}{1.000}$ |

## TABLE VIII (cont.)

System III - n-llexane-fethylcyclopentane-Aniline at $77^{\circ} \mathrm{F}^{\circ}$ (cont.)


Estimeted Equiliurium Concentrations, Jole Praction ${ }^{b}$
Hydrocarbon thase

| n-rierane | 0.736 | 0.479 | 0.136 |
| :--- | :--- | :--- | :--- |
| Wethylcyclopentane | 0.167 | 0.169 | 0.7166 |
| Aniline | 0.077 | 0.092 | 0.118 |
|  | 1.000 | $\frac{1.000}{1.000}$ |  |

Solvent Phase

| n-Hexane | 0.077 | 0.062 | 0.023 |
| :--- | :--- | :--- | :--- |
| Methylcyclopentane | 0.034 | 0.095 | 0.196 |
| Aniline | $\frac{0.089}{1.000}$ | $\underline{0.843}$ | 0.701 |
|  | 1.000 | 1.000 |  |

System IV - Heptane-Cyclohexane-Aniline at $77^{\circ} \mathrm{F}$
Experimental Equilibrium Concentrations, Fole Fraction (b)
Rydrocarbon Phase

| n-Hentane | 0.227 | 0.410 | 0.706 |
| :--- | :--- | :--- | :--- |
| Cyclohexane | 0.649 | 0.457 | 0.210 |
| Aniline | $\frac{0.124}{1.000}$ | 0.103 | $\frac{0.084}{1.000}$ |
|  |  | 1.000 |  |

Solvent Phase

| n-hentane | 0.031 | 0.046 | 0.056 |
| :--- | :--- | :--- | :--- |
| Cyclohexane | 0.139 | 0.068 | 0.017 |
| Aniline | $\frac{0.830}{1.000}$ | $\frac{0.006}{1.000}$ | $\frac{0.927}{1.000}$ |

System TV - Heptane-Cyclohezane-Aniline at $77^{\circ} \mathrm{F}$ (cont.)


Stimated quilibrium Concentrations, Wle Fraction ${ }^{\text {a }}$
Hydrocarbon Mase

| n-Hentane | 0.227 | 0.140 | 0.705 |
| :--- | :--- | :--- | :--- |
| Cyclohexane | 0.650 | 0.457 | 0.210 |
| Aniline | 0.123 | 0.103 | 0.085 |
|  | 1.050 | $\frac{0.000}{1.000}$ |  |

Solvent Phase

| n-Heptane | 0.038 | 0.055 | 0.062 |
| :--- | :--- | :--- | :--- |
| Cyclohexane | 0.180 | 0.108 | 0.041 |
| Aniline | $\frac{0.782}{1.000}$ | $\underline{0.837}$ | $\frac{0.897}{1.000}$ |
|  |  |  |  |

Bstimated Rquilibrium Concentrations, Mole Fraction b
Hydrocarbon Phase

| n-Heptane | 0.230 | 0.411 | 0.706 |
| :--- | :--- | :--- | :--- |
| Cyclohexane | 0.655 | 0.459 | 0.210 |
| Aniline | 0.115 | 0.100 | 0.084 |
| 1.000 | 1.000 | 1.000 |  |

Solvent Phase

| n-Hoptane | 0.035 | 0.052 | 0.060 |
| :--- | :--- | :--- | :--- |
| Cyclohexane | 0.179 | 0.106 | 0.026 |
| Aniline | $\frac{0.736}{1.000}$ | $\underline{0.842}$ | 0.914 |
|  |  | 1.000 | $\frac{0.000}{1.07}$ |

## TABLS ULII (cont.)

System V - n-Heotene-Rethylcyclohexaneminiline at $77^{\circ} \mathrm{F}$


Experimental Equiliorium Concentrations, Fole Fraction (17) Hydrocarbon Phase

| n-ileptane | 0.825 | 0.497 | 0.157 |
| :--- | :--- | :--- | :--- |
| Tethylcyclohexane | 0.093 | 0.411 | 0.734 |
| Aniline | $\frac{0.082}{1.000}$ | $\frac{0.092}{1.000}$ | 0.109 |
|  | 1.000 |  |  |

