Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

HEAT TRANSFER COEFFICIENTS FOR CONDENSING VAPORS ON A HORIZONTAL TUBE

BY

MAURICE E. BROWN AND RODWIN E. GULICK

A THESIS SUBMITTED TO THE FACULTY OF THE DEPARTMENT OF CHEMICAL ENGINEERING OF NEWARK COLLEGE OF ENGINEERING

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

.

NEWARK, NEW JERSEY

1955

6155- 99

APPFOVAL OF THESIS

FOR

DEPARTMENT OF CHEMICAL ENGINEERING

NEWARK COLLEGE OF ENGINEERING

BY

FACULTY COMMITTEE

والمتعالي والمتحد والمتحد والمتحد

APPROVED:

NEWARK, NEW JERSEY

JUNE, 1955

ii

ABSTRACT

<u>(</u> .

Film coefficients of heat transfer for vapors condensing on a smooth horizontal tube have been experimentally determined by many investigators. The so-called Thermocouple Method and the Vilson Method, have been used and generally accepted as the two methods for determining these film coefficients. A number of different organic vapors have been studied on various condensing surfaces. Nusselt has also developed a theoretical equation,

$$h_{\rm N} = 0.725 \frac{4}{\frac{k_{\rm f}^3 f^2 \lambda_{\rm g}}{D_0 \, \text{// f} \, 47 \, \rm cf}}$$

for evaluating the film coefficients of vapors condensing on horizontal tubes.

The earlier investigators have shown that theoretical values, h_N , do not check with experimentally determined values, h_e , and that many discrepancies exist among different experimentally determined values. Advocates of the Wilson Method have discredited the accuracy of the Thermocouple Method and vice versa.

With these points in mind, the experimental work in this thesis was undertaken. Film coefficients of heat transfer were experimentally determined for single vapor systems of each of four alcohols condensing on a smooth horizontal tube. Both methods of evaluating the heat transfer coefficients were used. Methyl Alcohol, Isopropyl Alcohol, n-Propyl Alcohol, and n-Butyl Alcohol were studied. A single piece of equipment designed to eliminate problems noted by earlier authors of similar work was used for the entire investigation. Data was

iii

taken for both of the methods simultaneously and under identical operational conditions.

The experimental results of this investigation showed film coefficients of heat transfer by both accepted methods to be of the same order of magnitude for each particular compound. It can be concluded, therefore, that the discrepancies in earlier data are probably due to other factors and not the use of either the Wilson Method or the Thermocouple Method. The results also showed definite evidence that h_e for vapors condensing on a horizontal tube decreases for increasing molecular weight within the homologous alcohol series.

PREFACE

The research described in this thesis was undertaken for the purpose of showing a correlation between the Thermocouple Method and the Wilson Method both of which are generally accepted for experimentally determining heat transfer coefficients for vapors condensing on a smooth horizontal tube. It was the aim of the authors to eliminate the difference in methods of experimentally determining heat transfer coefficients as one of the possibilities for the discrepancies in earlier data.

The experimental work of this thesis was carried out in the Chemical Engineering Laboratories of the Newark College of Engineering, Newark, New Jersey, under the guidance of Professor George C. Keeffe.

The co-authors wish to make grateful acknowledgment of the invaluable aid and advice offered by Professor George C. Keeffe. Appreciation is also due Mr. William Furmadge for his assistance in the construction of the equipment used for this research.

v

TABLE OF CONTENTS

Introduction	1
Theory	3
Apparatus	6
Experimental Procedure	14
Experimental Results	16
Discussion of Results	40
Recommendations	44
Nomenclature	45
Appendix	47
References	65

· .

Page

LIST OF FIGURES

Fig	ure Number	Page
1.	Photograph of Experimental Apparatus	7
2.	Photograph of Horizontal Condenser Tube and Jacket	8
3.	Diagrammatic Sketch of Experimental Apparatus	9
4.	Sketch of Thermocouple Installation	12
5.	Wilson Method for Methyl Alcohol	19
6.	Heat Transfer vs Tube Surface Temperature for Methyl Alcohol	20
7.	Methyl Alcohol $\frac{h_e}{h_N}$ vs $\left(\frac{\lambda H_f}{k_f \Delta \mathcal{I}_{cf}}\right)^{\frac{1}{2}}$	21
8.	Wilson Method for Isopropyl Alcohol	24
9.	Heat Transfer vs Tube Surface Temperature for Isopropyl Alcohol	25
10.	Isopropyl Alcohol <u>h</u> vs $\left(\frac{\lambda \mu_{f}}{k_{f} \Delta I cf}\right)^{\frac{1}{2}}$	26
11.	Wilson Method for n-Propyl Alcohol	29
12.	Heat Transfer vs Tube Surface Temperature for n-Propyl Alcohol	30
13.	n-Propyl Alcohol $\frac{h_e}{h_N}$ vs $\left(\frac{\lambda M_f}{k_f \Delta \zeta_{cf}}\right)^{\frac{1}{2}}$	31
14.	Wilson Method for n-Butyl Alcohol	34
15.	Heat Transfer vs Tube Surface Temperature for n-Butyl Alcohol	35
16.	n-Butyl Alcohol $\frac{h_o}{h_N}$ vs $\left(\frac{\lambda //f}{k_f \Delta / c_f}\right)^{\frac{1}{2}}$	36
17.	Heat Transfer Coefficients vs Heat Load	 38
18.	Heat Transfer Coefficients vs Condensate per foot	39

.

LIST OF TABLES

Ta	ble Number	Page
1.	Experimental Equipment Specifications	10
2.	Methyl Alcohol Experimental Results-Thermocouple Method	17
3.	Methyl Alcohol Experimental Results-Wilson Method	18
4.	Isopropyl Alcohol Experimental Results-Thermocouple Method	22
5.	Isopropyl Alcohol Experimental Results-Wilson Method	23
6.	n-Propyl Alcohol Experimental Results-Thermocouple Method	27
7.	n-Propyl Alcohol Experimental Results-Wilson Method	28
8.	n-Butyl Alcohol Experimental Results-Thermocouple Method	32
9.	n-Butyl Alcohol Experimental Results-Wilson Method	33
10.	Correlation of Experimental Heat Transfer Coefficients for Vapors Condensing on a Horizontal Tube vs. Heat Load	37

INTRODUCTION

Many investigators have determined heat transfer coefficients for a vapor which is condensing filmwise on a single horizontal tube. Among these are Baker and Mueller (1), McAdam and Frost (2), Othmer (3), Othmer and Berman (1), Othmer and White (5), Reddie (6), Rhodes and Younger (7), Peck and Reddie (15), and Chu (16). Coefficients have been experimentally determined for both single and mixed vapors of many chemical types on various condensing surface areas.

Two methods of calculating experimental coefficients have generally been used by the above group of investigators. The first method which was used by Baker and Mueller (1), Othmer (3), Othmer and Berman (4), and Reddie (6), involves the use of thermocouples to determine the condensing surface temperatures from which the film coefficients may be calculated. The second method used by Rhodes and Younger (7), and Chu (16) is an indirect method for determining film coefficients which was originally suggested by Wilson (8), and is based on the over-all heat transfer coefficients.

Up to this time, there have been differences of opinion as to whether or not heat transfer coefficients for condensing vapors could be accurately determined by the use of the so called, "Thermocouple Method". It was with this discrepancy in mind that the research described in this thesis was undertaken. The purpose of this work was to show a correlation, if any, that might exist between the aforementioned methods. This was accomplished by determining heat transfer coefficients for the condensing vapors of a homologous series of organic compounds on a single horizontal tube under identical conditions.

It was also the purpose of this investigation to show experimentally a decrease in film coefficients with increase in molecular weight for compounds of a homologous series.

THFORY

When condensing a single pure saturated vapor on a horizontal tube the condensate wets the tube and film-type condensation is obtained. The rate of heat transfer is given by the equation,

$$q = h_N A_O \quad (t_v - t_{OB}) = h_N A_O \Delta t c f \qquad (1)$$

The terms of this expression and those following are defined under the nomenclature section. As long as the condensate flows in streamline motion, (40), (40), the following dimensionless equation of

Nusselt may be used.

$$h_{\rm N} = 0.725 \frac{4}{D_0} \frac{k_{\rm f}^3 f^2 \lambda_{\rm g}}{f \, \Delta t \, \rm of}$$
(2)

The values of k_{f} , f and $\mathcal{H}f$ of the condensate are taken at a special film temperature t_{f}

$$t_{f} = t_{v} - .754\zeta_{cf}$$
(3)

In the Nusselt equation Δf_{cf} is ordinarily unknown. However, the two methods which were used in this investigation permitted Δf_{cf} to be determined directly. These are:

1. Thermocouple Method

2. Wilson Method

Thermocouple Method

This method arrives at a satisfactory over-all average value for $\Delta t'$ cf by measuring with thermocouples the tube surface for several points along its length. The over-all average temperature drop across the condensate film, $\Delta t'_{cf}$ may be obtained from the resistance on the vapor side depends on the temperature difference and the temperature of the condensate film, thus R_v varies somewhat as water velocity is changed. However, changes in tube wall temperature brought about by changes in water velocity, would cause only negligible variation in thermal conductivity of the tube wall. Except in cases of extremely high water velocities, the water-side resistance is usually the major resistance. Since the water-side resistance is an inverse function of the water velocity through the tube V_0 and neglecting the effects of changes in water temperature due to changes in water velocity, the water-side resistance R_L can be taken as a function of the water velocity, V_0 . It has been previously determined for turbulent flow that

$$R_{L} = 1/\ll_{0} V_{0}^{0.8}$$
(9)

×5

therefore

$$1/U_0 = R_v + R_t + 1/2 v_0^{0.8}$$
 (10)

 \ll_0 is an empirical constant and may be considered as the apparent individual coefficient of heat transfer from tube to water based on the outside surface for water velocity of 1 ft/sec.

Since R_w is constant and known along with V_o and U_o , R_v the reciprocal of the vapor film coefficient may be determined.

Therefore, the film coefficient or h_w may be determined directly from the relation

$$R_{\mathbf{v}} = \frac{1}{h_{\mathbf{w}}}$$
 (11)

equation

$$\lambda t c f = t_v - t_{OS}. \tag{4}$$

The experimental value for the condensate film heat transfer coefficient can be found from the relation

$$h_{e} = \frac{q}{\pi D_{0} L_{t} \Delta t cf}$$
(5)

The quantity, q, is readily obtained by calculating the amount of heat absorbed by the cooling water per hour.

Wilson Method

In 1915, E. E. Wilson (8) proposed a graphical method of interpreting heat transfer in surface condensers. In this method tube temperatures are not measured but over-all coefficients U_0 are available from the relation

$$q = U_0 A_0 \Delta T = U_0 A_0 \left[t_v - \left(\frac{T_i + T_0}{2} \right) \right]$$
 (6)

In correlating these over-all coefficients, Wilson took advantage of the fact that the over-all resistance to heat flow $(\leq R = 1/U_0)$ is numerically equal to the sum of the individual series resistances, namely, the resistance on the vapor side, R_{yj} the resistance of the wall, R_{wj} ; the resistance of the dirt film, R_{dj} and that of the water side, R_{L} . From this concept of resistances in series, it is clear that

$$1/U_{o} = R_{v} + R_{w} + R_{d} + R_{L}$$
(7)

or in the case of a clean tube as used in this work

$$1/U_{o} = R_{v} + R_{w} + R_{L}.$$
(8)

According to the theoretical equation of Nusselt, the

APPARATUS

The apparatus used for this investigation is shown in Figures 1, 2, and 3. It was essentially a single horizontal No. 316 stainless steel $l_2^{\frac{1}{2}}$ I.P.S. steel pipe, within which was centered a one inch brass pipe. The purpose of the brass pipe was to decrease the internal area. thus allowing for greater cooling water velocities at specific flow rates. The outer jacket, made of borosilicate glass was twenty-two inches long with a four inch inside diameter. It was reduced at both ends to two inches and assured a condenser surface area of 0.818 square feet. This jacket was made up of two sections and contained three 3/4 inch vapor inlets, one 3/4 inch condensate outlet and one 3/4 inch excess vapor outlet. The vapor inlets were equally spaced and at an angle of thirty degrees from the vertical. The vapor and condensate outlets were placed equidistant from the ends, and at the top and bottom of the jacket respectively. Detailed equipment specifications are given in Table I.

The vapors studies were generated in a five gallon stainless steel boiler which used steam as the heating medium. Cooling water was supplied from the tap and the flow was measured by means of a rotameter. The condenser section was heavily insulated. A small bulb type reflux condenser, vented to the atmosphere, was used as an auxiliary condenser to insure against having the vapor space only partially filled and also to remove any non-condensibles. An arrangement was made to return all condensate directly to the boiler.

