Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

GRAPHICAL CORFELATION OF PAESSURE DROP AND TEMPERATURE DROP TO FRICTION AND VELOCITY FOR ADIABATIC FLOW OF COMPRESSIBLE FLUIDS

BY

ANDRET A. GIACOBBE

A THESTS
SUBUITTED TO THE FACULTY OF
THE DEFARTMEXT OF GHEMICAL ENGINEERING OF
WEWARK COLLEGE OF ENGINEERIGG

IN PARTIAL FULTLLIMENT OF PH\% REQUIRETEXTS FOR THF DEGREE
 of
 NASTER OF SCIENCE
 IN CHE ICAL ENGINEERING

NEWARK, NEM JERSEY
1955

APPROVAL OP THESIS

FOR

DEPARTMENT OF CHE ICAL ENGTIEERING NEWARK COLLEGE OF ENOINEEAING

$B Y$

FACULTY COBHITTEE

APPROVED:

> NEWARK, NEH JERSEY JUNE, 1955

The author wishes to express his sincere appreciation to Dr. Joseph Joffe of the Newark College of Engineering for ins assistance in the selection of the problem and preparation of this paper.

TABLE OF CONTENTS

PAGE
ABSTRACT 1
INTRODUCTION 2
RESULTS 5
CONCLUSIONS 6
DISCUSSION 7
CONSTRUOTION OF GRAPHS 10
SAMPLE PROBLEK 12
TABLE OR NOHENCLATURE 18
REFERENCES 20
APPENDIX. 21

Abstract

Problems involving adiabatio flow of compressible fluids in horizontal conduits of constant orosesection usually require tedious trial and error solutions. Although several somewht simplified method have been developed, most of these methods are not ideally suited for problems involving flow between two sections of a conduit.

The graphical solutions presented in this paper, relating pressure and temperature ratios to friction and initial mach numbers, have been developed specifically for flow between sections of a conduit. Use of the graphs requires only the knowledge of initial conditions and determination of the friction factor.

Initial velocities from 30% to 70% of the initial acoustic velocity have been presented in this paper. Graphs for initial velocities of 5% to 30% of the initial scoustic velocity have previousiy been presented by straub. (7) Combination or doth papers provides a continous range of initial velocities from 5% to 70% of the initial acoustic velooity.

INTRODUCTION

Flow equations for compressible fluids in conduits of constant crose-section have been developed for botn 1sothermal and adiabatic conditions. For isothermal conditions both algebraic and graphicsl metnods of calculation have been developed and presented in many texts. Equations for alabatic flon have been presented by Dodge and Phompson (3) and summarized by Perry. (6) These equations, containing specific heat ratios, pressure ration, velocity ratios, hach numbers, and friction, require the use of trial and error methods for most solutions. Because of the complexity

$$
\begin{aligned}
1 L / R_{H}= & -2 \cdot 3[(K+1) / K]\left[\log \left(V_{2} / V_{1}\right)\right] \\
& +(1 / K)\left[\left(1 / H_{1}\right)^{2}+(K-1) / 2\right]\left[1-\left(V_{1} / V_{2}\right)^{2}\right] \\
P_{2} / P_{1}= & \left(V_{1} / V_{2}\right)\left(1+[(K-1) / 2]\left(M_{1}\right)^{2}\left[1-\left(V_{2} / V_{1}\right)^{2}\right]\right) \\
T_{2} / T_{1}= & \left(P_{2} / P_{1}\right)\left(V_{2} / V_{1}\right)
\end{aligned}
$$

of these equations, several investigators nave presented varlous types of graphical solutions.

Dodge and Thompson, besides presenting the flow equations, illugtrated graphically the complex relationahips between velocity, friction, and pressure drop for gases With a specific heat ratio of $K=1.32$. Tnis graph, nowever, cannot be read with any degree of accuracy, and the presentation of only one specific heat ratio makes interpolation
for other specific heat ratios impossible. A similar graph, presented by Bincer ${ }^{(1)}$ for a specific heat ratio of $K=1.4$, involves the same accuracy and interpolation ilmitations.

A graphical solution employing conditions in a stagnant reservoir has been developed by Lapple. (5) Since velocity In a stagnant reservoir is negligible, theoretical isothermal flow trougn a frictionless nozzle was employed as a reference flow rate. For flow from a stagnant reservoir into a plpeline, the Lapple chart provides a rapla metnod of calculation. For flow between two sections of a conduit, however, a lengthly trial and error calculation is required to determine conditions in the theoretical reservolr before a solution can be obtained.

A nonograph developed iy Thompson, (8) relating velocity and friction to pressure arop for isotnermal flow can be adapted for adiabatic flow. (5) Although the use of the nomograph for isothermal ilon requires very little preliminary calculation, several ratner tedious calculations are necessary for adiabatic flow.

A method of calculation, based on the themodynamic properties of tine fluid, employing the Fanno lines" is also avallable. This method, although quite accurate, requires the use of a special set of rather lengthly tables.

Because of the difficulties involved when using the above methods of calculation, straub(7) presented an accurate graphical solution similar to those illustrated in Dodge and Thompson, and Binder. Additional parametric curves relating temperature ratios to friction and initial mach numbers were included to increase tne utility of the graphs. Hach numbers from 0.050 to 0.300 were employed, to cover as wae a range of conditions as possible witnout sacrificing accuracy.

Since many flow probleas involve inlet velooities greater than $=0.300$, it ass felt that construction of similar graphs with kacn number of 0.300 to 0.700 would provide a valuable contribution to the work of Straub. This paper has therefore been prepared as an extension of Straub's work. A comulnation of botn papers provides a continous range of Haon numbers from 0.050 to 0.700 .

Abstract

RESULTS

The graphs presented on the following pages represent the relationship of pressure drop and temperature drop to initial maon number and friction for perfect gases flowing adiabatically through conduita of constant orosssection. With these graphs and the graphe presented by Straub ${ }^{(7)}$ it is possible, knowing the inlet conditions and the friction factor, f, to determine the conditions of flow at any point along the conduit for initial Mach numbers up to 0.700 .

The curve on each graph marked, P_{c} / P_{1} represents the maximum possible pressure drop attainable in the condult from the given inlet conditions. At this point the velocity at the conduit outlet equals the acoustic velocity, thereby producing maximum flow conditions.

CONCLUSLONS

The solution to many problems concerning adiabatic flow of compressible fluids in norizontal conduits of oonstant crosemection can be greatly simplified by the use of the grapnical relationsinps presented in tnis thesis. These graphs, constructed for oricinal Mach numbers of 0.300 to 0.700 , represent an extension of the work of straub. (7) By combining both aets of graphe, it is possible to solve flow proolems ith inlet velocitiew for air from a minimum of $55 \mathrm{ft} . / \mathrm{sec}$. to a maximum of $790 \mathrm{ft} . / \mathrm{sec}$. at $75^{\circ} \mathrm{F}$.

Further work toward the construction of similar graphs for other specific heat ratios between 1.1 and 1.67 would simplify and increase the accuracy of interpolation Letween grapha.

