## Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If $a$, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

# VAFOR-LICULD ECITLIEFIA DATA AND DIETILLA IOE PAGKIN EVALUATION AT HIGH VACUUM 

BY

EDWAFD J. LASCH, JR.

A THECIS
SUBMITTED IN PARTIAL FUT ILLMENT OF THE RECTIREMPNTS
FOR THE DEGREE
OF
MASTER OF SCIENCE
1
CHFAICAL DNGIMERETNO
IN THE
GEADUAT: DIVISION
AT THE
NEWARK COLLEGE OF ENGINEERING

JUNE 1955

# APPROVAL OF THESIS <br> FOR <br> DFPARTMHNT OR CHETCAL ENGTMBRING <br> WHAARK COLLPGE OF ENGTNFQRING 

BY

HACDLTY COHMITTES

## APPROVED

$\qquad$


NDWARE, NEW JGRSEY

```
JUNE 1955
```


## ACKMOULD QGEMETTS

This euthor wishes to express his gretitude to Dr. Bdwerd Scheibel of Newark College of Engineering for his guidance throughout this investigetion, and to Shulton Inc. for making avallable laboretory facilities and metorials.

## TABLE OF CONTENTS

TITLE Page ..... 1
APPROVAL ..... 11
ACKNOWLEDGEMENTS ..... 111
LIST OF FIGURES ..... 2
LIST OF TABLES ..... 3
ABSTRACT ..... 4
PURPOSE OF THE WORK ..... 5
SCOPE OF THE WORK ..... 6
FUNDAMENTAL THEORY AND PRESENT STATE OF KNOWLEDGE ..... 7
DESCRIPTION OF THE EqUIPMENT ..... 20
OPERATING TECHNIQUE ..... 22
CALCULATION OF THE AVERAGE EQUILIBRIUM CURVE ..... 25
method of calculating the number of plates in a still. ..... 27
presentation and interpretation of data ..... 28
CONCLUSION ..... 33
summary and suggestions of future work ..... 34
NOMENCLATURE ..... 36
BIBLIOGRAPHY ..... 38
APPENDIX:FIGURES
tables
SAMPLE CALCULATIONS

## LICT OF FIGDRES

| Figure No. | Description |
| :---: | :---: |
| 1. | Refrective Index of fenzyl alcohol and Benzyl-n-Butyl Ether Selution et $20^{\circ} \mathrm{C}$ ve. Mol Trection Genzyl Alcohol. |
| 2. | Diagrean of the nthmer still with Modificetinne to Vecuuni. |
| 3. | Othaer Plot of the Vepor Prezzure Deta of Benxyl Alechol and Benzyl-n-mutyl Ether. |
| 4. | Corpelated Vepor Preseure va. Tompernture for Bensyl Alcohol and Benzyl-n-Butyl Pther. |
| 5. | Bolling Point Curve for Benzyl Alcohol and Benzyl-n-Butyl Ther et 20 m. $\begin{gathered}\text { m. total presecure. }\end{gathered}$ |
| 6 | Correletion of Vapor Liquid Dete 7 fing Margule Bquetion. |
| 7. | Corraletion of Vapor Liquid Deta Ueing Ven Lear Equation. |
| 8. | Corralated Activity Coefricient Plot vi. Mol Frection Sendyl Alcohol. |
| 9. | Vapor Litqued detet 1.35 .10 end 20 msm |
| 10. | Averege Felative Voletility ve ficl fraction Benzyl Aleohol. |
| 11. | Still Tated in Packinf Efflciencien. |
| 12. | Number of Pletes va. Refractive Index et $20^{\circ} \mathrm{C}$ |
| 23. |  |
| 14. | Herp ve Preasure Drop for $1^{\prime \prime}$ Intalox and $3 / 4^{\prime \prime}$ Berl Eeddles. |
| 15. | HTTF Veluan vs. 6 for $1 / 4$ * Berl Seddes, Fibre Glees Combinetion F $^{2} 76$ and 476 . |
| 16. | HeTP Velues ve. $\triangle$ F for $1 / 4^{\text {" }}$ Berl Seddles, Fibre Glest Combinetion 076 end \# 476. |
| 17. | Presture Drop in, Weter per poot ve. for All Fecki |

## LIST OF TABLES

Table Mo. Description1. Physical properties of Benzyl Aleohol and Benzyl-n-Butyl sther.
2. Vapor Presture Det - Experimentel ond from Literature,
3. Correleted Vapor Pressur Date - Read from Othmerplot.
4. Experimental Vapor - Liquid Deta.
5 Calculations for Activity Coeffictents.
6. Calculations for the Mergulea Correlation.7. Celculations for the Ven Laar Correlation.
8. Celoniations of Eounilbriun Curves t 20 m.m.
9. Caleulations of Equillbyiun Curves et $10 \mathrm{~m} . \mathrm{m}$.
10. Caleulations of Equilibriun Curves et 1.35 m.m.
11. Celculation of Average Relative Volatility.
12. Csloulationa fron Mumber of Plates Agennt Refrective Indox Curve.
13. Paoking Description.
14. Experimentel Totil Plstez, Preasur Drop, end Throughput Data.
15. Calculsted $G$ nd HETP Values.
16. Comparison af HETP Values.
17. Pressure Drop Detis.

## ABETRACT

Vapor pressure det and vepor-liquid equilibria date at l-30 m.m. pressure ere presented for beneyl alcohol and benzyl-n-butyl ether system. Acilvity coefficients for the gystem are symetrical, the Marcules constente ere $A_{1-2}=A_{2-1}=301$. HETP values observed at condeneer pressure of 1 m.m. for $1 / 4^{\prime \prime}$ and $3 / 4^{\prime \prime}$ Berl seddles, $1^{\prime \prime}$ Intalox seddles, Fibre Glasa Combination packings \# 076 end \# 476, and a Knitted Wire Mesh packing are presented as function of the mess throughput end column pressure drop. At a concenser prossure of $1 \mathrm{~m}, \mathrm{~m}$. the pressure drop per foot in terms of the mss throughput is obecrved for each packing. heTp values at high vacuum are greeter than those observed in the same equipnent et atmospheric preasure.

## PTRPOSE OF THE WORK

Vecuum frectionstion of ercmetic chein compounds is method of purificetion in the Fine Chemical Industry. It is essential for quality and quentity of product thet condenser pressures of from one to four millimeters of mercury be used. Pexformance charecterlstics of dietillation peckine under theae conditions ore scarce. The thesis presente opereting cherecterietics of verioue distillstion peckings at high vocuum, and employs binary test liquid of aromatic chain compounde. The parpose of thia atudy is:

1. To deternine if the vapormequilibria data of these compounds may be hended by ostablished methode.
2. To observe operating cheracteristies of various digtilletion packings under high vacuum conditions and to determine how they compare with oveilable dete in the literoture.

## SCOPE OF THE WORK

The thesis presents the selection and eveluation of - test liquid, and studies the operating charecteristics of distillation packings at high vecuum and compares them with deta in the iltereture.

The following topics are discussed in the teat 1iquid study:

1. Selection of the test IIquid.
2. Analysis of the test liquid.
3. Purification of the compounds.
4. Vapor pressure dete of the pure compound
5. Correlation of the vapor precsure dista.
6. Vepor-1iquid ooullibria data.
7. Correlation of the vepor-ilquid equilibria data.
8. Calouletion of an everage vapor-liquid oquilibria curve over the wage of pressures invertigeted.
9. Celculetion of direct method of obtaining

Heorecticel platea in distiliation unit operating et totel reflux from selysis of the vapor and pot compositions.

Veribus packing performances at high vacuw are studied in terms of

1. Calculation of RETP valuea.
2. Measurement of throughput rate and preasure drop date
3. Comparimon of oxperimental date on packing performancea with data voilable in the litarature.

Vapor pressure dete of meny compounds are evileble in the literature. Seversl methods employed in the correlation end extrepolation of vepor pressure dete ere; plots of the modified cleuslus-clepeyron equation (4), the cox chert (5), the Duhring rule (6), and the othmer plot (14).

The Cleusius-Clepeyron equetion mey be used over small tempereture rances as frollows:

$$
\frac{d \ln p}{d T}=\frac{L}{R T} 2
$$

Assuming thet $L$ (molel lstent heat of vaporizetion) is constant over the temperature range to be used, the equetion assumes the fomm,

$$
d \ln p=\frac{L}{R} \frac{d T}{T}
$$

Integreted form,

$$
\ln P)_{P_{0}}^{P_{1}}=\left(\frac{L}{n} \frac{1}{T_{1}}\right)^{\frac{T_{0}}{T_{0}}}
$$

Thus, plot of In p va. $1 / T$ will give atraight line ac long as L remeing constant.

Cox developed method for hydrocerbone which gives a straight line felationchip. The log of the vapor pressure of a family of hydrocerbons is plotted egeinst an erbitirary temperature senle calibrated to give a straight line for the vepor presture of woter. Ho observed thet curves of the sme fanily of hydrocerbons pees through common point.

Duhringis rule tates thet there is linear reletionship between the temperstures of two components exerting identical vapor presaurez. This fule will hold for absolute or relsm tive tempereture aceles. This rule is variation of the Remsey
and Young reletionship.

$$
\frac{T_{A}^{\prime}}{T_{B}}=\frac{T_{A}}{T_{B}}+c\left(T_{A}^{\prime}-T_{B}^{\prime}\right)
$$

$T_{A}{ }^{\prime}$, TB' and TA, Tg ere ebsolute tempereturcs at which compounds $A$ and $B$ respectivoly, have ldenticel vapor prescures. 0 1s onstent which pprocches zero es the two components se nore closely relsted. Thuz, the Dunving fule mey be employed to correlete vapor pressure dete using a reference substence. The error or deviation frome etreight line will be function of the relationships between the raferenee and test compounds, Othmer's method, the logeritimate plot of the vaper prosure of liquid getnet the vapor prassure of a reference Liquid the corrospondine tomperstures, gives straight lines over a wide rang of temperatures. It offers more courbte and conveniont method for correleting vepor pressure data.