The temperature of the tube surface was measured by means of four thermocouples. All were of the chromel-alumel Type No. 22 gage. The

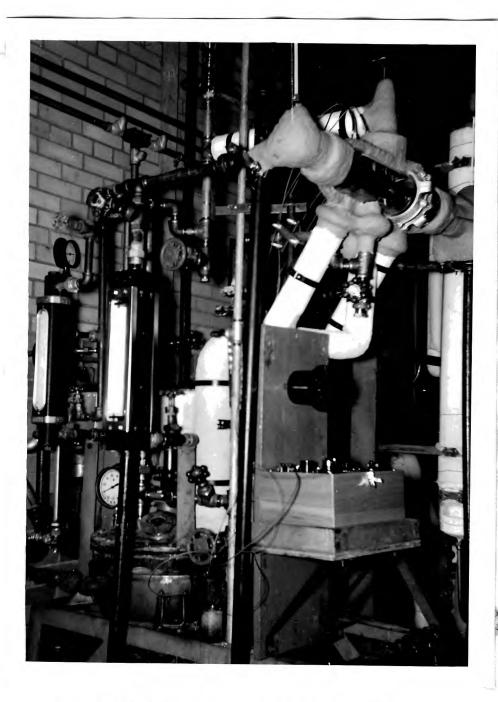
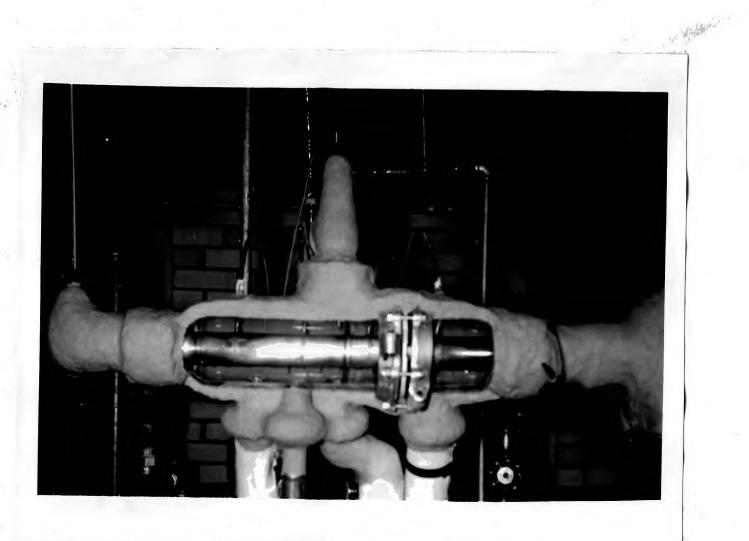
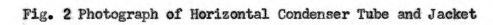




Fig. 1 Photograph of Experimental Apparatus

you she had

m

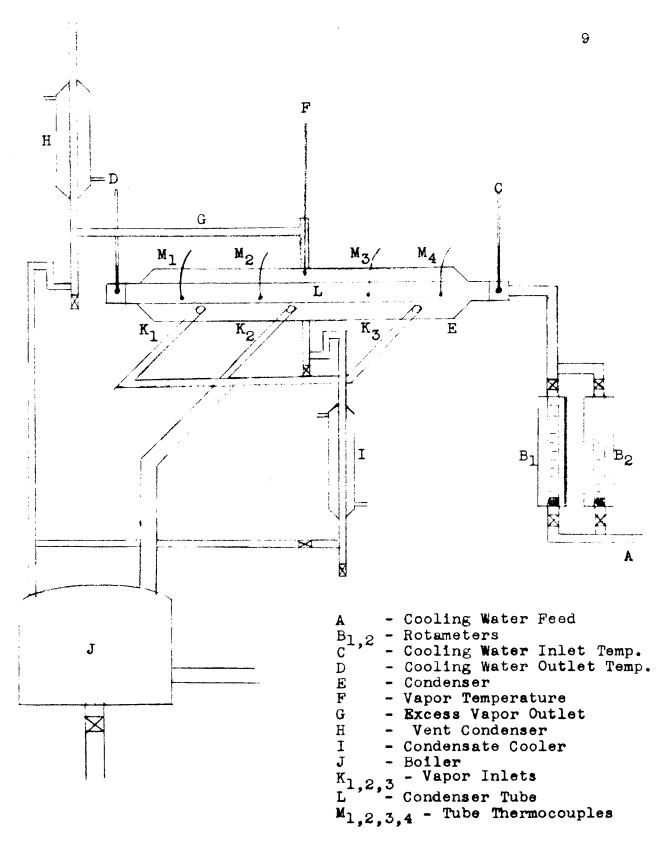
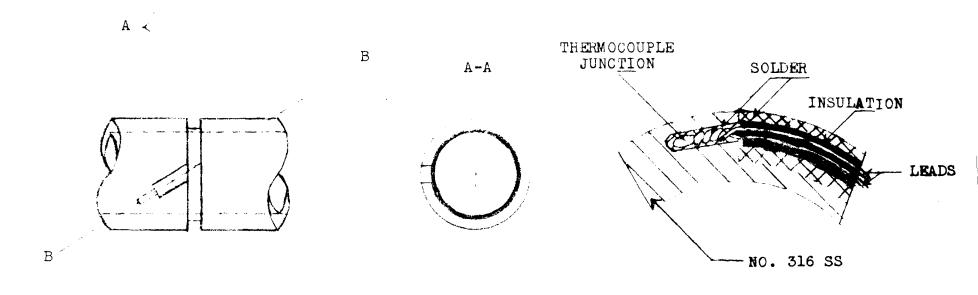


FIGURE 3

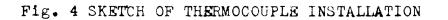
DIAGRAMMATIC SKETCH OF EXPERIMENTAL APPARATUS

TABLE I

Condenser tube-316 stainless steel	
Effective length of a condenser tube	1.667 ft.
Outside diameter of condenser tube	0 .1565 ft.
Inside diameter of condenser tube	0.1341 ft.
Condenser tube wall thickness	0.0112 ft.
Condensing surface area	0.818 ft. ²
Thermal conductivity of condenser tube	9.4 Btu ft hr ft F
Outside diameter of internal pipe	0.1095 ft.
Inside diameter of jacket	0.333 ft.
Thermocouples-Chromel Alumel No. 22 gage	


Potetiometer-Leeds and Northrup Portable type Model No. 8667

installation of the thermocouples was performed similar to the method described by Baker and Mueller (1). The method of installing the tube thermocouples is shown in Figure 4. A groove 1/8 inches wide by 3/32 inches deep was cut around the tube and at an angle of 30° for 1/2 inch. At the end of this angular groove, a 1/16 inch hole, 1/4 inch long was drilled. By this method of installation the thermo-couple junctions were beneath the surface and, regardless of the position of the junction on the perimeter of the tube, no condensate flowing over the junction could be affected by the groove. The lead wires came out of the groove at the top and approximately 1/3 of the circumference of the tube away from the junction.


Many methods of sealing the lead wires into the groove were tried. The method that was finally adopted and that proved successful was to remove the top insulation from the wires in order to bring one lead around each side of the tube. The junction was then placed in the well and the leads soldered into the groove. The solder was polished until flush with the tube surface.

The thermocouples were brought to the outside of the jacket through 3/16 inch stainless steel tubing.

Thermocouples were positioned in the lower quadrant as previous investigators, (1) and (6), determined points located here gave temperatures with little appreciable deviation from the average tube surface temperature. All thermocouples were brought to a selector switch box, and the electromotive force was measured by a Leeds and Northrup portable potentiometer, Model 8667. The cold junction was maintained

at 32°F by insertion in a thermos flask containing ice. Thermocouples were read to the nearest 0.01 millivolt.

Thermometers reading 0.1°C were provided to measure vapor, and inlet and outlet cooling water temperatures.

EXPERIMENTAL PROCEDUFE

Thermocouples for the measurement of tube surface temperatures were calibrated at several points against an accurate thermometer of the mercury expansion type before installation. An accuracy of 0.1 °C was obtained. After installation all thermocouples were checked at several temperatures.

The rotameters for measuring cooling water flow rate were calibrated over the operational range.

Vapors to be studied were generated in the stainless steel boiler and a steady stream was allowed to flow to the horizontal tube condenser. The excess vapors were removed in the small auxiliary condenser with the vapor velocity being maintained at a minimum to prevent flooding the reflux condenser.

Cooling water was passed through the annular space of the condenser tube, perpendicular to the vapor stream.

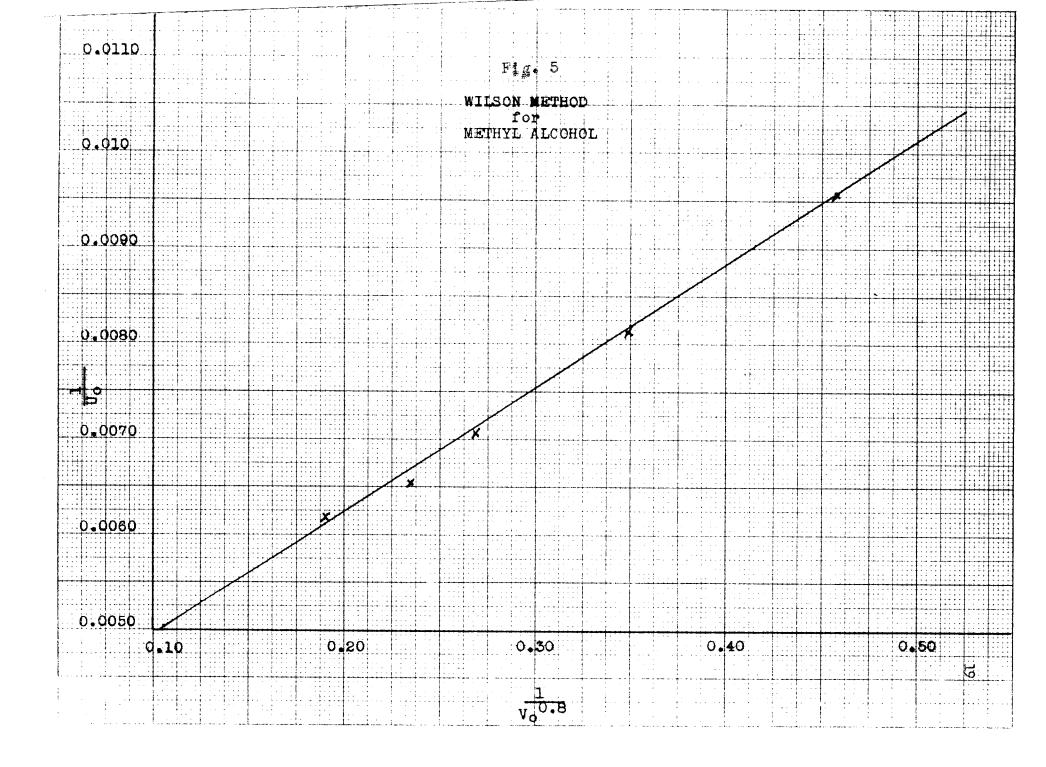
The first step in making a run was to set the desired rates. This accomplished, the apparatus was left undisturbed until steady state conditions were reached. The condition of equilibrium was assumed when a sequence of check readings showed no appreciable change in the tube surface temperatures. A portion of the lagging was then removed from the condenser in order to make certain that the condensation was of the true filmwise type.

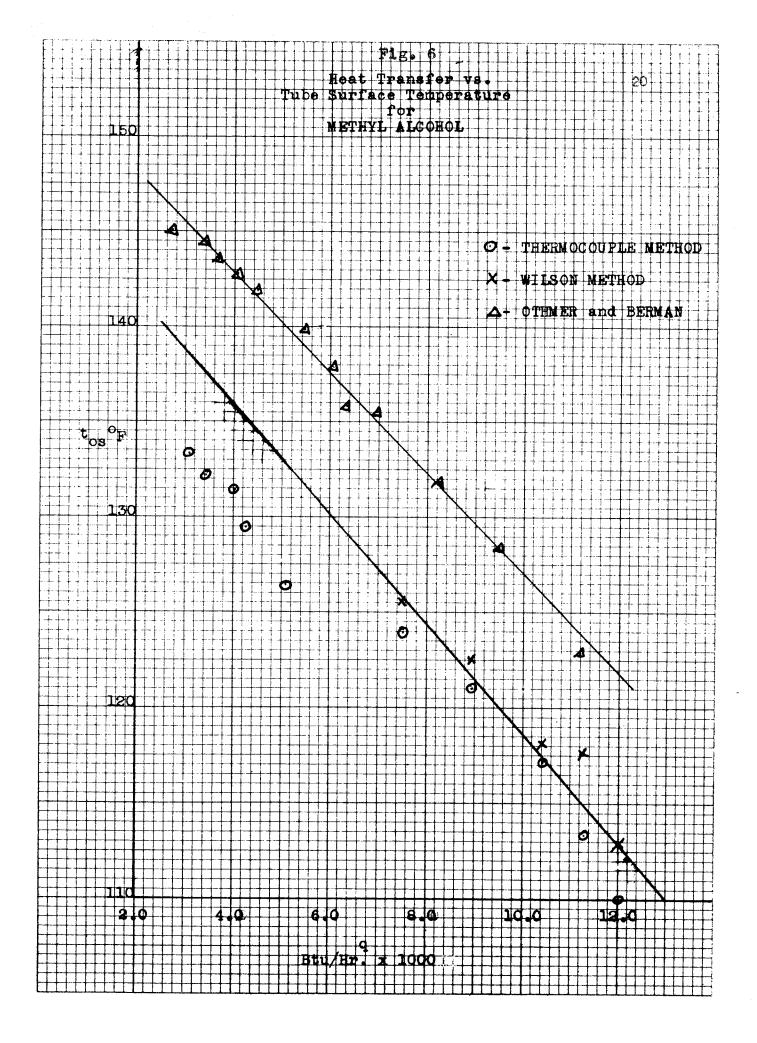
An experimental run was then started. E.M.F. readings were

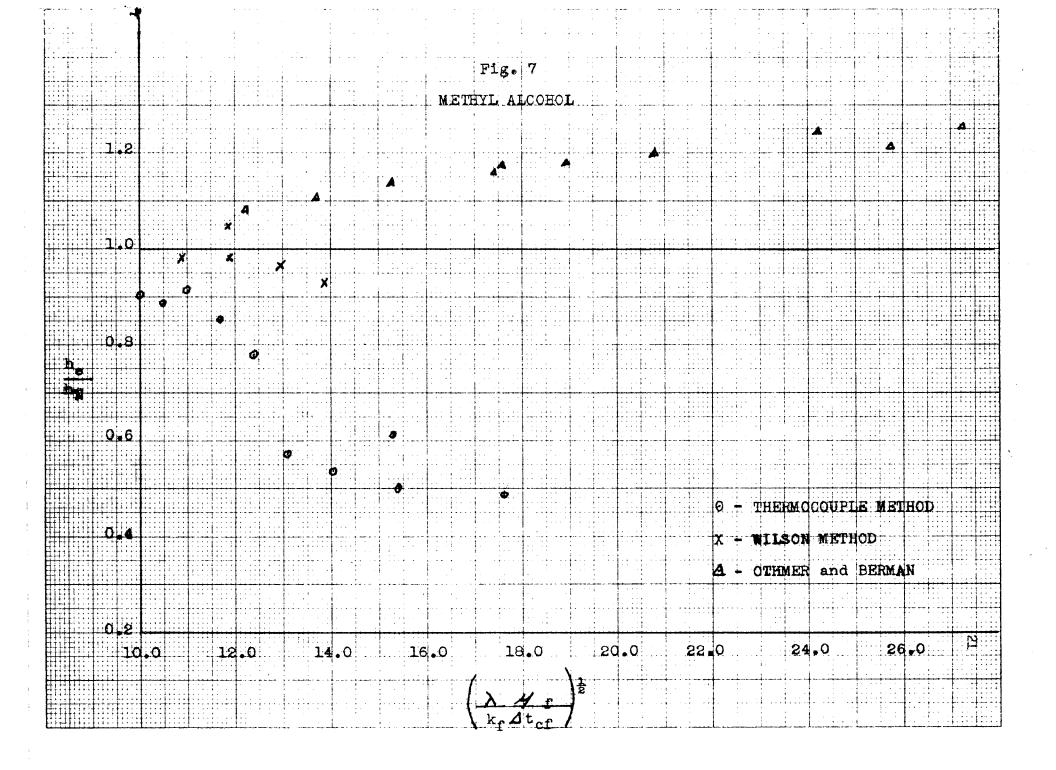
taken for each of the thermocouples along with readings of inlet and outlet cooling water, and vapor temperatures. A run consisted of taking a series of readings at five minute intervals over a period of twenty to thirty minutes. EXPERIMENTAL RESULTS