Construction of grapna witn initial mach numbers above 0.700 would have only liaited application. maximum L/D ratios, for gases suca as air, would be less than 10, requiring conduits of snort lengtins or large diameters.

DISCUSSION

The flow equations employed in this paper, sumarized by Perry, (6) are as followe:

$$
\begin{align*}
f L / R_{1}= & -2 \cdot 3[(K+1) / K]\left[\log \left(V_{2} / V_{1}\right)\right] \\
& +(1 / K)\left[\left(c_{1} / V_{1}\right)^{2}+(K-1) / 2\right]\left[1-\left(V_{1} / V_{2}\right)^{2}\right] \tag{1}\\
P_{2} / P_{1}= & \left(V_{1} / V_{2}\right)\left[1+((K-1) / 2)\left(V_{1}\right)^{2}\left(1-\left(V_{2} / V_{1}\right)^{2}\right)\right] \tag{2}\\
P_{2} / T_{1}= & \left(P_{2} / P_{1}\right)\left(V_{2} / V_{1}\right) \tag{3}
\end{align*}
$$

wach number ${ }_{1} \mathrm{~V}_{1} / \mathrm{C}_{1} \quad \mathrm{R}_{\mathrm{H}}=\mathrm{D} / 4$, for olrcular conduits.

By selecting constant values of specific heat ratioa, K, and mach numbers, M, and augtituting selected values for V_{2} / V_{1} in equations 1 and 2 , points on the parametric maon number curves were determined. The resulting values of P_{2} / P_{1} multiplied by V_{2} / V_{1} gave T_{2} / T_{1}. The selected V_{2} / V_{1} values together ith the determined values of $f / D, P_{2} / P_{1}$ and T_{2} / T_{1} for specific values of K and H, are included in the appendix as Tabulated Results.

Since the work of Straub ${ }^{(7)}$ covered the range of Kach numbers from 0.050 to 0.300 , tris paper has been presented for hach numbers beginning at 0.300 . haximum hach numbers of 0.700 were considered sufficient to maintain maximum accuracy in the graphs. It was naturally neceasary to employ the same specific heat ratios as those of straub, $K=1.2,1.4$ and 1.67.

The curves of T_{2} / T_{1} not only increase the utility of the graphs, but also increase the range of application. For instance, without the T_{2} / T_{1} ourves it ie necessary to know inlet pressure and velocities for direct use of the graphs, In many practical problems, flow rates represent the condition to be determined. In this case knowledge of the upatrean and downstream temperatures and pressures give sufficient information to determine P_{2} / P_{1} and T_{2} / T_{1}. These values are all that are required to determine the point on the graph necessary to give the initial velocity.

The limiting pressure ratio, represented by the curve P_{e} / P_{1}, indicates the point where the discharge velooity has reached the acoustic velocity. A further increase in pressure drop cannot be accomplished whout first changing inlet conditions. Limiting pressure ratio curves mere determined. from the following formula appearing in Dodge and Thompson. (3)

$$
P_{0} / P_{1}=M_{1}^{2} \sqrt{[(K-1) /(K+1)]\left[1+\left(2 /(K-1) M_{1}^{2}\right)\right]}
$$

Three assumptions were used in the development of the flow equations 1,2 , and 3 and were therefore employed in the construotion of the grapis presented in this problem. Tnese assumptions are as follows:

1. The friction factor remains constant trrouthout the conduit.
2. Veloaity distribution acrosa the conduit crosssection is uniform.
3. All gases are perfeot, requiring no correction for compressibility.

For certain design problems some correction will be necessary for these assumptions.

In problems involving large velocity changes it might be necessary to efirst solve the problem using the initial friction factor, f. Then from the downstream conditions, the final friction factor could be determined, and the solution repeated using the arithmetic average of the initial and final irietion factors.

Veloosty distribution soross conduits is disoussed in many texts. If necessary, correetions for actual frictional velocitien are casily appliea.

The compressibility correation for gases is negligible under normal pressure and temperature oonditions, but under extreme conaltions of pressure and temperature these correotions become significant,

CONS AUCTION OF GRAPHS

The computation will be carried out to determine a point on the $M_{1}=.400$ curve for the graph of $x=1.4$. Arbitrarily selecting a velocity ratio, $V_{2} / V_{1}=2.0$ and employing the Mach number and specific hot ratio, M and x, as noted above, the following equations can then be solved for $1 \mathrm{~L} / \mathrm{D}$.

$$
\begin{aligned}
\mathrm{fL} / \mathrm{R}_{H}= & {[-2.3(\mathrm{~K}+1) / \mathrm{K}]\left[\log \left(\mathrm{V}_{2} / \mathrm{V}_{1}\right)\right] } \\
& +(1 / \mathrm{K})\left[\left(1 / \mathrm{K}_{1}\right)^{2}+(\mathrm{K}-1) / 2\right]\left[1-\left(\mathrm{V}_{1} / \mathrm{V}_{2}\right)^{2}\right] \\
\mathrm{rL} / \mathrm{D}= & \mathrm{rL} / 4 \mathrm{R}_{\mathrm{H}} \\
\mathrm{rL} / \mathrm{R}_{\mathrm{H}}= & {[-2.3(1.4+1) / 1.4][\log 2.0] } \\
& +(1 / 1.4)\left[(1 / .40)^{2}+(1.4-1) / 2\right]\left[1-(1 / 2.0)^{2}\right] \\
\mathrm{fL} / \mathrm{R}_{\mathrm{H}}= & 2.2672 \\
\mathrm{fL} / \mathrm{D}= & 0.5668
\end{aligned}
$$

The pressure ratio is determined from the following equation.

$$
\begin{aligned}
& P_{2} / P_{1}=\left(V_{1} / V_{2}\right)\left[1+((1-1) / 2)\left(M_{1}\right)^{2}\left(1-\left(V_{2} / V_{1}\right)^{2}\right)\right] \\
& P_{2} / P_{1}=(1 / 2.0)\left[1+((1.4-1) / 2)(.400)^{2}\left(1-(2.0)^{2}\right)\right] \\
& P_{2} / P_{1}=0.4520
\end{aligned}
$$

11

The temperature ratio is then easily determined from the following expression.

$$
\begin{aligned}
& T_{2} / T_{1}=\left(P_{2} / P_{1}\right)\left(V_{2} / V_{1}\right) \\
& T_{2} / T_{1}=(.4520)(2.0) \\
& T_{2} / T_{1}=.90400
\end{aligned}
$$

GAMPLE PROBLEM

To compare the several methods for nolving a problem of this type, a sample problem is presented.