Best resulta ore obtainod when relpted reforence abstanee is used. Water, however is conventent reference subetance and gives good oorrelation. The theoretion beokground for the Othmer thod is besed on the clausiup-clepoyron equetion and 1s derived follome

$$
\begin{aligned}
& \frac{\ln R}{d} \frac{L}{D_{H}}=\frac{L}{L_{R}} \text { integretes to } \\
& \text { (2) } \ln p \frac{L}{L} \ln D_{R}+c
\end{aligned}
$$

other form may be used, the letter being the more convenient. The reletionehip holds beceuse the $L / I_{\text {h }}$ remind constant through wide rene of teapereturea. The other plot may be used in the estimation latent fests of veporizetion from the slope of the curve. Latent hent of veporizetion may be optime ted from the other methods ala.

Vepor-1fouid equilibrie de to $\operatorname{sey}$ be predicted from an ideal solution providing the gee lowe hold in the vapor phase. Reoultia lew ate ten (15) the the peril pressure of any come ponent in the vapor la equal to the product of it mole fraction in the liquid end the vapor pressure o. the pure component at the meme temperature.

$$
\begin{array}{ll}
P_{1}=P_{1} x_{1} & P_{2}=P_{2} x_{2} \\
P y_{1}=P_{1} x_{1} & P_{y_{2}}=P_{2} x_{2}
\end{array}
$$

Thus, in en ideal binary caution, the relationship of the two components in the vapor end liquid is:

$$
\frac{y_{2}}{x_{2}}=\frac{n}{x_{2}} \frac{x_{2}}{x_{2}}
$$

The relative volatility, which is measure of the difilculty of sever ion of compounds, is defined in the ideal solution as,

$$
\alpha=\frac{P_{1}}{F_{2}} \quad \frac{\bar{J}_{1}}{\bar{Y}_{2}}=\alpha \frac{x_{1}}{x_{2}}
$$

A convenient relationship for presenting $y-x$ dot. is from the equation

$$
\begin{aligned}
\frac{y_{1}}{y_{2}}=\alpha \frac{x_{1}}{x_{2}} & y_{2}
\end{aligned}
$$

by rearrengersent of the terms this form is obtain ned.
(2)

$$
y_{1}=\frac{\alpha x_{1}}{1+(x-1) x_{1}}
$$

Few Liquid systems follow Feoult'a law. They ore limited to: 1. Homologue series and isomers.
2. Certain other mixtures labeled as ousi-ideal". classified by Ewell, Harrison and Berg (7).
3. For all non-ideal mixtures where any component approeches $100 \%$.

Mon-ideal liquid mixtures are opprosened using Reoult: lew. Deviations from ideality are expressed an thermodynamically significant activity coefficients, as defined for ideal gases,
(3) $P_{y_{1}}=\gamma_{1} P_{1} x_{1}$ of $P_{y_{2}}=\gamma_{2} P_{2} x_{2}$

$$
\frac{y_{1}}{y_{2}}=\frac{\gamma_{1}}{\gamma_{2}} \frac{P_{1}}{y_{2}} \frac{x_{1}}{x_{2}}
$$

The relative volatility for non-ideal binary mixture it defined et,

$$
\text { (4) } \alpha_{1-2}=\frac{\gamma_{1} P_{1}}{\gamma_{2}} \frac{P_{2}}{}
$$

Vapor-1iquid relationship a ere:

$$
\frac{y_{1}}{y_{2}}=\alpha_{1-2} \frac{x_{1}}{x_{2}} \quad \text { and }
$$

Eq. (2) $y_{1}=\frac{\alpha_{1-2} x_{1}}{1+\left(\alpha_{1-2}^{-1)} x_{1}\right.}$
Activity coefficients vary with concentration and temperature. The fundamental thermodynamic equation relating act1ty coefficients and composition is the Gibbs-Duhem relation (8)
at constant temperature and pressure,

$$
x_{1}\left(\frac{\partial \ln \gamma_{1}}{\partial x_{1}}\right)_{T P}+x_{2}\left(\frac{\partial \ln \gamma_{2}}{\partial^{x_{1}}}{ }_{T P}+\cdots-0\right.
$$

For binary mixtures, $1_{1}=-x_{2}$ Therefore

$$
x_{1}\left(\frac{\left.\partial \ln \gamma_{1}\right)}{\partial x_{1}}\right)=x_{2}\left(\frac{\left(\partial \ln \gamma_{2}\right)}{\partial x_{2}} T\right.
$$

These equation relate the slopes of the activity coefficient curves on a log agelnat composition plot. The equations are cumber nome to handle and integrated forme are available, namely the Margules equation (10) and the Van Lar equation (20).

The Margules equation is given below as two constant equation. If necessary the number of constant may be increased to accurately correlate dote, however, two constants are sufficelent for most cases.
(5) $\quad \log X_{1}=x_{2}^{2} \quad\left(A_{1-2}+2 x_{1}\left(A_{2-1}-A_{1-2}\right)\right)$
(6) $\log _{2}=x_{1}^{2}\left(A_{2-1}+x_{2}\left(A_{1-2}-A_{2-1}\right)\right)$

On method of evaluating the wo constant e Margules equation is. from the following derivation:

$$
\begin{aligned}
& \log _{1} \gamma_{2} x_{2}^{2}\left(A_{1-2}+2\left(A_{2-1} A_{1-2}\right) x_{1}\right) \\
& \frac{\log \gamma_{1}}{x_{2}}=A_{2-1}+2\left(A_{2-2}-A_{1-2}\right) x_{1} \quad x_{i}=1-x_{2}
\end{aligned}
$$

(7) $\frac{\log \gamma_{1}}{x_{2}^{2}}=2 A_{2-1}-A_{1-2}-2\left(A_{2-1}-A_{1-2}\right) x_{2}$
(B) $\frac{\log _{2} \gamma_{2}}{x_{1}^{2}}=2 A_{1-2}-A_{2-1}-2\left(A_{1-2}-A_{2-1}\right) x_{1}$ The values of $A_{1-2}$ and $A_{2-1}$ may be read from plots of $\frac{\log \gamma_{1}}{x y_{2}}$ va $y_{2}$ plotted from left to fight and from plot of $\frac{\log \gamma_{2}}{x y_{1}} v_{2} x_{2}$ plotted right to left, by aligning $x_{2}=0$ with $x_{2}=.5$ and $x_{1}=.5$ with $x_{2}=0$, end reeding the valuer ot $x_{1}=0$ end $x_{1}=.5$ respectively. This meg be seen from the original equations the when

$$
x_{1}=0 \frac{\log _{1} \gamma}{x_{2}^{2}}=A_{1-2} \quad x \frac{2}{2}=1 * \cdot \log _{1}=A_{1-2}
$$

and when

$$
x_{2}=0 \log \gamma_{2} A_{2-1} \quad x_{1}{ }^{2}=1 \quad \log \gamma_{2}=A_{2-1}
$$

This method in illustrated in the Presentation of data.
The Van Lazar equations ares
(9) $\log _{1}=\frac{A_{1-2}}{\left(\frac{1 h_{1} x_{1}}{n_{2} x_{2} x_{2}}\right)^{2}}$
(10) $\log \gamma_{2}=A_{2-1}$
$\frac{x^{\left.\frac{x_{2}}{1-2} x_{1}\right)^{2}}}{}$
$A_{1-2}$ and $A_{2-1}$ are the swat given in the Virgule equation. A method for obtaining then Var constants is es follow The term of the equations we rearmaged to give the following forme.
(11)

$$
\frac{1}{\sqrt{\log \gamma_{1}}}=\frac{\sqrt{A 1-2}}{A_{2-1}} \frac{x_{1}}{x_{2}}+\frac{1}{\sqrt{A_{1-2}}}
$$

$$
\begin{equation*}
\frac{1}{\sqrt{\log \gamma_{2}}}=\frac{\sqrt{A_{2-1}}}{A_{1-2}} \frac{x_{2}}{x_{1}}+\frac{1}{\sqrt{A_{2-1}}} \tag{12}
\end{equation*}
$$

A. plot is made of $2 / / \log \gamma_{1}$ va. $x_{1} / x_{2}$, and $1 / \sqrt{\log } \gamma_{2}$ ve $x_{2} / x_{1}$. The values of $A_{1-2}$ and $A_{2-1}$ ere obteined by edjusting the two eurves until the respective velues agree.

In the symetrical cese the Mexgules equation and the Van Laer equetion give identical eurves of the ectivity coefficients. Differences in the two quations occur as the retio of $\mathrm{A}_{1-2}$ to $\mathrm{A}_{2-1}$ ohenges from mity.

Fractionation is alatillation in which contect is mede between the vapor from the pot and IIquid condenced from this vapor. The tranafer of material and interchange of het resulta in agreater enfiehment of the more volatile component then could be secured in a cingle distillation Uith tho seme amoumt of heat. Retuming condeneed vaporiz to the still id called reflux. The Fefiux retio is defined as the retio of the Liquid take off to the 11quid returned to the column. Total reflux in the return of all of the condented vapor: to the colum.

