Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

OVER A WTDE RANGE OF HETPERATURE AND PRESSURE

$B X$

qHOMA A. REITER

A pHest
 OF

IN PAREME FULFTLIMEXY OF THE
 OF
 MASTER OF BEEENOE

NDFWARK, NIW JERSEX

1954

APPROVAL OF PHESIS

FOR
 DBPARTMENW OF GHEMICAL ENCTHEERIN MEVARK COLIEKE OF ENE TNESRTMO

BY

FACULTE COMATMPEE

APPROVED:

\qquad

NEWARK, NEW JERSEY JUTE, 1954

ACKNOULEDC EUENT

The writer wishes to thank Joseph Joffe for his help and guidanoe in the preparation of this thesis.

HBBE OW COMEMES

pace
surmaray. 1.
Introauction. 2
Derivation of Equations Uaed in Caloulations 9
Method of Caloulation 14
Discussion of Results 19
Notation. 64
References 65

ISST OH BTGURES

Figure 10 - The Rffect of Temperature on the Constant Volume Heat Capacity of Ethane Pelative to the Ideal Gas State at Various pressures. 37
Figure 11 - The Bifect of ressure on the Constant Volume Ireat Capacity of Fthane at Various Temperatures. 38
Flgure 12 - The rifect of ressure on the Ratio of Eent Capacities of Ethane at Various Temperatures. 39
Pigure 15 - The Tefect of Temperature on the Ratio of Heat Capacities of Ethane at Various Tressures. 40
Figure 14 - The tifect of temperature on the Ratio of Feat Gapacities at Various Pressures (Using General- ized Correlation of amister.) 41
Table 1 - Sample Calculations 42
Table 2 . Constants for Use in Benedict-Webb-Rubin Equation of stat page 50
Table 3 - Calculated Data (Ualng Beneatet t. al. Constants - Refercnco 15) 51
Tabla 4 - Caloulated Data (Using Barkelew et. al.Constants - Reference 16)page 57
Table 5 - Calculated Values of $c_{p} c_{p}{ }_{p}^{*} e_{p}$ and c_{p} / e_{v}for Ethane from Ediaster Generolized Comelamtionpage 58
Fable 6 - Values of c_{p} na $c_{p}-c_{p}^{*}$ of Ethano irom Exper* imontal. Data page 60
Table 7 - Values f Isobaric Feat Capaetby fithane inthe Idenl Ga State for Various Temperatures.

SUMMARX

The sffects of prossure nut tomperature on the Lsobaric heat capacity, the oonstant volume hoat aapaaity, and the ratio of hat capacities of than are preatonted. The mange of conditions covared are pressures from 0 to 10,000 psia and teraperatures from 150 to $1400^{\circ} \mathrm{F}$. The ealculation of these effects is based on equations erved Irem the Benedict-Webbrubin equation of state. The dew rived quations exprets the deviations of the heat capacitios from ldoal gas behayior.

The results show that lgnoring the effect of pressure on the heat oapacities of ethane may lead to lavge errers in ongineering calaulations. Graphs and tables are presented te permit an evaluntion of the heat oapaoities over the range investigatec. Onmawisens are mede with data of provioua investigatoxg, and relative accuraciea are discuased.

T2TRODUOTION

Light hydrocarbons are coming inte increating commeroial use, especially in the petrocherdoal induatry. For example, raw materials are being obtained for alcohol and polymer procuction from the pyrolysis of petroleum gases to produce 11ght unsaturatod byarocarbons. Typseal operating conatitons in this process include $1200^{\circ} \mathrm{F}$ and 50 psig in the fummaces and $150^{\circ} \mathrm{F}$ and 350 psig at the comprester adacharge priox to coding and fractionating (1). Thas it can be seen that such prooesses are extending the ranges of tempergtures and pressures where acourate thermodynamic properties should be known. The purpose of this paper 4 a to help fill one of the gape in the available thermedynamic properties by extending the heat capacity data on othane into the high temperature and pressure range. Similar investigations of the effect of pressure on the hoat eapacity of light hyirocarbons have been made In the past. Fer example; Slodjeskl (2) has determined the effect of pressure on the inebario heat capactity of methane In the temperature range from $75^{\circ} \mathrm{F}$ to $1400^{\circ} \mathrm{F}$. Selfarth and Joffe (3) also reperted on the Lsobaric heat copacity of propane over a range of temperature of $200^{\circ} \mathrm{F}$ to $1350^{\circ} \mathrm{F}$ and a pressure range of 100 to 10,000 pala. The present paper helps complete auch cata on light hyareoarbons by adding ethane to the list of compounds inveatigated.

Gonerally, previous investigations inte the hat capacity et hane have been $14 m i t e d$ to the IIquid and low temperature ar low pressure gaseous mange. For example, Dalley and Folsing (4) determined, by means of an adababic Slow calorimeter, the isobaric heat capaotby of ethane from ${ }^{75}-330^{\circ} \mathrm{C}$ at Low pressure. Eucken and Wergert (5) repert values of the isobaric hoat capacity at one atmosphere from 70 F to 220 F . Whebe, Hubbard, and Brevoert (6) detemined With a standard oalerimeter the heat capacity of gaturated liquid othane from the boiling point to the exitical temperature ($90^{\circ} \mathrm{F}$). Nuxneroun studies have bean made on the 1deal gan isobaric hoat apacity by apectrescopic and statistian metheds as part of the invotigations of molecular structure and bond onergiaa. Pitzer (7) has dene work in thls latter field.

The Amerioan Potroleum Institute's Reaearch Pro-
ject 44 (8) involved taking all the above data and similar data from other sources and detormining the most accurate values for the therme日rnante properties. Included among the data reportea, ia the ideal gae atate isobaric neat capactey frem 0% to $2200^{\circ} \mathrm{F}$. Whese values are under con* gtant revision to obtain the highest acouracy possible. Therefore, this present paper has inoluded expressions of the deviations of heat capacities frem the ideal gas state. In the future, the heat capacity at actual conditions can be found accuratoly by adding the deviations reported here to the latest ideal gas values.

The primary source of experimental alata that gives the efrect of pressure on the isobaric heat capaeity of ethane in any part of the range of temperatures covered in this woxk has been roported by Sage, Febster, and Lacey (9). These authox report the hoet capacity from $50^{\circ} \mathrm{F}$ to $250^{\circ} \mathrm{F}$ and from 14.7 to 1500 psia in graphical fomm. The tabulated form wased to present the same daba in an art10le by Sage, Budenholzer, and Lacey (10). The isobarie hoat capacity data were besed in part on measurementa of the Joulemthomson coefficients at pressures from atmopher10 te 600 peunas per aquare inoh fer five tompervtures betwen 70° and $220^{\circ} \mathrm{F}$. The additiomal basis fer the Sage et. al. data wa graphioal differentiation of the isobaric linez on a temperaturemeat contont ouxve. fhe data from the two sources, Jould-Thomsen and graphical, are compared and acem to agree, at least for the 600 psta isobar shown. The JoulomThomson Laobario heat capacity was only slightiy lower than the graphiod data at tomperatures from 175 to $250^{\circ} \mathrm{F}$ indicating that possibly the graphical values aro high. No anta was reportea above $250^{\circ} \mathrm{F}$.

Hemister has developod generalized correlation for obtaining thermodynamion properties of hydrocarbens (11, 12,13,14). The generalized method of determining properties was basen on a now correlation of available $\overline{p-V}-T$ data using a graphioal reauoed equation af state. Thia type of compelation is valuable, especially when large
anounts of data are used in its development. It is useful for detomining values of propertied wen no other data are avallable, but mast be used with caution and should be checked won data do becone available. The properties that may be determinod by the Edmister generalized correm lation include: the effect of pressure on the isobaric heat capacity, $c_{p}-c_{p}^{*}(11,12,13)$; the difference between the actual isoberic heat oapacity and the oonstant volume heat capacity, $c_{p}-c_{V}(12) ;$ and the ratio of actual specific heats, $\mathrm{o}_{\mathrm{p}} / \mathrm{o}_{\mathrm{v}}(12,14)$. From the above data plus values of the ideal gas isobaric heat capacity from Reference 8 , it is also possible to evaluate the actual constant volume heat capacity.