Data:

Alp enters a standard 4 inch steel line at $3000 \mathrm{ft} .3 / \mathrm{min}$. at a proseure of 14.0 psia and a temperature of 75°. Determine the aischarge conditions 20 feet from the inlet.
A. Kethod of Trial and Error.

$$
\begin{align*}
& P_{1}=(.0808)(14.0 / 14.7)(492 / 535)=0.070710 .14 .^{3} \\
& T_{1}=460+75=535^{\circ} \mathrm{R} \text {. } \\
& \mu_{1}=0.0178 \mathrm{ep.}(1 / 1488)=1.196 \times 10^{-5} 1 \mathrm{~b} \text {. mass/ft. sec. } \\
& \mathrm{D}=4.026 / 12=0.335 \mathrm{ft} \text {. } \\
& V_{1}=3000 / 60(144 / 12.73)=567 \mathrm{Pt} . / 800 \text {. } \\
& \text { Re }=\operatorname{DVP} / \mu=(.335)(567)(.0707) / 1.196 \times 10^{-5}=1.12 \times 10^{6} \\
& \text { From the Reynola's number curve in the Chemical } \\
& \text { Engineer's Handbook. } \tag{6}\\
& f=0.0043 \\
& \text { For air the apecific neat ratio, } K=1.4
\end{align*}
$$

$$
\begin{aligned}
& \mathrm{C}_{1}=\sqrt{\mathrm{K}_{\mathrm{G}} \mathrm{RT}_{1} / \mathrm{m}}=\sqrt{1.4 \times 32.2 \times 1546 \times 535 / 29}=1133 \mathrm{ft} . / \mathrm{sec} . \\
& \mathrm{A}_{1}=\mathrm{V}_{1} / \mathrm{C}_{1}=567 / 1133=.500 \\
& \mathrm{IL} / \mathrm{D}=(.0043)(20) / .335=0.2565 \\
& \mathbf{I L} / \mathrm{R}_{\mathrm{H}}=4 \mathrm{IL} / \mathrm{D}=4(.2565)=1.026
\end{aligned}
$$

From the Chemical Engineer Handbook, ${ }^{(6)}$

$$
\begin{aligned}
& \mathrm{fL} / \mathrm{R}_{\mathrm{H}}= {[-2.3(\mathrm{~K}+1) / \mathrm{K}]\left[\log \left(\mathrm{v}_{2} / \mathrm{v}_{1}\right)\right] } \\
&\left((1 / \mathrm{K})\left[\left(\mathrm{c}_{1} / \mathrm{v}_{1}\right)^{2}+(\mathrm{K}-1) / 2\right]\left[1-\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)^{2}\right]\right. \\
& \mathrm{P}_{2} / \mathrm{P}_{1}=\left(\mathrm{v}_{1} / \mathrm{v}_{2}\right)\left[1+((\mathrm{K}-1) / 2)\left(\mathrm{H}_{1}\right)^{2}\left(1-\left(\mathrm{v}_{2} / \mathrm{v}_{1}\right)^{2}\right)\right]
\end{aligned}
$$

Assuming $V_{2} / V_{1}=1.50$

$$
\begin{aligned}
& \mathrm{fL} / \mathrm{R}_{\mathrm{H}}= {[-2.3(1.4+1) / 1.4][\log 1.50] } \\
&+(1 / 2.4)\left[(1 / 500)^{2}+(1.4-1) / 2\right]\left[1-(1 / 1.50)^{2}\right]
\end{aligned}
$$

$f L / R_{H}=0.957$, which does not check the correct value of $\mathrm{fL} / \mathrm{H}_{\mathrm{H}}=1.026$.
$\begin{aligned} & \text { Adjusting } V_{2} / V_{2}= 1.60 \text { and repeating the above } \\ & \text { calculations gives } f L / R_{H}=1.026 .\end{aligned}$
Therefore p_{2} / P_{1}

$$
\begin{aligned}
& =(1 / 1.60)\left[1+((1.4-1) / 2)(.500)^{2}\left(1-(1.60)^{2}\right)\right]=.576 \\
P_{2} & =P_{1}\left(P_{2} / P_{1}\right)=(14.0)(.576)=8.06 \text { psia. } \\
T_{2} & =P_{1}\left(P_{2} / P_{1}\right)\left(V_{2} / V_{1}\right)=(535)(.576)(1.60)=493^{\circ} \mathrm{R} .
\end{aligned}
$$

B. Method Using Fino Tables.

When using the Fino Tables (4) a length of Plotitious duct must be added to the actual duct so that the exit velocity equals the acoustic velocity.

The Iriction factor used in the fanno Tables is equal to 41
therefore $f^{\prime}=4 f=4(.0043)=.0172$.
From the Fanno Tables with $K=2.4$ and $M_{1}=.500$
1:L/D=P: $\left(X^{*}-X_{1}\right) / D=1.069 \quad T_{1} / T^{*}=1.143 \quad P_{1} / P^{*}=2.133$

From the original adata $L=X_{2}-X_{1}=20$
thereforef'L/D $=f^{\prime \prime}\left(X_{2}-X_{1}\right) / D=1.026$

$$
\begin{gathered}
f^{\prime}\left(x^{*}-x_{2}\right) / D=\left[f^{\prime}\left(x^{*}-x_{1}\right) / D\right]-\left[f^{\prime}\left(X_{2}-X_{1}\right) / D\right] \\
=1.069-1.026=0.043
\end{gathered}
$$

From the Panno Tables with $K=1.4$ and $f(L / D=0.043$

$$
T_{2} / T^{*}=1.052 \quad P_{2} / P^{*}=1.224
$$

therefor $T_{2}=T_{1}\left(T_{2} / T^{*}\right)\left(T T_{1} / T_{1}\right)=535(1.052)(1 / 1.143)=492^{\circ} \mathrm{R}$. and $P_{2} P_{1}\left(P_{2} / P^{*}\right)\left(P / P_{1}^{*}\right)=14.0(1.224)(1 / 2.138)=8.02$ pa1a.

C. Lapple Method.

When using the Lapple charts (2) it muet be assumed that the air enters the pipe through a frictionless nozzle from a reservoir of atagnant alr. Therefore conditions in the theoretical reservoir must be determined.

$$
\begin{aligned}
& G_{1}=v_{1} P_{1}=(567)(.0707)=40.1 \mathrm{Ib} . / \mathrm{ft}_{*}^{2} \text { sec. } \\
& P_{1}=14.0(144)=2015 \mathrm{Ib} . / \mathrm{ft} .^{2} \\
& N=\pi L / R_{H}=1.026
\end{aligned}
$$

Assuming $p_{1} / p_{0}=0.900$, from the Lapple chart of $\mathrm{K}=1.4$ with $\mathrm{N}=0$

$$
\sigma / G_{\mathrm{cni}}=0.688 \text { and } T_{1} / T_{0}=0.972
$$

$$
\text { then } T_{0}=T_{1} / .972=535 / .972=5500 \mathrm{R}
$$

$$
\sigma_{\mathrm{cn} 1}=G / .688=40.1 / .688=58.2 \mathrm{Ib} . / \mathrm{ft} .^{2} \mathrm{sec}
$$

$$
a_{\mathrm{cni}}=p_{o} \sqrt{\mathrm{~g}_{\mathrm{c}}^{\mathrm{m} / \mathrm{oRT}_{\mathrm{o}}}}
$$

$$
p_{0}=58.2 / \sqrt{(32.2)(29) /(2.718)(1546)(550)}
$$

$P_{0}=3890 \mathrm{lb} . / 4 t{ }^{2}$
$P_{1} / P_{0}=2015 / 2890=0.698$, which does not check the assumed value of $p_{1} / p_{0}=.900$

Adjusting $p_{1} / p_{0}=.841$ gives $G / C_{\text {oni }}=0.840$ and T_{1} / T_{0} * 0.952 from the Lapple chart.