Methods used to effect fractionetion in diatillation unit are:

1. Bubble cap plate towers are seriet of trey mountely
horizontally in a column. Bubble caps, which allow vapor to pess through a liquid seel and prevent the liquid to flou down through the vapor riser, are speced in the tray. A height of liquid is maintained on each tray by weirs, sealing the vapor from the tray below. The excess liquid is carried to the tray below by downspouts. The vapor makes contect with the liguid as it rises through the liquid eesl of the bubble cap.
2. Sieve tray and perforptod plate colums are series of treys munted horizontally and spaced at intorvals in the column. The liquid and vapor make contact as the vapor rises through the holes in the plates. Welrs and downspots are used to handle the liguld.
3. Packed colume mploy veriety of peekinge designed to offect on efficient trenefer of meterial. In general, the smeller the size packing, the wmaller the columa helght will be required. Those forming ontinuous films rather than dropwise formation are meen to give better officiencies. Paeked columa have application in:
a. Columat under one foot in diemeter where high efficiencies are reguired for low helght.
b. Where low preasure drop is dasired as in vacuam distillotion.
e. Where low holdup is required as in beth distillation.

Distillation packing are easily eveluated et total reflux, and the performance date presented in torms of Height of a Tranafor Jait or Height Equivalent to Theoretical Plate.

HTU is the height of packing in a given colum nocessery to produce one transfer unit. A Trensfor Unit is defined from the equation:

$$
n_{O G}=\int_{y_{2}}^{y_{1}} \quad \frac{d y}{y^{z-y}} \quad \text { Gat Filming } \quad z_{O L}=\int_{x_{2}}^{x_{1}} \frac{d x}{x-x^{*}} \quad \begin{aligned}
& \text { Liguid Finm } \\
& \text { controling }
\end{aligned}
$$

In distillation the transfer units are usually calculeted besed on the gas film controlling. The integretion may be hendied by everal methods suggested in the ilterature or by grephical methods. HETP is defined as the height of packing in a given column required to produce one theoretical plete. A Theoretical plate is defined as condition of equilibrium botween boiling liquid and ita vapor. HETP is a more convonient method for evelueting packing performence. The relation of HETP te HTV is given for the following conditilionst

1. If the opersting line and equilibrium line are parallel, HETP $=$ H $_{\infty}$.
2. If the operating line and equilibrium line are straight but are not parallel.

The MeCabe Thiele method (il) for calculating theoretical plates relates the equilibrium condstions of the solution to the opersting conditions in the solum, with the following atermptions

1. Sensible heat chenges through the tower are negligible in comperison with the latent heats.
2. The molal letent heate of all of the compounde sre equal.
3. The heat of mixing of the components is negligible.
4. Heat losses from the tower ere negligible.

A material balance around the top of the column and the $n$th tray, relates the operating conditions in the column in terms of vapor end liquid concentration of one component. At the top, numbering the troys from the top down,

$$
\begin{aligned}
V_{n+1} & =L_{n}+P \\
\nabla_{n+1} & =\text { Vapor Rising to the } n+1 \text { tray. } \\
L_{n} & =\text { Liquid leaving the } n \text {th trey. } \\
P & =\text { Product leaving the top. }
\end{aligned}
$$

In temps of one component in two component nay stem,

$$
\begin{aligned}
& \nabla_{n+1} y_{n+1}=L_{n} x_{n}+P x_{p} \\
& y_{n+1}=\frac{L_{n}}{\nabla_{n+1}} x_{n}+\frac{p}{V_{n+1}} x_{p}
\end{aligned}
$$

$$
\mathrm{R}=\frac{\mathrm{I}_{\mathrm{n}}}{\mathrm{P}} \quad \mathrm{~L}_{\mathrm{n}}=\mathrm{BP} \quad \mathrm{~V}_{\mathrm{n}}=(\mathrm{R}+1) \mathrm{P}
$$

$$
\begin{equation*}
\bar{y}_{\mathrm{n}+1}=\frac{\mathrm{R}}{\mathrm{~B}+7} \quad \mathrm{x}_{\mathrm{n}}+\frac{1}{\overline{\mathrm{~B}}+1} \mathrm{x}_{\mathrm{P}} \tag{13}
\end{equation*}
$$

A similar derivation ray be mede from material balance around the reboiler, The treys are number from the bottom up.

$$
y_{n}=\frac{V / B+1}{V / B} \quad x_{\mathrm{n}+1}-\frac{1}{V / \mathrm{B}} \quad x_{\mathrm{B}}
$$

These equations when plotted on an $y-x$ type curve are called operating lines and represent the operating conditions in the colum en. When operating a colum a to tel reflux these lines become identical and have slope of 1.0 , passing through the points, $y_{2}^{*} x_{1}=0$, and $y_{1} \& x_{1}=1$. If the equilibrium curve form binary solution is plotted on the same $y-x$ plot, conditions are fulfilled for the theoretical plate, thus, liquid and vapor
compositions may be tepped off in horizontel ond vertical stopm, aech complete step representing theoretioal plete.

Thus, at total reflux, if samples are taken of the vapor at the top of the colum and liquid in the roboilar, the number of theoretical plates in the atill may be calculated. The number of plater in the colum iz found by subtracting the one plate for the seboiler and the condenter from the total numer of platea in the still.
(14) $=M_{T}-1$

The HETP of the packing is obtained by dividing the leagth of the paeking by the number of pletes in the column.

$$
\begin{equation*}
H E T P=\frac{L}{N} \tag{15}
\end{equation*}
$$

Performance date is availeble on variety of packinge in the 1iterature. HETP of $H_{0 G}$ veluea are liated for many packings in Peryy's Handbook (16). Recentiy Murch (13) presented - general correlation of HETP values with; throughpat, touer diameter, relative voletility, liquid viscosity, liquid density, and thre constants predicted from experimentsl dgte.


HETP helght oquivalent to e theoretical plate, inches.
$a=$ mase velocity of the vapor, $1 b / / h r \cdot / f_{t}$.
d tower diameter in inches.
$\alpha=$ reletive voletility.
$M$ Iiquid viscoeity - centipoises. Avarege values
$P=$ Liquid density - grams/ec. bottom.
$K_{2}=$ an expoential constant applied to the mass velocity
term 0 . Thi constent is the numerical slope obtained when $G$








 not rive tw deriat en thnu.
















inereate the proportion, thit it the Roodire polnta monding
in phytenlis conoribed the coaplete watting of the poeking.

## DESCRIPTION OF THE EQUIPMENT

Figure 11 mows arawing of the distillation unit which was used in purifying the tost compounds and running experimental data on the packings. Descriptions of the components of the unit are:

1. Pot - 12 11ter glass flask with $2-75 / 105$ ball joint (to column), 1-24/40 tapered joint, a themometer well, electricelly heated insulated jaoket controlled by a rheostat.
2. Columns- 2, one six feet by two and seven-elighths inches in diameter, and one four feet in length with the same diameter, all glass.
3. Still head - all glass, with megnetically controlled rerlux eplitter.
4. Condenser - all gless, mounts on an angle of approxiastely 30 degrees, coll inside, condensate runs back to the splitter.
5. Reeeiver - Standard vacuum receiver.
6. Manometer - two, one for vapor pressure and one for pot pressure
7. Sampling device - glass tube to the pot beneath the 11quid level, conneeted to standard veounn reoeiver.
8. Vacuum source - mechanical vacuum pump (Duo-Seal), in series with a air bleed port and liquid air vapor trap.

Pigure 2 shows the Othmer still (15) with attachments for vacuum operation, The pressure was measured with a Mchood gauge (Stoket). The vacuum source was the same as for the still.

Table 13 1ista descriptions of the various packinga. A11 the refractive index readinga wore mede on Bausoh
and Lomb Rerreatometer, the temperature was kept conetant with a constant tomperature bath.

The benzyl aloohel and bensyl-n-butyl ether wexe puxifisd in the digtillation quipment shown In Figure 11. Thay were frectionated at a $10 / 1$ reflux ratio through six
 flooding oonditions and then operated at oonditions just below flooding. Ien per cent fractions were taken and bulkea acoording to refractive index. A condenser pressure of one millinater was used in oach distillation. The benzyl
 n-butyl other was p plant iraetionated grade before fractionation.

Vepor pressure data and tha vapor-1iquid equilibria ata were mensured in the Othmer gtill, Figure 2. The pregm sures in the Othmer still were measured win the Heleod vacuun gauge, this gauge was overhaulad and oslibratod by the Stokes Co. before this investigation was begun. The temparatures were mesaured on $0-200$ dagres, in one degree divisions, themometor. Thia thermometar was calibratod with standard 1 degree division thermometar and was found to be correat within the precision with whioh it could be read.

In collecting the vapor prossure data, a oharge of 200 cc. of purifled material was used. The prassure was sot by regulating the flow of aix through two stopoocks at a port between the vacuum pump and the trap. It was found that if the aystam was tight, exoellent control could be maintalned using this syetem. The still was maintained at adiabatis
conditions by lagging with cotton cheese cloth mind eleotrieal hoating tape. The material was heated using a platinum wire coll inmerged in the 1iquid. Rquilibrium was assumed whon the tomperature pomained constant for a period of from 15 to 20 minutes at diatillation rate of from one to two seconds per drop of distillate. This temperature and pressure were taken as the vapor pressure data. A constant chock was maintained on the preasure throughout each run.

Vapor-1iquid quilibria data were run tot tol pream sure of 20 man ehock rung wore made at 5 m. Approximately 200 ce of solution was charged to the Othmer atill. The total pressure on the system was maintained as above. An average of 15 minutas was taken to fill the receiver. Equilibrium conditions were attained after one and one-halt hours or 6 recycles of the distillata. This was checked by repost runs of the same oomposition. The method or sampling was to vent the still to the atmosphere and drain samples of the vapor and pot by gravity. A close check was made when venting the still to see if any mixing of the solutions was caused. This method proved very satisfactory because any loas of elther compound due to vaporation was eliminatod. The low vapor pressure of these compounds at these temperatures, prevent their vaporization at atmospherio pressure. The samples were analyed on the Bauch and Lomb Refractometer. The sample size was about 2 eo.