		EXPERIMENTAL RESULTS BY THERMOCOUPLE METHOD FOR METHYL ALCOHOL												
Run No.	q Btu/hr	W Lt #/ft hr	Ltw f	å ▼ F	tos F	∆Z _{of}	ţ.	h _e	h _N	ha h _N	$\left(\frac{\lambda \#_{f}}{k_{f} 4 \zeta cf}\right)^{\frac{1}{2}}$			
1	12,000	15.25	62.4	147.5	109.7	37.8	119.2	388	428	•907	10.0			
2	11,300	14.32	59.0	147.5	113.0	34-2	121.9	405	457	.887	10.5			
3	10,420	13.25	55.5	147.5	117.2	30.3	124.8	422	462	.913	11.1			
4	8,960	11.40	49.0	147.5	121.0	26.5	127.6	415	488	. 853	11.7			
5	7,530	9•55	41.4	147.5	123.9	23.6	129.8	391	502	•779	12.4			
6	5,090	6.47	28.1	147.5	126.4	21.1	131.7	295	515	•573	13.1			
7	4,240	5.38	23.7	147.5	129.5	18.0	134.0	288	537	•536	14.0			
8	4,030	5.10	22.9	147.5	131.4	16.3	135.5	302	և93	.613	15.3			
9	3,455	4.36	20.0	147.5	132.2	14.5	136.8	292	572	.510	15.4			
10	3,080	3.90	17.9	147.5	133.3	14.2	136.8	264	542	•487	17.6			

,

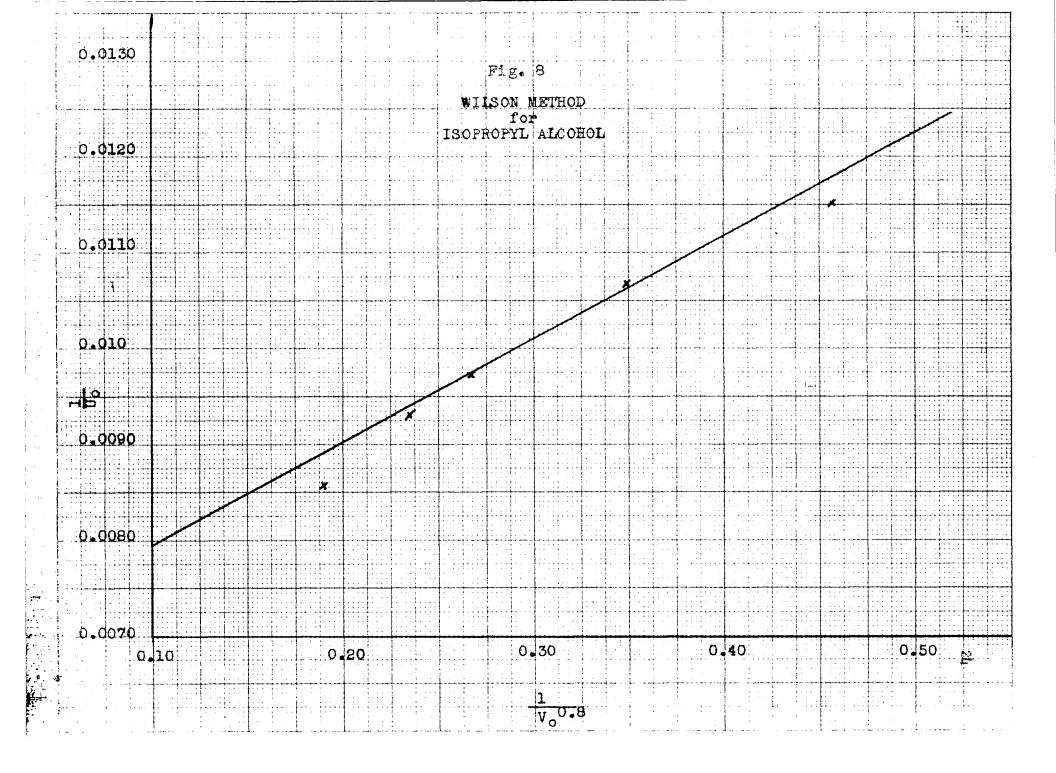

.

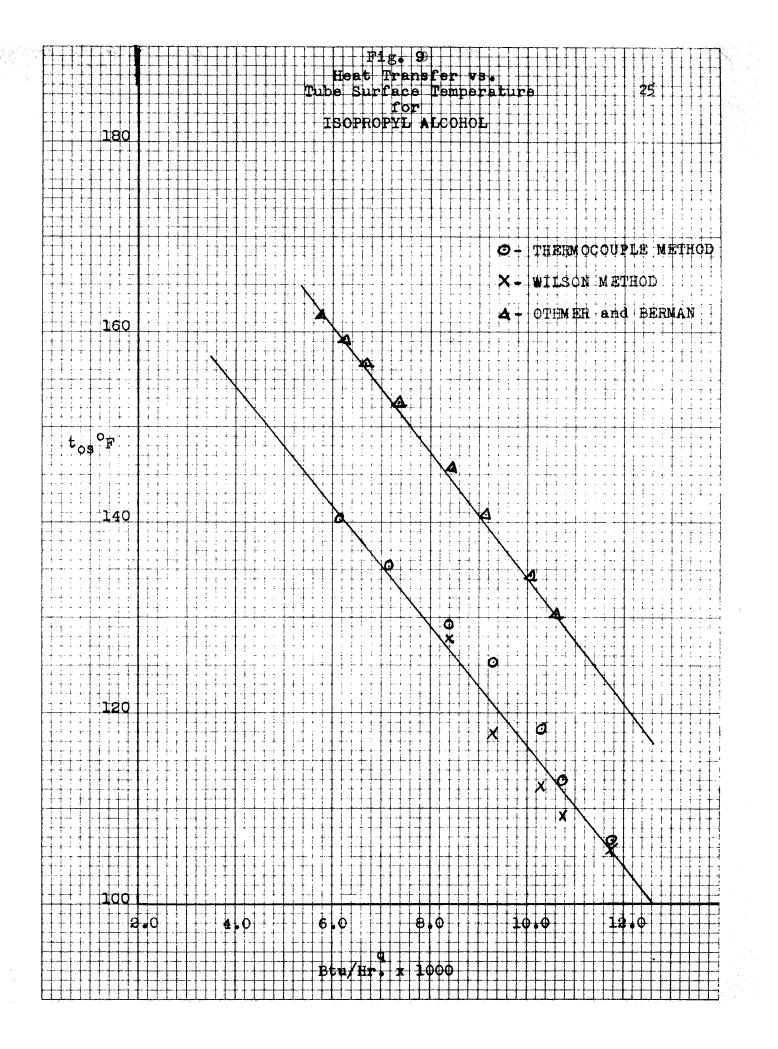

EXPERIMENTAL RESULTS BY WILSON METHOD FOR METHYL ALCOHOL

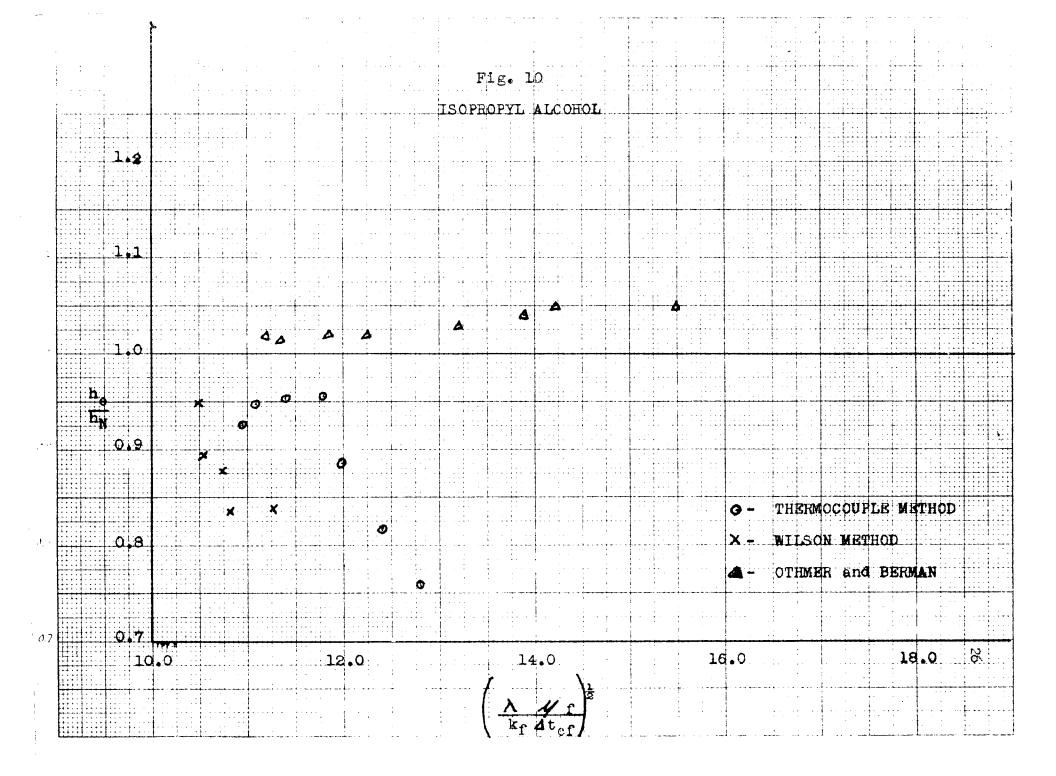

Run No.	q Btu/hr	W Lt #/ft h	U _O	1/0 ₀	1/V ^{0.8}	h _w	tr ♪	¢ _F	oFos	o_F^{tf}	h _N	$\frac{h_{\rm w}}{h_{\rm N}} \left(\frac{1}{2} \right)$	
1	12,000	15.25	161.5	.00618	.191	424	147.5	34.6	112.9	121.6	433	0.980	10,90
2	11,300	14.32	153.0	.00654	•235	463	147.5	29.8	117.7	125.1	իկ2	1.048	11.84
3	10,420	13.25	141.5	.00707	•268	435	147.5	29.3	118.2	125.5	444	0.980	11.92
4	8,960	11.40	123.2	.00812	•349	439	147.5	24.9	122.6	128.8	455	0.965	12.98
5	7,530	9•55	104.5	.00957	.457	422	147.5	21.8	125.7	131.2	464	0.930	13.88

.