Repeating the previous calculations gives $T_{0}=562^{\circ} \mathrm{R}$, $a_{\text {eni }}=47.7$ and $p_{0}=2395$
therefore $p_{1} / p_{0}=2015 / 2395=0.841$. This checks the assumed value.
Then for $\mathrm{W}=1.026, \mathrm{X}=1.4$ and $\mathrm{Q} / \mathrm{G}_{\mathrm{cni}}=0.840$ the Lapple chart gives $p_{2} / p_{0}=0.495$ and $T_{2} / T_{0}=.872$

$$
\begin{aligned}
& P_{2}=P_{1}\left(p_{2} / p_{0}\right)\left(p_{0} / p_{1}\right)=14.0(.495)(1 / .841)=8.23 \mathrm{pala} \\
& T_{2}=T_{1}\left(T_{2} / T_{0}\right)\left(T_{0} / T_{1}\right)=535(.872)(1 / .952)=4900 \mathrm{R} .
\end{aligned}
$$

D. Method Using Thompson's Nomography. (8) (5)

The use of the nomograph first requires the solution for Y and Z in the following equations:

$$
\begin{aligned}
& Y=(K+1) M_{1}^{2} /\left[2+(K-1) M_{1}^{2}\right] \\
& Y=(1.4+1)(0.5)^{2} /\left[2+(1.4-1)(0.5)^{2}\right] \\
& Y=0.286 \\
& 1-Z=M_{1}^{2} K /\left[2+(K-1) M_{1}^{2}\right] \\
& N=f(L / D=1.026 \\
& 1-Z=(1.026)(0.5)^{2}(1.4) /\left[2+(1.4-1)(0.5)^{2}\right] \\
& 1-Z=0.171 \quad Z=0.829
\end{aligned}
$$

Connecting Y and Z with a straight line on the homograph gives two values of $x, \quad X=.470$ and $x=.620$
The value of X olosest to Z is the correct value to be used, therefore $x=.620$
The P_{2} / P_{1} and T_{2} / T_{1} ration can then be calculated
from the following equations:

$$
\begin{aligned}
P_{2} / P_{1} & =x\left(1+\left[(x-1) m_{1}^{2} / 2\right]\left[1-\left(1 / x^{2}\right)\right]\right) \\
& =.620\left(1+\left[(1.4-1)(0.5)^{2} / 2\right]\left[1-\left(1 / .620^{2}\right)\right]\right) \\
P_{2} / P_{1} & =.570
\end{aligned}
$$

$$
\begin{aligned}
& T_{2} / T_{1}=\left(P_{2} / P_{1}\right) / X=.570 / .620=.920 \\
& P_{2}=P_{1}\left(P_{2} / P_{1}\right)=14.0(.570)=7.98 \mathrm{ps} 1 \mathrm{a} \\
& T_{2}=T_{1}\left(P_{2} / P_{1}\right)=535(.920)=492^{\circ} \mathrm{R}
\end{aligned}
$$

E. Hethod Using the Graphs Developed in This Thesis.

$$
\begin{aligned}
& \text { Using the } K=1.4 \text { ohart, with } M=.500 \text { and } \mathrm{PL} / \mathrm{D}=.2565 \\
& P_{2} / P_{1}=.573 \text { and } T_{2} / T_{1}=.920 \\
& P_{2}=P_{1}\left(P_{2} / P_{1}\right)=14.0(.573)=8.02 \mathrm{p} 1 \mathrm{a} \\
& T_{2}=T_{1}\left(T_{2} / T_{1}\right)=535(.920)=4920 \mathrm{R} .
\end{aligned}
$$

Summary of Resulte

Gethod
Trial and Error
P_{2}
Panno Tables 8.02 4928.06 psia$493^{\circ} \mathrm{R}$

- Lapple Charta 8.23 490
Thompson's Nomograph 7.98 492
Author's Graph 8.02 492
\underline{T}

TABLE O NOMENCLATURE

$$
\begin{aligned}
& \rho=\text { density of fluid, lbs. mase/ft. }{ }^{3} \\
& \text { T = absolute temperature, }{ }^{\circ} \mathrm{R} \text {. } \\
& \mu=\text { viscosity of fluid, tba. mass/ft. sec. } \\
& \text { D = diameter or pipe, ft. } \\
& \text { v = velocity of fluid, it./sec. } \\
& p=\text { pressure of fluid, lbs./in. }{ }^{2} \text { abs. } \\
& \text { Re }=\text { Reynolds number, no units. } \\
& f=\text { friction factor, no units. } \\
& f^{\prime}=4 t=\text { friction factor, no units. } \\
& K=C_{p} / C_{v}=\text { specific heat ratio for fluid, no units. } \\
& C=\text { acoustic velocity in fluid, ft./sec. } \\
& g_{c}=\text { conversion factor, (aus, lass.) ft./(1bs, force) sec. }{ }^{2} \\
& \mathrm{R}=\text { gas constant, (lbs. force)ft./(lb, mole) }{ }^{\circ} \mathrm{R} \text {. } \\
& m=\text { molecular welgnt of fluid, lbs. mass/lb. mole. } \\
& \mathrm{L}=\mathrm{leng} \mathrm{th}, \mathrm{ft} . \\
& \mathrm{R}_{\mathrm{H}}=\text { hydraulic radius, } \mathrm{ft} .=\mathrm{D} / 4 \text { for circular ducts. } \\
& X \text { distance from zero reference point, ft. (fino method) } \\
& X^{*}=\text { distance from outlet of fictitious acct to zero } \\
& \text { reference point, ft. (kano method) } \\
& G=\text { mass velocity of fluid, lbs, mass } / \mathrm{ft}^{2} \text { sem. }
\end{aligned}
$$

```
M= Mach number, ratio of velooity to acoustic velocity
    in fluid, no units.
p = pressure of fluld, lbs./ft.' abs. (Lapple method)
sub l = conditions at pipe inlet.
sub 2 = conditions at plpe outlet.
sub O = conditions in stagnant reservoir.(Lapple method)
```


REPERENCES

1. Binder, R. C., Advancod Fluld Dymamica and Tluid Machinery. Wew York! Prenticemall, Inc.: 1951.
2. Brown, G. G., Unit Operations. New York: John wiley * Sons, Inc. 1950.
3. Dodge, A. A. and M. J. Thompeon, Fluid Mechanios. New York: Me Graw-Hil1 book 60. 1937.