All the runs on packing performane were made at total reflux. Approximately 2 liters of test solution was charged
to the pot and the aystom was ovacuated. The column was brought to a visual flooding condition and then the heat was regulated to give the pressure drop desired. Equilibrium was obtained in approximately 3 hours after the pressure drop was set. This was checked by runs for a longer equilibrium time under the same condition.

Samples of the vapor were obtained by direating the flow of the refluxing liquid into vacuum receiver. The recelver was quickly isolated from the atill and vented to atmospheric pressure. Samples of the reboiler solution were obtained by raising the pressure in the still to approximately 50 mme to allow the liquid to be pushed into an evacuated recelver. This recoiver was quiokly isolated and vented. The quick venting was necessary to prevent oveporation in the vacuum receiver. Vaporization losses at atmospheric pressure were assumed to be negligible because of the Low vapor pressure of the compounds at these tomperatures. Samples wore analyzed by refractive index in a Bausoh and Lomb refractoneter at $20^{\circ} \mathrm{C}$.

After the material in the pot was sampled, the atill was allowad to return to the previous operating aondition. The through-put was measured at about 30 minutes after the atili returned to the operating condition, by directing the flow of the reflux into a graduated reoeiver for measured period of time, usually on minute.

In the range of pressure that haa boen investigated, there are two ratioa whioh determine the relative velatility*

1. The relation of the vapor prosences of bentyl alcohol and benzyl-n-butyl other which varisa with temperature.
2. The ratio of the activity coeffiaienta whith varien with emposition.

Avorazo ralative volatilitios at varioun ocmpositions are oalculatod, and it in ahown that the everage curve over the mange of from $1-30$ man is aceurato for the oaloulation of a vapor liquid suilibrium diagram to be used in the packing ovaluation.

A sample calculation of an equilibrium ourve at 20 ma total pressure is an followe The relative volatility is

$$
\mathrm{Eq} .(4) \alpha_{1-2}=\frac{\gamma_{2}}{\gamma_{2}} \frac{\partial_{1}}{\gamma_{2}}
$$

The malationship of $1 / 2$ is read direaty frow flgure 8. The ohange of $\mathrm{P}_{1} / \mathrm{P}_{2}$ at this premsure la mall and an average value is used. Phe ratio of the vapor pressures wthe boiling points of the two compounds $\mathrm{P}_{1} / \mathrm{P}_{2}=1.360$ and 1.368 ; the average is 1.304. The semplo ealoulation at . 1 mf benayl aloohol the relative volatality is $=1.804 \quad 1.304=2.46$. Uing the quation $y=\frac{\alpha}{17} \frac{x}{(x-1) X}$ vapor compogition of the more volatile component (benzyl aloohol) la calculetad. Tablas. 8 . 9, and 10 list the calculations for the $x-\bar{y}$ curves for total pressures of 20 m., 10 m and 1.35 mat Figure 9 thows thote curves and indleates that ilttle orror would be renlized with
an average value of the relative volatility was used. Table 11. Lists the calculations of the arithmetio average relative volatility. This average value is plotted against mole fraction of Benzyl Aleohol, (Figure 10). This euve is used in the calculation of the quilibrium curve used in the packing evaluation.

## METHOD OF CALCULATING THE NUMEER OF PLATES IN A STTLL

At constant relative volatility the Fenske oquation (16) is used to calculate the number of thooretioal plates in distillation unit operating at total reflux. Wen the relative volatility changes, a graphical method by stepping off the plates on a $\overline{7-x}$ curve is used. A more convenient form of this method is to plot the number of theoretical plates against the function used as the analysis. Figure 11 show the number of plates at total reflux vs. the refractive index of the benzyl aloohol, benzyl-n-butyl ether solution. It relates the distance required per theoretical plate in terms of liquid composition.

The calculations are follow: A liquid omposition is selected which is at the oxtreme range to be used. The refractive index of this composition is read from figure 2. The vapor in quilibrium with this liquid is caloulated from equation

Eq. (2) $X_{1}=\frac{\alpha_{1-2} x_{1}}{1 \not\left(\alpha_{2}-1\right) x_{1}}$
The value of $\alpha$ is raad from figure 10 whioh showe the averag variation over the pressure range tested of the relative volatility with compoaition. This vapor composition ia slaco the composition of the liquid on the next plate as the column is operated at total reflux. The refractive index of this oomposition is read from figure 2. The difference in refraem tive index represents 1 theoretical plate in the separation. Table 12 1ists completed calculations used to construct figure 12.

## PRESEYYAT TON AND INTGRPRETAT TON OF DAFA

Selection of the test solution of benzyl alcohol and benzyl-n-butyl ether was based on the following:

1. It gave raazonable number of theoretioal plates at a good spread of composition difference.
2. Enabled analysis by refractive index having an average of 5 divisions on the instrument for ach mol percent of benzyl alcohol in the teat solution.
3. Both compounds are typioal of those required in the purpose of the work, namely high boiling aromatic eompound prevalent in the Fine Chemicals Industry*

Table I show the constanta of purified benzyl alcohol and benzyl-n-butyl sther. PIgure I shows the refraotive index at $20^{\circ} \mathrm{C}$. of the solution va mel fraction of benayl aloohol. Bonzyl alcohol.was taken Presentati was the more volatile aomponent in the tost solution used in packing ovaluation. The vapor pressure data were obtained from the literature and experimentally in an Othmer atill. No rapor pressure data mas available in the literature on benayl-n-butyl other. Table 2 lists experimental data and data obtained from the literature. Pigure 3 showa the Othmer Plot of the vapor pressure data of both compounds based on Eq. (1). Water was used ss the reference substance. All the data avallable correlated well on the Othmer plot. Table 3 and Figure 4 show the correlated vapor pressure in man. of meroury against temperature in degrees oentigrade.

Table 4 1ists vapor-11quid equilbria detataken at 20 mm . total pressure and the cheok runs et 5 mm . An aqeotrope was obaerved at .70 mol fraction benayl alcohel.

The data wore ehecked for themodynemic consistoncy using Margules equation and also tested with the Van Laar -quation. Activity coefficionce are anlculatod,

Eq. (3) $\gamma_{1}=\frac{p_{1}}{P_{1}} \frac{y_{1}}{x_{1}} \quad \gamma_{2}=\frac{P_{2}}{P} \frac{Y_{2}}{x_{2}}$
and are listed in table 5. A corrected temperature was used in reading the $P_{1}$ and $F_{2}$ values off the vapor pressure curve. The temperatures obtained from flgure 5 which is a plot of the boiling point of the solution at 20 mm , total pressure vs mol fraction benzyl aloohol. This arroction was necossary because a small error in reading the temperature resulte in a large error in the vapor pressura. This is caused by the toep vapor pressure curven typioal of high molecular weight compounds.

Correlation of the data to the 2 conatant Margulea equation diseussed in the theory section was made as follows: Tabla 6 lists asloulations neaessary to make the plot ahown in figure 6 using Eq*. (7) and (8). The results thowed the Margules equation to be symetrical for thia system. Thus the constants $\mathrm{A}_{1-2}$ and $\mathbf{A}_{2-1}$ axe oqual. The cusve drawn was weighted because of the azeotropic points which are more reliable. The constants for the Margules equation for this syatem are $A_{1-2}=A_{2-1}=\cdot 301$. The activity coefrioient curve thermodynamieally correlated to the Margulas oquation has the rom Eq. (5) $\log _{1} \gamma_{1}=.301 X_{2}{ }^{2}$ Eq. (6) $\log \gamma_{2}=.301 X_{1}{ }^{2}$

A onock was made on these constants by applying them to the Van Laar equation using the method desaribed in the theory meotion, Eqs. (11 and 12). Teble 7 ahows the necessary osloulations and figure 7 shows the plot of

$$
\frac{1}{\sqrt{\log \gamma 2}} \text { vs } \frac{x_{2}}{x_{1}} \text { and } \frac{1}{\sqrt{\log \gamma 1}} \text { vs } \frac{x_{1}}{x_{2}}
$$

This compares favorably with the correlation of the Margules -quation. Por the symetriaal ease the Van Laar and Margules equations are identioal.

Figure 8 shows the correlated activity coefficient ourves with experimental data as points. This curve is assumed to hold in the range of 1 to 30 mat pressure and 50 to $120^{\circ} \mathrm{C}$. on the basis of the cheok points and the change in tompereture from the range at 20 mm . pressure is not oxeeasive A comparison of activity ooefficionts for iso propyl ether and iso propyl alcohol (12) in the temperature range of 68 to $82^{\circ} \mathrm{C}$. are $\mathrm{A}_{2-2}=.42$ and $\mathrm{A}_{2-1}=.60$. In general it can be said that the activity coefficients were consistent with these values ainee the heavier moleoular weight compound usually show lower activity coeffieiants, In a homologus series this relationship is more prevalent.

The Mcabe-Thiale method of ealculating theoretical plates was assumed to be accurate because four assumptions mentioned in the theory section were adhered to. Molal heats of vaporization are pratically equal. This was darived from the Othmer Plot from which relation that the slope of the vapor pressure ourve is the ratio of the latent heat of the compound and the referenoe compound. Benzyl alcohol and
benzyl-n-butyl ether have slopes olose to each other, thus practioally qual heats of vaporization. Heat lossem were minimized by ceroful lagging of the still. Sensible hoat ohanging and hoata of mixing ware assumed to be negligible.

Experimental values of total plates, pressure drop, and through put data are preaented in table 14. The 1/4" Borl saddles and both Fibre Glass comisination packinge were operated up to flooding conditions. Overloading the oondenser prevented rates up to flooding with the other packing. The shorter column was used in the more officient paoking to stay within the limits of the test solution. Calculated H. B. T. P. and mass volocity values are listed in table 15. Figure 13 shows the variation of H. E. T. P. With the mess velocity and Figure 14 shows H. E. T. P. Values va. pressure drop for $1^{\prime \prime}$ intal ox and $3 / 4^{\prime \prime}$ Berl anddes. Figures 15 and 16 show the H. E. T. P. With mase veloofty and prossure drop respectively for $1 / 4^{\prime \prime}$ Berl saddles and Fibre Glass Combination \#076 and \#476.

