## Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If $a$, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

# THE EFFECT OF REDOCED PRESSORE ON 

VARTABLES IN DISTILLATICN

BI
JOSEPR P. CUMMNS

## A THESIS <br> SUBMTTMED TO THE FACULTY OF THE DEPARTYENT OF CHEMICAL ENGINEERTMG O <br> NEWARK COLIEAS OT ENGTIESTHO

## IN PARTLAL FULTILKMEXT OF THE HECUTREMENTS FOR THE DEOREE

ON
MASTHR OF SCIEMCE IN CHEMICAX EHOLHEERTNO

NENARK, NEN JERSEY
1955

# APPROVAL OF THESIS 

## FOR

## DEPARTMENT OF CREMICAL EMGINEERTWG

 NEHARX COLIEGE OF BNGINEERTMG
## BY

## FACULTY COMMTHEE

APRROVED:


HENARK, NBW JERSEY
JUNE, 1955

## SUMPARY

To determine the effecte of reduced preswure on preserure drop and holdup in aistillation, seven different liguids were dibtilied at vary
 to 50 w and holdup were foum to vary exponmtinlly with mase rute at anoh presexry. At condent mas rate pressure arop was highar for decreand hemd prosgure. Uee of material of higher molecular weigh lad to lowtr proseure drop th man rats and preesure. Oreateat offoct of presenwe
 affocted greatly by presare or moleculaz weight with trio packing utod.
 a plot of log 4P w. log $\sigma / \phi$, defined etakight line within remenmble limita* Thie 11ne; however, had a slope too steep to be uad for deaign work with mach aocuracy. Corralation of the data by a plot of $\log \rho \Delta P$ vt. $\log 0$ also gave a otraight $11 n$ wthin mbout the ane linitie. This has alope approximately the eame as the G/ø curve and is not wecomperded for demign work.

Nocification of the Reod-Fonske equation to use IIquid instead of vapor viscosithe appeared to Field a better cormelation af data for the Individual liquid end gave olower agreemmat amons all the licuids. The curve, definnd by $\rho \Delta \rho / \mu_{1}^{2}=0.0001(G / \mu,)^{2.4}$, ehould be weful for aproxinating oxpocted proware drop for tuy liquid at ang rete for the ste and typ phoking used.
(fidence pointe to diffusion concopte at a bacie for correlation
of distillation data. A new relationship in presented to predict the change in pressure drop et constant rate produced by a material of different molecular volume. The data 18 shown in the form:

$$
\left(109 \Delta p_{G / 6}=a-3 / 4 V_{M}\right.
$$

Use of the curves obtained permitted estimation of pressure drop of a Liquid with molecular volume greater than twice those used here to within thirty percent over a tenfold change in pressure drop. The curves should apply at any pressure since $\sigma / \phi$ Includes the effect of pressure on vapor density.

## ACKNOWLENOMMEX

The author wishes to express his gratitude and appreciation to Prof. O. C. Keeffe and Dr. S. I. Krepa for their guidance and to Merck \& Co., Inc. Por the use of facilities.

## TABLE OF COMTENTS

Summary ..... 111
Introduction- ..... 1
Materials and Equipment ..... 8
Procedure ..... 17
Hesults ..... 18
Discuasion of Results ..... 33
Conclusions ..... 49
Nonenclaturem ..... 51
Heferences- ..... 53

## INTRODUCTION

Distillation, the separation of constituents of a liquid nixture by vaporization of the mixture and separate recovery of vapor and residue, has been used for mary centuries. Fractionation, distillation carried out in such a way that successive products are further distilled in the ame operation to effect greater purity, is a much more recent imovation. Vacuum distillation, however, can be called a modern operation, since its first industrial usage started in the late nineteenth century. Actually, use of vacum distillation or fractionation was not widespread until fairly recently. Most of the recorded work on the effectis of reduced pressure on distillation has appeared in the past ten or fifteen years.

Vecuum distillation here refers to all distillations performed under pressures less than atmospheric and in equipment not specifically designed for molecular distillation. The principal advantage over atmospheric distillation is the lowering of the boiling point. This permits distillation of eubstances subject to chemical alteration at the normal boiling point. It is also advantageous for heat stable compound having low vapor pressures which would boil at inconveniently high (and uneconomical) temperatures at atmospheric pressure. Formation of undesirable azeotropes and polymers may also be avoided by use of low pressure distillation.

A large percentage of batch vacuum distillation is carried out in packed coluans due to the lower pressure drop and holdup than in equally efficient bubble-cap or other type colums. In many cases
packed towers are chemper. Packing also leswens the possibility of the tower collapsing under vacuum. Therefore, packed columns are considered in most of the studies on distillation under reduced pressure.

A moderate amount of work has been reported in recent years on vacuum distillation, but there is still much to be done in order to provide sufficient information for proper equipment design. Sone of the more important variablea to be considered in batch distillation have been listed ${ }^{21}$ as: reflux ratio; number of theoretical plates or separating efficiency; ratio of holdup to charge; vapor velocity or throughput; relative volatility; initial composition of mixture.

The two latter items relate directly to the syster being distilled. However, the effects of pressure on phystical properties other than relative volatility hould be considered. Some physical properties are affected little by pressure changes, but a great deal by variations in temperatore. In these cases, it is the reduction of boiling temperature due to the lower pressure which causee differences in properties.

Presmure drop and flooding velocity should be added to the first four variables mentioned when dealing wi. th vacum work. of all these variablea, a relationship anong throughput, holdup, pressure drop and efficiency would be desirable.

Various investigators have considered the effects of diminished pressure on the efficiency of packed columes. Results obtained, in general, bhow that direction of efficiency variation with preasure and
throughput rate is evidentiy a function of the individual packing and the liquid test mixture.

The pressure drop becomes quite important in vacum diatillation due to its effects on vapor density. A decrease in premsure cousee a decrease in vapor density. This, of course, leads to increased volume flow of vapor with higher vapor velocities. Larger friction losses should result in higher pressure drops. This is extreaely important at quite high vacuum since relatively large pressure drop coupared to the desired operating pressure may cause sufficient still pressure to prevent operation under the maximun allowable boiling temperature.

Holdup has a dual effect in batch dietillation since it limita the proportion of charge that can be distilled and alao affects the sharpness of separation of any two componente.