4. Lapple, 0. E. Trans. 筑, Tnst. Chem. Engrs. Vol 39. June, 1943, pp: 385-432.
5. Perry, J. H. (editor), Chemical Engineera Handbook, Third Edition. New Iork: Mo Graw-Rill Book Co. 1950.
6. Straub, G. E. Graphical Correlation of Presaure Drop in Adibatic Flow of Compressible Fiuids in plpes. Haster of Science Thesis. Newark, New Jersey: Newark College of Engineering: 195^{4}.
7. Thompson, G. W. Ina. Eng. Chem. Vol 34, Deoeraber, 1942 , p. 1485.
8. Walker, W. H. \#. K. Lewis, 青. H. No Adams, and E. R. Gilliland, Principles of Chemioal Engineering, Thira Eaition. New York we Gravinin book co., 1937. pp. 90-91.

APPENDIX

TABULATED RESULGS
$K=1.1 \quad \%=0.300$

v_{2} / v_{1}	fL / D	P_{2} / P_{1}	$\mathrm{T}_{2} / \mathrm{T}_{1}$
1.05	0.2068	0.9519	0.99954
1.1	0.3949	0.9082	0.99905
1.2	0.6882	0.8317	0.99802
1.3	0.9105	0.7668	0.99689
1.4	1.0818	0.7112	0.99568
1.5	1.2158	0.6629	0.99437
1.6	1.3215	0.6206	0.99298
1.7	1.4057	0.5832	0.99149
1.8	2.4733	0.5500	0.98992
1.9	1.5276	0.5201	0.98825
2.0	1.5716	0.4933	0.98650
2.1	1.6072	0.4689	0.98465
2.2	1.6362	0.4467	0.95272
2.3	1.6596	0.4264	0.98069
2.4	1.6784	0.4077	0.97858
2.5	1.6934	0.3905	0.97637
2.6	1.7054	0.3746	0.97408
2.7	1.7145	0.3599	0.97169
2.8	1.7215	0.3462	0.96922

$$
K=1.1
$$

v_{2} / v_{1}

2.9	1.7268
3.0	1.7304
3.1	1.7325
3.2	1.7336
3.3	1.7339

$11=0.300$
$P_{2} / P_{1} \quad T_{2} / T_{1}$

0.3333	0.96665
0.3213	0.96400
0.3103	0.96125
0.2995	0.95842
0.2595	0.95549
$0.2934=P_{c} / P_{1}$	

TABULATED RESULPS

$$
K=1.1 \quad i n=0.325
$$

v_{2} / v_{1}	PL/D	P_{2} / P_{1}	$\mathrm{s}_{2} / \mathrm{s}_{1}$
1.05	0.1729	0.9519	0.99946
1.1	0.3300	0.9081	0.99889
1.2	0.5740	0.8314	0.99768
1.3	0.7580	0.7664	0.99636
1.4	0.8989	0.7107	0.99493
1.5	1.0083	0.6623	0.99340
1.6	1.0939	0.6199	0.99176
1.7	1.1614	0.5824	0.99002
1.8	1.2150	0.5490	0.98817
1.9	1.2576	0.5191	0.98622
2.0	1.2915	0.4921	0.98416
2.1	1.3184	0.4676	0.98199
2.2	1.3399	0.4453	0.97972
2.3	1.3567	0.4249	0.97734
2.4	2.3697	0.4062	0.97486
2.5	1.3797	0.3839	0.97227
2.6	1.3371	0.3729	0.96958
2.7	$1.39<3$	0.3581	0.96678
2.8	1.3957	0.3442	0.96388

	$K=1.1$	$N=0.325$	
$\mathbf{V}_{2} / \mathrm{V}_{1}$	PL / D	$\mathrm{P}_{2} / \mathrm{P}_{1}$	$\mathrm{~T}_{2} / \mathrm{T}_{1}$
		0.3313	0.96083
2.9	1.3977	0.3193	0.95775
3.0	1.3934	0.3079	0.95453
3.1	1.3980	$0.3180=\mathrm{P}_{\mathrm{c}} / \mathrm{P}_{1}$	

TABULATED RESULTE

$$
K=1.1 \quad K=0.350
$$

$\mathrm{V}_{2} / \mathrm{V}_{1}$	IL / D	$\mathrm{P}_{2} / \mathrm{P}_{1}$	$\mathrm{~T}_{2} / \mathrm{T}_{1}$
1.05	0.1440	0.9518	0.99939
1.1	0.2746	0.9079	0.99871
1.2	0.4765	0.8311	0.99730
1.3	0.6276	0.7660	0.99577
1.4	0.7425	0.7101	0.99412
1.5	0.8310	0.6616	0.99234
1.6	0.8993	0.6190	0.99044
1.7	0.9527	0.5814	0.98842
1.8	0.9943	0.5479	0.98628
1.9	1.0268	0.5179	0.98401
2.0	1.0521	0.4908	0.98162
2.1	1.0716	0.4662	0.97911
2.2	1.0866	0.4439	0.97648
2.3	1.1060	0.4234	0.97372
2.4	1.1115	0.4045	0.97085
2.5	1.1151	0.3871	0.96784
2.6	1.1168	0.3710	0.96472
2.7	1.1172	0.3561	0.96147
2.8		0.3422	0.95811

TABULATED RESULPS

$$
K=1.1 \quad \hat{k}=0.375
$$

V_{2} / V_{1}	LL/D	P_{2} / P_{1}	T_{2} / T_{1}
1.05	0.1243	0.9517	0.99928
1.1	0.2370	0.9077	0.99852
1.2	0.4103	0.8308	0.99691
1.3	0.5393	0.7655	0.99515
1.4	0.6366	0.7095	0.99325
1.5	0.7107	0.6608	0.99121
1.6	0.7675	0.6181	0.98903
1.7	0.811	0.5804	0.98671
1.8	0.8703	0.5468	0.98425
1.9	0.9043	0.489	0.98165
2.0	0.9149	0.4224	0.4423

TABULATED RESULTS

$$
K=1.1 \quad M=0.400
$$

$\mathrm{V}_{2} / \mathrm{V}_{1}$	$I L / D$	P_{2} / P_{1}	T_{2} / T_{1}
1.05	0.1066	0.9515	0.99912
1.1	0.2031	0.9076	0.99836
1.2	0.3506	0.8304	0.99648
1.3	0.4594	0.7650	0.99448
1.4	0.5407	0.7088	0.99232
1.5	0.6020	0.6600	0.99000
1.6	0.6482	0.6172	0.98752
1.7	0.6831	0.5793	0.98488
1.8	0.7094	0.5456	0.98208
1.9	0.7288	0.5153	0.97912
2.0	0.7430	0.4880	0.97600
2.1	0.7530	0.4632	0.97272
2.2	0.7597	0.4406	0.96928
2.3	0.7637	0.4199	0.96568
2.4	0.7654	0.4008	0.96192
2.5	0.7654	0.3832	0.95800
		$0.3919=P_{c} / P_{1}$	