•

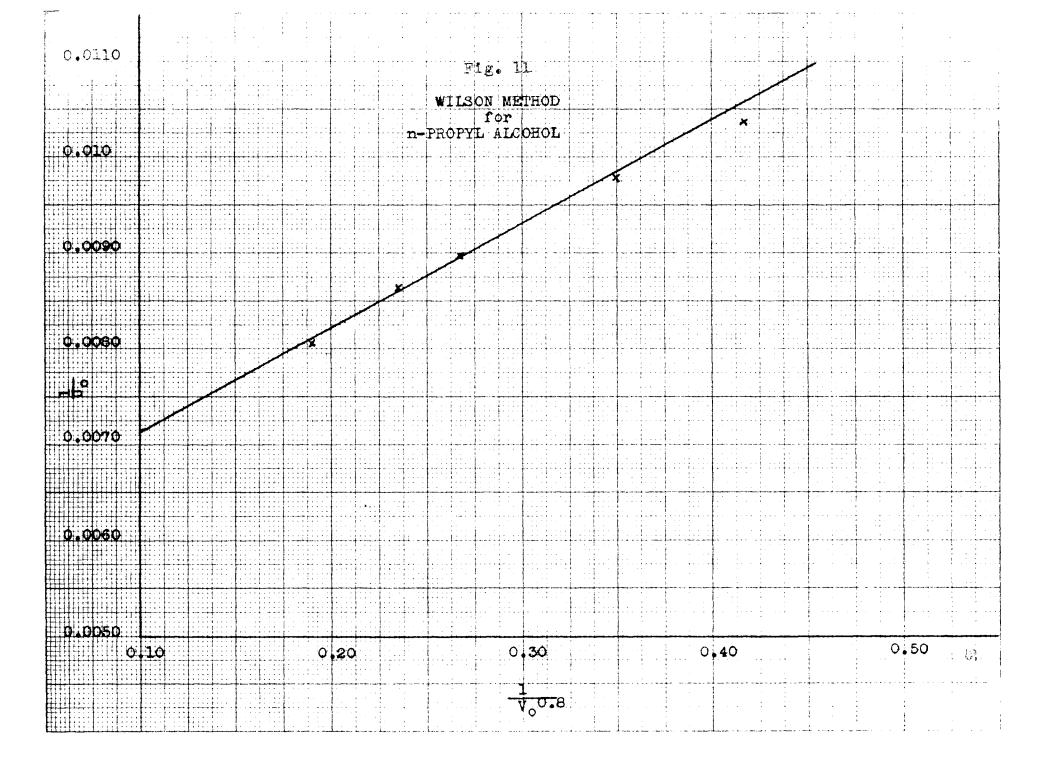


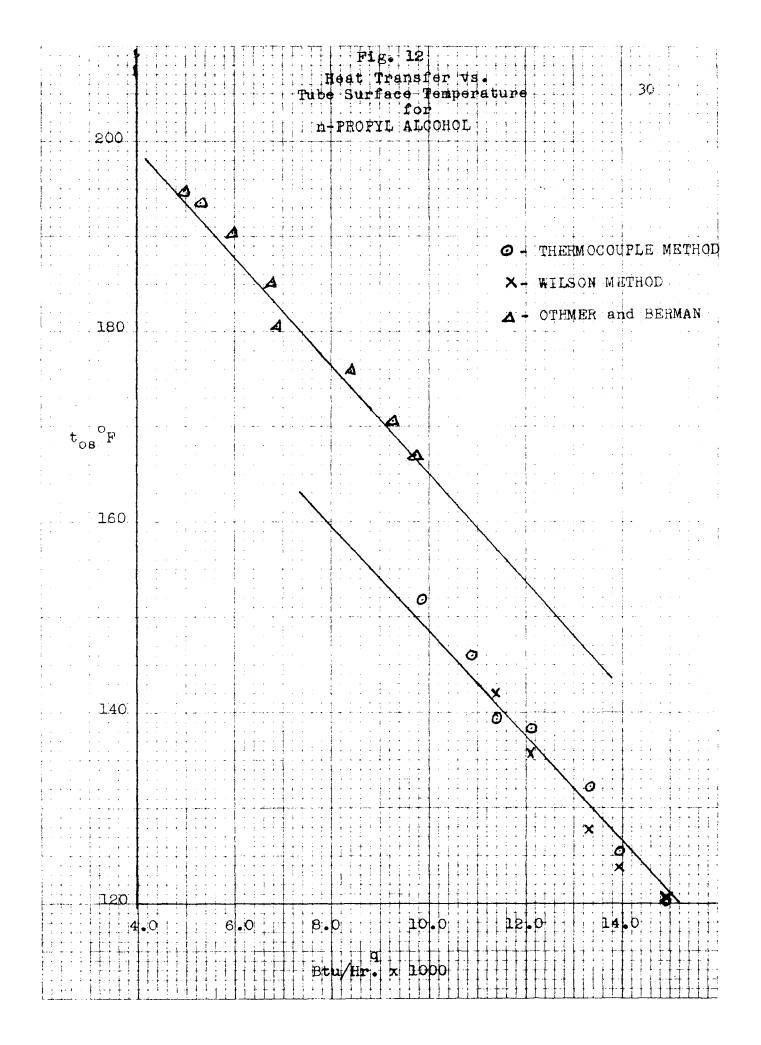


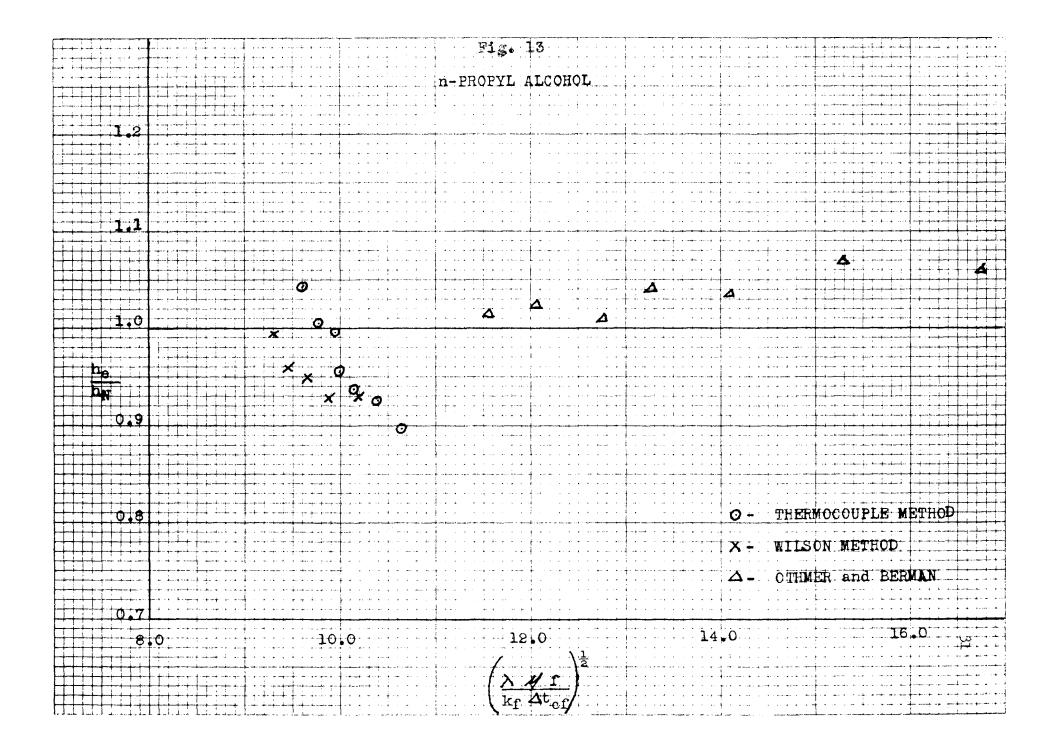


		E	XPERIMENTA	L RESULT	s by th	ERMOCOUP	LE METHOI	D FOR IS	OPROPYL	ALCO	HOL	
	Run No.	q Btu/hr	W Lt #/ft hr	LW Ly 4f	tv F	tos F	4 ter	tí F	he	h _N	he hy	
	1	11,740	24.6	35-4	179.2	106.7	72.5	124.8	198.5	204	•948	11.08
	2	10,780	22.6	35.5	179.2	113.0	67.2	129.8	196.5	212	•927	10.96
	3	10,290	21.6	34.7	179.2	118.2	61.0	133.4	206.5	217	.952	11.40
	4	9,320	19.6	34.1	179.2	125.2	54.0	138.7	211.0	228	•956	11.80
	5	8,400	17.6	31.3	179.2	129.3	49.9	141.8	206.0	233	.885	11.98
	6	7,180	15.0	28.3	179.2	135.2	44.0	146.2	200.0	245	.816	12.42
•	7	6,170	12.9	25.2	179.2	140.2	цо .о	150.2	191.0	252	•758	12.80

EXPERIMENTAL RESULTS BY WILSON METHOD FOR ISOPROPYL ALCOHOL													
Run No,	đ	₩ ^L t #/ft hr	U _o	1/U ₀	1/V ^{0.8}	h _w	ţţ	∆fcf F	o ^t os	• _F ^t f	h _N	<u>h</u> <u>n</u> ($\left(\frac{\lambda \mu_{\rm f}}{k_{\rm f} \Delta z {\rm cf}}\right)^{\frac{1}{2}}$
1	11,740	24.6	116.8	.00856	.191	198.0	179.2	72.5	105.7	124.7	209	.94 8	10.42
2	10,780	22.6	107.3	.00931	•235	188.5	179.2	70.0	109.2	126.7	211	.895	10.55
3	10,290	21.6	103.0	.00972	.268	187.5	179.2	67.0	112.2	128.2	214	.877	10.72
4	9,320	19.6	93.7	.01068	• 349	185.2	179.2	61.5	117.7	133.0	222	•835	10.82
5	8,400	17.6	87.0	.01150	.457	199.5	179.2	51.4	127.8	140.6	238	.83 8	11.28

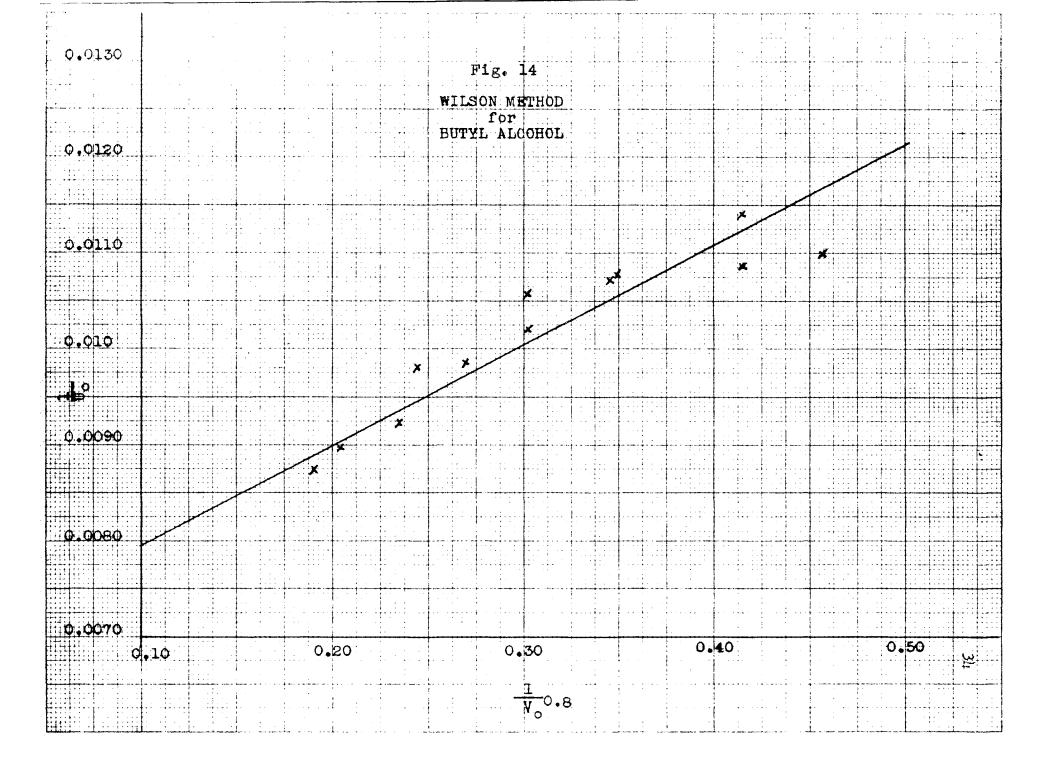


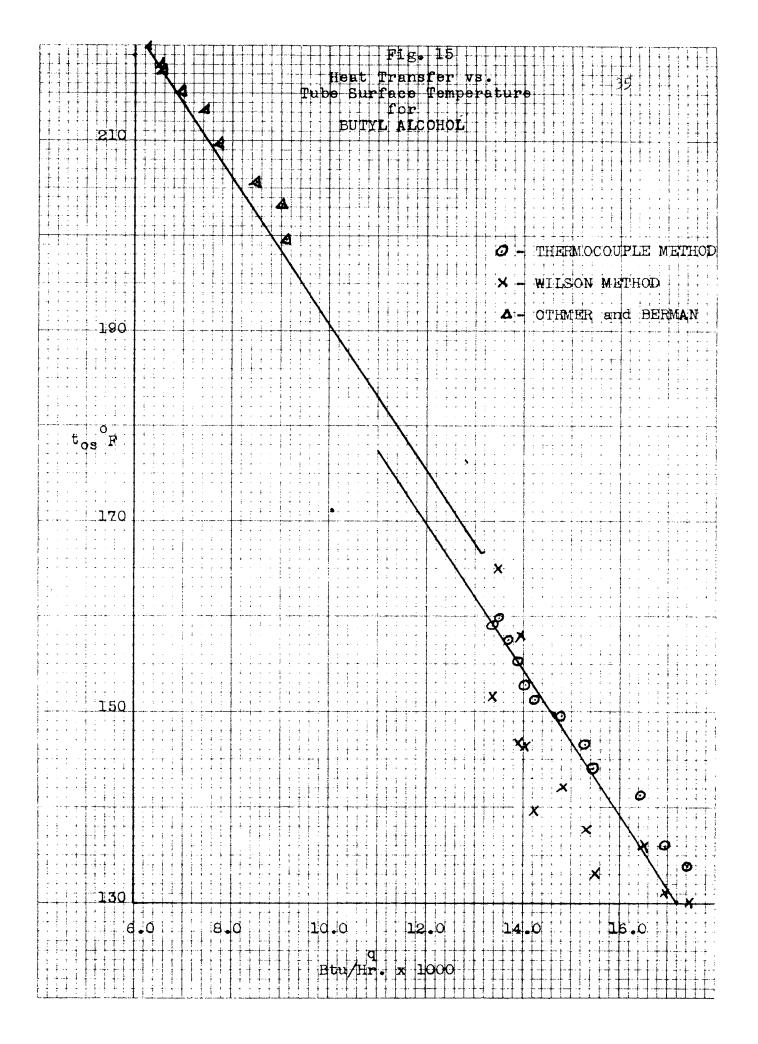

Run No.	q Btu/hr	W Lt #/ft hr	Lun Lt f	by F	ဝိပ္စာန	At cf	ðr.	he	^b N	h <u>e</u> h _N	
1	14,900	30.3	47.7	204.2	119.2	85.0	140.4	214	214	1.042	9.60
2	13,950	28.3	46.3	204.2	125.4	78.8	145.1	216	215	1.005	9.78
3	13,370	27.9	48.0	204.2	132.3	71.9	150.3	227	228	•995	9 .9 4
4	12,120	24.6	46.1	204.2	138.2	66.0	154.7	225	236	•954	10.00
5	11,400	23.0	43.2	204.2	139.1	65.1	155.3	216	237	•937	10.14
6	10,900	22.0	41.7	204.3	146.0	58.2	160.5	229	247	.926	10.40
7	9,850	19.9	39.4	204.2	151.8	52.4	164.9	230	256	-898	10.65


EXPERIMENTAL RESULTS BY THERMOCOUPLE METHOD FOR n-PROPYL ALCOHOL

Run No.	q Btu/hr	₩ ^L t #/ft h	U _o	1/U ₀	1/7 ^{0.8}	h _w	ţ,	4 <i>C</i> cf	o ^t os F	off	h _N	$\frac{h_{W}}{h_{N}}$	$\left(\frac{\lambda}{k_{\rm f}}\right)^{\frac{1}{2}}$
1	14,900	30.2	124.0	.00805	.191	217	204.2	84.0	120.2	145.4	218	•993	9.30
2	13,950	28.3	116.0	.00863	•235	212	204.2	80.5	123.7	147.8	221	•959	9-44
3	13,370	27.9	111.3	•00898	.268	213	204.2	76.8	127.4	150.5	224	•949	9.63
4	12,120	24.6	102.2	.00978	•349	216	204.2	68.6	135.6	156.0	233	•927	9.88
5	11,400	23.0	96.5	•01037	.418	224	204.2	62.2	142.0	160.7	241	.93 0	10.20