## Literature Survey

The acope of the present work is an attempt to correlate the effecta of reduced pressure in distillation on pressure drop and holdup. Several proposals have been made in the itterature. Some of these are based on experiments in gas absorption which can be considered similar In many respects to distillation. Sherwood ${ }^{15}$ proposes that since no thoroughly satisfactory method has as yet been developed for correlating pressure drop for hollow commercial packing with countercurrent flow rates of gas and liquid, the simplest and most zecurate procedure for equipment design is to refer to plots of flow rate vs pressure drop for the specific packing. Advanced as the nost reliable data are those of Tillson who has made extensive pressure drop measurements in a

20 inch diameter colum which is large enough to minimite wall effecta. tillson has presented hid data plotted as $\log \Delta \rho$ va. $\log G / \phi$, where $a$ is the mass flow rate of the gas and $\phi=\sqrt{\rho / 0.075}$ is a factor to correct for variation in gas density.

Struck ${ }^{17}$ tried to correlate his data on vacuun fractionation of n-decane and trane-decalin by the aame type of plot. Using the density of n-decane at 100 ma Eg instead of the density of air ( $0.075 \mathrm{Ibs} . / \mathrm{cu} . \mathrm{ft}$. at standard conditions, his correlation was fairly good, particularly at high pressure drope. However, deviation from the correct value increased as pressure deviated from the 100 mmg reference, This makes the idee of a reference point selection somewhat questionable.

Hand, Whitt and Gregory ${ }^{6}$ have applied the same method to distillation and obtained data at lower liquid rates and higher rapor rates in order to include the ranges generally used in distillation work. These rates are different from those in absorption where control of individual gas and liquid rates is possible. These authore also determined data for phosphorus oxychloride in dietillation at atmospheric and reduced pressures in order to compare with the conventional water-air absorption data. The plots of $\Delta \rho$ vs. $G / \phi$ for the two systems cannot be correlated as such since bomewhat different slopes are obtained for these, two curves. However, the authore claim that the approximately eight percent error can be dieregarded since as much variation is obtained in the same equipment with different dumpings of the packing.

For design work, they suggest use of the Fanning-type equation proposed by Chilton and colburn for flow in packed beds: $\Delta \rho=2 f \rho A_{p} A, U^{2} / g_{c} \sigma_{p}$.

The Ariction factor is to be obtained from the oomonly used friction foctor ve, modilied leynolds number chant. This equation involvee use of the cowrection factor ${ }^{( }$por hollow packing effect and A for nowing Ilquid effact. Both of thase factors vaxy with flom rote as well as pecking dimmetar. Ceneral nse would neomsitate chart far variation of the factore for all pacidnge considarea at varions rates. The factore premented are those for viter alone. The offect of physical properties of other materials 1 not dofinite. No work has ovidentiy been done on the effects of proseure on these variables.

Leve ${ }^{8,9}$ has devaloped an annlywis of fluid flow through packed bed and reoommende the appromoh of Brownall and mata $^{2}$ for omloulating pressure drop through packed Liquid-gas systases. In their method allowano is ade for the affect of liguid rate upon effoctive shape factor of the packing, voidage of the bed and zurfoce roughnem of the pariding. These affeetw wre included in their expreselon for presaum drop whioh is almo based on a Farning-type equation and the
 oxtrenely involved and was developed on dita for come of the more coman types of packing uped In sbeorytion townew was wis an and beds. The nower, high fiftelency packinge dealgned for in pached dietillation towers, such as that uved in the following experimental work, have much lest holaup and proteure drog and have high wolds content and surfiag arek. The epharicity and perowity factors as daveloped by Bromacll and Eate do not cover anflyelent range to be umad for mont of these packinge. Valuee of the poroelty exponente for the protruded packing uted would fall in the range from 50 to

10,000 and their use would be extremely queationable.
Reed and Fenske ${ }^{14}$ have presented a correlation based on a dimensional analysis of the factors involved in the bydrodynamics of Iiquid vapor flow in distillation. This is expressed as an equation involving two dimensionless groups:

$$
\frac{P_{a} M \Delta P\left(f_{0}-H\right)^{3}}{R T_{a} h \mu_{v}^{2} S^{3}}=k\left(\frac{G}{\mu_{v} S}\right)^{n}
$$

Data collected over a number of yeare for wire helix packing was applied and ahowed quite good agreement for the two liquids involved, benzene and n-heptane.

Data of Struck ${ }^{17}$ on n-decane was applied to the correlation and yielded fairly good realts, Hovever, Struck testod several different packings and each one of them considered alone gave rise to a separate line of different slope from Reed and Fensk's line indicating there is stili wome packing characteristic not accounted for * Efect of pressure seemed to be well aecounted for since Struck's data included work at atmospheric pressure as well as several reduced pressures, But Reed and Fenske point out that a curve for data on tetraisobutane lies above the bensene curve showing absence of some physical property since the large difference in molecular weight is taken into account.

Struek and Kinney ${ }^{18}$ present data on holdup which indicates that holdup varies lineraly with distillation rate except at very low rates and increases with decreaming head pressure. This agrees with work by Collins and Lents ${ }^{3}$ and Elgin and Weiss ${ }^{4}$. However, Jesser and Elgin7 present data which show exponential variation of holdup with
flow rate. Most investigators in absorption work have found that below the loading point, gas rate had no effect on holdup. as a result most work on holdup in absorption has been carried out with no gas flow. In dietillation, vapor rate and liquid rate are related. Theoretically they are equal, if aseumption of no heat losses is made. Thus an increased boilup rate raises the reflux rate and holdup should be expressed as function of the vapor mass rate since vapor rate changes would control.

Struck also was not able to correlate holdup at one pressure with that at another by use of Jesser and Elgin'a proposed relationship with dencity, viscosity and arrface tension.

From the above review of past attempte at correlation of flow data, it can been thet more work is needed to obtain suffictent information on design variables. The folloring objectives are set for this work:

1. Application of previous thods to experimental date on various 1iquids.
2. Comparison of results of different correlations and selection of preferred method, if any.
3. Investigation of possible new or revised correlations to determine whether such are possible with present data.

## MATERTASS AND ECUIPMIMT

## Materiala

The following liquids were used in this investigation:
Methyl Alcohol
Sthyl Alcohol
Isopropyl Alcohol
Normal Butyl Alcohol
Isoaryl Alcohol
Toluene
Xylene

All of the above were of reagent quality and physical properties agreed well with accepted values.

These liquids were used for several reasons. Most of the published data includes use of bydrocarbons. Use of other liquids will provide information as to variations due to the influence of physical properties. Investigation of the family of alcohols should provide data on compounds similar in nature chemically, but with increasing differences in physical properties. Toluene and Xylene were included to tie in if possible with some published data.