To extend the wox of previous inveatigators, several methods were considered. The generalized correlation of Hamister might be extrapolabed, but without corroborating data it was felt that this might give inaccurate regults. Direct extrapolation of experimental data is possiole. This was ruled out because of the extreme lack of data and wide range of temperatures and pressures to be covered. The other method, that of evaluation of thermocynamio properties from an equation of state, was selected.

Several of the many equations of state were considered. The Van der raals equation, while being one of
the simplest and well knom equations, would not give accurate enough values. The Berthelot equation, which is an improvement on the Von der 'aals, and has been usec to correct atmosherto c_{p} data to laeal gas state (4), also would not give the desired accuracy. The Deattie-Bridreman equation might be acourate enough for pplication in this work. However, the Beattiembridgeman equation was not developed to reproduce $p-V-T$ data of gases in the critical re;ion. Thus, the equation selected for this woxk was the lienedict-Tebb-Rubin equation of atate (15).

The Benedict-riobb-Rubin equation wes developed primarily for hydrocarbona. In the samemner as the Van der "aals equation, it assumes that one equation can represent both the 11quid and ges phases. The suthors have stated that the equation can be regarded as modified form of the Beattiewridgeman equation with more constants for increased accuracy. It is applicable up to gas densities equal to 1.8 times the critical density. The averaje orror in calculated pressure up to this density is only 0.34 per cent. Leyond this rance the oalculated values are hich. Turther improvements in acouracy would have requirea several more parameters or conatants. It is bew Iieved that the Benedict-ebb-Rubin equation is the most accurate quation applicable to the calculation of heat capacities available to date. the constants for use in the equation were reported in Reference 15. The Benedict-"ebb-pubir equation is readily applied since it may be
diperentiated and integrated mith reapect to density or volume and temperature.

Barkelew, Valentine, and Murd (16) in 1947 used the Benedict- ebb-Rubin equation to construct a pressurem enthalpy curve in the range of 0 to $500^{\circ} \mathrm{F}$ and 10 to 1500 psia. In doing this mork, the authors deterrined a new set of constants to represent more accurately the volumetric data by including data made avallable since the original constants were determined in 1940. The new conm stants reproduce the deta between $100^{\circ} \mathrm{F}$ and $460^{\circ} \mathrm{F}$ and up to 1500 psia. As indicated later in this paper, these new constants have been condidered in the calculation of the heat capacitwes. Barkelew, Valentine, and Yiurd (16) reported that a comparison of thelr temperature-enthalpy curves with the graph of Sage, Tobster, Lacey (9) reveals that the actual vapor enthalpy minus the enthalpy at zero pressure differed by as much as 6 Btu per pound at aigh preasures. Mage et. al. values were on the low side. Edm mister (11) also noted that the sage et. al. pressure coxection to the enthalpy was lower than his method would predict at hag presoure. Baxicelev et al. belleved that this discrepancy resulted from diferences in volumetric data used as a basts. The authors pointed out that enthalples based on the saturated volumes pould be questionable due to the difficulties in obtaining accurate data.

The method of applaction of the Bonedict-' obb-Fubin equation of state to the cetermination gi hoat capacity on ethane follows.

DERIVATION OF EQUATIONS USED IN CALCULATIONS

The equation of state presented by Benedict, webb, Rubin (15) ia as follows:
$P=R T d+\left(B_{0} R T-A_{0}-C_{0} / T^{2}\right)^{\prime 2}+(6 e T-a) d^{3}+a x d^{6}+\frac{c d^{3}\left(1+\alpha d^{2}\right) e^{-\sigma d^{2}}}{T^{2}}$
In terms of density, d, moles/unit volume.

Rewritten in terms volume, V, the equation is

$$
P=\frac{C T}{V}+\left(B_{0} R T-A_{0}-C_{0 / T 2}\right) 1 / V^{2}+(b R T-a) / V^{3}+a \alpha / v^{6+c}\left(\frac{\left.\gamma+v_{2}\right) e^{-\gamma / V^{2}}}{V^{3} T^{2}}(2)\right.
$$

The above equations are explicit in pressure; therefore, to simplify subsequent calculations, the derived equaltons will be explicit in pressure also.

For an ideal gas it has been established that

$$
\begin{align*}
& C_{p}^{*}-C_{\nu}^{*}=R \tag{3}\\
& C_{p}^{*}=C_{\nu}^{*}+R \tag{4}
\end{align*}
$$

subtracting (4) from both ides of $C_{p}=C_{p}$, the following Is obtained:

$$
\begin{equation*}
C_{p}-C_{p}^{*}=C_{p}-C_{\nu}^{*}-E \quad \text { for an actual gas. } \tag{5}
\end{equation*}
$$

Adding and subtracting $C V$ on the right-hand aide of (5)

$$
\begin{align*}
& C_{p}-C_{p}^{*}=C_{p}-C_{V}^{*}-C^{*}+C_{V}-C_{V} \\
& C_{p}-C_{p}^{*}=\left(C_{p}-C_{V}\right)+\left(C_{V}-C_{V}^{*}\right)-P \tag{6}
\end{align*}
$$

is obtained.

The terms $\left(C_{p}-C_{V}\right)$ and $\left(C_{V}-C_{V}^{*}\right)$ are now evaluated from thermodynamic relationships.

The following relationships have been derived in texts on thermodynamics (17, p. 473 Equation 90):

$$
C_{P}-C_{V}=-T(\partial P / \partial T)_{V}^{2}(\partial V / \partial P)_{T}=-T(\partial V / \partial T)_{P}^{2}(\partial P / \partial V)_{T} \quad(\gamma)
$$

Since by definition,

$$
\left(\partial V / \partial P_{T}=1 /(\partial P / \partial V)_{T}\right.
$$

(7) above may (8)
be written

$$
\begin{equation*}
\left(c_{p}-c_{\nu}\right)=\frac{-T\left(\partial P(\partial)_{1}^{2}\right.}{\partial P(\partial \nu)_{\tau}} \tag{9}
\end{equation*}
$$

The expression $(\partial P / \partial T)$ is obtained by differentiacting equation 2 with respect to temperature at constant volume. The result is

$$
\begin{align*}
\left(\frac{\partial P}{\partial T}\right)_{V}= & R V^{-1}+B_{0} R V^{-2}+2 C_{0} V^{-2} T^{-3}+6 R V^{-3} \\
& -2 c V^{-3} T^{-3}\left(1+\gamma V^{-2}\right) e^{-8 V^{-2}} \tag{10}
\end{align*}
$$

The expression $(\partial P / \partial V)_{T}$ is obtained by affferentim sting equation 2 with respect to volume at constant temperature. The result is

$$
\begin{align*}
\left(\frac{\partial P}{\partial V}\right)_{T}= & -R T V^{-2}-2 V^{-3}\left(B_{0} R T-A_{0}-C_{0} T^{-2}\right)-3 V^{-4}(6 R T-a) \\
& -6 a \alpha V^{-2}-3 c V^{-4} T^{-2} e^{-\gamma V^{-2}}-3 \gamma c V^{-6} T^{-2} e^{-\gamma V^{-2}} \\
& +2 \gamma^{2} c V^{-8} T^{-2} e^{-\gamma V^{-2}} \tag{11}
\end{align*}
$$

Equation 9 is now expressed by substituting from aquations 10 and 12. The resulting expression after collecting

terms is:

$$
C_{p} C_{V}=\frac{-T\left[\begin{array}{l}
R V^{-1}+B_{0} R V^{-2}+2 C_{0} V^{-2} T^{-3}+b R V^{-3} \\
-2 e V^{-3} T^{-3}\left(1+\gamma V^{-2}\right) e^{-\gamma V^{-2}}
\end{array}\right]^{2}}{\left[\begin{array}{l}
-R T V^{-2}-2 V^{-3}\left(B_{0} R T-A_{0}-C_{0} T^{-2}\right)-3 V^{-4}(b R T-a) \\
-6 a \alpha V^{-7}+e^{-\gamma^{-2}}\left(-3 e V^{-4} T^{-2}-3 C \gamma V^{-6} T^{-2}\right. \\
\left.+2 e \gamma^{2} T^{-2} V^{-8}\right)
\end{array}\right]}
$$

Thus the first term on the rightmand side of equation 6 has been expressed in terns of I and V wi the Benedict-Webb-Rubin constants and the Universal Gas Constant.