TABULATED RESULTS

$$
K=1.1 \quad N=0.425
$$

$\mathrm{V}_{2} / \mathrm{V}_{1}$	fL / D	$\mathrm{P}_{2} / \mathrm{P}_{1}$	$\mathrm{~T}_{2} / \mathrm{T}_{1}$
1.05	0.0919	0.9515	0.99907
1.1	0.1749	0.9074	0.99810
1.2	0.3010	0.8300	0.99603
1.3	0.3932	0.7644	0.99377
1.4	0.4613	0.7081	0.99133
1.5	0.5119	0.6591	0.98871
1.6	0.5494	0.6162	0.98591
1.7	0.5771	0.5782	0.98293
1.8	0.5973	0.5443	0.97977
1.9	0.6116	0.5139	0.97643
2.0	0.6214	0.4865	0.97291
2.1	0.6275	0.4615	0.96920
2.2	0.6310	0.4388	0.96532
2.3	0.6321	0.4179	0.96126
2.4	0.6314	0.3988	0.95701

TABULATED RESULTS

$$
x=2.1 \quad 3=0.450
$$

v_{2} / v_{1}	LL/D	$\mathrm{P}_{2} / \mathrm{P}_{2}$	S_{2} / T_{1}
1.05	0.0795	0.9514	0.99896
2.1	0.1513	0.9072	0.99787
1.2	0.2594	0.8296	0.99554
1.3	0.3377	0.7639	0.99301
1.4	0.3947	0.7073	0.99028
1.5	0.4364	0.6582	0.98734
1.6	0.4666	0.6151	0.98420
1.7	0.4882	0.5770	0.98086
1.8	0.5033	0.5430	0.97732
1.9	0.5133	0.5124	0.97357
2.0	0.5195	0.4848	0.96962
2.1	0.5225	0.4597	0.96547
2.2	0.5232	0.4369	0.96112
		0.4414	

TABULATED RESULTS

$$
\mathrm{K}=1.1 \quad \text { w}=0.500
$$

V_{2} / V_{1}	$I L / D$	P_{2} / P_{1}	T_{2} / T_{1}
1.05	0.0602	0.9512	0.99872
1.1	0.1143	0.9067	0.99738
1.2	0.1943	0.8288	0.99450
1.3	0.2506	0.7626	0.99137
1.4	0.2903	0.7057	0.98800
1.5	0.3179	0.6562	0.98437
1.6	0.3366	0.6128	0.98050
1.7	0.3559	0.5743	0.97637
1.8	0.3592	0.5400	0.97200
1.9	0.3596	0.4813	0.96737
2.0			

TABULATTD RESULTE

$$
K=1.1 \quad M=0.550
$$

$\mathrm{V}_{2} / \mathrm{V}_{1}$	IL / D	P_{2} / P_{1}	T_{2} / T_{1}
1.05	0.0459	0.9509	0.99845
1.1	0.0869	0.9062	0.99682
1.2	0.1461	0.8278	0.99334
1.3	0.1862	0.7612	0.98954
1.4	0.2130	0.7039	0.98548
1.5	0.2302	0.6541	0.98109
1.6	0.2405	0.6103	0.97640
1.7	0.2455	0.5714	0.97141
1.8		0.5367	0.96612

TABULATED RESULTS

K $=1.1$

$$
B=0.600
$$

v_{2} / v_{1}
1L/D
P_{2} / F_{1}
T_{2} / T_{1}
1.05
1.1
1.2
1.3
1.4
1.5
1.6
1.7
$0.9506 \quad 0.99815$
$0.9057 \quad 0.99622$
0.1094
$0.8267 \quad 0.99208$
0.1372
0.7597
0.98758
0.1542
0.7019
0.98272
0.1636
0.6517
0.97750
0.1673
0.6075
0.97192
0.1671
0.5682
0.96598
$0.5907=P_{0} / P_{1}$

TABULATED RESULTS

	$\mathrm{K}=1.1$	$=0.650$	
$\mathrm{~V}_{2} / \mathrm{V}_{1}$	IL / D	$\mathrm{P}_{2} / \mathrm{P}_{1}$	$\mathrm{~T}_{2} / \mathrm{T}_{1}$
1.05	0.0265	0.9503	0.99783
1.1	0.0499	0.9051	0.99556
1.2	0.0809	0.8256	0.99070
1.3	0.0991	0.7580	0.98542
1.4	0.1085	0.6998	0.97972
1.5	0.1117	0.6491	0.97359
1.6	0.1104	0.6044	0.96704
		$0.6410=\mathrm{P}_{\mathrm{c}} / \mathrm{P}_{1}$	

TABULATED RESULTS

$$
K=1.1 \quad K=0.700
$$

$\mathrm{V}_{2} / \mathrm{V}_{1}$	TL / D	$\mathrm{P}_{2} / \mathrm{P}_{1}$	$\mathrm{~T}_{2} / \mathrm{T}_{1}$
1.05	0.0198	0.9500	0.99749
1.1	0.0370	0.9044	0.99485
1.2	0.0582	0.8244	0.98922
1.3	0.0688	0.7562	0.98309
1.4	0.0722	0.6975	0.97648
1.5	0.0705	0.6462	0.96937
		$0.6914=\mathrm{P}_{\mathrm{o}} / \mathrm{P}_{1}$	

TABULATED RESULTS

$$
K=1.4 \quad N=0.300
$$

V_{2} / V_{1}	IL/D	P_{2} / P_{1}	T_{2} / T_{1}
1.05	0.1623	0.9506	0.99815
1.1	0.3098	0.9057	0.99622
1.2	0.5391	0.8267	0.99208
1.3	0.7122	0.7597	0.98758
1.4	0.8451	0.7019	0.98272
1.5	0.9484	0.6517	0.97750
1.6	1.0294	0.6075	0.97192
1.7	1.1446	0.5682	0.96592
1.8	1.2178	0.5332	0.95968
1.9	1.2437	1.2646	0.5016

$$
K=1.4 \quad \text { 煺 }=0.300
$$

V_{2} / V_{1}	IL/D	P_{2} / P_{1}	T_{2} / T_{1}
2.9	1.3234	0.2988	0.86662
3.0	1.3246	0.2853	0.85600
3.1	1.3235	0.2726	0.84502
		$0.2763=P_{0} / P_{1}$	

TABULATED RESULTS

$$
K=1.4 \quad M=0.325
$$

V_{2} / V_{1}	IL / D	P_{2} / P_{1}	T_{2} / T_{1}
1.05	0.1357	0.9503	0.99783
1.1	0.2589	0.9051	0.99556
1.2	0.4494	0.8256	0.99070
1.3	0.5924	0.7580	0.98542
1.4	0.7013	0.6998	0.97972
1.5	0.7854	0.6491	0.97359
1.6	0.8506	0.6044	0.96704
1.7	0.9016	0.5647	0.96007
1.8	0.9417	0.5293	0.95268
1.9	0.9730	0.4973	0.94486
2.0	1.0168	0.4683	0.93662
2.1	1.0318	0.4419	0.92796
2.2	1.0431	0.4177	0.91888
2.3	1.0514	0.3954	0.90934
2.4	1.0574	0.3748	0.89944
2.5	1.0615	0.3556	0.88909
2.6	1.0638	0.3378	0.87832
2.7	1.0648	0.3055	0.86712
2.8	1.0647	0.2908	0.85550
2.9		$0.2998=P_{0} / P_{1}$	
			0.84346