Comparison of the H. R. T. P. values obtained at high vacum and those from the 1iterature is listed in teble 16. Only $1 / 4^{n}$ Berl saddlea and Fibre Glass Combination packings $\# 076$ and \#476 data an be essumed to be usable. The 3/4" Berl saddies and $1^{\prime \prime}$ Intalox saddies could not be brought to flooding conditions and 2lso should be oporated in a larger size column for a fair comparison.

Pressure drop data on the packinga are listed in table 17. Figure 17 shows a plot of the pressure drop, in terms of inches of water per foot of packing.vs. the mass rate of flow,
$-32-$
G. The data for \#476 Fibre Glass Combination packing showed visual flooding below the $\# 076$ packing whioh is more dense paoking. This was probably caused by a slight differenee in vecuum at the condenser. It is logioal to essume that \#076 would flood before \# 476 because it bas less free volume. The data could not be correlated with any of the methoda in the Iiterature. The effect of the gas denaity and superficial velocity are the factore which oaused the deviation.

## COMCLUSIOH

It is oncluded thet -

1. Vapor pressure and vapor-liquid equilibriun data, at 1 to $30 \mathrm{~m} . \mathrm{m}$. presture of arometio chain compounds similar to those evaluated may be auccessfuliy correleted by methoda available in the literature. Results obtained in this paper validate this assumption. Rxperimental precision must be oxercised to obtain good data. This is coused by the repid change of vapor prossure with temperature, characteristic of high molecular welght compounds.
2. HETP date higher than those reported by the same packing opereted at atmospheric pressure. In comparing the $1 / 4^{\prime \prime}$ Berl saddies and the two Fiber Gless Combination peckings, increases of from 20 to $100 \%$ in HETP velues are observed in operetion tecuum as compared with atmospheric pressure. Both serien of wun were mede in the same equipment, the differences being the test liquid or the relative volatility of the sybtems and the operating preseures. The Fiber Glase Combinetion packings operated high efficiency over a wider range of gee mase volocity then the $1 / 4^{\prime \prime}$ Berl saddles.
3. Pressure drop appears to be exponential funetion, which varies with typer of packing, of the mass rete $a$. Thia deta could not be correlated with methods in the litersture to give reasoneble results. The reason for this may be in the effect of the gas density or high superficial velocity on theae correlations.

## SUMMARY - SUGGESTION FOR FUTVRE WORE

The benzyl aleohol - bensyl-n-butyl ether Teat wat ovaluated in an othmer atill at high vacume. Various relationships are presented.

1. Anelyain - A spmead 1.5400-1.4867 of ferractive index et $20^{\circ}$ gave 1 mole $\%$ per .0005 divisions.
2. Vapor pressure date are presented from 1 to $760 \mathrm{~m} . \mathrm{m}$.
3. Activity coefficienta are correlated at $20 \mathrm{~m} . \mathrm{m}$. pressure and are ammetrical, having Margulea and a Ven Laaz conetant of $A=.301$.
4. Vapor-1iquie equilibrium dete at $1.35,10$ and $20 \mathrm{~m} . \mathrm{m}$. ere caloulated from vapor pressure and activity coefficient relationships.
Distillation packinge, $3 / 4^{\prime \prime}$ and $1 / 4^{\prime \prime}$ Berl saddles,
 mesh and $1^{\prime \prime}$ Intalox addes, are ovalut ted as followst
5. HETP values ase related to $O$, the mass throughput.
6. Herp values are related to P, presaure drop.
7. Presare drop date 1: presented.
8. HETP values are compared with veluen at atmotheric presaure.

Suggeations for future work on dietilletion pooking performane at the high vecuum range of $1-100 \mathrm{~m} \mathrm{~m}_{\mathrm{m}}$ in terme of HETP and throughput deta are dizcusted.

1. The effect of pressure on HETP has not been definitely established in the Iiterature. An xpended study varying typee of packingts dianeter of colum, and
heights of column in the pressure range of $1-100$ nm. appears neaesastry to make a correlation. This correlation might be included in an quation as offered by mureh (12) to enable extrapolation of packing performance at atmospherio pressure. 2. Throughput parformance data in the high vacuum range are soarce. A study varying ilquid and gas rates at pressures in the high vacuum range to determine normal, loading and flooding condition: would be of considerable importance.

## NOMENCLATURE

A Constant in Margules and Ven Laser equations.
B Bottoms product.
$G \quad=$ Mass gas rate/srea of column.
HETP Height equivalent to one theorectical plate.
$H_{O G}=H e l g h t$ of transfer unit based on the overall gat film.
L Mas liquid rate/area of colum a.
L. Length of the colum.
$L=$ Molal latent heat of vaporization.
I manual down the colum.
m $\quad$ ( Slope of the equilibrium curve.
N * Plates in the column.
$H_{T}=$ Total plates in the still.
F oc $^{\prime}=$ Number of transfer unite based on the overall gas film e
MoL Number of transfer units be ed on the overall liquid film.
$P \quad=$ overhead product.
$P \quad$ Pressure.
p * Partial pressure.
R G es constant.
R reflux ratio - vapor returned to the celum/product withdrawn.

T Absolute temperature.
V . Vapor rete up the colum.
$y$ - Veper composition - mol fraction.
$y^{x}=$ Vapor equilibrium concentration.
$x$ = Liquid composition - mol fraction.
$x$. Liquid equilibrium concentration.

```
\alpha* Relative valatility.
\gamma= setivity coefficient.
P}=\mathrm{ Density.
```


## SUBSCRIPTS:

A = Different compounds.
$B$ Different compounds.
1 Differont componenta.
2 Different componentio.
R Reference compounds.

## BIBLITOGRAPHY

1. Brown, "Onit Operationg", Wiley and Sons, (1950).
2. Chilton and Colburn, Trans. Amer. Ina. Chem. Eng., 26, 178, (1931).
3. Chilton and Colbum, Ind. \& Eng. Chom, 27, 255, (1935).
4. Olausiua - Claperyron Equation, Porry, "Chemical Engineers
Handbook", Mcaraw Hill, (1950).
5.Cox, Ind. * Eng. Ohem. 15, 592, (1923).
5. Duhring's Equation, Perry, "Ohemical Engineers Handbook", Third Edition, MeGraw Hill, (1950).
6. Euc11, Harrizon and Berg, Ind. \& Eng. Chom., 36, 871, (1944).
7. Gabbs-Duhem, Lemis and Rendall M Thermodynamica and the Free Energy of Chemical Substances. "- MoGraw-Rill, New York, (1923).
8. Leva, "Tower Packing and Packed Tower Denign" D.S. Stoneware (1951).
9. Margules Equation, Caxlaon and Colburn Ind. Bng. Chem. 34, 581, (1942).
10. MoCabe and Theile, Ind. \& Eng. Chem., 17, 605, (1925).
11. Miller and 911ss, Ind. \& Eng. Ohom, 32, 123, (1940).
12. Muxeh, Ind. \& Eng. Chem. 45, 2616, (1953).
13. Othmer, Ind. \& Eng. Chem. 32, 842, (1940).
14. Othmer, Ind. \& Ing. Ohem.,
15. Perry, "Chemical Engineers Handbook," Thira Eaition, MeGraw-Hi11, (1950).
16. Raoults Law, Perry' Manaboole.
17. Sarchet, Trana. Amer. Tnst. Chem. Eing, 38, 283, (1942).
18. T1IIzon, "Thesis" Massachusetts Institute of Technology, (1939).
19. Van Lear Equation, Carlson and Colburn Ind. E Eng. Chem. 34, 581, (1942).

APPEMDIX


## FIGURE 2.



Diagram of the Othmer Still with
Hodifications to Vacuum

FIGURE 3
Other Plot of the Vapor Pressure Data
of Benzyl Alcohol and Benzyl-n-Butyl Ether


Vapor Pressure of Water - mom. Hg. 8 \& 8 -

Al s









Pigure 11

## Still Used In Packing Efficiencies







|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | иitre V | Vetues | - |  | for 3 | /4, ${ }^{\text {ber }}$ | $2{ }^{3}$ saca |  |  |  |  |
|  |  |  |  | Pabre | ${ }^{\text {GIass }}$ | Comb | tmatan | 2 10 | 076 end | \#476 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | -3/4 | Hant | 12 | abi |  |  |
| 17 |  |  |  |  |  |  |  |  |  | 126 |  | com |  |  |
| ${ }^{16}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 部 |  |  |  |  |  |  |  |  | 16 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 餢 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $4 \cdot 6$ | ${ }^{4}$ | - 10 | 0 | 12.14 | 416 | 18 | ${ }^{20}$ | 22 | 24 | 2. |  | 3 |
|  |  |  |  |  |  |  |  | in ${ }^{\text {c.m }}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  | Exime |

Figure 17
Pressure Drop in Inches of Water per Foot
VS.
G for All Packings



## Phyafal Proportian of Purified Test Compounda

$$
\begin{aligned}
& \text { Beneyl Alebhal }
\end{aligned}
$$

> Molecular ${ }^{\text {Belght }}-108.13$
> Denstry $20^{\circ} \mathrm{C}$ 2.043 grans/c.e.
> Rerrmet Ive Index $20^{\circ} \mathrm{C}-1.5405$
> Viscomity $27^{\circ} \mathrm{C}$ - 5 c. p.
> Bensyl n-Butyl Ethar structure $-c_{12} \mathrm{H}_{16} 0-\underbrace{0}_{1}-\mathrm{C}_{1}-0-\mathrm{C}_{4} \mathrm{H}_{9}$
> Holeowlar Feignt -164.24
> Density $20^{\circ} \mathrm{C}$. 909 grams/e. ©
> Rerractive Index $20^{\circ} \mathrm{C} 1.4867$
> Viseosity $27^{\circ} \mathrm{C}-2.5$ c. p .