All liquids were investigated individually, that is, no fractionation or teste on efficiency were atterpted. This avoided complicating variables auch as hats of solution, variation of still composition and thus of boiling point during a run, and inaccuracies in calculations of densities, viscosities, heats of vaporization of mixtures and so forth.

## TABLB 1

## PHISTCAL PRCFETKES OF LICUMS


Alcohol Alcohol Alcohol Mleanol Alcohol Solvene Xylen

| Molmealar welight | 32.0 | 46.2 | 60.1 | 74.1 | 88.2 | 92.1 | 106.2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Specific Gravity } \\ & 200 / 4^{\circ} \mathrm{C} \end{aligned}$ | 0.792 | 0.789 | 0.789 | 0.810 | 0.813 | 0.866 | 0.863 |
| Lquid Viecosity ${ }^{2} 20^{\circ} \mathrm{Ca}$. cp . | 0.60 | 1.20 | 2.25 | 2.90 | 4.40 | 0.63 | 0.66 |
| surface Tonstion <br> * $20^{\circ} \mathrm{C}$., dyyua/cay | 22.6 | 2218 | 22.7 | 24.6 | - | 28.5 | 20.5 |
| Normal Boiling Point, oc. | 64.7 | 78.4 | 82.5 | 117.0 | 132.0 | 110.8 | 139.0 |
| Latent Hent of Vaporization, cal/gr. | 263 | 20. | 472 | 131 | 220 | 87 | 62 |
| Vapor Density at <br>  | 0.071 | 0.099 | 0.127 | O. 124 | 0.162 | 0.181 | 0.196 |

The physical properties of these liquide are shown in Table 1. Variation of properties with temperature and pressure is shown as follows:

Figure 1. $\begin{aligned} & \text { Pressure ve. Boiling Temperature } \\ & \text { (Vapor Fressure Curves) }\end{aligned}$
Figur 2. Pressure ve Vapor Density at Bolling Point
Figure 3. Viscosity vs. Temperature for Liquids
Figure 4. Viscosity Vs. Temperature for Vapors
Figure 5. Latent Heat of Vaporization va. Temperature

## Equipment

A schematio diagran of equipment used is shown in Figure 6,

The colum consisted of a one inch diameter Pyrex glass tube with a 35 inch packed aection, topped by vacuam-jacketed stillhead with solenoid oparated liquid reflux divider, Reflux ratio was controlled by a plexopulse timer. A 12 inch reflux condenser was found sufficient to condense all the vapors at the boilup rates used. The still was a one liter, three necked Fyrex flask, heated by a ClasmCol mantle. Voltage input to the atill heater was controlled by a Variac transformer.

Product was collected in a graduated cylindrical receiver. The reflux trap consiated of a graduated cylinder with stopcock for drainage and a aide arm which eerved as the vapor line to the column.

The colum was lagged with one inch magnesia insulation. Bxpoeed glass between the still and stillhead was lagged with asbestos rope.

Freseure taps were provided by adaptere above and below the

$12$






column to give the actual colum pressure drop. Lines from these taps were connected through vapor traps to a water filled 0 tube. Operating pressure was determined by a mercury manometer in the vacuum line. Temperatures were read from themometers in the still, in the vapor line (atillhead) and in the reflux retum to the colum under the stillhead.

The system waa evacuated by a Cenco Megavac" vacuur pump comected through a dry ice trap and surge tank to the systom. Pressure was controlled during vacuum muns by a mercury actuated manostat connected to the vacum purn and system through a Skinner electric valve.

The colum was packed by sloviy pouring in $0.24 * \times 0.24$ " protruded atainless steel packing, gently tapping the colum while filling to a height of 35 inches. A total of 124 grams of packing was used, or approximately 3710 pieces at 0.0335 grams each. The volume of the empty colum was 400 co water at $10^{\circ} \mathrm{C}$., while the packed column held 360 cc . The void space of the packing as used was therefore, $90 \%$ as compared to the manufacturer's value of 96 ºb $^{13}$. Packed bulk density of the packing was $19.5 \mathrm{lbs} . / \mathrm{cu} . \mathrm{ft}$. compared to 22.2 , and surface/ volume ratio was 396 sq.ft./cu.ft. packed volume compared to 372 . Static holdup was 25 ec water determined by filling the column with water and allowing to drain for 15 minutes.

PROCEDTRE
The still was charged with approximately 500 oo of the material to be tewted. The systen was evmeuated to the dealred operating probgure and the still heated. Haterial was allowed to reflux at a given rate until the preseure drop was constant. Presaure drop and atill, 1iquid reflux and vapor temperature readinge ware taken. Bottom rate was obtained by draining the trap and determining the time required to fall trap to marked voluse (in duplicmte). Top rate was determined by taking off product over a puriod of 10 to 15 minutes at a rerlux ratio of 10 n (accurately tined). The average boilup rate wat detarmined at the arithmetac average of top and bottom ratee to minisine the effacta of heat loas through lagging lnce there was no way to hest the colund. The heat lase was considarmble with the higher boiline point liquide. Holdup was obtained at volume of drainge from colum (loss trap holeup) for 15 mimotos after homt was removed and the sybten vented from product rectiver. The colum way dreined and aried unicr Facwan for 24 bours botween rans with ditferent 11quids.

During repent runs at any one preasure, the exact pressure could not always be duplicatec. Effecte of this smill variation are corrected for in the calculations. For example; wher density is involved, the density is calculated bsed on the exact pressure deterained from the terperature and vapos presmure charts.

## RESULIS

The remults of the individual runs are show in Table 2 and Figures 9 to 19. Fox each material, pressure drop and holdup are shown as function of mase velocity. The mase velocity of liquid and vapor are assumed to be equal.

Ghange of pressure drop with mas rate for each liquid is shown in Figures 7 to 13. It can be aeen that for each Iicuid at any one pres-踢; preasure drop increases exponentially with increase of mass rate. At constant rate, pressure drop increased as head pressure was reduced. This effect of pressure was more noticeable belon 300 m Hg. In fact above this pressure, the data are quite close to those at atmospheric pressure.

In general, $n t$ any one head pressure, the mass rate required to produce a given pressure drop was higher for material of higher molecular welght than the one previously tested. This was not strictly true at all preseure dropssince the slopes of the individual curves varied at different head pressures and among different materials. Seattering of data did not persalt exact detemination of slope but the trend indicated dacreased slopes at lower head pressures.