The next term $C_{y}-C_{V}^{*}$ is evaluated in the same terms. From Reference 17 p. 473. Equation 94, the fol. lowing le obtained:

$$
\begin{gather*}
\left(\partial C_{V} / \partial V\right)_{T}=T\left(\partial^{2} P / \partial T_{V}^{2}\right)_{V} \tag{13}\\
\text { or in another form } \\
C_{V}-C_{V}^{*}=\int_{\infty}^{V}\left(\partial^{2} P / \partial T_{V}^{2}\right)_{V} d V \tag{14}
\end{gather*}
$$

The second derivative of P wi respect to T at constant V is obtained by differentiating equation 10, Wt th respect to T at constant V.

$$
\left(\frac{\partial^{2} P}{\partial T^{2}}\right)_{v}=-6 c_{0} V_{\text {or }}^{-2 T^{-4}+6 c V^{-3} T^{-4}\left(1+\gamma V^{-2}\right) e^{-\gamma^{-2}}(15)}
$$

Equation 15 substituted into equation 14 and rearranging terms gives

$$
\begin{equation*}
C_{V}-C_{V}^{*}=\int_{\infty}^{V} 6 T^{-3}\left(e V^{-3} e^{-y V^{-2}}+\gamma e V^{-5} e^{-\gamma V-2} C_{0} V^{-2}\right) d V \tag{16}
\end{equation*}
$$

Separating equation 16 into individual integrals gives

$$
\begin{align*}
C_{\nu}-C_{V}^{*} & =6 c T^{-3}\left(V^{-3} e^{-\partial V^{-2}}\right) d V+6 c T^{-3} \gamma /\left(e^{-\gamma \nu V^{-2}-5}\right) d \nu \\
& -6 C_{0}^{\infty} T^{-3} \int_{\infty}^{\nu-2} d \nu \tag{17}
\end{align*}
$$

The series of integrals in equation 17 are evaluated and the terms are collected to give

$$
\begin{equation*}
C_{\nu}-C_{\nu}^{*}=\sigma_{t} T^{-3}\left[\gamma^{-1} e^{-\gamma v^{-2}+\nu-2} e^{-\gamma v^{-2}} / 2+C_{0} \tau^{-1} V_{-\infty}^{-7}\right. \tag{18}
\end{equation*}
$$

Substituting limits gives

$$
\left.\begin{array}{rl}
C_{V}-C_{V}^{* *} & =6 \pi T^{-3}\left[r^{-1} e^{-\gamma V^{-2}}+V^{-2} e^{-\gamma V} / 2+C_{0}^{-2} \tau^{-1} V^{-1}\right.
\end{array}\right]
$$

Equations 19 and 12 are substituted into equation 6 to

$$
\begin{aligned}
& C_{\rho}-C_{\rho}^{*}=-T\left[\begin{array}{l}
{\left[R V^{-1}+B_{0} R V^{-3}+2 C_{0} V^{-2} T^{-3}+6 R V^{-3}-2 e V^{-3} T^{-3}\left(1+x V^{-2}\right) e^{-2 V^{-2}}\right]} \\
-R T V^{-2}-2 V^{-3}\left(B_{0} R T-A_{0}-C_{0} T^{-2}-3 V^{-4}(6 R T-a)-6 a \alpha V^{-7}\right. \\
\left.+e^{-\alpha V^{-2}\left(3 C V^{-4} T^{-2}-3 \tau+V^{-6} T^{-2}+2 c \gamma^{2} T^{-2} V^{-8}\right.}\right]+
\end{array}\right] \\
& {\left[6=T^{-3}\left(\partial^{-1} e^{\left.\left.-\gamma v^{-2}+V e^{-2} \gamma v^{-2} / 2+C_{0} \tau^{-1} V^{-1}\right)-6 \tau d^{-1} T^{-3}\right]-R \quad(20), ~(20)}\right.\right.}
\end{aligned}
$$

Dividing out V^{2} and changing dins in the first term and
rearranging the second tex gives

$$
\begin{align*}
& +6 C_{0} T^{-3} V^{-1}+6 x^{-1} T^{-3}\left(e^{-7 V^{-2}}-1\right)+3 c T^{-3} V^{-2} e^{-x V^{-2}} R \tag{21}
\end{align*}
$$

For ease of expression and calculation the following equal－ pions were used．

$$
\begin{align*}
& C_{p}-C_{p}^{*}=T\left[\frac{\phi^{2}}{\theta}\right]+\Psi-E \\
& \phi=R+B_{0} R V^{-1}+2 C_{0} V^{-1} T^{-3}+6 R V^{-2} \\
& -\lambda さ V^{-2} ケ^{-3}\left(1+\gamma V^{-2}\right) e^{-\gamma V^{-2}} \\
& \theta=R T+R V^{-1}\left(B_{0} R T-A_{0}-C_{0} T^{-2}\right)+3 V^{-2}(B R T-a) \\
& +6 a \alpha V^{-5}+e^{-\gamma V^{-2}} \tau V^{-2} T^{-2}\left(3+3 V^{-2} \downarrow-2 \gamma^{2} V^{-4}\right) \quad \text { (24) } \\
& C_{P}-C_{\nu}=T\left[\frac{\phi^{2}}{\theta}\right] \tag{25}\\
& \Psi=6 C_{0} T^{-3} V^{-1}+6 \tau \gamma^{-1} T^{-3}\left(e^{-2 V^{-2}}-1\right)+3 \pi T^{-3} V^{-2} e^{-d V^{-2}}(26) \\
& \Psi=C_{\nu}-C_{\nu}^{*} \tag{27}
\end{align*}
$$

MERHOD OF CALCULATTON

Since both equations 2 and 21 are explicit in pressure, they were solved by assuming values for volume at the varfous temperatures and calculating the pressure, then calculating $c_{v}-c_{v}^{*}$, and $c_{p}-c_{p}^{*}$ comresponaing to the assumed temperature and the calculated pressure. These calculations were carried out as folloms:

1) The values of volume varying from $1.35 \mathrm{ft}^{3} / 4-$ mole to $50 \mathrm{ft}^{3} / \#-m o l e$ were assumed and pressures were calculated by equation 2 using the Benedict et. al. constants shown in Table 2. The lower limits of volumes were based on not exceeding $1 /(1.8 x$ eritical density). The critical density used was $0.442 \mathrm{Hmole} / \mathrm{CF}$. This represents the author's recomended limit to the Benediot-webb-Rubin equation of state. In acdition the lower limits of volumes assumed for calculating the isotherms were set by not obtaining pressures much above 10,000 psia or $c_{p}-c_{p}{ }^{*}$ values much greater than $0.24 \mathrm{Btu} / \mathrm{H}, \mathrm{O}_{\mathrm{F}}$. The upper limits of assumed values for volume were set so that $\mathrm{c}_{\mathrm{p}}-\mathrm{c}_{\mathrm{p}}{ }^{*}$ Values of not more than about $0.020 \mathrm{Btu} / \#,{ }^{\circ} \mathrm{F}$ for the lower tempergtures or 0.010 for higher temperatures were obtained. 2) For the same values of pressure and volume used in step 1) above the values of $c_{p}-c_{v}, c_{v}-c_{v}{ }^{n}$, and $c_{p}-c_{p}{ }^{*}$ were calculated. Equations 22 through 27 were used
for these calculations. Since the calculations involved a small difference between large numbers, all calculations were made to six significant figures. Seven-place logarithms were used in the calculations (18). The isotherms selected for calculation were $150^{\circ} \mathrm{F}, 250^{\circ} \mathrm{F}, 400^{\circ} \mathrm{F}, 500^{\circ} \mathrm{F}, 600^{\circ} \mathrm{F}, 800^{\circ} \mathrm{F}, 1000^{\circ} \mathrm{F}$ and $1400^{\circ} \mathrm{F}$. Sample calculations for the $500^{\circ} \mathrm{F}$ isotherm are shown in hable 1. The calculated data are shown in Table 3.
2) Since alternate values of constanta for use in the Benediat-vobb-Rubin equation of state have been presented in the 1iterature (16), it was necossary to sepeat the calculations as indicated in 1) and 2) above. Barkelew et. al. stated that the alternate constants were calculated to reproduce P-V-T data including those made avallable since the original constants were determined. These altemate constants are applicable to ethane in the range of $100-460^{\circ} \mathrm{F}$ and up to 1500 Ibs/sq. $2 n, a b s$. only (see Table 2). Therefore the following isotherms were calculated: $150^{\circ} \mathrm{F}, 250^{\circ} \mathrm{F}$ $300^{\circ} \mathrm{F}$ and $400^{\circ} \mathrm{F}$. These calculated ata are shown in Table 4.
3) The values of $c_{p}-c_{p}{ }^{3}$ were plotted versus pressure with parameters of temperatures. An enlarged section (low pressure) wes ${ }^{2}$ lothed to increase accuracy. These plots are shown on figures 1 and 2 . Both the
values resulting from the Benediot et. al. constants and the Barkelew et. al. constants were plotted for comparison purposes. The curves through the Barkelew data points were used within their range of application in subsequent cross plots.
4) A crossplot of igigures 1 and 2 was made on pigure 3. Fere $c_{y}-c_{p}^{*}$ is plotbed vorsus temperaturea from 150 to $1400^{\circ} \mathrm{F}$ with parameters of pressure from 100 to 10,000 psia.
5) For purposes of comarlison, the generalized come lation of ramister was used to calculate $c_{p}-c_{p}$ \% The table in Reforence 11 was used for $\frac{\Delta C_{n}}{K_{2}}$, where ke is a constant applicable for ethane. The original value suggested for k_{2} for ethane was 1.457 in Reference 11. Later Edmister auggested that k_{2} ahould be 1.438 in Reforence 12. This latter value was used in the present calculations. The resulting $c_{p}-c_{p}$ " data were plotted on Figuxe 4 with isobars from 5) above also plotted for comparison. The calculated data from the Eamister Ceneralized correlation are shom in Table 5. The values of critical pressure and temperature used were: 708.3 psia, $549.77^{\circ} \mathrm{R}$. 7) The values of $\mathrm{c}_{\mathrm{p}}-\mathrm{c}_{\mathrm{p}}{ }^{*}$ obtained from experimental data given by sage et. al. in Reference 9 and 10 were plotted on Figure 5. Were again isobars from intrue 3
are also plotted for comparison.
6) Using the values of $\mathrm{cp}^{\text {h }}$ from Peference 8 and the calculated data from ateps 1), 2), and 3) cp_{p} was obtained and plotted versus pressure ith temperature as parameters (See Figure 6). A crossplot was again made to obtain op versus temperature pith parameters of pressure; this plot is shom on P1gure 7. Values of c_{p} gimilariy obtained from $c_{p}-c_{p}$ * values using the Edmister generalized correlation were plotted on Pigure 8. The Sage et. al. experimental data was also Included on Figure 8 for comparison purposes. 9) The values of cy-ov obtained in steps 2) and 3) were plotted as in step 4). A crosaplot was again made to obtain a graph of $a_{V}=c_{V}^{*}$ versus tempereture with parameters of pressure. These plots are shom on Figures 9 and IO. 10) Using equation 3 and values of $c_{p}{ }^{*}$ from Reference 6 values of e^{*} were obtained. Fith these values of $c_{v}{ }^{*}$ and values of $c_{V}-c_{V}^{*}$ (rom steps 2) and 3), c_{V} data were obtained and plotted on Figure 11 to show effect on total c_{V} of the deviation from Ldeal gas state.
7) From the calculated c_{p} data from step 8) and the calculated c_{v} data from step 10) values of c_{p} / c_{v} were determined. These are plotted on Flgure 12. A cross
plot was made to show o_{p} / c_{y} versus temperature with parameters of pressures as shown in Figure 13. The values of c_{p} / c_{v} are shown in rables 3 and 4. 12)Edmister has presented a generalized correlation for determining c_{p} / c_{v} (14). The values of $\mathrm{o}_{\mathrm{p}} / \mathrm{c}_{\mathrm{v}}$ for ethane were determined from this correlation and were plothed on Figure 14. Two isobars from Flgure 13 were also plotted for comparison purposes. The calculated valuea of e_{p} / e_{v} are shown on Table 5.

DISOUSSIOA OF RESULES

General

It should be noted before proceeding that any comparisons to determine the accuracy of the heat appactty data prosented herein will be sharply limited by the lack of avallable data. Thus the comparisons will be confined to the one set of avallable experimental data, that presented by Sage et. al. (9 and 10), and the Edmister generalized correlation (11,12,13,14). The following discussion and comparisons have been divided into four aections: disoussion of isobaric heat cepacity; oonstant volume heat capaefty; xatio of heat capacitieas and general conclusiona.

Isobaric Heat Capactby, $o_{p}-a_{n}$ and a_{p}

As inaleated on Figures 1, 2, ane 6 the values of $c_{p}-c_{p}{ }^{*}$ and c_{p} calculated from the Benediot-Tlob-Rubin equation using the original constants (15) agree very well with those obtained frox the use of the newer constants of Barkelew et. al. (16). Values of $c_{p}-c_{p}^{*}$ and c_{p} were calculated for the 150,250 , and $400^{\circ} \mathrm{F}$ isotherme using both sets of conatanta. From this agreement in values it was concluded that accurate determinations could be made using the Barkelew et. al. conatants within theis wange of application (150 to $450^{\circ} \mathrm{F}$ and 0 to 1500 psla) and the orsginal Benedict et. al. constanta in the remalnder of the range
investigated.

Figuxes 3 and 7 indicate that large errors may be encountered in ongineering oalsulations if the deviation of Sobarle heat capacity from the ideal gas values were neglected. The large increase in the deviation from ideality at the Lower temperatures mould be expected since both $c_{p} c_{p}$ and e_{p} become infinite at the critical point (appox. 90° F and 709 psia.). Whe dashed linea on the higher preasuxe isobars on Pigurea 3 and 7 have been plotted to show that at higher pressures (theoretically, those above the critiaal pressure) the deviation from lealiby is reduced as preasure 14 increased whin certain tomperature zanger. For othane the $4000,5000,8000$ and 10,000 psia 1aobara show such a trend towaydit ldeality at bemperatures below 700°. Thil sam phenomenon may bo soen on the common compressibiliby factor veraus reutued pressure plots. For these latter plots it has been axplained that the phenomenon results from the actun volum of the molecules becoming an inoreasing factor while the forees of attraction between molecules become leas of a factor in determining the deviation from peality.

On Figure 4 it can be seen that the values of $\mathrm{co}_{\mathrm{p}}-\mathrm{e}_{\mathrm{p}}$ 数 determined from the gamister generalized comelation agree With those calculated frow the Benediet-webb-Rubin eguation

The differences between values doea saem to increase with increasing pressures. However, the 2500 psia isobar ghow is about the upper 1 init of values that may be obtained from the EdmLater correlation in its present form. It ghould be pointed out that Edmister has himaelf Indicated that the value of k_{2} used in the $c_{p}-a_{p}$ " calculation is sub ject to revision to increase the correlation'a acouracy. Figure 8 also show agrement between 0_{0} valuea obtained from the Edmater correlation and from the Benedict-WebbFubin equation.