EXPERIMENTAL RESULTS BY WILSON METHOD FOR n-PROPYL ALCOHOL

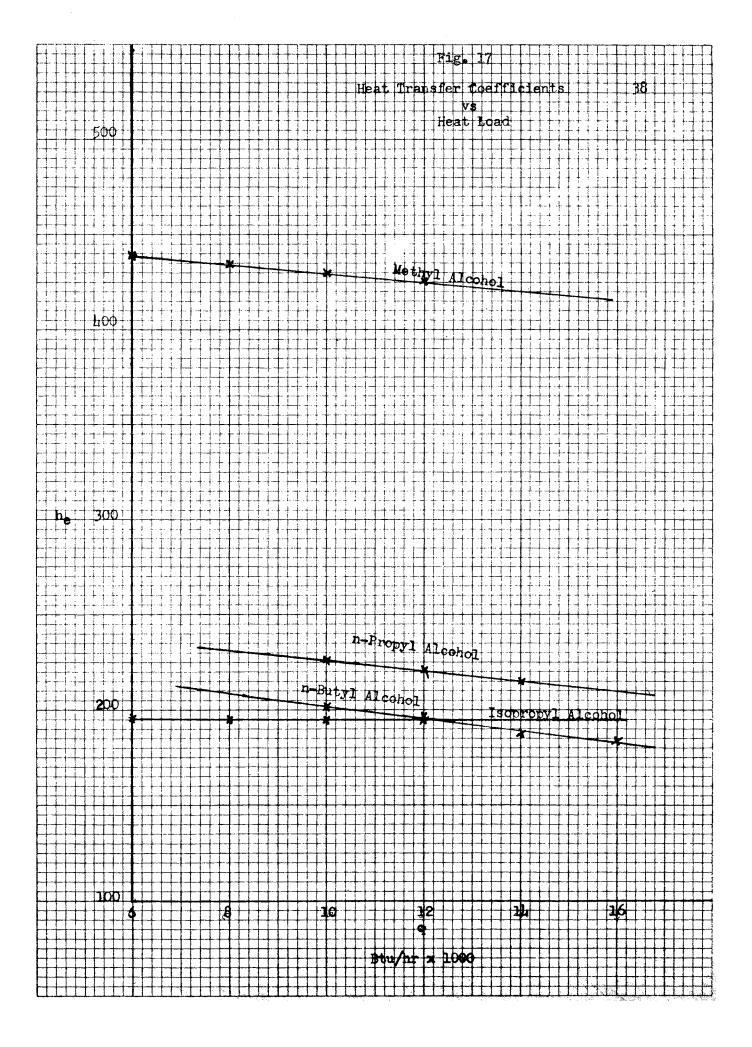


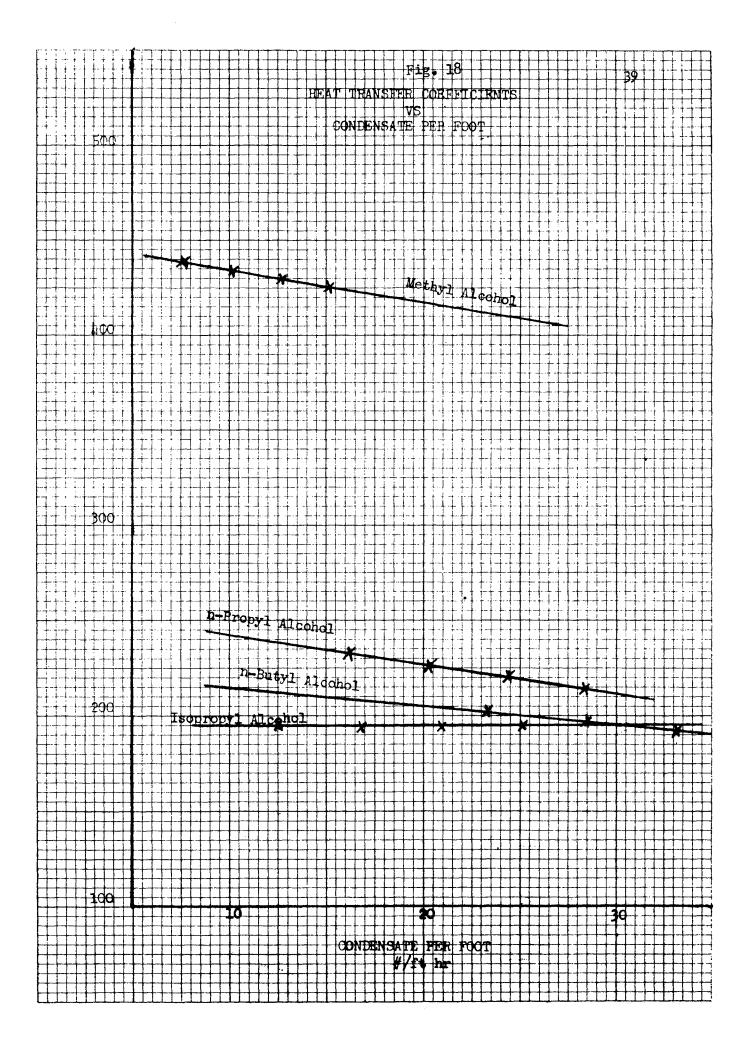

Run No.	q Btu/hr	W It #/ft hr	LW Ly 41	ðy F	စ်ဠန	Azer	tf	hø	hŅ	he hN	
1	17,440	41.3	71.0	244	133.9	110.1	161.3	192.5	194	•993	7.51
2	16,980	40.2	71.8	2իկ	136.0	108.0	163.0	192.0	196	.980	7.44
3	16 , 1 40	39.1	74.3	244	141.2	102.8	167.0	195.5	202	. 967	7.83
4	15,450	36.6	70.0	244	144.0	100.0	169.0	189.0	203	•932	7.48
5	15,300	36.3	72.2	244	146.5	97.5	171.0	192.0	207	.927	7.45
6	14,800	35.1	70.8	244	149.5	94.5	173.0	191.5	209	.915	7.45
7	14,250	33.7	69.8	244	151.3	92.7	174.5	188.0	206	.912	7.46
8	14,020	33.3	70.6	244	152.9	91.1	175.7	188.5	212	.890	7.46
9	13,900	32.8	70.1	244	155.2	88.8	177.4	191.5	214	-895	7.53
10	13,730	32.6	71.1	244	157.5	86.5	179.0	194.0	216	.897	7.55
11	13,480	31.8	69.9	244	159.8	84.2	180.8	196.0	21.8	.897	7.60
12	13,350	31.6	69.8	244	159.0	85.0	180.3	192.5	218	.880	7.60

EXPERIMENTAL RESULTS BY THERMOCOUPLE METHOD FOR n-BUTYL ALCOHOL

EXPERIMENTAL RESULTS BY WILSON METHOD FOR B-BUTYL ALCOHOL

Run No.	q Btu/hr	$\frac{W}{L_t} #/ft h$	Uo r	1/U ₀	1/10,8	h _w	t ▼ o _F	dter F	or	off	h _N	h. h _N	
l	17,440	41.3	114.3	.00874	.191	187	244	114.0	130.0	158.5	197	•950	7.41
2	16,980	40.2	111.5	.00897	.203	184	2),1,	113.0	131.0	159.0	197	•932	7.43
3	16,440	39.1	108.2	•00923	•235	186	5 1414	108.0	136.0	163.0	198	•937	7.46
4	15,450	36.6	102.0	•00982	• 2144	170	21:14	111.0	133.0	160.6	197	.85 5	7.41
5	15,300	36.3	101.1	.00988	•268	175	244	106.5	137.5	164.0	199	.884	7.41
6	14,800	35.1	98.0	.01020	.303	177	21,1,	102.0	142.0	167.5	200	.887	7.52
7	14,250	33.7	94.5	.01058	.303	166	244	104.5	139.5	165.5	200	.833	7.46
8	14,020	33.5	93.4	.01071	-346	176	244	97.7	146.3	170.7	205	.858	7.54
9	13,900	32.8	93.0	.01077	.349	175	244	97•3	146.7	171.0	205	•853	7.52
10	13,930	32.5	92.2	.01085	. 417	197	244	85.4	158.6	180.0	216	.912	7.65
11	13,480	31.8	91.2	.01099	•457	209	214	78 .9	165.1	184.8	224	.933	7.74
12	13,350	31.6	87.7	.01141	.417	177	21 11;	92.4	151.6	174.4	211	.838	7.46