TABULATED RESULTE

$$
K=1.4 \quad u=0.350
$$

V_{2} / V_{1}	P_{1} / D	P_{2} / P_{1}	T_{2} / T_{1}
1.05	0.1145	0.9500	0.99749
1.1	0.2184	0.9044	0.99485
1.2	0.3783	0.8244	0.98922
1.3	0.4973	0.7562	0.98309
1.4	0.5873	0.6975	0.97648
1.5	0.6560	0.6462	0.96937
1.6	0.7087	0.6011	0.96178
1.7	0.7493	0.5610	0.95369
1.8	0.7806	0.5251	0.94512
1.9	0.8047	0.4927	0.93605
2.0	0.8230	0.4633	0.92650
2.1	0.8367	0.4364	0.91645
2.2	0.8470	0.4118	0.90592
2.3	0.8542	0.3891	0.89489
2.4	0.8590	0.3681	0.88338
2.5	0.8618	0.3485	0.87137
2.6	0.8630	0.3303	0.85888
2.7	0.8628	0.3133	0.84589

TABULATED RESULTS

$$
K=1.4 \quad M=0.375
$$

V_{2} / V_{2}	$I L / D$	P_{2} / P_{1}	T_{2} / T_{1}
1.05	0.0975	0.9496	0.99712
1.1	0.1858	0.9037	0.99409
1.2	0.3209	0.8230	0.98762
1.3	0.4206	0.7543	0.98059
1.4	0.4953	0.6950	0.97300
1.5	0.5516	0.6432	0.96484
1.6	0.5942	0.5976	0.95612
1.7	0.6265	0.5570	0.94684
1.8	0.6508	0.5206	0.93700
1.9	0.6689	0.4877	0.92659
2.0	0.6821	0.4578	0.91562
2.1	0.6915	0.4305	0.90409
2.2	0.6980	0.4055	0.89200
2.3	0.7019	0.3823	0.57934
2.4	0.7038	0.3609	0.86612
2.5	0.7040	0.3409	0.85234

TABULATED RESULTS

$$
K=1.4 \quad 3=0.400
$$

V_{2} / V_{1}	IL / D	P_{2} / P_{1}	T_{2} / T_{1}
1.05	0.0636	0.9493	0.99672
1.1	0.1591	0.9030	0.99328
1.2	0.2739	0.8216	0.98592
1.3	0.3578	0.7522	0.97792
1.4	0.4200	0.6923	0.96928
1.5	0.4662	0.6400	0.96000
1.6	0.5005	0.5988	0.95008
1.7	0.5259	0.5527	0.93952
1.8	0.5445	0.5157	0.92832
1.9	0.5577	0.4824	0.91648
2.0	0.5668	0.4520	0.90400
2.1	0.5726	0.4242	0.89088
2.2	0.5759	0.3987	0.87712
2.3	0.5772	0.3751	0.86272
2.4	0.5767	0.3532	0.84768

TABULATED RESULTS

$$
K=1.4 \quad M=0.450
$$

V_{2} / V_{1}	$P L / D$	P_{2} / P_{1}	T_{2} / T_{1}
1.05	0.0623	0.9484	0.99585
1.1	0.1185	0.9014	0.99149
1.2	0.2023	0.8185	0.98218
1.3	0.2622	0.7477	0.97205
1.4	0.3052	0.6865	0.96112
1.5	0.3360	0.6329	0.94937
1.6	0.3577	0.5855	0.93682
1.7	0.3727	0.5432	0.92345
1.8	0.3825	0.5052	0.90928
1.9	0.3883	0.4707	0.89429
2.0	0.3911	0.4393	0.87850
2.1	0.3915	0.4104	0.86189
		$0.4190=P_{c} / P_{1}$	

TABULATED RESULTE

$$
K=1.4 \quad M=0.500
$$

V_{2} / V_{1}	$1 \mathrm{~L} / \mathrm{D}$	P_{2} / P_{1}	T_{2} / T_{1}
1.05	0.0471	0.9475	0.99487
1.1	0.0894	0.8995	0.98950
1.2	0.1511	0.8150	0.97800
1.3	0.1938	0.7427	0.96550
1.4	0.2232	0.6800	0.95200
1.5	0.2429	0.6250	0.93750
1.6	0.2556	0.5763	0.92200
1.7	0.2667	0.5326	0.90550
1.8	0.2672	0.4933	0.88800
1.9		0.4576	0.86950

TABULATED RESULTS

$$
K=1.4 \quad M=0.600
$$

V_{2} / V_{1}	$I L / D$	P_{2} / P_{1}	T_{2} / T_{1}
1.05	0.0273	0.9454	0.99262
1.1	0.0515	0.8953	0.98488
1.2	0.0844	0.8069	0.96832
1.3	0.1047	0.7310	0.95032
1.4	0.1163	0.6649	0.93088
1.5	0.1217	0.6067	0.91000
1.6	0.1227	0.5548	0.88768
		$0.5671=P_{0} / P_{1}$	

Tabulated assults

$$
x=2.4 \quad u=0.700
$$

$\mathrm{V}_{2} / \mathrm{V}_{1}$	PL / D	$\mathrm{P}_{2} / \mathrm{P}_{1}$	$\mathrm{~T}_{2} / \mathrm{T}_{1}$
1.05	0.0131	0.9428	0.98995
1.1	0.0243	0.8904	0.97942
1.2	0.0365	0.7974	0.95688
1.3	0.0407	0.7172	0.93238
1.4	0.0395	0.6471	0.90592
		$0.6696=P_{\mathrm{c}} / \mathrm{P}_{1}$	

TABULATED RESULTS

$$
x=1.67 \quad u=0.300
$$

V_{2} / V_{1}	IL / D	$\mathrm{P}_{2} / \mathrm{P}_{1}$	$\mathrm{~T}_{2} / \mathrm{T}_{1}$
1.05	0.1359	0.9494	0.99691
1.1	0.2594	0.9033	0.99367
1.2	0.4508	0.3223	0.98673
1.3	0.5948	0.7532	0.97920
1.4	0.7048	0.6936	0.97106
1.5	0.7900	0.6415	0.96231
1.6	0.8564	0.5956	0.95297
1.7	0.9085	0.5547	0.94302
1.8	0.9498	0.5180	0.93246
1.9	0.9823	0.4849	0.92131
2.0	1.0081	0.4548	0.90955
2.1	1.0283	0.4272	0.39719
2.2	1.0443	0.4019	0.83422
2.3	1.0567	0.3785	0.37066
2.4	1.0731	0.3569	0.85649
2.5	1.0782	0.3367	0.84171
2.6	1.0814	0.3001	0.82634
2.7	1.0833	0.2835	0.81036
2.8			0.79377

$$
K=1.67 \quad u=0.300
$$

$\mathrm{V}_{2} / \mathrm{V}_{1}$	PL/D	$\mathrm{P}_{2} / \mathrm{P}_{1}$	$\mathrm{~T}_{2} / \mathrm{T}_{1}$
2.9	1.0842	0.2678	0.77659
3.0	1.0840	0.2529	0.75880
		$0.2635=P_{\mathrm{c}} / P_{1}$	