A comparison of the Sage ot. al. $(9,10)$ data with those of the present study are shown on pigumes 5 and 6 . It was LeIt that though isothermo in the range of 175 to $225^{\circ} \mathrm{F}$ would show good agreement, the twe comparizon would wequire the Wiae range of temperatures showne Theae figures indicated that below about $200^{\circ} \mathrm{F}$ thes Investigatox"s calculated values ace higher than the Sage et. al. values, whle at temperatures above $200^{\circ} \mathrm{F}$, they are lower. The slope of the Lsobars at $250^{\circ} \mathrm{F}$ indicate that the sage et. al. would be higher over a large range of higher temperature. The values of o_{p} and henoe $\mathrm{o}_{\mathrm{p}} \mathrm{c}_{\mathrm{p}}$ * for pressures 600 psia and beIow were obbained from measurements of the Joule-mhomson coerfielent of thane. As indiented on Flgures 5 and 8 the values obtained by this investigator do not deviate midely frow the Sage et. al. data at 500 psia and below. Above

600 pala sage et. al. obtained their op data by graphical differentiation of the temperaturemeat content plot which In turn was based on saturated gas volume data. As indionm ted In the introduction to the present paper; Barkelew et. al. (16) heve pointed out that values obtained from such volumetric data are queftionable due to the diffioulties in obm taining acouxate saturatea volumetric data. Barkelew et. al. Indicated that the pressure correction to the heat content they obtained were higher than those obtained by sage et. al. at tomperatures above 200° F. Edmister (11) noted the same discrepancy between his data and the sage et. al. data. since these preasure corrections to the heat oontent are subtracted from the ideal gas heat content, plot of heat content versus temperature with parameters of preasure would reveal that the Sage et. al. data have higher alope (hence lsom baric heat capacity) than other the Barkelew ot. al. or Edmister data would show. Thus the values of heat capactey of cthane by sage et. al. at preatures above 600 psia may be on the high aide.

On the basts of the comparisong made above, the following recommendations are made:
2) Below 250 F the Sage et. al. data for $c_{p}-c_{p}$ 黄 and c_{p} should be used, keeping in mind that the values at pressures above 600 psia may very well be on the high gide. 2) Above $250^{\circ} \mathrm{F}$ the $\mathrm{c}_{\mathrm{p}}-\mathrm{c}_{\mathrm{p}}$ \% and c_{p} of the present invest-
igator should be used with some consideration being given to the fact that the values may be on the low side. Constant Volume Heat Capacity $\mathrm{c}_{\mathrm{v}}-\mathrm{c}_{\mathrm{v}}{ }^{*}$ and of

Figure 9 indicates a seemingly wider disoropancy in the calculated values obtained from the original Benedict et. al. constants and the Barkelew et. al. constants, than with the $c_{p}-c_{p}^{*}$ values. This is due in part to the fact that relam tively amaller deviation are exhibited by the constant vol ume heat capacity than the isobaric heat capacity (0.0 to 0.04 vergus 0.0 to 0.30). Figure 21 indicates that the alm crepancy has a very amall effect on the total heat capacity, c_{v}. Therefore, it was concluded that the results obtained by the Barkelew ot. al. constant can be used within their range of conditions and that the values from the Benedict et. 21. constants can be used over the remainder of the range.

Figures 10 and 21 indicate that pressure has relative Iy less effect on the constant volume hoat capacity than on the izobaric heat oapacity. For example, at temperatures above $400^{\circ} \mathrm{F}$ a maximum error of only 5% would result from using the daeal gas value.

The phenomenon of a return to ideality with increating pressure was exhibited with the constant volume heat capacity. Since this trend was described in the previous section on isobaric heat capacity, it will not be further
dealt with here except to note that the break in the lsobars towards ideality ocours at higher temperatures for the ame pressures.

It shoula be noted that Eamister (12) has developed a mothod for obtaining e_{v} from his generalized correlation. This involvea obtaining from a graph the value of $o_{p}-C_{y}$ as a function of reduced temperature and pressure only. Thus it would be possible to compare ov valued from Edmister's data wh those calculated berein.

It is mesommended that where a cormection for theeffeot of pressure on the constat volume heat eapaoity of othane is neoessary in ongineering oaloulatione, the data on Pigure 10 be used.

Ratio of Heat Caparities $\mathrm{cp}_{\mathrm{p}} / \mathrm{c}_{\mathrm{y}}$

The values of op/ocaloulated from the Benediet ot.al. and the Barkelow obal. constants are praotlcally odual as ghown on Pigure 12.

Figure 13 show that large deviations of the $o_{p} /$ of ratio $^{\text {ret }}$ from ideality may be eneountered and must be recognized in engineering calculations.

It has been pointed out by Edraster (14) that the use of more accurate ep/ep mation greatiy improves the accuracy of the horsepowen obtained from the equation for singlo
atage adiabatic compression even though it was derived for 1deal gasea.

$$
H . P=\frac{144 P V}{33,000}\left(\frac{c_{p} / c_{v}}{c_{p} / c_{v}-1}\right)\left[\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\varepsilon_{p} / c_{v}-1}{c_{p}}}-1\right]
$$

The deviation from ideality of the c_{p} / o_{v} ratio has a Larger effect on the answew obtained from the equation than the deviation of pressure, volume, and temperature relationship from ideality. Here agan as the critioal point is approached, the deviation from ideality of the patho of c_{p} / c_{V} approcohes inftuity. On Figures 12 and 13 the trend towards idenlity with increage in pressure is again inm dioabea.

The values of ope obtained from the Edmister (12 and 14) generalized correlation bave been plotted on Flgure 14. Two isobarg from the valuad calculated from the Benedict-febb-Rubin equation are also shom for comparison purposea. The ata from the twe sources are in agreement at temperatures above 250°. Below this temperature the Edmister values axe lower. In making this comparison it should be remembered that the values of c_{p} / c_{v} from the generalized correlation are read from a graph and some of the discrepanoy may very well result from this. Edmister compared valued from his comelation with c_{p} / e_{v} values at atmoapheric pressures and found a de viation of only 4.

Based on the comparison on pigure 14 it is recommended that above $250^{\circ} \mathrm{F}$ and below 750 peta elther the Edmister or the present investigator's e_{p} / c_{v} values can be used. outside this range of temperature and pressure the values obtained from the Denedict-vebb-Rubin equation (Figure 13) should be used.

Coneluatons

For valuea of isobario heat capacity, c_{p}, and its dem viation from ideality, $\sigma_{p}-c_{p}$, the values of Sage ot.al. (9,10) axe recomended for temperatures belog $250^{\circ} \mathrm{F}$, It showld be remenbered, however, that the values at pressures above 600 psia may be on the high side. At temperatures above $250^{\circ} \mathrm{F}$ the values obtained by thin 1 mestigator are recommended.

For values of constant volume heat capactey, oy and Lts deviation from Ldeality, overy the data of this investigator are recomended.

For values of the ratio of heat expacities, c_{p} / e_{v}, ab temperatures above $250^{\circ} \mathrm{F}$ and presaures below 750 psia etther the Edmister generalized correlation or this investlgatorts data may be used. Outside this range of tomperam ture and pressure, the values obtained by this investigator shoula be used.

Since the accuracy of any thermodynamic properties derived from the Benedict-\%ebb-Fubin equation ia direotly dependent on the aceuracy of the original constante, more accurate constants might requize a revision of bhe values of heat capacitlea presented in this paper. selleck, opfell, and Sage (19) by utilizing computing machines and gtatistical method were able to determine the most acourate values of congtants for the Bexted ct-wrebbwibin equation for prom pane. If suoh a study vere made for ethane the recajculation of the heat capacities mould yield more accumbte re sults than presented herein. of course, comparkeon with experimental data as it bocomes avallable wil also ald in determining and improving the heat capactity values of ethane.