Change of liquid holdup with mass rate for each liquid is shom in Flgures 14 to 19. These curves also show a definite oxponential relationship of holdup to rate in agreement wth Jesser and Ehgin7 and Streib ${ }^{16}$. While insufficient data are available to determine the characteristics of each curve at aach pressure, again there is a difm fexence in trend of slope at various pressures indicating eone effect
of pressure on one of the physical properties affecting holdup. While holdup data were not obtained for all 11quids at all pressures, the realts show less change of holdup with variation in rate with increase of molecular weight at any one pressure. In absence of a large amount of accurate data, no quantitative conclusiona can be drawn, since inaccuracies of the method used for the holdup determination are large. With a small colurn, a small anount of holdup in parts of the unit outaide the packing can lead to a large percentage error in the volume of drainage.

However with this particular packing, of which one of the features is low holdup, there is little effect of pressure on total volume of operating holdup. The holdup observed was of the order of five to twelve percent.

TAble 2
EXFPRTMENTAL AND CALCULATED RESULTS

| Pressure METHIL AICOHOL | $G$ | $G / \varnothing$ | $\begin{aligned} & \Delta p_{3} \\ & \times 10^{3} \end{aligned}$ | $\begin{aligned} & \rho \Delta p \\ & \times 10^{4} \end{aligned}$ | $\begin{gathered} \mathrm{H} \\ \times 10^{3} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. atmos. | 191 | 193 | 150 | 110 | 66 |
| 2 | 203 | 206 | 110 | 75 | - |
| 3 | 229 | 234 | 210 | 150 | 71 |
| 4 | 242 | 247 | 130 | 92 | 114 |
| 5 | 326 | 334 | 300 | 220 | 76 |
| 6 | 338 | 340 | 370 | 290 | 76 |
| 7 | 368 | 377 | 300 | 210 | 122 |
| 8 400mm Hg | 179 | 24. | 150 | 62 | 49 |
| 9 | 200 | 269 | 210 | 88 | - |
| 10 | 214 | 282 | 170 | 74 | 66 |
| 11 | 262 | 344 | 260 | 110 | 124 |
| 12 | 262 | 344 | 330 | 110 | 115 |
| 13 | 271 | 357 | 260 | 110 | 84 |
| 14 3003m Hg | 179 | 306 | 150 | 38 | 61 |
| 15 | 22 | 366 | 210 | 55 | 89 |

ETHYL ALCOHOL

| 1 | atmos. | 24.4 | 210 | 110 | 110 | 49 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  | 247 | 225 | 110 | 96 |  |
| 3 |  | 270 | 233 | 130 | 130 | 69 |
| 4 |  | 368 | 315 | 370 | 370 | 85 |
| 5 |  | 406 | 350 | 300 | 300 | 68 |
| 6 |  | 445 | 392 | 430 | 420 | 175 |
| 7 | 400mm Hg | 100 | 207 | 130 | 66 | - |
| 8 |  | 161 | 188 | 65 | 37 | 59 |
| 9 |  | 161 | 194 | 65 | 28 | - |
| 10 |  | 223 | 268 | 150 | 76 | 65 |
| 11 |  | 226 | 273 | 170 | 88 | - |
| 12 |  | 288 | 328 | 190 | 110 | 79 |
| 13 | 300xm Hg | 161 | 207 | 86 | 39 | 59 |
| 14 |  | 197 | 252 | 110 | 50 | 72 |
| 15 |  | 235 | 313 | 240 | 100 | - |
| 16 |  | 260 | 324 | 210 | 100 | 71. |
| 17 |  | 280 | 378 | 370 | 150 | - |

ISOPROPIL ALCOHOL

| 1 | atmos. | 139 | 107 | 32 | 47 |
| :--- | :--- | :--- | ---: | ---: | :--- |
| 2 | 174 | 134 | 43 | 55 | 49 |
| 3 | 224 | 174 | 110 | 130 | - |
| 4 | 247 | 190 | 150 | 190 | 62 |
| 5 |  | 256 | 198 | 86 | 110 |
| 6 |  | 286 | 220 | 150 | 190 |
|  |  |  |  |  |  |

(Table 2 cont'd)

|  |  | $G$ | $G / \phi$ | $\begin{aligned} & \Delta P_{3} \\ & \times 0^{3} \end{aligned}$ | $\rho_{x 10^{4}}^{\Delta}$ | $\begin{array}{r} \mathrm{H}_{3} \\ \times 10^{2} \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 |  | 346 | 267 | 170 | 220 | 79 |
| 8 |  | 117 | 324 | 210 | 270 | 111 |
| 9 |  | 450 | 350 | 240 | 300 | - |
| 10 | 400wn Hg | 179 | 194 | 65 | 42 | 69 |
| 11 |  | 183 | 200 | 86 | 54 |  |
| 12 |  | 248 | 262 | 86 | 54 | 75 |
| 13 |  | 249 | 272 | 150 | 95 | - |
| 14 |  | 346 | 372 | 150 | 97 | 81 |
| 15 | 300mm Hg | 185 | 244 | 110 | 47 | 63 |
| 16 |  | 269 | 350 | 170 | 76 | 72 |
| 17 |  | 293 | 378 | 150 | 68 | - |
| 18 |  | 372 | 455 | 280 | 140 | 76 |
| n-BUTYE ALCOHOL |  |  |  |  |  |  |
| 1 | atmos. | 179 | 130 | 75 | 110 | 63 |
| 2 |  | 230 | 175 | 110 | 140 | 75 |
| 3 |  | 240 | 196 | 86 | 100 | - |
| 4 |  | 413 | 324 | 270 | 210 | 81 |
| 5 | 3001arar | 143 | 161 | 32 | 19 | 60 |
| 6 |  | 210 | 250 | 53 | 28 | 4 |
| 7 |  | 222 | 251 | 43 | 25 | 25 |
| 8 | 100nm Hg | 93 | 193 | 32 | 5.6 | - |
| 9 |  | 128 | 246 | 53 | 11 | - |
| 10 |  | 146 | 254 | 53 | 13 |  |
| 11 |  | 148 | 254 | 65 | 17 | - |
| 12 |  | 188 | 322 | 110 | 27 | 78 |
| 13 |  | 189 | 324 | 130 | 33 | 58 |
| 14 |  | 194 | 337 | 86 | 21 | 60 |
| 15 | 50mm | 103 | 306 | 190 | 16 | 48 |
| 16 |  | 126 | 352 | 320 | 31 | 55 |
| 17 |  | 150 | 418 | 390 | 38 | 65 |
| 18 |  | 187 | 524 | 490 | 47 | 58 |