Solvent Phase

| n-heptane | 0.056 | 0.030 | 0.013 |
| :---: | :---: | :---: | :---: |
| Hethylcyclonexane | 0.008 | 0.057 | 0.125 |
| Antine | $\frac{0.936}{1.000}$ | $\frac{0.905}{1.000}$ | $\frac{0.062}{1.000}$ |

Sstinated Bquilibrium Concentrations, Mole Frection a
Hydrocarbon Phase

| n-ifptane | 0.829 | 0.497 | 0.156 |
| :--- | :--- | :--- | :--- |
| Methylcyclonexane | 0.094 | 0.412 | 0.731 |
| Antline | $\frac{0.077}{1.000}$ | 0.021 | 0.113 |
|  |  | 1.000 | 1.000 |

Solvent Phase

| n-heptane | 0.056 | 0.042 | 0.017 |
| :--- | :--- | :--- | :--- |
| Methyleyclohexane | 0.012 | 0.059 | 0.125 |
| Aniline | $\frac{0.932}{1.000}$ | $\frac{0.899}{1.000}$ | $\frac{0.858}{1.000}$ |

TABLE VIII (cont.)
System $\%$ - n-Heptane-licthylcyclohexane-Aniline at $77^{\circ} \mathrm{F}$ (cont.)


Stimatod Equilubrium Concentrations, Tole Fraction ${ }^{b}$ Pydrocarbon Thase

| n-Hentane | 0.030 | 0.197 | 0.157 |
| :--- | :--- | :--- | :--- |
| Nethylcyclohexane | 0.094 | 0.412 | 0.735 |
| Aniline | 0.076 | $\underline{0.091}$ | 0.108 |
|  | 1.000 | $\frac{1.000}{1.000}$ |  |

Solvent Phase

| n-ireptane | 0.068 | 0.041 | 0.016 |
| :--- | :--- | :--- | :--- |
| Hethylcyclohexane | 0.011 | 0.059 | 0.124 |
| Aniline | $\frac{0.921}{1.000}$ | $\mathbf{0 . 9 0 0}$ | 0.860 |
|  | 1.000 | 1.000 |  |

System VI - n-Heptane-tethylcyclohexane-Turfural at $140^{\circ} \%$
Experimental Equilibrium Concentrations, Wole Fraction (6)
Iydrocarbon Phase

| n-Heptane | 0.215 | 0.432 | 0.634 |
| :--- | :--- | :--- | :--- |
| ?fethylcyclohexane | 0.613 | 0.104 | 0.212 |
| Furfural | 0.172 | 0.164 | 0.154 |
| 1.000 | $\frac{1.000}{1.000}$ |  |  |

Solvent Phase

| n-Heptane | 0.036 | 0.064 | 0.034 |
| :--- | :--- | :--- | :--- |
| Wethylcyclohexane | 0.139 | 0.030 | 0.038 |
| Furfural | $\underline{0.825}$ | $\underline{0.856}$ | 0.078 |
|  | 1.000 | 1.000 | 1.000 |

System VI - n-Heptane-Methycleyclohexane-Furfural at $140^{\circ} \mathrm{F}$ (cont.)


Estimated Lquilibrium Concentrations, Nole Fraction a
Hydrocarbon hase

| n-Hentane | 0.239 | 0.180 | 0.701 |
| :--- | :--- | :--- | :--- |
| Wethyleyclohexane | 0.679 | 0.449 | 0.235 |
| Furfural | 0.082 | 0.071 | 0.064 |
|  | 1.000 | 1.000 | 1.000 |

Solvent Phase

| n-Heptane | 0.039 | 0.069 | 0.092 |
| :--- | :--- | :--- | :--- |
| Methycleyclohexane | 0.159 | 0.097 | 0.048 |
| Furfural | 0.802 | 0.834 | 0.860 |
|  | 1.000 | $\frac{1.000}{1.000}$ |  |