$\left(\lambda \mathcal{H}_{\alpha} \right)^{\frac{1}{2}}$		
BUTYL ALCOHOL BUTYL ALCOHOL 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		┈╾╼╸╾╪╌╉╶╪╌╃╴┾╌╂╾╉╼┾╶┽╌┽╌┱╌┥┈╋╌┹╴┦
BUTYL ALCOROL BUTYL ALCOROL 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		╶┽╾╃╶╫╌┽╌┽╌╃╌╃╌╉╌╉╌╋╌╋╌╋╌╋╌╋╌
BUTYL ALCOROL BUTYL ALCOROL 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		
BUTYL ALCOROL BUTYL ALCOROL 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		
BUTYL ALCOROL BUTYL ALCOROL 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	Fig. 16	
BUTYL ALCOROL BUTYL ALCOROL 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	$\mathbf{P}\mathbf{L}\mathbf{B}0$	<u>╺┱╾┙╺┲╾╉╼╋╌╋╼╋╴╋╼╪╺╋╼</u> ╋╺╋┑╋╾╋╍╋╼╋╼╋╼╋╸╋
	here and the second	╷╸┄╸╼╧╾╪╼┠╌┵┈┇╌┟╌╕╺╂┉╡┈╄╌╅┯┝╌╂┉╪┉╁╴╅╶╂
	DITINT AT CORD.	╶╸╶┑┈╄╌┯╴┠╌┱╴╀╌╍╴╸┅╉╌╪╌┽╶╅╌╋╍╅╌╅╌╋╌
D.B A A D.B A A A A A D.B A A A <td>BUIEL ALCONOL</td> <td>┥┙╹╌┥╶╡╶╡╶╡╌╡╴╡╶┫╶╡╶┨╸╡╶╎┥╸╡╶┨╸┨╶┨╸┥╸┥</td>	BUIEL ALCONOL	┥┙╹╌┥╶╡╶╡╶╡╌╡╴╡╶┫╶╡╶┨╸╡╶╎┥╸╡╶┨╸┨╶┨╸┥╸┥
D.B A A D.B A A A A A D.B A A A <td>kunun under eine eine eine eine eine eine eine ei</td> <td>╶╡╌╪╼╁╌╾┽╌╄╌┽╌╉╶╅╌┾╍┼╌╁╌╋╍╂╍╉╴╬╌╉</td>	kunun under eine eine eine eine eine eine eine ei	╶╡╌╪╼╁╌╾┽╌╄╌┽╌╉╶╅╌┾╍┼╌╁╌╋╍╂╍╉╴╬╌╉
DLB OLS DLS DLS DLS DLS DLS DLS DLS D	proceeding and represented in the second of the second second second second proceeding in the first of the second se	╺╷╶╷┊┊┊╏╎╡╶┥╶┨╶╋╺┥╶╢┑╡╶╋╺┫╺┫╺┫╺┫
D.B A A D.B A A A A A D.B A A A <td>∧∽∽∽∽∼∧≜∽⊨∽∞∽ хо≩ стог с ≩ла ист с й хокой с ∦ с строкать стакахдайсь бой фор фор и Кан формой из ∯ла ист бой бой бой</td> <td>╺╾╵╻╾┽╾╄╌╄╌┞╌┨╼╂╼┞╍╋╌┥╸┲╌┽╌╄╶┨┈╉╍╉╶╀╾╊</td>	∧∽∽∽∽∼∧≜∽⊨∽∞∽ хо≩ стог с ≩ла ист с й хокой с ∦ с строкать стакахдайсь бой фор фор и Кан формой из ∯ла ист бой бой бой	╺╾╵╻╾┽╾╄╌╄╌┞╌┨╼╂╼┞╍╋╌┥╸┲╌┽╌╄╶┨┈╉╍╉╶╀╾╊
D.S A A D.S A A A A A D.S A A A <td>· · · · · · · · · · · · · · · · · · ·</td> <td>╶┼╴╡╶┟┈╡╶┼╶┝╌╞╌┼┈┼┈┠╶╁╶┽╶┥╴┫╸┦┉┨┈┠╌┦</td>	· · · · · · · · · · · · · · · · · · ·	╶┼╴╡╶┟┈╡╶┼╶┝╌╞╌┼┈┼┈┠╶╁╶┽╶┥╴┫╸┦┉┨┈┠╌┦
D.S A A D.S A A A A A D.S A A A <td></td> <td><u>┿╌╍┾┽┥┥┥┾┝╊╊┾┼╋</u>┝╋╋</td>		<u>┿╌╍┾┽┥┥┥┾┝╊╊┾┼╋</u> ┝╋╋
D.B A A D.B A A A D.B A A A A A D.B A A A </td <td></td> <td></td>		
D.B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A		
D.B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A		
D.B A A A A A A A D.B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A		
D.B A A A A A D.B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <		
D.B A A A A A D.B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <		
D.B A A A A A D.B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <		
D.B A A A A A D.B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <		
D.B A A D.B A A A D.B A A A A A D.B A A A </td <td></td> <td></td>		
D.B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A		┧ _{┥┥} ╷╷╷╷╷╷╷╷╷╷╷╷
D.B A A A A A D.B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <		╶╾╾╪╌╪╌╪╌╪╌╪╌╪╌╪╌╪╌╪╌╪╌╪╌╪╌
D.B A A A A A A A D.B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A		╶┇┈┇╴┇╌┇╴┋╌┎╴┩╶┨╴┨╴┨╴╋╌╋╍╋╼╋╼╋╼╋╼╋
D.B A A A A A A A D.B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A		╶╕╌╡╍┢╌┇╌┨┈┊╌╪┉┞╼┨┅┟┉┿╍╈╶┱╺┼╼╄╍╉╼╊╍╊╍╉
D.B D.B D.B D.B D.B D.B D.B D.B		╶╅╼╅┈╅╴╅╶┨╴╧╸╋╼╋╍╋╍╋╍╋╍╋╼╋╼╋╼╋╼╋
D.B A A A A A D.B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A <	ᢓ᠋᠊ᠴ᠋᠋ᠴ᠋᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘᠘	<u>╭╪╌┼╍┽╌╉╶┦╌┼╌┼╍┾╌┲╶╉╌┽╌┩╴┽╶┥╴┠╌╊╍╊╼</u> ╋╼╋
D.B D.B D.B D.B D.B D.B D.B D.B	frances as frances as a second as a	┈╅╌╍╪╌╪╌╪╌╪╌╋╌╋╌╋╌╋╌╋╌╋╴╋╴╋╴╋╴╋
D.B A A A A A A A D.B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	┟┉┉┉┉┲┓┉╡┈┉┉┉╸┉┉╴╸╺╌┥╶╷╴╸┉┓╪┉╸┍╌╴┉╡╺┉╴╴╺┟╸╴╴╴╻╻╸╴╴╸╻╸╴╴╸╻╴╴╴╸	<u>╶┼─┊╶┾╴┊╴┦╌┾╶┅╸┶╌╞╌╂╌╸┊╶╞╌┾╶┾</u> ╌╋╼╋╼╋╼╋╸╋
$X - WILSON METHOD$ $\Delta = OTHMER and BERMAN$ $O.7$ 6.0 12.0 14.0		╶╬╴╇╌╋╌╋╌╋╌╋╌╋╌╋╌╋╍╋╍╋╍╋╵╋╌╋╍╋╍╂╾╋╼╋
$X - WILSON METHOD$ $\Delta = OTHMER and BERMAN$ $O.7$ 6.0 12.0 14.0	┟┉┉┶┈┶┼┉┈┷┈╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴╴	╺┶╼╆╌┿╼╂╌╿╌┦╌┿╌╞╾┫╌┞╸┥╶╋╼┿╌┪╴┩╺╋╍┡╍╋
$X - WILSON METHOD$ $\Delta = OTHMER and BERMAN$ $O.7$ 6.0 $B.0$ 16.0 12.0 14.0	<mark>┟┶┉╦┉╪┥</mark> ╼╸╦╴╸┉┉╪╺┱╴╴╺┉┱╪╶ <u>┲</u> ┥╴╸╺╷╬┑╴╸╺╖┓┨╶╛╶╴┲╶╷╚╴╴╴╸╺╴┧╶╪╴╸┉┉┈╞╴╪┈╾┯╴╸╡╶╸╝╺╾╤╌╪╶╧╼╧╤╶╧╶╪╡	┽╌┾╴┾╾╈╶┨╌┿┅┿╌┯╴┿╌╋╾┿╌┥╺╋╌╋╍╋╍╋╍╋
$X - WILSON METHOD$ $\Delta = OTHMER and BERMAN$ $O.77$ $B.0 B.0 B.0 B.0 B.0 B.0 B.0 B.0 $	┢┯┉╳┱┉┊┯╪╼╌╸╪╌╾┼╍┈┊╍╌╡╍┦╶╴╸╸╸┝╶╴╸┍╌╹┥╺╴╸╸╸╸┆╺╶╶╶╍╌┤╺╶╍╌╴╴┊╸┆╺╺╍╪┿┊┈╧╶╴╾┾╴╸╪╌╸╪┼╸╡	╶╡┊┊┊┊╞╶╡┈╸┥┊╞╏╵╸┍╹┥┥┥ ╋╋╋
$X - WILSON METHOD$ $\Delta = OTHMER and BERMAN$ 0.7 6.0 9.0 16.0 12.0 14.0		┍╡╾╪╾╪╍╪┈┠╌╪╌╪╍┨╍╉╶╉╶╪╌╪╼╊╼╊╼╋╼╋╼╋
$X - WILSON METHOD$ $\Delta = OTHMER and BERMAN$ 0.7 6.0 9.0 16.0 12.0 14.0	≹∽ <mark>∕</mark> ∕, sustained a sea single a sea france and the sea to the sea show a sea france a sea france a sea to the sea sea to the sea sea sea sea sea sea sea sea sea se	╺╹┉╪╍╉╴┨╌┠╶╪╌╪╺╪╼╋╍╋╍╋╍╋╍╉╍╉╺╉╶╉╶╂╼╊╼╂╼╡
$X - WILSON METHOD$ $\Delta = OTHMER and BERMAN$ $O.7$ 6.0 12.0 14.0		
$X - WILSON METHOD$ $\Delta = OTHMER and BERMAN$ $O.7$ 6.0 12.0 14.0		-+ +-+-+-+-++++++++++++++++++++++++++++
$X - WILSON METHOD$ $\Delta = OTHMER and BERMAN$ $O.7$ 6.0 12.0 14.0		
$X - WILSON METHOD$ $\Delta = OTHMER and BERMAN$ $O.7$ 6.0 12.0 14.0		
$X - WILSON METHOD$ $\Delta = OTHMER and BERMAN$ $O.7$ 6.0 $B.0$ 16.0 12.0 14.0		
$X - WILSON METHOD$ $\Delta = OTHMER and BERMAN$ $O.7$ 6.0 $B.0$ 16.0 12.0 14.0		
$X - WILSON METHOD$ $\Delta = OTHMER and BERMAN$ $O.7$ 6.0 12.0 14.0		
$X - WILSON METHOD$ $\Delta = OTHMER and BERMAN$ $O.7$ 6.0 12.0 14.0		
$X - WILSON METHOD$ $\Delta = OTHMER and BERMAN$ $O.7$ 6.0 12.0 14.0		
A- OTHMER and BERMAN 0.7 6.0 8.0	O- THERMOC	JOUPLE METHOD
A- OTHMER and BERMAN 0.7 6.0 8.0		╴╍╴╅┉┷╴╼┈╅╴╺┉╅╴╋┉╅╼╋╍╋╍╋╍╋╍╋╍╋╍╋╍╋╍╋╍
A- OTHMER and BERMAN 0.7 6.0 8.0	<u>↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ </u>	
A- OTHMER and BERMAN 0.7 6.0 8.0	X- WILSON	METHOD
0.7 6.0 9.0 10.0 12.0 14.0	<u></u>	وكسسا شبية ليديد والمراج الماليا الماليا والمراجات
0.7 6.0 9.0 10.0 12.0 14.0	<u>┉┉┉┉┉┉</u> ╗┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉	
		-and -BERMAN++++
6.0 8.0 10.0 12.0 14.0	≠ 1 m m m m m m m m m m m m m m m m m m	an anna an
6.0 8.0 10.0 12.0 12.0 14.0	defendere de la conserve en la conserve de la conserve en la conserve de la conserve en la conserve en la conserve de	a an
6.0 8.0 10.0 12.0 12.0 14.0	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	an a
	<u>++++++++++++++++++++++++++++++++++++</u>	
		14.0
	<u>−−−−−+−−−−−+−−−−−+−−−−+−−−−+−−−−+−−−−</u>	+ 1 V W
		ō
$\left(\lambda \mathcal{L}_{a} \right)^{2}$	անությունի անունումին անությունը ու անունություն է է է են երավանում է է է երավանությունների հետաստաստանի հատատատատատատատատատատատատատատատատատատատ	
	$1 \wedge \mathscr{U}_{2}$	
	• •	

TABLE NUMBER 10

Correlation of Experimental Heat Transfer Coefficients for Vapors											
Con	Condensing on a Horizontal Tube										
	Heat Load										
	Heat Load	Condensate	Film Coefficient								
	q	W	he								
	Btu/hr	Lt	Btu/hr ft ² ° _F								
		#/ft.hr									
Methyl Alcohol	6,000	7.7	438								
	8,000	10.2	434								
	10,000	12.7	430								
	12,000	15.2	426								
Isopropyl Alcohol	6,000	12.6	195								
	8,000	16.8	194								
	10,000	21.0	194								
	12,000	25.2	195								
n-Propyl Alcohol	8,000	16.3	232								
	10,000	20.3	226								
	12,000	24.4	221								
	14,000	28.4	214								
n-Butyl Alcohol	10,000	23.8	203								
	12,000	28.5	196								
	11,000	33.2	192								
	16,000	37.9	188								

DISCUSSION OF RESULTS

The experimental results of this investigation are illustrated in tables 2 thru 9. These tables show the condensate film coefficients for Methyl Alcohol, Isopropyl Alcohol, n-Propyl Alcohol and n-Butyl Alcohol and the operating conditions for each. Two tables are given for each compound, a Wilson Method and a Thermocouple Method tabulation. To further clarify the data the following notes are offered:

The heat load, q, is the heat absorbed by the cooling water in B.t.u. per hour. The pounds condensate per foot of tube is a calculated value based on the measured heat load. The vapor temperatures are measured values. The outside surface temperatures are an average measured value in the Thermocouple Method and a calculated value in the Wilson Method. The values of the over-all temperature drop across the film are calculated in both methods as described in the theoretical development section. The over-all coefficient of heat transfer, U₀, is calculated as described in the theoretical section and is based on the outside surface area. The value for cooling water velocity, V₁ is calculated for the annular space within the condenser tube and based on measured water rates.

All of the data in this thesis was taken on one piece of equipment as shown in Figures 1, 2, and 3 and is described in the apparatus section. Data was taken only after equilibrium conditions were reached for each run and sufficient time for all non-condensable vapors to be removed was allowed. Data used for both methods of calculations were taken at the same time under identical operational conditions. Figures 6, 9, 12, and 15 show a graphical summarization of the outside tube surface temperatures as determined by both methods versus the experimental heat load, q. Also shown in these figures are the experimental results previously obtained by Othmer and Berman(4). The data of this work shows a good correlation of the outside tube surface temperatures as determined for both methods at a given heat load. Thus experimental heat transfer coefficients also show a good correlation. Outside surface temperatures and experimental heat transfer coefficients are, however, definitely lower than those previously obtained by Othmer and Berman. It should be noted though that Othmer and Bermans' (h) work also gave higher values for outside surface temperatures and heat transfer coefficients than earlier work by Othmer and White (5).

Since the outside surface temperatures and heat transfer coefficients obtained in this investigation by both the Thermocouple Method and the Wilson Method were of the same order of magnitude and showed a good correlation of the two methods, we the authors believe that the higher results obtained by Othmer and Berman were possibly due to unrecognized pressure build up and thus the use of low values of δT cf for calculations. To further substantiate this conviction two points should be noted. First, if the curves plotted in Figures 6, 9, 12, and 15 of q vs outside tube surface temperature for Othmer and Bermans' data are extrapolated to infinitely small values of q, the predicted outside tube surface temperatures for a particular compound becomes higher than the boiling point for that liquid under normal atmospheric

pressure. Secondly, Othmer and White (5) obtained lower values for h_e and tube surface temperatures than those subsequently found by Othmer and Berman. Othmer and Berman then evaluated the earlier results to be erroneous due to the supposed presence of non condensable vapors produced by the decomposition of the alcohols into aldehydes and hydrogen.

In this investigation non condensable vapors are ruled out because the apparatus was made solely of glass, 316 stainless steel, and teflon. Also, the equipment was well vented and runs made over long periods of time showed no deviation in experimental data. Extrapolation of curves of q vs outside tube surface temperature obtained from data in this investigation predict values of tube surface temperatures lower than normal boiling points at all values for q.

The calculated values of h_{e} and the demensionless constant $\left(\bigwedge_{k_{f}} \bigwedge_{t \in f} n_{k_{f}} \right)^{\frac{1}{2}}$ for the experiments performed in this investigation together with those based upon data obtained by Othmer and Berman for the same compounds are shown in Figures 7, 10, 13, and 16. Table number 10 gives a summary of the experimental heat transfer coefficients found in this investigation with respect to heat load. Values of all coefficients in this table are calculated from outside tube surface temperatures vs heat load plots for each compound. It should be noted that h_{e} varies inversely with q for Methyl Alcohol, n-Propyl Alcohol and n-Butyl Alcohol but remains almost constant for Isopropyl Alcohol.

Although we have found he to vary inversely with q it was noted

that slight variations in slope of the heat load vs tube surface temperature plots could cause h_e to become constant or even to vary directly with q. It was also noted that Chu (16), contrary to normally expected or predicted results, found h_e to vary directly with q for toluene. Also the experimental results of this investigation as shown in Table 10 and Figures 17 and 18 give definite evidence that the trend is for h_e to decrease for each succeeding member of the primary alcohol series.

RECOMMENDATIONS

The following recommendations are suggested:

- 1. Investigation of the range at low heat load, q, where tube surface temperature approaches that of the saturated vapor under normal atmospheric conditions.
- 2. Investigate the cause for the differences of heat transfer coefficients between a homologous series of organic compounds as a function of their diffusivity.
- 3. Examine to see if there might be some parameter causing the deviation of experimental heat transfer coefficients from those theoretically calculated using the Nusselt equation.
- 4. Determine the validity of the Wilson Method over a wider range by attaining higher Reynold's numbers.

NOLFNCLATURE

Outside surface area of condenser, square feet. An Сp Specific heat at constant pressure, B.t.u. per (pound) (⁰F). Outside diameter of condenser tube, feet. D₀ Acceleration of gravity (feet per hour)² - 4.18×10^8 . g Average condensate film heat transfer coefficient. he B.t.u. per (hour) (square foot) ("F). Average condensate film heat transfer coefficient, \mathbf{h}_{N} B.t.u. per (hour) (square foot) (^oF). Average condensate film heat transfer coefficient. hwr B.t.u. per (hour) (square foot) ("F), as calculated by the Wilson Method. Thermal conductivity of condensate at tf. (B.t.u.) (foot) kf per (hour) (square foot) $(^{\circ}F)$. Thermal conductivity of tube wall, (B.t.u.) (foot) per k. (hour) (square foot) (^{O}F) . Length of condenser tube, feet. Lt Rate of heat transfer through condenser tube, B.t.u. q per hour. T1 Temperature of cooling water at entrance of condenser tube, ^oF. Temperature of cooling water at exit of condenser tube. OF. To Average value of condensate film temperature, OF. tŗ Average value of outside surface temperature, oF. tos $\mathbf{t}_{\mathbf{v}}$ Average value of saturated vapor temperature, "F. Resistance to heat transfer, dirt film. ^Rd R_L Resistance to heat transfer, water side. $\mathbb{R}_{\pmb{\nabla}}$ Resistance to heat transfer, vapor side. Resistance to heat transfer, tube wall. R, Over-all heat transfer coefficients based on outside Uo surface area of condenser tube, B.t.u. per (hour) (square foot) (^oF).

NOMENCLATURE

- Vo -- Velocity of cooling water through inside of condenser tube, feet per second.
- W --- Weight of condensate, pounds.
- do Empirical constant.
- ΔT -- Temperature drop, °F.
- $\Delta t \sim 0$ over-all average temperature drop across film, $^{\circ}F$.
- A -- Enthalpy change, latent heat of condensation at saturation temperature, B.t.u. per pound.
- \mathcal{H} -- Absolute viscosity of condensate film at t_f , pounds per (hour) (foot).
- /f -- Density of condensate film at tf, pounds per cubic foot.