ISOAMI ALCOHOL

| 1 | 150am Hg | 156 | 229 | 54 | 18 | 46 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  | 220 | 314 | 86 | 31 | 69 |
| 3 |  | 229 | 338 | 110 | 37 | 64 |
| 4 |  | 332 | 415 | 190 | 92 | 100 |
| 5 | 90mathg | 94 | 217 | 54 | 8 | 42 |
| 6 |  | 250 | 282 | 130 | 28 | 54 |
| 7 |  | 159 | 302 | 130 | 27 | - |
| 8 |  | 252 | 415 | 210 | 59 | 73 |
| 9 | Lormitig | 77 | 298 | 210 | 11 | 4 |
| 10 |  | 122 | 325 | 320 | 35 | - |
| 11 |  | 141 | 378 | 470 | 51 | 54 |
| 12 |  | 203 | 553 | 665 | 68 | - |
| 13 |  | 207 | 495 | 600 | 76 | 64 |

(Table 2 ount ${ }^{2}$ )

TCLDEV施


## XYESTR

| 1 2 | 300may |
| :---: | :---: |
| 3 |  |
| 4 | 100um 4 m |
| $\frac{5}{6}$ |  |
| 7 | Lomm Hig |
| 8 |  |
| 9 |  |
| 10 |  |


| 148 | 190 |
| ---: | ---: |
| 27 | 266 |
| 374 | 330 |
| 108 | 196 |
| 174 | 266 |
| 286 | 416 |
| 62 | 205 |
| 108 | 298 |
| 121 | 342 |
| 192 | 446 |

32
43
110
43
110
170
110
170
240
310

| 15 | - |
| ---: | ---: |
| 43 | - |
| 110 | - |
| 10 | - |
| 34 | - |
| 62 | - |
| 7 | - |
| 17 | - |
| 18 | - |












## DISCUSSIO2 OF HESULIS

The effects of reduced preagure on presenve drop as shown above were as expected. At any rass rate, higher vapor velocity due to reduction in pressure should lead to greatex friction losees and higher presture drops. However, the differences between the various materials at different pressures lead to some questions. Among these are rasons for differences in slope of the pressure drop ve. mass rate curves at different pressures and mong the different materials. It is asumed that these differences are due to different variations of physical properties with preasure and/or bolling temperature. These differences are upplied in th development following.

Comparison of the data at vaxiou* pressures on a common basis is the first step in a desirable correlation. Vapor density id the property most severely affected by prossure and in addition includes the effect of molecular weight. It would een that use of vapox velocity (mase rate divided by density) would be valuable. Eowever, a plot of pressure drop against vapor velocity spreads the data in some cases even more, so that the curven at different pressurea are more distinet than in the preasure drop ve. mass rate plots. This is due to the laxge differonces in density even at relatively close pressures. For example, with methyl alcohol, data at 300 and 400 mm Hg are quite close together when plotted against mase rate, but are well apread out plotted against vapor velocity. This latter representation eccentuates the differencea between pressures rather correlating the data.
the use of $G / \sqrt{\rho}$ suggented by Forsythe, et $a l 5$ to correlate data
on pressure drop for various systera also spreads the data to some extent. The similar absorption correlation, using $G / \varnothing$ with $\phi$ based on the density of air at standard conditions yialds better results. It would seem that both of these methods would be similar, but the present data when plotted as $G / \phi$ vs. $\Delta p$ appear in more of a continuous line over the pressures tested rather than as lines at each pressure as results from use of $\Delta p$ vs. $G / \sqrt{p}$. Evidently the factor $\sqrt{\rho / 0.075}$ show better the effect of density in the relationship between drop and mass rate than does $\sqrt{\rho}$.

Attempts to modify $\phi$ by use of any other factor than 0.5 in the ratio ( $\rho\left(\rho_{\text {air }}\right)^{0.5}$ aiso spreads the data into groups. Use of the density of air at the conditions of the rm in question again has the zame effect. These results point up those of Struck mentioned earlier. Struck used the denaity of n-decane at a specific pressure instead of the density of air and got diverging rather than coinciding curves. Again it would seem that $\sqrt{\rho}$ should give satiafactory resulta, especially since the density of air has no connection with the problem. But the results obtained do not agree.

Whith the $G / \varnothing$ vs. $\Delta \rho$ curved plotted for each individual material the difference in slope of each curve can still be seen. This is the difference noted by Hand ${ }^{6}$ and as shown below no simple correction factor can be applied. Thi difference can also be seen in the data of Peters ${ }^{12}$ for n-decane and trans-decalin and ethylbenzene and chlorobenze at several different pressures.

The combined plot of $G / \phi$ V. $\Delta p$ for all the materials considered is shown in Tigure 20. The data are presented in Table 3.


Tande 3

## ECH2

| Pressum MEITIS ALCCHOL | $G / \mu_{v}$ | $\frac{p \Delta p}{\mu_{x 10^{6}}^{\mu^{2}}}$ | $G / \mu_{1}$ | $\frac{\rho \Delta \rho}{\substack{\mu_{1}^{2} \\ x 10^{3}}}$ | $G / \mu_{\nu} s$ | $\frac{\rho \Delta \rho\left(f_{0}-H\right)^{3}}{\mu_{v}^{2} S^{3}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5620 | 49 | 224 | 78 | 18 | 291 |
| 2 | 8000 | 37 | 240 | 59 | － | － |
| 3 | 6760 | 68 | 270 | 108 | 22 | 405 |
| 4 | 750 | 4 | 265 | 66 | 23 | 236 |
| 5 | 9650 | 100 | 304 | 180 | 38 | 720 |
| 6 | 10000 | 130 | 400 | 206 | 32 | 672 |
| 7 | 10000 | 多 | 438 | 151 | 35 | 403 |
| 8 | 5600 | 31 | 182 | 33 | 18 | 157 |
| 9 | 6260 | 1.6 | 204 | 48 | － | － |
| 10 | 6700 | 38 | 218 | 40 | 2. | 182 |
| 11. | 8280 | 58 | 267 | 6. | 26 | 272 |
| 12 | 8220 | 72 | 267 | 76 | 26 | 309 |
| 13 | 8500 | 59 | 276 | 62 | 27 | 230 |
| 14 300xa | 6180 | 2 | 165 | 18 | 19 | 87 |
| 15 边 | 7300 | 3 | 195 | 23 | 22 | 215 |