Estimated Equilibrium Concentrations, Nole Fraction $b$
Hyơrocarbon Phase

| n-Heptane | 0.207 | 0.143 | 0.679 |
| :--- | :--- | :--- | :--- |
| Fethylcyclohexane | 0.590 | 0.414 | 0.227 |
| Furfural | 0.203 | 0.143 | 0.094 |
|  | 1.000 | $\frac{0.000}{1.000}$ |  |

Solvent Phase

| n-Heptane | 0.040 | 0.070 | 0.091 |
| :--- | :--- | :--- | :--- |
| Sethylcyclohexane | 0.154 | 0.092 | 0.044 |
| Furfural | 0.806 | 0.838 | $\frac{0.865}{1.000}$ |

## TABLE VIII (cont.)

System VII - n-Heotane-Methyleyclohexanemethylcarbitol at $140^{\circ} \mathrm{F}$


Experimontal Equilibrium Concentratione, Dole Fraction (6)
Hydrocarbon Phese

| n-Heptane | 0.228 | 0.465 | 0.604 |
| :--- | :--- | :--- | :--- |
| Methylcyclohexane | 0.668 | 0.439 | 0.232 |
| Rethylcarbitol | $\frac{0.104}{1.000}$ | $\frac{0.096}{1.000}$ | 0.004 |
|  | 1.000 |  |  |

Solvent Phase

| n-Heptane | 0.040 | 0.070 | 0.097 |
| :--- | :--- | :--- | :--- |
| Kethylyclohexane | 0.154 | 0.086 | 0.044 |
| Hethylcarbitol | $\frac{0.806}{1.000}$ | $\frac{0.844}{1.000}$ | $\mathbf{0 . 8 5 9}$ |
|  | 1.000 |  |  |

Estimated Guilibrium Concentretions, Mole Fraction a
Hycirocarbon Fhase

| n-Hectane | 0.253 | 0.509 | 0.736 |
| :--- | :--- | :--- | :--- |
| Methylcyclohexane | 0.742 | 0.482 | 0.250 |
| Methylcarbitol | $\mathbf{0 . 0 0 5}$ | 0.009 | 0.014 |
|  |  | 1.000 | 1.000 |

Solvent Phase

| n-Heptane | 0.041 | 0.074 | 0.078 |
| :--- | :--- | :--- | :--- |
| Methylcyclohexane | 0.194 | 0.122 | 0.062 |
| Methylcarbitol | 0.765 | 0.804 | 0.840 |
|  | 1.000 | 1.000 | 1.000 |

Syster VII - n-Heptane-Wethylcyclohex ne-lethylearbitol at $140^{\circ} \mathrm{F}$ (cont.)


Sstimated Lqualibrium Concentrations, Wole Fraction ${ }^{\text {b }}$
Hydrocarbon Phese

| n-Heptano | 0.253 | 0.510 | 0.737 |
| :--- | :--- | :--- | :--- |
| Hethylcyclohexane | 0.743 | 0.403 | 0.251 |
| Methylcarbitol | 0.004 | $\frac{0.007}{1.000}$ | 0.012 |
|  |  | 1.000 |  |

Solvent Thase

| n-Heptane | 0.039 | 0.076 | 0.097 |
| :--- | :--- | :--- | :--- |
| Hethylcyclohexane | 0.192 | 0.117 | 0.050 |
| Methylcarbitol | $\frac{0.769}{1.000}$ | $\underline{0.807}$ | $\frac{0.045}{1.000}$ |

a
Estinated results usine method of Pemington E Marwil
b
Estimated results using author's method

System
Furfural with

| n -Hexane (11) ${ }^{\text {a }}$ | 1.239 | 1.116 | 86 |
| :---: | :---: | :---: | :---: |
| n-Heptane (11) ${ }^{\text {a }}$ | 1.334 | 1.365 | 86 |
| Isomoctane (11) ${ }^{\text {a }}$ | 1.446 | 1.371 | 86 |
| Cyclohexane (11) ${ }^{\text {a }}$ | 1.023 | 1.358 | 86 |
|  | 1.082 | 1.775 | 140 |
| Wethylcyclohexane ( 6$)^{\text {b }}$ | 0.829 | 2.657 | 140 |