TABULATED RESULTS

$$
x=1.67 \quad M=0.325
$$

V_{2} / V_{1}	$R L / D$	P_{2} / P_{1}	T_{2} / T_{1}
1.05	0.1136	0.9489	0.99637
1.1	0.2167	0.9023	0.99257
1.2	0.3756	0.8204	0.98443
1.3	0.4943	0.7505	0.97559
1.4	0.5842	0.6900	0.96603
1.5	0.6532	0.6372	0.95577
1.6	0.7064	0.5905	0.94480
1.7	0.7476	0.5489	0.93312
1.8	0.7796	0.5115	0.92074
1.9	0.8044	0.4777	0.90765
2.0	0.8235	0.4469	0.89385
2.1	0.8380	0.4187	0.87934
2.2	0.8491	0.3928	0.86413
2.3	0.8571	0.3688	0.84820
2.4	0.8627	0.3465	0.83157
2.5	0.8664	0.3257	0.81423
2.6	0.8685	0.3062	0.79619
2.7	0.8691	0.2879	0.77743
2.8	0.8686	0.2707	0.75797
		$0.2862=P_{0} / P_{1}$	

TABULATED RESULTS

$$
X=1.67 \quad K=0.350
$$

V_{2} / V_{1}	$I L / D$	P_{2} / P_{1}	T_{2} / T_{1}
1.05	0.0959	0.9484	0.99579
1.1	0.1828	0.9013	0.99138
1.2	0.3159	0.8183	0.98194
1.3	0.4146	0.7474	0.97168
1.4	0.4886	0.6861	0.96060
1.5	0.5448	0.6325	0.94870
1.6	0.5874	0.5850	0.93598
1.7	0.6199	0.5426	0.92243
1.8	0.6447	0.5045	0.90807
1.9	0.6633	0.4699	0.89289
2.0	0.6771	0.4384	0.87688
2.1	0.6871	0.4095	0.86005
2.2	0.6942	0.3829	0.84241
2.3	0.6988	0.3582	0.82394
2.4	0.7014	0.3353	0.80465
2.5	0.7024	0.3138	0.75454
2.6	0.7021	0.2937	0.76362

TABULATED RESULTS

$$
K=1.67 \quad K=0.375
$$

V_{2} / V_{1}	$I L / D$	P_{2} / P_{1}	T_{2} / T_{1}
1.05	0.0816	0.9478	0.99517
1.1	0.1554	0.9001	0.99011
1.2	0.2678	0.8161	0.97927
1.3	0.3503	0.7442	0.96749
1.4	0.4115	0.6820	0.95477
1.5	0.4573	0.6274	0.94111
1.6	0.4914	0.5791	0.92651
1.7	0.5169	0.5359	0.91096
1.5	0.5358	0.4969	0.39448
1.9	0.5494	0.4616	0.87704
2.0	0.5590	0.4293	0.85867
2.1	0.5653	0.3997	0.83935
2.2	0.5693	0.3723	0.81910
2.3	0.5711	0.3469	0.79790
2.4	0.5712	0.3232	0.77576

TABULATED RESULTE

$$
x=1.67 \quad K=0.400
$$

V_{2} / V_{1}	$I L / D$	P_{2} / P_{1}	T_{2} / T_{1}
1.05	0.0699	0.9472	0.99451
1.1	0.1330	0.8989	0.98874
1.2	0.2284	0.8137	0.97642
1.3	0.2976	0.7408	0.96302
1.4	0.3483	0.6775	0.94854
1.5	0.3857	0.6220	0.93300
1.6	0.4129	0.5727	0.91638
1.7	0.4326	0.5286	0.89870
1.8	0.4466	0.4889	0.87994
1.9	0.4562	0.4527	0.86010
2.0	0.4623	0.4196	0.83920
2.1	0.4657	0.3892	0.81722
2.2	0.4670	0.3610	0.79418
2.3	0.4666	0.3348	0.77006

TABULATED RESULTS

$x=1.67$
$M=0.450$

$\mathrm{V}_{2} / \mathrm{V}_{1}$	TL / D	$\mathrm{P}_{2} / \mathrm{P}_{1}$	$\mathrm{~T}_{2} / \mathrm{T}_{1}$
1.05	0.0521	0.9458	0.99305
1.1	0.0990	0.8961	0.98575
1.2	0.1684	0.8085	0.97015
1.3	0.2275	0.7332	0.95319
1.4	0.2522	0.6678	0.93488
1.5	0.2765	0.6101	0.91520
1.6	0.2932	0.5589	0.89417
1.7	0.3042	0.5128	0.87179
1.8	0.3109	0.4711	0.84804
1.9	0.3142	0.4331	0.82294
2.0	0.3150	0.3982	0.79649
		$0.4025=P_{c} / \mathrm{P}_{1}$	

TABULATED RESULTS

$$
x=1.67 \quad M=0.500
$$

V_{2} / V_{1}	$I L / D$	P_{2} / P_{1}	T_{2} / T_{1}
1.05	0.0394	0.9442	0.99141
1.1	0.0746	0.8931	0.98241
1.2	0.1255	0.8026	0.96315
1.3	0.1601	0.7248	0.94221
1.4	0.1834	0.6569	0.91960
1.5	0.1985	0.5969	0.89531
1.6	0.2076	0.5433	0.86935
1.7	0.2124	0.4951	0.84171
1.8	0.2138	0.4513	0.81240
1.9	0.2127	0.4113	0.78141
		$0.4453=P_{0} / P_{1}$	

TABULATED RESULTS

$$
K=1.67 \quad x=0.600
$$

$\mathrm{V}_{2} / \mathrm{V}_{1}$	rL / D	$\mathrm{P}_{2} / \mathrm{P}_{1}$	$\mathrm{~T}_{2} / \mathrm{T}_{1}$
1.05	0.0228	0.9406	0.98764
1.1	0.0428	0.8861	0.97467
1.2	0.0695	0.7891	0.94694
1.3	0.0854	0.7052	0.91679
1.4	0.0938	0.6316	0.88422
1.5	0.0969	0.5662	0.84925
1.6	0.0961	0.5074	0.81186
		$0.5497=\mathrm{P}_{\mathrm{c}} / \mathrm{P}_{1}$	

TABULATED RESULTS

$$
x=1.67 \quad u=0.700
$$

$\mathrm{V}_{2} / \mathrm{V}_{1}$	PL / D	$\mathrm{P}_{2} / \mathrm{P}_{1}$	$\mathrm{~T}_{2} / \mathrm{T}_{1}$
1.05	0.0128	0.9364	0.98317
1.1	0.0236	0.8778	0.96553
1.2	0.0358	0.7731	0.92777
1.3	0.0403	0.6821	0.88674
1.4	0.0397	0.6017	0.84242
		$0.6537=\mathrm{P}_{0} / \mathrm{P}_{1}$	