BTEXX ALCOHOL

| 1 |  | 8880 | 000 | 202 | 120 | 24 | 273 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  | 8320 | 184 | 204 | 110 | ＊ | $\cdots$ |
| 3 |  | 9100 | 234 | 23 | 1400 | 27 | 33 |
| 4 |  | 124：00 | 65 | 304 | 390 | 37 | 796 |
| 5 |  | 13700 | 55 | 336 | 320 | 37 | 630 |
| 6 |  | 15000 | 720 | 368 | 440 | $\underline{4}$ | 605 |
| 7 | 400man ${ }^{\text {Hes }}$ | 3850 | 150 | 69 | 48 | － | － |
| 8 |  | 6250 | 75 | 112 | \％ | 17 | 79 |
| 9 |  | 6250 | 78 | 112 | 25 | － | － |
| 10 |  | 8720 | 278 | 156 | 57 | 23 | 17 |
| 11. |  | 8380 | 24 | 158 | 65 | － |  |
| 12 |  | 11000 | 253 | 200 | 81 | 30 | 235 |
| 13 |  | 5500 | 72 | 92 | 20 | 17 | 84 |
| 14 |  | 6700 | 93 | 112 | 2 | 21 | 106 |
| 15 |  | 8100 | 173 | 135 | 18 | － | － |
| 16 |  | 9000 | 286 | 150 | 5 | 8 | 812 |
| 17 |  | 9600 | 266 | 160 | 74 | － | － |

SSOFHOTIL ALCOHOL

| ＊tmos． | 6160 | 43 | 115 | 15 | ${ }^{*}$ | － |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 7720 | 5 | 14h | 19 | 20 | 107 |
| 3 | 15300 | 23 | 205 | 47 | ＊ | － |
| 4 | 11000 | 193 | 20.1 | 67 | 敬 | 355 |
| 5 | 11300 | 102 | 210 | 39 | 2 | 198 |
| 6 | 12700 | 193 | 26 | 67 | － |  |

(Table 3 cont'd)
7
8
9
10
11
12
12
13
14
14
15
16
17
18
$1800 m a t h$
n-BUTYL AlCOHOL

| 1 | atmos. | 750 | 79 | 188 | 55 | 21 | 476 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  | 9100 | 117 | 240 | 82 | 27 | 597 |
| 3 |  | 9500 | 82 | 250 | 57 | - | $\cdots$ |
| 4 |  | 16000 | 173 | 430 | 120 | 49 | 886 |
| 5 | 300rm Fg | 6750 | 9 | 99 | 1.9 | 18 | 100 |
| 6 |  | 9900 | 13 | 145 | 2.7 | 27 | 14.4 |
| 7 |  | 10400 | 12 | 153 | 2.5 | 28 | 129 |
| 8 | 100min ${ }^{\text {asg }}$ | 4360 | 7 | 40 | 0.55 | - | - |
| 9 |  | 6100 | 13 | 56 | 1.1 | - | - |
| 10 |  | 6900 | 15 | 63 | 1.3 | - | * |
| 11 |  | 7100 | 20 | 65 | 1.7 | * |  |
| 12 |  | 9000 | 31 | 82 | 2.6 | 25 | 153 |
| 13 |  | 9050 | 38 | 83 | 3.2 | 26 | 212 |
| 14 |  | 9150 | 25 | 84 | 2.1 | 26 | 118 |
| 15 | 50mm | 5260 | 22 | 30 | .72 | 15 | 109 |
| 16 |  | 6500 | 43 | 37 | 1.4 | 18 | 203 |
| 17 |  | 7700 | 52 | 44 | 1.7 | 21 | 238 |
| 18 |  | 9650 | 65 | 55 | 2.1 | 26 | 300 |

ISOAMIL ALCOHOL

| 1 | 150 mm Hg | 9800 | 39 | 93 | 3.5 | 24 | 127 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  | 13800 | 63 | 131 | 5.7 | 33 | 32 |
| 3 |  | 14300 | 75 | 136 | 6.8 | 35 | 94 |
| 4 |  | 20700 | 180 | 196 | 17 | 50 | 186 |
| 5 | 90 man Hg | 6200 | 18 | 43 | 0.9 | 15 | 86 |
| 6 |  | 10000 | 64 | 69 | 3.1 | 24 | 199 |
| 7 |  | 10500 | 60 | 73 | 2.9 | - | - |
| 8 |  | 16700 | 135 | 116 | 6.5 | 39 | 438 |
| 9 | 40nm Hg | 4500 | 19 | 23 | 0.5 | 13 | 110 |
| 10 |  | 7100 | 62 | 36 | 1.6 | - | - |
| 11 |  | 8300 | 88 | 42 | 2.3 | 23 | 600 |
| 12 |  | 11800 | 120 | 60 | 3.1 | - | - |
| 13 |  | 11800 | 136 | 60 | 3.5 | 34 | 294 |

(Table 3 cont' $d$ )

TOLUENS


XILENE


Also shown is a plot of aggested correlation $\rho \Delta p=k " G^{n}$ based on the Reed-Fenske equation with void spece, packing area, holdup and vapor viscosity neglected. The first two items are functions of the packing alone and the third primarily concerns the paciing. The correlation obtained hare for the seven liquids seems to be as accurate a representation of the data as that presented by Reed and Fensice for bensene and the n-heptanemethylcyclohexane aystem. ${ }^{1 / 4}$ Actually the treatment seems to be equaliy as good as the $G / \phi$ treatment if either can be considered good. Both curves have a slope of about +3 which is rather high for a curve of this type to be very accurate.

The vapor viscosity correction in the Reed-Fenske equation can be applied in a plot of $\rho \Delta P / \mu_{v}^{2}$ ve. $G / \mu_{v}$. This is shown in Figure 21 and Table 3. The curve shom has a slope of about +5 (exponent $n$ ).