APPENDIX

APPENDIX CONTENTS

48

Original Data Methyl Alcohol	_ 49
Original Data Isopropyl Alcohol	_ 51
Original Data n-Propyl Alcohol	_ 52
Original Data n-Butyl Alcohol	_ 53
Othmer's Data Methyl Alcohol	_ 55
Othmer's Data Isopropyl Alcohol	_ 56
Othmer's Data n-Propyl Alcohol	_ 57
Othmer's Data n-Butyl Alcohol	_ 58
Rotameter #1 Calibration Data	_ 59
Rotameter #1 Calibration Curve	_ 60
Rotameter #2 Calibration Data	_ 61
Rotameter #2 Calibration Curve	_ 62
Thermocouple Calibration Data	_ 63
Thermocouple Calibration Curve	_ 64
References	_ 65

-

ORIGINAL DATA METHYL ALCOHOL

. . .

,

Run No•	T _i ° _C	To OC	Water Rate #/hr	Vapor Temp OC	1	Thermo 2 Milliv	couples 3 olts -	4
1	12.6 12.6 12.6 12.6	15.0 15.0 15.0 15.0	2775	64.2 64.2 64.2 64.2	1.94 1.94 1.97 1.95	1.72 1.74 1.74 1.73	1.67 1.67 1.68 1.67	1.61 1.63 1.62 1.62
2	12.6 12.6 12.65 12.65	15.3 15.4 15.4 15.4	2284	64.2 64.2 64.2 64.2	2.03 2.06 2.04 2.04	1.80 1.83 1.83 1.82	1.76 1.78 1.79 1.78	1.68 1.66 1.69 1.68
3	12.7 12.7 12.7 12.7	15.9 15.8 15.9 15.9	1810	64.2 64.2 64.2 64.2	2.14 2.12 2.14 2.13	1.94 1.94 1.94 1.94	1.85 1.87 1.87 1.86	1.77 1.77 1.77 1.77
4	12.9 12.9 12.9 12.9	16.7 16.7 16.7 16.7	1295	64.2 64.2 64.2 64.2	2.18 2.19 2.19 2.19 2.19	2.03 2.04 2.02 2.03	1.98 1.97 1.96 1.97	1.85 1.85 1.85 1.85
5	12.95 12.95 12.95 12.95	17.7 17.7 17.7 17.7	8 80	64.2 64.2 64.2 64.2	2.26 2.26 2.25 2.26	2.11 2.11 2.10 2.11	2.04 2.06 2.07 2.06	1.94 1.97 1.95 1.95
6	13.15 13.15 13.15 13.15 13.15	20.7 20.5 20.6 20.6	880	64.2 64.2 64.2 64.2	2•32 2•32 2•33 2•32	2.14 2.12 2.13 2.13	2.07 2.07 2.06 2.07	2.01 2.02 2.01 2.01
7	13.4 13.4 13.5 13.4	24.1 24.1 24.2 24.1	220	64.3 64.3 64.3 64.3	2.45 2.46 2.44 2.45			2.14 2.14 2.14 2.14
8	8•3 8•2 8•2 8•3	23•3 23•3 22•8 23•0	152	64.5 64.5 64.5 64.5	2.32	2.17 2.18 2.17 2.17	2.24	

Į.

ORIGINAL DATA METHYL ALCOHOL

Run No.	Ti			Vap or Temp	1	Thermo 2	, Ц	
	°C	oC	#/hr	°C -		Millin	rolts -	•
9	13.8 13.8 13.8 13.8	28•5 28•6 28•6 28•6	130	64.3 64.3 64.3 64.3	2.45 2.46 2.44 2.45	2•29 2•28 2•27 2•28	2•22 2•26 2•24 2•24 2•24	2.14 2.14 2.14 2.14
10	8.6 8.6 8.6 8.6	29.0 29.1 29.0 29.0	84	65.0 65.0 65.0 65.0	2•36 2•37 2•37 2•36	2•24 2•23 2•23 2•23	2+27 2+27 2+31 2+27	2 .26 2.27 2.27 2.27 2.27

· •

ORIGINAL DATA ISOPROPYL ALCOHOL

Run No.	т <u>i</u> °с	T _o o _C	Water Rate #/hr	Vepor Temp OC	1	Thermocouples 23 Millivolts -		4
1	12.35 12.3 12.35 12.35	14.65 14.65 14.7 14.7	2775	81.8 81.8 81.8 81.8	1.93 1.96 1.92 1.94	1.64 1.65 1.64 1.64	1.59 1.58 1.58 1.58	1.47 1.48 1.50 1.49
2	12.4 12.4 12.4 12.4	15.0 15.0 15.0 15.0	2285	81.8 81.8 81.7 81.8	2.07 2.07 2.09 2.08	1.77 1.79 1.81 1.79	1.72 1.74 1.72 1.73	1.57 1.57 1.57 1.57
3	12.45 12.4 12.4 12.4 12.4	15.6 15.55 15.55 15.55	1810	81.7 81.7 81.6 81.7	2.21 2.21 2.22 2.22 2.21	1.95 1.96 1.94 1.95	1.88 1.86 1.86 1.87	1.67 1.67 1.66 1.67
4	12.4 12.4 12.4 12.4	16.5 16.4 16.4 16.4	1295	81.7 81.7 81.7 81.7	2.33 2.33 2.34 2.33	2.09 2.09 2.10 2.09	2.03 2.02 2.01 2.02	1.85 1.84 1.86 1.85
5	12.5 12.5 12.5 12.5	17.8 17.8 17.8 17.8	880	81.7 81.7 81.7 81.7	2.45 2.46 2.45 2.45	2.22 2.23 2.21 2.22	2.11 2.14 2.13 2.13	1.96 1.97 1.97 1.97
6	12.8 12.8 12.8 12.8	23+3 23+3 23+2 23+3	380	81.7 81.8 81.7 81.7	2•57 2•57 2•56 2•57	2.33 2.34 2.33 2.33	2.24 2.24 2.23 2.24	2.14 2.13 2.13 2.13 2.13
7	13.0 13.0 13.0 13.0	28.7 28.5 28.6 28.6	220	82•3 82•2 82•3 82•3	2.70 2.69 2.71 2.70	2.44 2.46 2.46 2.45	2•37 2•36 2•38 2•37	2.30 2.29 2.28 2.29

.

ORIGINAL DATA n-PROPYL ALCOHOL

Run No.	^T i ⁰ _C	To OC	Water Rate #/hr	Rate Temp 1 2 3		Thermocouples 2 3 Millivolts -		4
l	12.5 12.5 12.5 12.5	15.5 15.5 15.5 15.5	2775	95•7 95•7 96•0 95•7	2.30 2.28 2.29 2.29	1.95 1.96 1.94 1.95	1.84 1.84 1.87 1.85	1.73 1.73 1.74 1.73
2	12.5 12.5 12.5 12.5	15.9 15.9 16.0 15.9	2285	95.8 95.8 95.7 95.8	2.47 2.45 2.44 2.45	2.13 2.11 2.10 2.11	2.01 2.01 1.99 2.01	1.85 1.83 1.85 1.85
3	12.5 12.5 12.5 12.5	16.6 16.6 16.6 16.6	1810	96.0 96.0 95.8 95.8	2,62 2,60 2,60 2,61	2.29 2.27 2.27 2.28	2.18 2.16 2.15 2.17	1.97 1.99 1.98 1.98
24	12.7 12.7 12.7 12.7	17.9 17.9 17.9 17.9	1295	96.0 95.8 95.8 95.9	2.68 2.70 2.66 2.68	2.41 2.44 2.40 2.42	2.35 2.35 2.34 2.35	2.14 2.15 2.14 2.14
5	12.7 12.7 12.7 12.7	18.8 18.7 18.75 18.75	1045	95•8 95•8 95•8 95•8	2.69 2.65 2.62 2.65	2.46 2.44 2.44 2.45	2.43 2.42 2.40 2.42	2.24 2.24 2.24 2.24 2.24
6	12.8 12.8 12.8 12.8	28.7 28.7 28.7 28.7	380	95•8 95•8 95•8 95•8	2.68 2.70 2.69 2.69	2•57 2•58 2•58 2•58	2•52 2•53 2•54 2•53	2,50 2,49 2,49 2,49 2,49
7	13.0 13.0 13.0 13.0	37.8 37.8 37.8 37.8	220	95.8 95.8 95.8 95.8 95.8	2.84 2.84 2.84 2.84	2.74 2.73 2.72 2.73	2.68 2.70 2.69 2.69	2,65 2,66 2,66 2,66

ORIGINAL DATA n-BUTYL ALCOHOL

Run No.	T _i °C	т _о °с	Water Rate #/hr	Vapor Temp C	1_	Thermo 2 Milliv	couples 3 rolts -	4
1	12.5 12.5 12.5 12.5	16.0 16.0 16.0 16.0	2775	117.7 117.7 117.7 117.7	2•67 2•66 2•67 2•67	2.24 2.24 2.24 2.24 2.24	2•25 2•24 2•25 2•25	1.92 1.95 1.95 1.95
2	12.6 12.6 12.6 12.6	16.3 16.3 16.3 16.3	2 550	117.7 117.7 117.7 117.7	2.74 2.76 2.75 2.75	2.33 2.33 2.33 2.33	2.29 2.29 2.29 2.29 2.29	2.05 2.02 2.04 2.03
3	12.6 12.6 12.6 12.6	16.6 16.65 16.6 16.6	2225	117.7 117.7 117.7 117.7	2.82 2.84 2.83 2.83	2.40 2.39 2.40 2.40	2.34 2.32 2.33 2.33	2.06 2.06 2.06 2.06
4	12.7 12.7 12.7 12.7	16.95 16.95 16.95 16.95	2020	117.7 117.7 117.7 117.7	2.94 2.93 2.92 2.93	2.53 2.54 2.52 2.53	2.43 2.40 2.45 2.43	2.10 2.10 2.10 2.10
5	12.7 12.7 12.7 12.7	17•4 17•4 17•4 17•4	1810	117.7 117.7 117.7 117.7	3.02 3.03 3.02 3.02	2.62 2.63 2.63 2.63	2.50 2.50 2.50 2.50 2.50	2.20 2.16 2.18 2.18
6	12.8 12.8 12.8 12.8	18.1 18.1 18.1 18.1	15 50	117.7 117.7 117.7 117.7	3.03 3.04 3.04 3.04	2.68 2.66 2.67 2.67	2•57 2•58 2•58 2•58	2.29 2.28 2.29 2.29
7	13.1 13.1 13.1 13.1	18.2 18.2 18.2 18.2	1550	117.7	3.12 3.13 3.12 3.12	2.76	2.62	2.33
8	12.8 12.8 12.8 12.8	18.7 18.7 18.7 18.7	1320		3.06 3.08		2.68 2.70	2.38 2.38

ORIGINAL DATA n-BUTYL AUCOHOL

Run No.	Ti °C	т _о о _С	Water Rate #/hr	Vapor Temp C	1	Thermo 2 Milliv	couples 3 olts -	4
9	13.15 13.1 13.1 13.1 13.15	19.2 19.1 19.2 19.1	1295	117.7 117.7 117.7 117.7	3.18 3.19 3.18 3.18	2.84 2.86 2.82 2.84	2.69 2.72 2.71 2.71 2.71	2.14 2.44 2.45 2.44
10	13.0 13.0 13.0 13.0	20.3 20.3 20.3 20.3	1045	117.7 117.7 117.7 117.7	3.13 3.11 3.12 3.12	2.87 2.87 2.87 2.87	2.81 2.83 2.82 2.82	2.52 2.55 2.54 2.54
11	13.0 13.0 13.0 13.0	21.5 21.5 21.5 21.5	880	117.7 117.7 117.7 117.7 117.7	3.17 3.14 3.16 3.16	2.95 2.94 2.93 2.94	2.89 2.88 2.90 2.89	2.61 2.62 2.60 2.61
12	13.2 13.2 13.2 13.2 13.2	20.4 20.3 20.3 20.3	1045	117.7 117.7 117.7 117.7 117.7	3.28 3.27 3.29 3.28	2.96 2.94 2.95 2.95	2.84 2.84 2.84 2.84	2.57 2.59 2.58 2.58

•

OTHMER'S DATA METHYL ALCOHOL

Run No.	q Btu/hr	W L #/ft ^t h	or v	စ်ဠုဒ	∆ čcf	off	h _e	h _N	$\frac{h_{e}}{h_{N}}$	$\left(\frac{\lambda \not f}{k_{f}}\right)^{\frac{1}{2}}$
1	2,700	3•39	148.0	145.30	2.70	145.98	1,180	890	1.325	3l1.10
2	3,400	4.28	148.0	144.50	3.50	145.38	1,150	827	1.390	30.50
3	3,640	4.77	148.0	143.60	4.40	144.70	980	780	1.255	27.20
4	4,060	5.10	148.0	143.78	5.22	144.08	91 8	755	1.215	25.75
5	4,450	5.58	147.8	141.9 0	5.90	143.37	891	715	1.245	24.20
6	5,430	6.82	147.8	139.80	8.00	141.80	800	665	1.200	20.80
7	6,060	7.62	147.5	137.90	9.60	140.65	75 0	635	1.180	18.95
8	6,350	7•97	147.3	135.89	11.11	139.70	740	628	1.175	17.60
9	6,990	8.75	147.2	135.53	11.67	138.45	707	610	1,162	17.42
10	8,250	10.35	147.1	131.93	15.17	135.70	642	567	1.140	15.27
11	9,500	11.95	147.0	128.30	18.70	133.00	601	540	1.110	13.70
12	11,200	14.05	147 . 0	122.90	24.10	129.00	549	505	1.085	12.25

OTHMER'S DATA ISOPROPYL ALCOHOL

Run No.	q Btu/hr	W Lt #/ft }	by F	စ်ဝူဒ	<i>∆t</i> cf °F	$o_{\rm F}^{tf}$	he	h _N	$\frac{\mathbf{h}_{\mathbf{a}}}{\mathbf{h}_{N}}$	
1	5,750	11.95	182.05	161.75	20.3	166.85	335	318	1.050	15.48
2	6,240	12.92	182.05	159.15	22.9	164.85	321	308	1.040	13.90
3	6, 680	13.84	182.03	156 .83	25.2	163.15	313	298	1.050	14.22
4	7,380	15.30	182.00	152.50	29.5	159.90	295	287	1.030	13.20
5	8,450	17.55	182.00	145.60	36.4	154.70	274	269	1.020	12.23
6	9,160	19.00	182.00	140.90	41.1	151.20	263	258	1.020	11.85
7	10,070	20.90	181.90	134.40	47.5	146.20	250	246	1.015	11.35
8	10,600	22.00	181.80	130.30	51.5	143.10	243	238	1.020	11.20

.