## TABLE 2

## Vapor Pressure Data

Benzyl Aloohol

| Htterature (16) |  | Experimantal |  |
| :---: | :---: | :---: | :---: |
| Temp ${ }^{\circ} \mathrm{C}$ | Pregs max | Temp 0 | Pross mm ${ }^{\text {Hg }}$ |
| 58 | 1.0 | 65.2 | 1.8 |
| 80.8 | 5.0 | 79.5 | 4.8 |
| 92.6 | 10.0 | 90.0 | 8.0 |
| 105.8 | 20.0 | 94.4 | 10.9 |
| 119.8 | 40.0 | 103.2 | 16.4 |
| 129.3 | 60.0 | 103.0 | 16.4 |
| 142.7 | 100.0 |  |  |
| 160.0 | 200.0 |  |  |
| 183.0 | 400.0 |  |  |
| 204.7 | 760.0 |  |  |

## Bonsyl-n-Butyl Rther

| Literature (16) |  | Experigental |  |
| :---: | :---: | :---: | :---: |
| Tomp ${ }^{\circ} \mathrm{C}$ | Pxater max Hix | Temp ${ }^{\circ} \mathrm{C}$ | Press ming |
| 216 | 760 | 67 | 1.55 |
|  |  | 89 | 4.2 |
|  |  | 98 | 10.0 |
|  |  | 103 | 12.0 |
|  |  | 115 | 20.0 |

## TABLE 3

## Corpelated Vapor Pressure Data

## Benay Alcohol Benzyl n-Butyl Ether

| Teme ${ }^{\circ} \mathrm{C}$ | Press man Hg | ${ }^{\text {remp }}{ }^{\circ} \mathrm{C}$ | Proses min Hg |
| :---: | :---: | :---: | :---: |
| 55.8 | 1.0 | 59 | 1.0 |
| 60 | 1.35 |  |  |
| 65 | 1.89 | 65 | 1.42 |
| 70 | 2.60 | 70 | 1.94 |
| 75 | 3.50 | 75 | 2.6 |
| 80 | 4.7 | 80 | 3.45 |
| 85 | 6.3 | 85 | 4.55 |
| 90 | 6.2 | 90 | 5.9 |
| 95 | 11.0 | 95 | 7.75 |
| 100 | 14.0 | 100 | 9.8 |
| 105 | 18.0 | 205 | 12.5 |
| 110 | 23.3 | 110 | 16.0 |
| 115 | 29.5 | 115 | 20.0 |
| 120 | 36.5 | 120 | 25.0 |

## TABLE 4

## Experimental Vapor - Liguid Data

| Run No | $\begin{aligned} & \text { Vapor } \\ & \text { tapp }^{\circ} \mathrm{C} \end{aligned}$ | $\begin{gathered} \text { Motal } \\ \text { Ergasyen } \end{gathered}$ | Faper Comp <br> B. F. BxOH | Liquid Comp <br> M. F. BzOH |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 108.5 | 19.5 | .919 | . 943 |
| 2 | 107.5 | 19.55 | . 857 | . 885 |
| 3 | 107.0 | 19.4 | . 711 | . 716 |
| 4 | 106.1 | 19.65 | . 587 | . 534 |
| 5 | 109.0 | 19.6 | . 460 | . 362 |
| 6 | 112 | 19.9 | . 162 | . 092 |
| 7 | 111 | 19.5 | .154 | . 063 |
| 8 | 106.2 | 19.6 | . 476 | . 331 |
| 9 | 108.2 | 19.6 | . 340 | . 182 |
| 10 | 80.0 | 4.6 | . 313 | .186 |
| 11 | 84.0 | 4.7 | . 744 | . 823 |

## TABLE 5

ActIvtty Coofflolont Galculations


## TABLB 6

Margulas Plot Caloulations

| Run No. | Marguase plot calculationg |  |  |  |  |  | $\frac{\log \gamma_{1}}{x_{2}}$ | $\frac{\log _{2} \gamma_{2}}{\chi_{1}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{X}_{1}$ | $\mathrm{X}_{2}$ | $x_{1}{ }^{2}$ | $\mathrm{x}_{2}{ }^{2}$ | $\log _{1} \chi_{1}$ | $\log _{2}$ |  |  |
| 1 | .943 | . 057 | .890 | .00325 | -. 065 | . 278 |  | . 312 |
| 2 | . 885 | . 115 | .797 | . 0132 | -. 000 | .228 | -. 607 | .285 |
| 3 | .716 | . 284 | .512 | . 0808 | . 006 | .148 | .0743 | . 290 |
| 4 | .534 | .466 | . 286 | .217 | .048 | . 085 | . 222 | . 298 |
| 5 | .362 | . 638 | . 131 | . 408 | .074 | . 032 | .1815 | . 245 |
| 6 | . 092 | . 908 | . 0085 | . 836 | .143 | . 006 | . 171 | . 705 |
| 7 | . 063 | . 937 | .00397 | . 910 | .268 | -. 031 | .295 | - |
| 8 | . 331 | . 669 | . 110 | .448 | .119 | -. 010 | . 266 | - |
| 9 | .182 | . 881 | .0332 | . 778 | .189 | -. 040 | .244 | - |
| 10 | .186 | .814 | . 0346 | . 562 | .207 | .042 | .313 | 1.85 |
| 11 | . 822 | . 178 | . 677 | . 0318 | 0 | . 226 | 0 | . 333 |
| (12) ${ }^{\text {\% }}$ | .700 | .300 | .49 | . 09 | . 028 | .153 | . 322 | . 313 |

*Azeo. est.

## TABL\& 7

## Van Laar Calculations



## TABLE 8

Calcushation of Voporichuid equilibria Data at

## 20 程 Progance

$$
P_{1} / P_{2}(4 \mathrm{mg})=1.34
$$

| $\mathrm{x}_{1}$ | $\gamma_{1} / \gamma_{2}$ | $\alpha_{1-2}$ | $<x_{1}$ | $1 \times(\alpha-1) x_{1}$ | ${ }_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2.08 | 2.335 | - | - - - | 0 |
| -1 | 1. 304 | 2.460 | .246 | 1.14,6 | .215 |
| . 2 | 1.570 | 2.145 | 428 | 1.229 | .340 |
| . 3 | 1.343 | 1.634 | . 5419 | 1.250 | . 410 |
| 4 | 1.160 | $1.58{ }_{4}$ | . 532 | 1.234 | . 51.2 |
| .5 | 1.00 | 1.34 | . 632 | 1.182 | .578 |
| . 6 | . 862 | 1.174 | . 705 | 1.103 | . 638 |
| . 7 | .743 | 1.01 | . 707 | 1.003 | . 700 |
| . 8 | .442 | . 876 | . 701 | . 921 | .770 |
| .9 | .553 | . 762 | . 685 | .794 | .803 |
| 1.0 | 482 | .658 | - | - | 1.000 |

## IABLB 9

## Galculation of VapormLiquid Souilibria Data

## 

$$
P_{1} / P_{2}(\text { avg. })=1.346
$$

| $\mathrm{X}_{1}$ | $\gamma_{1} / \gamma_{2}$ | $\alpha_{1-2}$ | $\alpha x_{1}$ | $1+(x-1) x_{1}$ | $\mathrm{I}_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2.080 | 2.80 | * | - | 0 |
| .1 | 1.804 | 2.43 | .243 | 1. 14.3 | .2125 |
| - 2 | 1.570 | 2.11 | .421 | 1.222 | .344 |
| . 3 | 2.343 | 1.81 | . 542 | 2.243 | . 436 |
| . 4 | 1.160 | 2.56 | .623 | 1. 224 | . 509 |
| .5 | 1.00 | 1.346 | .673 | 1.173 | . 574 |
| .6 | . 862 | 1.160 | .697 | 1.096 | . 637 |
| . 7 | . .743 | .999 | .699 | 1.00 | .699 |
| . 8 | . 642 | .863 | . 689 | . 391 | . 773 |
| -9 | . 558 | .752 | .677 | .777 | .872 |
| 1.0 | .482 | .650 | - | - | 1.000 |

## TABLB 10

## Galeulation of Vapor-Liquid Equilibeia Data

## at 1.35 man

$\mathrm{P}_{1} \mathrm{P}_{2} 1.302$

| $x_{1}$ | $\gamma_{1} / \gamma_{2}$ | $\alpha 1-2$ | $\alpha x_{1}$ | $1 \neq(\alpha-1) x_{1}$ | $x_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 2.080 | 2.71 | - | - | 0 |
| .1 | 1.804 | 2.35 | .235 | 1.135 | .2125 |
| .2 | 1.570 | 2.05 | .408 | 1.210 | .344 |
| .3 | 1.340 | 1.75 | .525 | 1.243 | .436 |
| .4 | 1.160 | 1.512 | .603 | 1.224 | .509 |
| .5 | 1.00 | 1.302 | .652 | 1.173 | .574 |
| .6 | .862 | 1.122 | .673 | 1.096 | .637 |
| .7 | .743 | .955 | .660 | 1.00 | .699 |
| .8 | .642 | .037 | .669 | .891 | .773 |
| .9 | .556 | .728 | .655 | .777 | .872 |
| 1.0 | .482 | .628 | - | 1.0 |  |