TABLE 1

Sample Calculations

TABLE 1 (Continued)

Sample Calculations

ν	$a^{\alpha / V^{6}}$	$c\left(1 / \gamma V^{2}\right) e^{-\gamma / V^{2} / V^{3} T^{2}}$	P
1.35	3445.868	1430.329	11756.46
1.50	1831.275	1260.155	9069.78
1.70	864.1876	1018.050	7017.55
2.00	325.9278	717.4450	5337.31
2.50	85.44004	407.5800	3928.63
3.00	28.61370	246.2251	3169.61
4.50	2.5120393	75.64953	2080.81
6.00	0.4470887	32.13320	1575.06
9.00	0.0392506	9.546396	1070.76
15.00	0.0018313	2.016339	656.97
25.00	0.0000854	0.445695	400.69
50.00	0.0000013	0.055715	203.05

Frown Equation

$$
/ V^{2} T^{3}
$$

$$
F=\mathrm{HT}+2\left(\mathrm{~B}_{0} \mathrm{FT}-\mathrm{A}_{0}-\mathrm{C}_{0} / \mathrm{T}^{2}\right) / \mathrm{V} \neq 3(\mathrm{bRT}-\mathrm{a}) / \mathrm{V}^{2}+6 \mathrm{XX} / \mathrm{V}^{5}
$$

$$
\left.+\mathrm{e}^{2} / \mathrm{V}^{2} \mathrm{e}\left(3+35 / \mathrm{V}^{2}-2\right)^{2} / V^{4}\right) / V^{2} \mathrm{~T}^{2}
$$

$$
\Psi=6 C_{o} / T^{3} V+6 c\left(e^{y} / V^{2}-1\right) T^{3}+3 c e^{\gamma} / V^{2} / V^{2} T^{3}
$$

$$
\Psi=c_{v} c_{v}^{*} \ldots \ldots \text { in } \# \mathrm{it}^{3} / i n^{2}, \# m o l e, o_{R}
$$

$$
\frac{\phi^{2}}{\theta}=c_{p}-c_{v} \ldots \text { in } \#, \mathrm{rt}^{3} / \mathrm{in}^{2}, \text { Hole, }{ }_{\mathrm{R}}
$$

$$
\begin{aligned}
& D=\mathrm{R}+\mathrm{B}_{0} \mathrm{R} / \mathrm{V} \neq 2 \mathrm{C}_{0} / \mathrm{VI} \mathrm{I}^{3}+\mathrm{bR} / \mathrm{v}^{2}-2 \mathrm{c}\left(1 \neq \gamma / \mathrm{V}^{2}\right) \mathrm{e}^{-\gamma / \mathrm{V}^{2}}
\end{aligned}
$$

V	$B_{Q} \mathrm{~F} / \mathrm{V}$	$2 \mathrm{Co}_{0} / \mathrm{NT} 3$	bk/V2
1.35	7.994789	3.678535	16.80805
1.50	7.195310	3.310682	13.61452
1.70	6.348804	2.921190	10.59954
2.00	5.396483	2.483011	7.658167
2.50	4.317186	1.986409	4.901227
3.00	3.597655	1.655341	3.403630
4.50	2.398437	1. 103561	1.512724
6.00	1.798828	0.8276704	0.8509074
9.00	1.199219	0.5517803	0.3781810
15.00	0.719531	0.3310682	0.1361452
25.00	0.431719	0.1986409	0.0490123
50.00	0.215859	0.0993205	0.0122537
7	$2 c(1+\gamma$	$r V^{2} / x^{2} T^{3}$	\emptyset
1.35		4.024352	35.19052
2.50		3.939502	30.91451
1.70		3.606984	26.99605
2.00		2.990507	23.28065
2.50		2.123631	19.81469
3.00		1.539501	17.85063
4.50		0.7094878	15.03873
6.00		0.4028200	13.76409
9.00		0.1790639	12.68362
15.00		0.0643548	11.85589
25.00		0.0232225	11.38965
50.00		0.0058059	11.05513

TABLE 1 (Continued) Sample CaLculations

V	Ema		$3(b R x-a) / y^{2}$
1.35	10300.19	-11401.81	14067.20
1.50	10300.19	-10261.62	11394.44
1.70	10300.19	- 9054.375	8371.102
-2.00	10300.19	- 7696.219	6409.371
2.50	10300.19	-6156.975	4101.997
3.00	10300.19	- 5130.812	2848.609
4.50	10300.19	- 3420.542	1266.049
6.00	10300.19	- 2565.406	712.1521
9.00	10300.19	- 1710.271	316.5122
15.00	10300.19	- 1026.162	113.9444
25.00	10300.19	- 61.5.6975	41.01997
50.00	10300.19	- 307.8487	10.25500

V	$6 \cos / 7^{5}$	$e^{-1 / v^{2}}$ c $\left.\left(3+3 \gamma / \nu^{2}-2\right)^{2} / v^{4}\right) / \nu^{2} r^{2}$	θ
1.35	27911.53	1787.509	42664.63
1.50	16481.48	2752.030	30666.51
1.70	8814.714	3336.535	22268.17
2.00	3911.134	3368.735	16293.21
2.50	1281.601	2734.642	12261.45
3.00	515.046	2090.919	106z3.95
4.50	67.82506	1008.026	9221.55
6.00	16.09520	575.8817	9038.91
9.00	2.11954	257.5213	9166.07
15.00	0.164814	92.83487	9480.97
25.00	0.012816	33.42662	9758.95
50.00	0.000401	8.354873	10010.95

∇	$6 c_{0} / \mathrm{T}^{3} v$	$6 c\left(\mathrm{e}^{-\gamma / V^{2}}-1\right) \mathrm{T}^{3}$	$3 c e^{-\gamma / v^{2}} / \mathrm{v}^{2} \mathrm{~T}^{3}$
1.35	11.03561	-11.64990	$\kappa .668179$
1.50	9.932045	-10.63643	2.519150
1.70	8.763572	-9.336604	2.642600
2.00	7.449035	-7.634761	2.553117
2.50	5.959228	-5.521654	2.145857
3.00	4.966023	-4.108264	1.727934
4.50	3.310682	-1.997195	0.9258004
6.00	2.483011	-1.160037	0.5559685
9.00	1.655341	-0.527638	0.2589173
15.00	0.9932045	-0.192223	0.0954671
25.00	0.5959228	-0.069500	0.0346654
50.00	0.2979614	-0.027406	0.0087084

TABLE 1 (Continued)				Sample Colculations	
V	$\bar{\Psi}$	$\pm \frac{\phi^{2}}{\theta}$	$\begin{aligned} & \mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{p}}^{*} \\ & \mathrm{Hft}^{3} / \mathrm{in}^{2}, \text {, mole, } \mathrm{o}_{\mathrm{R}} \\ & \hline \end{aligned}$	$\begin{array}{ll} c_{p}-c_{p} & \\ \text { Btu/\# }, & o_{F} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{c}_{\mathrm{V}} \mathrm{c}_{\mathrm{v}}^{*} \\ & \mathrm{Bta} / \mathrm{t}, \mathrm{o}_{\mathrm{F}} \end{aligned}$
1.35	1.653890	27.85398	18.77437	0.115627	0.010186
1.50	1.814762	29.90642	20.98768	0.129258	0.011177
1.70	2.069167	31.40652	22.74219	0.140063	0.012740
2.00	2.367390	31.99540	23.62929	0.145527	0.014580
2.50	2.583430	30.72815	22.57808	0.139053	0.015911
3.00	2.585693	28.78223	20.63442	0.127082	0.015925
4.50	2.239288	23.53545	15.04124	0.092635	0.013790
6.00	1.378943	20.11318	11.25862	0.069339	0.011572
9.00	1.386621	16.84251	7.495627	0.046164	0.008540
15.00	0.89644882	$14.2 \times 7 \times 0$	4.390148	0.027038	0.005521
25.00	0.5610880	12.75620	2.583790	0.015913	0.003456
50.00	0.2892639	11.71536	1.271188	0.007329	0.001782

$$
\begin{aligned}
c_{p}^{*}-c_{v}^{*} & =0.0661 \cdots B \operatorname{Btu} / 4,{ }^{\circ} \mathrm{R} \\
c_{p}^{*} \Theta 500^{\circ} F & =0.6510 \\
c_{v}^{*} & =0.6510-0.0661=0.5849
\end{aligned}
$$

y	c_{y}	c_{p}	$\mathrm{c}_{\mathrm{q}} / \mathrm{c}_{\mathrm{w}}$
1.35	0.5951	0.7666	1.2882
1.50	0.5961	0.7803	1.3090
1.70	0.5976	0.7911	1.3238
2.00	0.5995	0.7965	1.3286
2.50	0.6008	0.7910	1.3166
3.00	0.6008	0.7781	1.2951
4.50	0.5987	0.7436	1.2420
6.00	0.5965	0.7211	1.2089
9.00	0.5934	0.6972	1.1449
15.00	0.5904	0.6780	1.1334
25.00	0.5884	0.6669	1.1229
50.00	0.5867	0.6586	