Aniline with

| n-Hexane (11) ${ }^{\text {a }}$ | 1. 2189 | 1.309 | 77 |
| :---: | :---: | :---: | :---: |
| n-Heptane (11) ${ }^{\text {a }}$ | 1.371 | 1.284 | 77 |
| Methylcyclopentane (11) ${ }^{\text {a }}$ | 0.928 | 1.009 | 77 |
| Cyclohexane (11) ${ }^{\text {a }}$ | 0.361 | 1.117 | 77 |
| Gethylcyclohexane (11) ${ }^{\text {a }}$ | 1.041 | 1.140 | 77 |

Methylcarbitol with

| n-Heptane $(6)^{b}$ | 1.043 | 2.008 | 140 |
| :--- | :--- | :--- | :--- |
| Methylcyclohexane (6) | 0.667 | 2.724 | 140 |

a
As given in reference indicated.
b As calculated from data as indicated by reference.

## ROMACLETURE

```
    A = constant in van Latar equation.
    = limit of log Yas x 
    = component of a solution.
    a. - activity.
    B = component of a sulution.
    C = component of a solution.
    In = natural lorarithm.
log = common logarithm
    x = mole fraction in solvent phase or in solution,
        j.f only one phase is present.
    y = mole fraction in hydrocarbon phase.
    \beta= selectivity.
    V = activity coefficient.
    \partial = partial differential operator.
```

Subscripts:
$A=$ component $A$.
$B=$ component $B$.
$\mathrm{C}=$ component C .
$A B=$ component $A$ in a B-rich solution, etc.
$\mathrm{h}=$ pertains to solvent phase.
$\mathrm{v}=$ pertains to hydrocarbon phase.

## LTMERATYME CITAD


2. Colburn, :.e., and Schoenborn, E. U., Trens. Am. Inst. Chea. Engre., 11, 421 (1945).
3. Colburn, A.P., Schoenborn, B. $\mathrm{H}_{\mathrm{i}}$, and Shilline, D., Ind. Ing. Chen., 35, 1250 (1913).
4. Darvent, B. de B., and winkler, C.A., J. Phys. Chem., 47, 442 (1913).
5. Gibbs, J.7., "Collected orks," Nen York, Lonemans, Green, and Co., (1920).
6. Herbolsheimer, $0 .$, dissertation, The Pennsylvania State
College, $(1942)$.
7. Hildebrand, J.H., "Solubility of Non-electrolytes," 2nd. ed, Mew York, Reinhold Publishing Corp., (1936).
8. Hunter, T.G., and Brown, T., Ind. ing. Chem., 39, 1313 (1947).
9. Laar, J.J. van, Physik Cher. 72,723 (111); 03, 599 (1913).
10. Margules, M., Sitzber, Akad, wiss, Wien, Math. naturw. Klasse, II, 104, 1243-78 (1595).
11. Pennington, F.N., and tarwil, S.J., Ind. Enc. Chem., 45, 1371 (195 ) .
12. Perry, J. H., Ld.: "Chemical Engineers' Hendbook," 3d ed. (1-50), McGraw-lilill Book Company, Inc., New York, (1911).
13. Scatchard, G., and Hamer, N.J., J. Em. Chern. Soc., 57, 1805 (1935).
14. Scheibel, E.G., and Friedland, D., Ind ang. Chem., 39, 1329 (1947).
15. Treybal, R.t., Ind. Eng. Shea., 36, 375 (1944).
16. Treybal, R.E., "Liquid Extraction," Nem York, WeGraw-Hill
Book Co., (1951).
17. Varteressian, K.A., and Fenske, H.R., Ind. Eng. Chem.,
29, 270 (1937).
18. "ohl, K., Trans. Am. Inst. Chem. Enre., 42, 215 (1946).


[^0]:    Colburn and Schoenborn (2) considered convenient means of determining the activity coefficients of, first, each of the components separately in a possible agent, and second, the estimation of the mutual effect of the components on their activity coefficients in the agent. The simplest method of