## TABL星 21

Caloulation of Average Rolative Voletilities

| $\chi_{1}$ | $20^{\text {Rele }}$ | $\begin{aligned} & 1 \text { ve Vol } \\ & 10 \mathrm{~mm} \end{aligned}$ | $\frac{64}{} 185 \mathrm{~mm}$ | Average <br> Relative Volatility |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 2.835 | 2.80 | 2.71 | 3.79 |
| . 1 | 2.46 | 2.43 | 2.35 | 2.42 |
| . 2 | 2.145 | 2.12 | 2.05 | 2.105 |
| . 3 | 1.834 | 1.81 | 1.750 | 1.800 |
| . 4 | 1.584 | 1.56 | 1.512 | 1.55 |
| .5 | 1.364 | 1.346 | 1.302 | 1.337 |
| . 6 | 1.174 | 1.160 | 1.122 | 1.153 |
| .7 | 1.010 | 0.999 | . 955 | . 988 |
| .8 | * 876 | . 863 | . 837 | . 858 |
| .9 | .762 | .752 | .728 | .748 |
| 1.0 | . 658 | .650 | . 628 | . 650 |

## TABLE 12

Galculationg for Humber of plates ve.
Refractive Index Plot

| $x_{1}$ | $\alpha($ avg $)$ | $\alpha x_{1}$ | $1 \not(\alpha-1) x_{1}$ | $Y_{1}$ | $n_{D} @ 20^{\circ} 0$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| .030 | 2.67 | .081 | 1.037 | .071 | 1.4892 |
| .078 | 2.50 | .195 | 1.117 | .1745 | 1.4917 |
| .1745 | 2.18 | .380 | 1.206 | .315 | 1.4989 |
| .315 | 1.78 | .560 | 1.246 | .448 | 1.5050 |
| .448 | 1.45 | .651 | 1.202 | .542 | 1.5098 |
| .542 | 1.26 | .683 | 1.141 | .598 | 1.5129 |
| .598 | 1.15 | .688 | 1.090 | .633 | 1.5148 |
| .633 | 1.09 | .694 | 1.060 | .655 | 1.5160 |
| .655 | 1.06 | .694 | 1.038 | .668 | 1.5169 |

## TABLE 13

## Peoking Description

## Run



5-8 1/4" Berl Saddles (Ceranic) Pree Space - $60 \%$ Area $274 \mathrm{ft}^{2} / \mathrm{ft} 3$

9-12 3/4" Beri Saddlea (Cerawie) Pree Space $266 \%$
13-16 Fibre Glass Gombination (York \& Co.) 4076 Free Volume 92\%

17-20 Fibre Glass Combination (York
Fo.) 4476
Foe Yolwe $96.5 \%$

Free Volume 97.7\%

## PABLE 14

## Porformanoa Data

| 昆品品 |  |  |  | 0 <br> 8 <br> 0 <br> 0 <br> 0 <br> 8 |  |  |  |  |  |  |  | 里具 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $72^{\prime \prime}$ | $\frac{1^{n}}{\text { Intalex }}$ | $31 / 2$ | 1.4882 | 1.6 | 1.5067 | 5.35 | 3.75 | 87 | 1.0 | 11 | 10 |
| 2 | $7{ }^{\text {¹ }}$ | n | ＊ | 1.4910 | 2.46 | 1.5112 | 6.39 | 3.93 | 108 | 1.0 | 16 | 15 |
| 3 | $72^{\prime \prime}$ | n | ＂ | 1.4942 | 3.10 | 1.5090 | 5.82 | 2.72 | 52 | 1.0 | 6 | 5 |
| 4 | $72^{\text {n }}$ | ＂ | n | 2.4947 | 3.18 | 1.5082 | 5.63 | 2.45 | 46 | 1.0 | 3.5 | 2.5 |
| 5 | $40.5^{\text {＂}}$ | $\underset{\mathrm{Berl}^{1 / 4}}{ }$ | 5 | 1.4918 | 2.63 | 1.5137 | 7.35 | 4.72 | 49 | 1.0 | 21 | 20 |
| 6 | $40.5^{\text {n }}$ | \％ | $31 / 2$ | 1.4895 | 2.07 | 1.5131 | 7.05 | 4.98 | 45＊ | 1.0 | 31 | 30 |
| 7 | 40．5 ${ }^{\text {n }}$ | ＊ | n | 1.4918 | 2.63 | 1.5130 | 7.02 | 4.39 | 27 | 1.0 | 15 | 14 |
| 8 | $40.5^{\prime \prime}$ | ＂ | 3 | 2.4923 | 2.73 | 1.5118 | 6.57 | 3.84 | 17 | 1.0 | 9 | 8 |
| 9 | $72^{\prime \prime}$ | $\mathrm{Berl}^{3 / 4^{\prime \prime}}$ | $31 / 2$ | 1.4917 | 2.62 | 1.5091 | 5.85 | 3.23 | 57 | 1.0 | 11.0 | 10 |
| 10. | $72^{\text {² }}$ | n | ＂ | 1.4906 | 2.37 | 1.5106 | 6.22 | 3.85 | 70 | 1.0 | 16 | 15 |
| 11 | $72^{\prime \prime}$ | ＊ | ＊ | 1.4933 | 2.93 | 1.5085 | 5.73 | 2.80 | 28 | 1.0 | 6 | 5 |

TABLE 14<br>（continued）

| 品品 |  |  |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { © } \\ & \text { a } \end{aligned}$ |  | $\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$ |  |  |  |  |  | 禹量 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | $72^{\text {I }}$ | $\begin{aligned} & 3 / 4^{n} \\ & \text { Bor1 } \end{aligned}$ | 3 | 1.4930 | 2.87 | 1.5066 | 5.36 | 2.49 | 23.5 | 1.0 | 4 | 3 |
| 12a | $72^{\prime \prime}$ | ＂ | n | 1.4927 | 2.82 | 1.5084 | 5.70 | 2.88 | 30 | 1.0 | 6 | 5 |
| 13 | $\begin{aligned} & 41^{\prime \prime} \mathrm{FIb} \\ & \text { Glass } \end{aligned}$ | bre <br> \＃076 | ＊ | 1.4877 | 1.4 | 1.5106 | 6.23 | 4.83 | 46＊ | 1.0 | 31 | 30 |
| 14 | $42^{\prime \prime}$ | \＃076 | ， | 1.4877 | 1.4 | 1.5108 | 6.28 | 4.88 | 40 | 1.0 | 24 | 23 |
| 15 | 41＂ | \＃076 | $31 / 2$ | 1.4875 | 1.25 | 1.5113 | 6.42 | 5.17 | 30 | 1.0 | 13 | 12 |
| 16 | $41^{\prime \prime}$ | \％ 1076 | 3 | 1.4882 | 1.62 | 1.5106 | 6.23 | 4.51 | 19 | 1.0 | 7 | 6 |
| 17 | 42＂ | Fibre Glass \＃47 | $6^{1 / 2}$ | 1.4874 | 1.15 | 1.5086 | 5.7 | 4.53 | 41\％ | 1.0 | 13 | 12 |
| 18 | $42^{\prime \prime}$ | ＊ | － | 1.4876 | 1.32 | 1.5113 | 6.42 | 5.10 | 40 | 1.0 | 8 | 7 |
| 19 | $42^{\prime \prime}$ | ＊ | ＊ | 1.4876 | 1.10 | 1.5106 | 5.23 | 5.13 | 22 | 1 | 6 | 5 |
| 20 | $42^{1 \prime}$ | $n$ | ＂ | 1.4877 | 1.25 | 1.5106 | 6.23 | 4.98 | 13 | 1 | 3 | 2 |
| 21 | $42^{\prime \prime}$ | Knitted Mesh 447 | 71 | 1.4902 | 2.35 | 1.4958 | 3.03 | ． 78 | 40 | 1 | 3 | 2 |
| 22 | $42^{\prime \prime}$ | ＂ | \＃ | 1.4896 | 2.10 | 1.4930 | 2.87 | ． 77 | 90 | 1 | 4 | 3 |
| 23 | $42^{\prime \prime}$ | ＊ | ＊ | 1.4906 | 2.35 | 1.4942 | 3.10 | .75 | 90 | 1 | 6 | 5 |

## TABLE 15

## 

| lun No | Packing Material | Total <br> Plator | Longth of Packing | $\begin{aligned} & \text { Plates in } \\ & \text { Columa } \end{aligned}$ | $\begin{aligned} & \text { E F P } \\ & \text { in } \end{aligned}$ | $\mathrm{ml} / \mathrm{min}$ | Boilup Rates $1 \mathrm{~b} / \mathrm{hr} / \mathrm{ft} t^{2}$ | $\Delta_{\text {g mam }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $1{ }^{\text {" }}$ Intalox | 3.75 | 72 in. | 2.75 | 26.3 | 87 | 242 | 10 |
| 2 | " " | 3.93 |  | 2.93 | 24.6 | 108 | 270 | 15 |
| 3 | 17 | 2.72 | " | 1.72 | 41.8 | 52 | 245 | 5 |
| 4 | " $\quad$ | 2.45 | n | 1.45 | 49.7 | 46 | 128 | 2.5 |
| 5 | \%* Berl | 4.72 | 40.5 in . | 3.72 | 10.9 | 49 | 136 | 20 |
| 6 | \# $\quad$ | 4.98 | - $\quad$ - | 3.98 | 10.2 | 45 | 126 | 30 \% |
| 7 | " | 4.39 | " " | 3.39 | 12.9 | 27 | 75 | 14 |
| 8 | " $\quad 1$ | 3.84 | \# | 2.84 | 24.3 | 17 | 47 | 8 |
| 9 | 3/4" | 3.70 | 72 | 2.70 | 26.7 | 57 | 159 | 10 |
| 10 | " ${ }^{\text {a }}$ | 3.85 | : | 2.85 | 25.3 | 70 | 195 | 15 |
| 11 | " $n$ | 2.80 | " ${ }^{\prime}$ | 1.80 | 40.2 | 28 | 78 | 5 |
| 12/12a | a ${ }^{\text {n }}$ | 2.49/2.88 | $n$ n | 1.49/1.88 | 48.3/38.4 | 235/30 | 65/83 | 3/5 |
| 13 | $\begin{aligned} & \text { Fibreglass } \\ & \# 076 \end{aligned}$ | 4.83 | 41 in . | 3.83 | 10.7 | 46 | 128 | 30\% |
| 14 | " | 4.88 | " ${ }^{\prime}$ | 3.88 | 10.5 | 40 | 111 | 23 |
| 15 | " | 5.17 | " $\quad$ | 4.17 | 9.9 | 30 | 83 | 12 |
| 16 | " | 4.61 | n " | 3.61 | 11.3 | 19 | 53 | 6 |
| 17 | Fibreglass \#476 | 4.63 | 42 in. | 3.63 | 11.5 | 41 | 114 | 124 |