TaBLE 1 (Continued)		Sanple Calcalations
V	$c_{p}-q\left(\operatorname{srom} T \frac{\phi^{2}}{\theta}\right)$	
1.35	0.171546	
1.50	0.184186	
1.70	0.193425	
2.00	0.197052	
2.50	0.189247	
3.00	0.177263	
4.50	0.144949	
6.00	0.124684	
9.00	0.103729	
15.00	0.087627	
25.00	0.078562	
50.00	0.072152	

TABLE 2

Constants for Use in Eenedict-Webb-Fiubin Equation of stete

Constants	Benedict et.al. Fieference	Barkelew et.al. Reference
Ao	15,670.7	14,646.3
EO	1.00554	---
$\mathrm{B}_{0} \mathrm{~F}$	--m	10.5601
Co	$2.194 \times 7 \times 10^{9}$	2.46787×10^{9}
a	20850.2	18,532.1
b	2.85393	--
br	--	67.3228
c	6.41314×10^{9}	6.40322×10^{9}
∞	1.00044	1.070×1
γ	3.027790	3.26000
min ${ }^{\text {a }}$	$\mathrm{O}_{\mathrm{F}} \neq 459.63$	$0_{\mathrm{F}} \nrightarrow 459.69$
E	10.7335	10.7315
Molecular Weight	30.047	30.068

Onits
P
*/sq. in. absolute
T
${ }^{0} \mathrm{R}$

V
cubic feet/z-mole

$\begin{gathered} V \\ \mathrm{f}^{3} / t-\operatorname{mole} e \end{gathered}$	P psia	Using Een $\mathrm{c}_{\mathrm{p}}-\mathrm{cq}$ $\mathrm{Btu} /$ H. $^{\circ} \mathrm{F}$		$\begin{aligned} & \text { Constents } \\ & c_{p}-c_{p}^{*} \\ & \mathrm{Btu} / \mathrm{g}_{2} o_{\mathrm{F}} \end{aligned}$	15) cp $\mathrm{Btu} / \mathrm{H}^{\circ}{ }^{\mathrm{O}} \mathrm{F}$	$\begin{aligned} & \mathrm{Cv} \\ & \text { Btu/ }{ }^{\circ} \mathrm{F} \end{aligned}$	$\mathrm{cp}_{\mathrm{p}} / \mathrm{c}_{\mathrm{v}}$
$T=150^{\circ}$							
6.00	744.042	0.302756	0.045135	0.281780	0.7399	0.4371	1.6927
9.00	556.522	0.188783	0.033309	0.155987	0.6141	0.4253	1.4439
15.00	373.954	0.126192	0.021534	0.081621	0.5397	0.4135	1.3052
25.00	238.712	0.098139	0.013478	0.045512	0.5036	0.4055	1.2419
50.00	124.992	0.080791	0.006948	0.021639	0.4797	0.3989	1.2026
	0	0.0661	0	0	0.4581	0.3920	1.1686
$T=250^{\circ} \mathrm{F}$							
3.00	1676.34	0.354380	0.039381	0.327656	0.8429	0.4886	1.7251
4.50	1232.40	0.256171	0.034105	0.224171	0.7394	0.4833	1.5299
6.00	989.200	0.196430	0.028617	0.158942	0.6741	0.4778	1.4108
9.00	72.322	0.142234	0.021119	0.097248	0.6124	0.4703	1.3021
15.00	456.760	0.106623	0.013650	0.054171	0.5694	0.4629	1.2301
25.00	285.754	0.088599	0.008525	0.031019	0.5462	0.4577	1.1934
50.00	147.498	0.076702	0.004405	0.015002	0.5302	0.4536	1.1689
	0	0.0661	0	0	0.5152	0.4492	1.1469

TeELE 3 (Continued)						Calcalated Data	
$T=300^{\circ} \mathrm{F}$							
3.00	$\begin{aligned} & 1976.25 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.285241 \\ & 0.0661 \end{aligned}$	$\begin{aligned} & 0.032105 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.251241 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.7946 \\ & 0.5434 \end{aligned}$	$\begin{aligned} & 0.5094 \\ & 0.4773 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5599 \\ & 1.1385 \\ & \hline \end{aligned}$
$T=400^{\circ} \mathrm{F}$							
1. 35	9154.40	0.188464	0.014170	0.136529	0.7351	0.5467	1.3446
1. 50	7016.41	0.207785	0.015548	0.157228	0.7558	0.5480	1.3792
1.70	5436.86	0.224103	0.017728	0.175727	0.7743	0.5502	1.4073
2.00	4178.21	0.233388	0.020263	0.187567	0.7861	0.5528	1.4220
2.50	3137.04	0.228233	0.022135	0.184262	0.7829	0.5546	1.4116
3.00	2573.89	0.213717	0.022154	0.169766	0.7684	0.5547	1.3853
4.50	1745.03	0.169677	0.019024	0.122878	0.7215	0.5515	1.3083
6.00	1343.62	0.141716	0.016098	0.091709	0.6903	0.5486	1.2583
9.00	929.079	0.113575	0.011880	0.059350	0.6580	0.5444	1.2087
15.00	577.615	0.0927×1	0.007681	0.034297	0.6329	0.5402	1.1716
25.00	355.001	0.081337	0.004807	0.020039	0.6186	0.5373	1.1513
50.00	180.905	0.073436	0.002478	0.009809	0.6084	0.5330	1.1372
	0	0.0661	0	0	0.5986	0.5325	1.1241
V	p	$c_{p}-c_{v}$	$c_{v}-c_{v}^{*}$	$c_{p}-c_{p}^{*}$	c_{p}	c_{v}	c_{p} / c_{v}
$f t^{3} / 4-m 01 e$	psia	Btu/ty ${ }^{\circ} \mathrm{F}$	$\mathrm{Bta} / \mathrm{H}^{\prime}, \mathrm{O}_{\mathrm{F}}$	$\mathrm{Btu} / \mathrm{S}^{\prime}, \mathrm{F}$	Btu/ $/{ }^{\circ} \mathrm{F}$	$\mathrm{Etu} / \mathrm{H}^{\circ} \mathrm{TH}$	

ThBLE 3 (Contimued)

$\begin{gathered} V \\ \mathrm{ft}^{3} / \mathrm{tmole} \\ \hline \end{gathered}$	P psia	$\begin{aligned} & c_{p}-c_{v} \\ & \text { Btu/i, } o_{F} \end{aligned}$	$\begin{aligned} & \mathrm{cv}_{\mathrm{v}} \mathrm{cv}^{*} \\ & \mathrm{Bta} / \mathrm{m}_{2} \mathrm{O}_{\mathrm{F}} \end{aligned}$	$\begin{aligned} & c_{p}-c_{p} \\ & \text { Btu/t, }{ }^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{c}_{\mathrm{p}} \\ & \text { Btu/te }{ }^{\circ} \mathrm{F} \end{aligned}$	${ }^{C}$ $\mathrm{Bta} / \mathrm{t}_{2}^{\circ} \mathrm{O}_{\mathrm{F}}$	$\mathrm{cp}_{\mathrm{p}} / \mathrm{c}_{\mathrm{v}}$
$T=500^{\circ} \mathrm{F}$							
1.35	11756.5	0.171546	0.010186	0.115627	0.7666	0.5951	1.2882
1.50	9069.78	0.184186	0.011177	0.129258	0.7803	0.5961	1.3090
1.70	7017.55	0.193425	0.012740	0.140063	0.7911	0.5976	1.3238
2.00	5337.31	0.197052	0.014580	0.145527	0.7965	0.5995	2.3286
2.50	3928.63	0.189247	0.015911	0.139053	0.7910	0.6008	1.3166
3.00	3169.61	0.177263	0.015925	0.127082	0.7781	0.6008	1.2951
4.50	2080.81	0.144949	0.013790	0.092635	0.7436	0.5987	1.2420
6.00	1575.06	0.124684	0.011572	0.070150	0.7211	0.5965	1.2089
9.00	1070.76	0.103729	0.008540	0.046164	0.6972	0.5934	1.1749
15.00	656.966	0.087627	0.005521	0.027038	0.6780	0.5904	1. 1484
25.00	400.686	0.078562	0.003456	0.015913	0.6669	0.5884	1.1334
50.00	203.049	0.072152	0.001782	0.007829	0.6588	0.5867	1.1229
	0	0.0661	0	0	0.6510	0.5849	1.1130