OTHMER'S DATA n-PROPYL ALCOHOL

Run No.	q Btu/hr	W Lt #/ft h	or F	tos o _F	Atof o _F	off	he	hŊ	he hN	$\frac{1}{k_{f}^{2}} \frac{1}{2}$
1	4,980	9.98	210.0	194.9	15.1	198.68	390	363	1.075	17.55
2	5,300	10.60	210.0	193.5	16.5	197.60	380	358	1.060	16.75
3	5,980	12.00	210.0	190.2	19.8	19 5.1 5	357	343	1.070	15.30
4	6,750	13.50	209.5	185.2	23.8	191.60	335	324	1.035	14.10
5	6,850	13.75	209.2	180.4	28.8	187.90	318	306	1.040	13.25
6	8,400	16.83	209.0	175.9	33.1	184.20	300	297	1.010	12.75
7	9,270	18.55	208.5	170.5	38.0	180.00	288	280	1.025	12.05
8	9,730	19.45	208.4	167.0	41.4	177.35	278	274	1.015	11.55

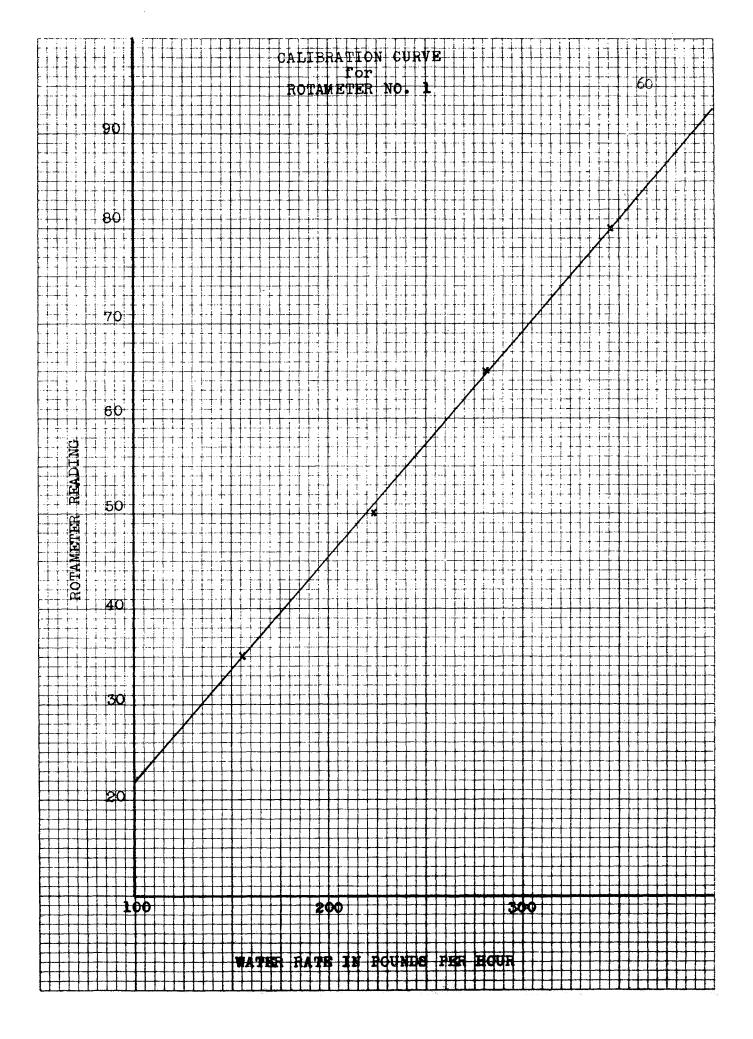
.

OTHMER'S DATA n-BUTYL ALCOHOL

Run No.	q Btu/hr	#/ft h	¢r r	tos oF	Atcf oF	$o_{\rm F}^{\rm t}$ f	h _e	hN	h <u>e</u> h _N	
1	6,130	14.4	243.5	221.4	22.1	226.90	327	338	•968	11.58
2	6,230	14.6	243.5	220.5	23.0	226.25	319	331	.964	11.50
3	6,490	15.2	243.0	218.7	24.3	224.80	315	328	•960	11.10
4	6,570	15.4	243.1	217.9	25 •2	223.20	308	322	•957	11.20
5	6,930	16.2	242.7	215.5	27.2	222.30	301	313	•955	10.8 8
6	7,440	17.4	242.7	213.2	29.5	220.60	297	308	•963	10.45
7	7,770	18.2	242.3	209.7	32.6	217.80	282	301	•936	9.94
8	8,500	20.0	242.3	205.6	36.7	215.00	273	29 7	•919	9.45
9	9,010	21.1	242.3	203.2	39.1	213.00	27 2	282	. 964	9.42
10	9,120	21.3	242.3	199.6	42.7	210.30	258	275	•937	9.11

. 1

ROTAMETER CALIBRATION

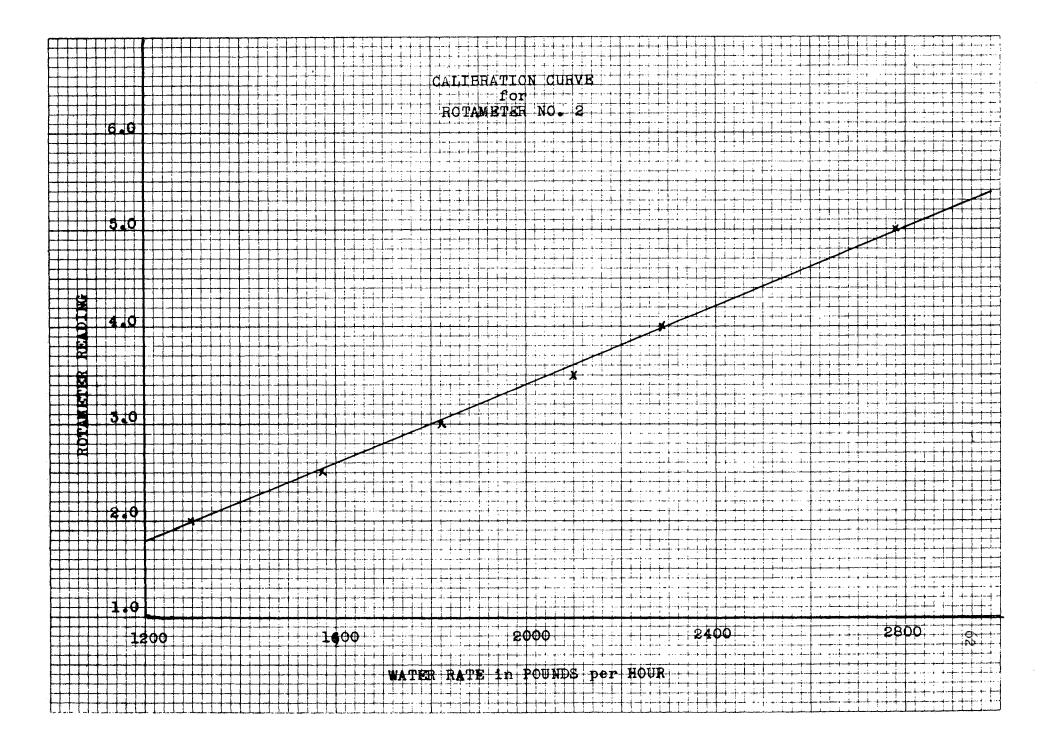

Rotamer No. 1 Factor 0.82 G.P.M. Sp. Gr. 1

Serial No. W 12-4142.1

Read lower disc of bob

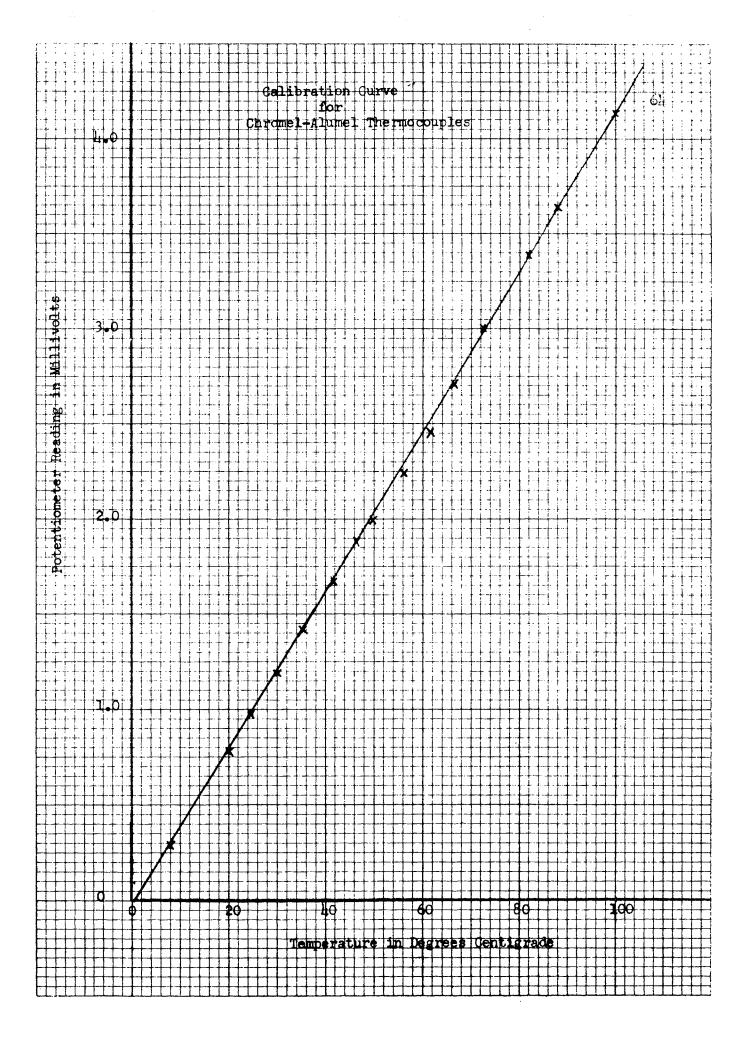
Rotameter Reading	Time Seconds	Wt. Water lbs.	Temp	# / hr
20	900	20.06	12.5	80.3
35	900	38.87	10.5	155.5
50	600	37.18	9.2	223.0
65	600	47.06	8.0	282.4
80	600	57.62	7.5	346.0
100	480	56 .06	7.0	421.0

.



ROTAMETER CALIBRATION

Rotameter # 2


Read lower disc of bob

Rotameter Reading G.P.M.	Time Seconds	Wt. Water lbs.	T8mp C	# / hr
1.0	300	64.80	7.0	778
1.5	150	43.87	6.0	1054
2.0	120	43.12	5.2	1295
2.5	120	52.25	5.0	1569
3.0	100	50.50	5.0	1820
3.5	90	52.44	5.0	2100
h.0	60	38.06	5.0	2285
5.0	60	46.37	5.0	2780
5.5	60	50.50	5.0	3030

THERMOCOUPLE CALIBRATION

Temperature °C	E.M.F Millivolts
8.3	0.28
20.1	0.77
24.7 25.6	0.97
25.0	1.01 1.04
30.2	1.19
35.5	1.42
41.8	1.67
43.9	1.75
46.5 49.7	1.88
56.2	2.24
61.8	2.45
66.5	2.72
72.6	3.0
75•5 81•8	3.07
88 .0	3•39 3•64
99.8	4.13
100.0	4.14
100.0	4.14

REFERENCES

- Baker, E. M. and Mueller, A. C., <u>Industrial and Engineering</u> <u>Chemistry</u>, Vol. 29, 1937, p. 1065.
- 2. McAdam, W. H. and Frost, T. H., <u>Industrial and Engineering</u> Chemistry, Vol. 14, 1922, p. 13.
- 3. Othmer, D. F., <u>Industrial and Engineering Chemistry</u>, Vol. 21, 1929, p. 576.
- 4. Othmer, D. F. and Berman, Saul, <u>Industrial and Engineering</u> Chemistry, Vol. 35, 1943, p. 1068.
- 5. Othmer, D. F. and White, R. E., <u>Transcript American</u> <u>Institute Chemical Engineers</u>, Vol. 37, 1941, p. 135.
- 6. Reddie, W., "<u>Heat Transfer Coefficients for Vapors Condensing</u> on Horizontal Tubes," Doctor of Philosophy thesis, Illinois Institute of Technology, 1948.
- 7. Rhodes, R. H. and Younger, K. R., <u>Industrial Engineering</u> <u>Chemistry</u>, Vol. 27, 1935, p. 957.
- 8. Wilson, E. E., <u>Transcript American Society Mechanical</u> Engineers, Vol. 37, 1915, p. 47.
- 9. International Critical Tables, New York: McGraw-Hill Book Company, 1926-1930.
- 10. Keenan and Keys, "Thermodynamic Properties of Steam", New York: John Wiley and Sons, 1936.
- 11. Badger, W. L. and McCabe, W. L., "Elements of Chemical Engineering," New York: McGraw-Hill Book Company, 1936.
- 12. Perry, J. H., <u>Chemical Engineers Handbook</u>, New York: McGraw-Hill Book Company, 1941.
- McAdams, W. H., "Heat Transmission", 2nd Edition, New York: McGraw-Hill Book Company, 1942.
- 14. McAdams, W. H., <u>Chemical Metallurgical Engineering</u>, Vol. 34, 1927, p. 599.
- 15. Peck, R. E. and Reddie, W. A., <u>Industrial and Engineering</u> Chemistry, Vol. 43, 1951, pp. 2926-2931.
- 16. Chu, J. C., Industrial and Engineering Chemistry, Vol. 41, 1949, p. 1789.
- Bromley, L. A., <u>Industrial and Engineering Chemistry</u>, Vol. 44, 1952, p. 2968.