## PABLE 15 (Cont.)

| Sun H | Packing Materlal | Total <br> Plates | Length of Packing | $\begin{aligned} & \text { Plates in } \\ & \text { Columan } \end{aligned}$ | $\begin{aligned} & \text { HETP } \\ & \text { in } \end{aligned}$ | $\mathrm{ml} / \mathrm{min}$ | Boilup Retes $1 \mathrm{~b} / \mathrm{hr} / \mathrm{f} t^{2}$ | $\triangle \mathrm{Pm}$ m.m. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | $\begin{aligned} & \text { Fibreglass } \\ & +476 \end{aligned}$ | 5.10 | 42 in . | 4.10 | 10.2 | 40 | 111 | 7 |
| 19 |  | 5.13 | " " | 4.13 | 10.1 | 22 | 61 | 5 |
| 20 | H | 4.98 | " $\quad$ | 3.98 | 10.5 | 13 | 36 | 2 |
| 21 | Knitted Wire Mesh | $1.0+$ | " | ---* | ---- | 40 | 112 | 2 |
| 22 | H19 | " 1 | * | ---- | -- | 70 | 196 | 3 |
| 23 | \# |  | " $"$ | --* | --** | 90 | 252 | 5 |

的A日血宾 16

Comparision of HETE Data


```
TA BLE 16 (Cont.)
```



TABLE 16 (Cont.)

| Packing | Packing Depth it | Columen Diameter | Mixture | $1 \mathrm{~b} / \mathrm{h} x / \mathrm{f} \mathrm{t}^{2}$ | H $\mathrm{F}_{\mathrm{F}} \mathrm{P}$ inches | Presgure | Source |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2^{\prime \prime}$ Ceramic | 9.0 | $12 \mathrm{in}$. | Ethanol-Water | 960 | 13.2 | 1 mex. | Thositumb |
| n | \# |  | " ${ }^{*}$ | 150 | 16.8 | Condenaer Pressure | \# $\quad$ \% |

## 量ABE17

## Prosmure Drop ana a. Datg

| Run Mo | Packing | $\underset{F t}{\substack{\text { Length }}}$ | $\underset{\min }{\Delta P}$ | $\begin{gathered} \Delta P \\ \ln \mathrm{H} 20 \\ \hline \end{gathered}$ | $\underset{\operatorname{por}}{\underset{\sim}{\operatorname{pan}} \mathrm{H}_{2} \mathrm{O}}$ | $10 / \mathrm{hg} / \mathrm{tt} t^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1" Intalox | 61 | 10 | 5.35 | . 892 | 242 |
| 2 | \% | 61 | 15 | 8.03 | 1.34 | 270 |
| 3 | n | 61 | 5 | 2.68 | .. 447 | 145 |
| 4 | * | 61 | 2.5 | 1.34 | . 224 | 128 |
| 5 | 1/4*3091 | 3.38 | 20 | 10.7 | 3.19 | 136 |
| 6 | n | 3.38 | 30 | 16.05 | 4.77 | 126 |
| 7 | " | 3.38 | 14 | 7.48 | 2.22 | 75 |
| 8 | " | 3.38 | 8 | 4.27 | 1.265 | 47 |
| 9 | 3/4n Berl | 6. | 10 | 5.35 | . 892 | 159 |
| 10 | - | 6. | 15 | 8.03 | 1.34 | 195 |
| 11 | * | $6 \cdot$ | 5 | 2.68 | . 447 | 78 |
| 12 | " | 61 | 3 | 1.611 | . 258 | 65 |

## TABLE 17 <br> (continued)

| Run No | Paoking | Length | $\begin{array}{\|c} \triangle P \\ \text { nm } \\ H_{g} \end{array}$ | $\begin{gathered} \Delta P \\ \operatorname{in} \mathrm{H}_{2} \mathrm{O} \\ \hline \end{gathered}$ |  | $\stackrel{G}{1 \mathrm{~b} / \mathrm{hr} / \mathrm{ft}^{2}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12A | 3/4' Borl | $6 \%$ | 5 | 2.68 | .447 | 83 |
| 13 | $\begin{aligned} & \text { Fibre aless } \\ & .076 \end{aligned}$ | 3.42 | 30 | 16.05 | 4.70 | 128 |
| 14 | n | " | 23 | 12.3 | 3.61 | 111 |
| 15 | * | " | 12 | 6.42 | 1.88 | 83 |
| 16 | " | " | 6 | 3.21 | . 938 | 53 |
| 17 | $\underset{476}{\text { Pibre ians }}$ | 3.53 | 12 | 6.43 | 1.81 | 114 |
| 18 | * | n | 8 | 4.28 | 1.22 | 111 |
| 19 | - | " | 5 | 2.68 | . 76 | 61 |
| 20 | " | " | 2 | 1.07 | .307 | 36 |
| 21 | Knitted wire Mesh | 3.5 | 2 | 1.07 | . 307 | 112 |
| 22 | \% | n | 3 | 1.61 | . 46 | 196 |
| 23 | n | * | 5 | 2.68 | . 76 | 252 |

1. Activity coefficients (Table 4) Run 1.

$$
\begin{aligned}
& \gamma_{1}=\frac{P_{T} y_{1}}{P_{1} x_{1}}=\frac{(19.5)(.929)}{(19.7)(.943)}=.965 \\
& \gamma_{2}=\frac{P_{T} y_{2}}{P_{2} x_{2}}=\frac{(19.7)(.081)}{(14.6)(.057)}=1.898
\end{aligned}
$$

$P_{1}$ and $P_{2}$ re read from Figure 5.
2. Margules plot (Table 6) Run 4.

$$
\begin{aligned}
& \frac{\log \gamma_{2}}{x_{2}^{2}}=\frac{\log 1.117}{(.446)^{2}}=.222 \\
& \frac{\log \gamma_{2}}{x^{2}}=\frac{\log 1.216}{(.534)^{2}}=.298
\end{aligned}
$$

3. Van Lar plot (Table 7) Run 4.

$$
\begin{aligned}
& \frac{1}{\sqrt{\log } \gamma_{1}}=\frac{1}{\sqrt{\log } 1.117}=4.58 \\
& \frac{x_{1}}{x_{2}}=\frac{.534}{466}=1.146 \\
& \frac{1}{\sqrt{\log } \gamma_{2}}=\frac{1}{108} 1.216 \\
& \frac{x_{2}}{x_{1}}=\frac{.466}{.534}
\end{aligned}
$$

4. Vapor-11quid data (Tables $8,9,10$, \&11) for $x_{1}=.1$ at $20 \mathrm{~m} . \mathrm{m}$. total pressure.

$$
\alpha 1-2=\frac{\gamma_{1}}{\gamma_{2}} \frac{P_{1}}{P_{2}}=(1.804)(1.364)=2.460
$$

$$
\begin{aligned}
& \frac{\gamma_{1}}{\gamma_{2}} \quad \text { from Figure } 8=1.804 \\
& \frac{P_{1}}{F_{2}}=1.364 \\
& y_{1}=\frac{\alpha_{1-2} x_{1}}{1+\left(\alpha_{1-2}-1\right) x_{1}}=\frac{(2.460)(.1)}{1+(2.460-1)(.1)}=.215
\end{aligned}
$$

5. Number of plates va. refractive index ( Table 12)
a. Assume value of liquid composition $x_{1}=.030$
b. Read refractive index at composition

$$
x_{1}-n_{D} @ 20^{\circ} \mathrm{C}=1.4892
$$

c. Eq. (2) $y_{1}=\frac{\alpha_{1-2} x_{1}}{1+\left(\alpha_{1}-2^{-1)} x_{1}\right.}=\frac{(2.67)(.030}{1+(2.67-1)(.1)}=.078$

$$
x_{1-2} \text { is read from Figure } 10=2.67
$$

d. Head refractive of $y_{1}=.078$ is 1.4917 .

- This .078 is used to repent step (C).
f. $x_{1}=.030$ to $x_{2}=.078$ is one plate.
$g$. Repeat calculation until sufficient number of
plates are obtained.

6. Mast rate ( Table 25) Run 1.

$$
\begin{aligned}
& G=1 \mathrm{~b} / \mathrm{hr} / \mathrm{ft} \quad \text { density }=.95 \quad \text { (average) } \\
& a=\frac{(87 \mathrm{ml} / \mathrm{min})(.95 \mathrm{ges} / \mathrm{ml})(60 \mathrm{~min} / \mathrm{hr})}{454 \mathrm{grs} / \mathrm{Lb})}\left(\frac{\pi}{4} \frac{(2.875)^{2}}{12}\right.
\end{aligned}
$$

7. HETP (Table 25) Run 1.

$$
\begin{aligned}
& N=N_{T}-1 \quad H E T P=\frac{N}{L} \\
& H_{T}=3.75 \\
& N=2.75 \\
& L=72 \text { inches } \\
& H E T P=\frac{72}{2.75}=26.3 \text { inches. }
\end{aligned}
$$