It would sean that the liquid viecosity rather than the vapor viecosity would play a large part in affecting holdup. It has been shom by various inventigators that holdup ia a function of Iiquid rate alons, below the loading point in abmorption. In distillation the vapor rate is rarely above this point, and vapor viscosity should have little effect on holdup or preasure drop. Liquid viscomities vary considerably in temperature and differ in magnitude by al much as $300 \%$ among the various liquids investigated, while vapor viscosities change little. With this in mind, the proper values of liquid viscosity were applied to the data by means of the Reedmenske correlation in place of the vapor viscosity. The resulte were plotted as $\log \mathrm{G} / \mu$, against $\log \rho \Delta P / \mu_{1}^{2}$ and are thown in Table 3 and Figure 22. Also inm cluded are data from peters ${ }^{12}$ on the nmecane and trans-decalin system


at 50 and 350 mm Hg in a two inch diameter by 24 inch high columan with the same packing. This shows a much better correlation than does the use of vapor viscosity and it is felt that this is an improvement over the original proposal by fleed and Fenske. The greatest inprovement is the correlation of the data for each individual liquid. This is especially noticeable with methyl alcohol, which points are conaiderably scattsred with any other method of plotting. Thare is atill systematic deviation among the various materials but the individual curves seem to have almost similar slopes. The overall curve has a lope of about +2.5 compared to +5 with uee of vapor viscosity. This is more of the oxder of that predicted by Reed and Fenske (1,7-1.8). It is felt that the most desirable slope for a curve of this type is about +1 for greatest accuracy. The lowered slope with Liquid viscosity is definite advantage over that for vapor viscosity.

Because of the reaults found in the $\rho \Delta \rho$ and $\mu$ correlations, it is desirable to apply the complete Reed-Fenske equation to the data where holdup information is available. The results are shown in Figure 23 and Table 3. While the majority of the data falls within the limite of the original data, many points for isopropanol, n-butanol and toluene fall well below the line. No holdup data for xylene was obtained and no comparison is possible here. Howover, the points plotted individunliy for each miterial show a definite slope for each material. close inspection of the original curve ${ }^{14}$ shows this possibility between benzene and n-hoptene. Data for 1soanyl and n-butyl alcohols still show the marked separation of points for runs at various pressures. This may be due to the use of vapor viscosity rather than liquid viscosity as

shom above. The greatest source of error in the overall correlation is probably in the Inaccuracles of the holdup data th the small colvin used. The fact that others have found that ach packing gives a different curve indicates that thit coxrelation ahould be used with caution in applying cata fron one packing for design worl using another pscking.

Value of holdup caleulated fron valaes of the Reedmpensice ordinate at $G / \mu{ }^{\prime} S$ for the experimental runs do not show much agreement with the observed values. These values do in genaral lie within a meteonable range of the true ELgures hovever, and the armll holdup and overall Inexactness of the complete correlation would account for the deviation.

Use of the Chilton-Colburn method as proposed by mand ${ }^{6}$ is not feasible here due to the absence of $A_{p}$ factore for the packing used and $A_{1}$ factors for tho various Hquids. Pralininary calculatione show that these factors definitely vary with mass rate and A for the mrotruded packing used ahoula be mueh lower than those for hasehig rings and Berl badales. This is expected since protrudec packing has been show to cunee a razch lowex prebsure drop than the other two types.

Exarination of other physical properties and their variation wh temperature leads to the assumption that latent heat of vaporiatation may be connected with the difference of alopes mong the variout compounds. This is poselble since heat of vaporisation eortidnly plays a part in any aistillation. Whth the materinls tested, the latent hegt dearensed with temperature, and the change in latent heat with temperature decreased as the molecular neight increased. The use of this property
in connection with the $\Lambda_{p}$ ve. $G / \phi$ plot does not affect the slopes of the various individual curves. Whether considered in mass or molal units, the curves atill exhibit the same general difforences. It can be reasoned that this also would not affect the relationship of the various points in the $\rho \Delta P / \mu^{2}, v s, G / \mu, p l o t$.

That there is no great change in the various curves with use of a property differing so widely in magnitude and variation with tergerature among the various compounds indicates that it does play a part which is reflected in the throughput rate.

Diffusion concepts may have an answer to the problem. It is known ${ }^{21}$ that an increase in the diffuaivity in the vapor phase hae a favorable effect on enrichment in distillation at lowered pressures. This inerease in vapor diffusivity is approximately inversely proportional to the pressure. Liquid diffueivity is essentially unaltered by pressure changes. Docksey and May ${ }^{21}$ have assumed that interchange of material between liquid and vapor depends on rate of diffuston through the layer of vapor in which flow is streamine. Their experiments in this field supported this theory and their conclusions were sumarized in the relation

$$
Z \propto U r^{2} / D_{V}
$$

where 2 is the colum height for a given separation (an expty tube column was used where height would be the only measure of officiency of separation), $U$ is the vapor velocity, $r$ the colum radius and $D_{V}$ the diffusivity.

Diffumivity of a binary vapor system has been shown to vary with temperature, pressure, molecular weight and molecular volume ${ }^{11}$. Hquid diffusion is less understood mathematically, but is known to be influenced
by molacular weight, molecular dianeter, solvent viscosity and area of contact. Diffusion of rapors in liequids is also relatively inttie understood, but it is assumed the factors concerned in both types are combined here.

In an attempt to determine a relationship of pressure drop to diffusivity, it was found that a plot of $\log \Delta p$ at constant $G / \varphi$ against nolecular volune gives approximately parallel lines of negative slope as shown in Figure 24. The deviation of the data from a straight Ine is much less than in any correlation attempted thus far. These pointe were taken from plote of $\Delta p$ va. $G / \phi$ for each material at the epecified value of $G / \varnothing$. Some of the deviation of the points is due to the fact that, at noted before, the experimental $\sigma / \varnothing$ curves are not parallel.

Extrapolation of the $\log \Delta p \nabla 8 . V / M$ curves to the molecular volume of n-decane and trans-dacalin (averaged) yiald: a pressure drop value quite close to that obtained by plotting $\Delta p$ Ve, $G / \varnothing$ for the data of Peters at 50 and 350 mm Hg. These data ${ }^{12}$ were obtained on the same aize and type pacing as used in the present experiments. By coincidence, however, the data of Forsythe for bensene-ethylene dichloride in a Stedman-type colum fall quite close (not shown) to the lines presented ia Mgure 24 at the three values of $G / \phi$ chosen. This indicates that the spacing of the curved is of approximately the right order.

The relationship indicated in Figure 24 for the packing teated leads to an equation of the type: $(\log 4 p)_{g / \sigma}=a-3 / 4 V_{M} \quad$ where the conetant a variee with the desired value of $G / \phi$.


An equation of this type should be useful in rough approximations of pressure drop for various liquid systeme to be run at a known rate through a column with this packing. Modification of the equation to adyust for different size of the same packing should involve only the constant a. Use of a different packing would probably change the slope $(-0.75)$ of the curves.

The proposed curves persit estimation of pressure drop to within about thirty percent over a tenfold change in pressure drop. Introm duction of the effecte of other physical properties may refine the equation even more, since molecular volume and vapor density are the only physical properties presently involved.

The exact physical significance of the influence of molecular volume on the pressure drop is not understood. But diffusivity varies inversely with molecular volume. It seems poseible that at a conetant rate, the lower diffusivity of a compound would be an indication of less tendency for diffusion of vapor through liquid, less frictional resistance to flow and less pressure drop.

## carchusiogs

Both pressure drop and holdup are exponential functions of mase rate at any pressure. At constant rate, decreased operating pressare leads to increased pressure drop. Higher molecular weight material will cause lower presaure drop at any rate and preasure. Holdup with protruded stainless steal packing is not greatly affected by change in pressure or material being distilled.

Several methods have been presented in the literature to predict pressure drop through a packed column during dietillation. Most of these are specific for a given packing or Hiquid system. From the work presented here, it appeare that no single correction factor can be applled to make these correlations general.

The absorption correlation $\log \Delta P$ vs. $\log G / \phi$ gives reasonably adequate results for relating data at different pressures. For deaign work, however, the slope of the curve obtained is rather stoep leading to fairiy large errors in estimates. The same is true of use of $p \Delta P$ va. 0 , a airplification of the Reed-Fenske equation.

A modification of the latter to include liquid viscosity, presented as $\rho \Delta \rho / \mu_{1}^{2}=k^{\prime}\left(G / \mu_{1}\right)^{n}$, yields a curve of slope $n=2.4$ for the seven Liquids tested. The value of $k$ 'for the individual materiale varies slightly but a value of $1 \times 10^{-4}$ would be reasonably accurate. This correlation should give fairly accurate results with any one size and type of packing.

The complete Reed-Fenske equation includes factore for differences in packing systems but uses vapor viscosities. It was developed from
wire helix data but can be used for order-of-magnitude estimates for different packings if accurate holdup data are available. For the packing used the modification presented above using liquid viscosities teems to be preferable.

A relationship between nolecular volume and pressure drop at constant density-corrected rate hos been presented, This relationship perraita estimation of pressure drop at a known rate for liquide with molecular volumes between 40 and $300 \mathrm{cu} . \mathrm{cm} . / \mathrm{gm}$.mol.

| ${ }^{A_{1}}$ | factor to correct for effect of liquid on packing, $\Delta P$ vet/ $\Delta P$ dry, dimensionless. |
| :---: | :---: |
| $A_{p}$ | factor to correct for effect of hollow packing, $\Delta p$ hollow/ $\Delta p$ solid, dimensionless . |
| $d_{p}$ | individual packing particle, diameter, feet. |
| $f$ | friction factor, dimensionless. |
| $\mathrm{f}_{0}$ | fractional vold space of dry packing. |
| $\mathrm{g}_{\mathrm{c}}$ | std. acceleration of gravity, lb . (f) ft. $/ \mathrm{lb}$. (m)sec. ${ }^{2}$ |
| G | mass flow rate, lbe./hr.sq. $\mathrm{If}^{\text {c }}$ |
| h | height of packed section, ft. |
| H | holdup, cu.ft./cu.ft. of packing. |
| k | constant in Reed-Fenske equation, dependent on packing, dimensionless. |
| M | molecular weight. |
| n | exponent in Heod-Fenske equation. |
| $\boldsymbol{P}$ | absolute presture, 1 bs ./sq.ft. In Reed and Fenske equation must be exprested as Pge; Ib.(m)/ft.sec. ${ }^{2}$ |
| $\Delta \mathrm{P}$ | overall preacure drop, 1bs./sq.ft. |
| $\Delta \mathrm{p}$ | pressure drop par foot of packed height, ${ }^{\text {nH2 }} \mathrm{H} / \mathrm{ft}$., except in $\rho \Delta p / \mu^{2}$, where $\Delta P$ is lbs./aq.ft. |
| $\boldsymbol{R}$ | gas law constant, consistent units. |
| S | packing surface area, sq.ft./cu.ft. |
| T | absolute temperature. |
| V | vapar velocity, ft./sec. |
| $\mathbf{V}_{M}$ | molecular volume, cu*cn./gromol. |
| $p$ | vapor density, lbs./cu.ft. |

    viscosity, 1bs./ft.hr.
    \(\rho 10.075\), where 0.075 is density of adr at 700 C and
    1 atmosphere.
    
## Subscripta

| a | at arithmetic average of end conditions of column. |
| :--- | :--- |
| $\mathrm{g}, \mathrm{v}$ | gas or vapor. |
| 1 | iiquid. |

## REFERENCES

1. Arnold, J. Am. Chem. Soc., 52, 3937, 1930
2. Brownell and Katz, Chem, Eng, Frogress, 43, 537, 601, 1947,
3. Collins and Lantz, Ind. \& Eng, Chem, Anal. Bd., 18, 673, 1946.
4. Elgin and Weles, Ind. \& Rng* Chem, $31,435,1939$
5. Forsythe, Stack, Wolf and Conn, Ind. \& Eng. Chan, 39, 714, 1947.
6. Hand, Whitt and Gregory, J. Soc. Chem. Ind., 69, 321, 1950.
7. Jesser and Glgin, Trans. A. I. Oh. E., 39, 277, 1943.
8. Leva, Cheraical Engineering, $5,115,1949$.
9. Leva, Chem, Bng. Progress, 43, 549, 633, 713, 1947.
10. Leva, Mower Packings and Packed Tower Dest gn", U. S. Stoneware Co., Akron, Ohio, 1951.
11. Perry, "Chemical Engineers' Mandbook", 3d ed., McGraw-Hill New York, 1950.
12. Peters, Ph. D. Thesis, Pem, State College, 1951.
13. Peters and Cannon, Ind. \& Eng. Chem., $44,1452,1952$.
14. Reed and Fenske, Ind. \& Eng* Chem*, 42, 652, 1950.
15. Sherwood and Figford, Mabsorption and Extraction", 2d ed., MeOras-HiLI, Hew Iork, 1952.
16. Streib, M. S. Thesis, Newark College of Engineering, 1953.
17. Struck, Ph. D. Thesis, Pemn. State College, 1949.
18. Struck and Kinney, Ind, \& Eng, Chen. 42, 77, 1950.
19. Timmermans, Fhyelco-Chemical Constants of Pure Organic Compounde", Elsevier, New York, 1950.
20. Ward, Bureau of Mines Technical Paper No. $600,1939$.
21. Weissberger, \#Techniques of Organic Chemistry", vol. L, Distillation, Interscience, New York; 1951.