$I=600_{F} F$							
1.50	10447.2	0.163724	0.008302	0.110920	0.8109	0.6422	1.2627
1.70	8611.09	0.173982	0.009465	0.117343	0.8173	0.6434	1.2703
1.85	7395.43	0.174768	0.010224	0.118887	0.8189	0.6441	1.2714
2.00	6505.14	0.173920	0.010830	0.118918	0.8189	0.6447	1.2702
2.50	4721.97	0.165686	0.011818	0.111399	0.8114	0.6457	1.2566
3.00	3764.10	0.155275	0.011828	0.100998	0.8010	0.6457	1.2405
4.50	2413.81	0.129575	0.010244	0.073714	0.7737	0.6441	1.2012
9.00	1211.12	0.097170	0.006343	0.037409	0.7374	0.6402	1.1518
15.00	735.749	0.084114	0.004100	0.022110	0.7221	0.6380	1.1318
25.00	446.149	0.076620	0.002567	0.013082	0.7131	0.6365	1.1203
50.00	225.134	0.071241	0.001323	0.006460	0.7065	0.6352	1.1122
	0	0.0661	0	0		0.7000	0.6339

TABLE

TABLE 5
Calculated Values of cp-cp ©n and cp/cy for ftane
fron EdMister Generalizea Correlations (11, 12, 13,141
$\underline{c_{p}-c_{p}, B t u / \hbar,}{ }^{O_{F}}$

Press				eratu	OF			
psta	145	200	255	310	420	530	750	215
100	0.0169	0.0126	0.0097	0.0074	0.0046	0.0030	0.0017	0.0011
200	0.0359	0.0265	0.0200	0.0151	0.0090	0.0060	0.0033	$0.00<2$
300	0.0593	0.0426	0.0316	0.0233	0.0136	0.0095	0.0054	0.0032
400	0.0880	0.0602	0.0444	0.0320	0.0183	0.0127	0.0072	0.0043
500	0.126	0.0814	0.0582	0.0425	0.0235	0.0171	0.0091	0.0054
750	0.316	0.148	0.0980	0.0668	0.0370	0.0261	0.0141	0.0081
1000	---	0.246	0.144	0.0957	0.0515	0.0350	0.0188	0.0107
1500	---	0.472	0.249	0.161	0.0630	0.0532	0.0279	0.0161
2000	--	--m	0.306	0.221	0.115	0.0705	0.0359	0.0211
2500	$=$	-	$\underline{-}$	0.232	0.142	0.0868	0.0427	0.0252

TLBLE 5 (Continued)

TABL 6

Yalues of $e_{p \text { and }} c_{p-p_{n}}^{\text {* }}$ of Ethane from Experimental Deta (9.10)
I Sage, Webster, Lacey Ind. Eng. Caem. 29, No. 6,658 June 1937 (Graphical Data)
Cp Btu/t, F (Velues are approximate since read from graph)

Pressure,		75	Temperature, ${ }^{\circ} \mathrm{F}$			175	200	225	250
psta	50		100	125	150				
200	0.460	0.465	0.472	0.481	0.492	0.505	0.515	0.528	0.542
300	0.528	0.510	0.503	0.505	0.515	0.525	0.535	0.545	0.560
400	-	0.572	0.545	0.540	0.545	0.550	0.560	0.567	0.578
500	-	0.720	0.620	0.585	0.575	0.577	0.585	0.590	0.592
600	-	-	0.795	0.666	0.623	0.610	0.613	0.620	0.628
700	--	-	-	0.800	0.697	0.658	0.648	0.650	0.660
800	--			-	0.785	0.715	0.685	0.682	0.685
1000	-	,	-	-	-	0.883	0.810	0.787	0.780
0	0.4038	0.4175	0.4312	0.4447	0.4581	0.472	0.4865	0.5009	0.5152

TABLE 6 (Contimed).

Pressure, psia	50	75	100	Tempera 125	ture, 150	175	200	225	250
200	0.056	0.047	0.042	0.036	0.034	0.033	0.028	0.027	0.027
300	0.124	0.092	0.072	0.060	0.057	0.053	0.048	0.044	0.045
400	--	0.154	0.114	0.095	0.087	0.078	0.073	0.066	0.063
500	-	0.302	0.189	0.140	0.117	0.105	0.098	0.089	0.077
600	-	--	0.364	0.221	0.165	0.138	0.126	0.119	0.113
700	--	--	--	0.355	0.239	0.186	0.161	0.149	0.145
800	-	--	-	--	0.327	0.243	0.198	0.181	0.170
1000	-	-	\cdots	-	-	0.411	0.323	0.286	0.265

TaBLE 6 Continued)

II Sage, Budenholzer, Lacey, Inc. Eng. Caea. 31, 1288 (Tubulated Deta)
$c_{p}, B+a / f,{ }^{\circ}{ }_{F}$

pressure,			Temperature, ${ }^{\circ} \mathrm{F}$			220
psla	70	100	130	160	190	
0	0.417	0.433	0.445	0.465	0.482	0.498
250	0.484	0.489	0.497	0.506	0.519	0.534
500	0.765	0.620	0.585	0.575	0.579	0.588
750	--	--	0.869	0.706	0.672	0.665
1000	--m	-	--	0.993	0.817	0.795
1250	--		--	1.358	1.108	0.933
1500	-	-	-	1.178	1.218	1.070
$\mathrm{c}_{\mathrm{p}}-\mathrm{c}_{\mathrm{D}}^{*} * \mathrm{Btu} / \mathrm{H}, \mathrm{O}_{\mathrm{F}}$						
pressure,	Temperature, ${ }^{\circ} \mathrm{F}$					
pgia	70	100	130	160	190	220
250	0.067	0.056	0.052	0.041	0.037	0.036
500	0.348	0.187	0.140	0.110	0.097	0.090
750	-	---	0.424	0.241	0.189	0.167
1000	--"	--	--	0.528	0.335	0.297
1250	--	---	---	0.893	0.626	0.435
1500	--	--	-	0.713	0.636	0.572

TABLE 7

Values of Isoburic feat Cigocity of Ethine in the

Idecl Gas state for Various Temperatures

Rossini et. 1 . BSelected Values of Paysical Thermonymmic properties of aydrocarbons and Related Compounds", (1953) Camegie Press (Continuation of work on Americen petroleum Institute Researen project 44 at National Bureau of Standards, Mashington, D. C.) (8)

Teaperiature, ${ }^{o_{F}}$

$-459.69 \quad 0.0000$

0
0.3769

32
0.3940

60
0.4092

100
0.4312

150
0.4581

200
0.4865

250
0.5152

300
0.5434

350
0.5712

400
0.5986

500
0.6510

600
0.7000

700
0.7457

800
0.7882

900
0.8282

1000
0.8656

1100
0.9005

1200
0.9329

1300
0.9632

1400
0.9914

1500
1.018

NOPATION

The symbols used ase:

c_{p}	Heat capacity g_{F}^{t} constant pressure, molal basis, Btu/ty
${ }^{c} p$	Heat capacity at constant pressure in Btu/\#, ${ }^{\circ} \mathrm{F}$
$c_{p}{ }^{*}$	Heat capacity at constant pressure of the gas when exibiting ideal gas begaviex, nolalo basis, Bta/tmole, o_{E} or $4, \mathrm{st}^{3} / \mathrm{in}^{2}, \operatorname{mole}, \mathrm{O}_{\mathrm{R}}$
$c_{p}{ }^{*}$	Heat capacity at constant pressure of the gas when exhibiting iceal gas behavior, $\mathrm{Btu} / 4, \mathrm{~F}_{\mathrm{F}}$
C_{V}	Heat capacity at constant volume, molal basta, Btu/H-mole, O_{F} or \#, $\mathrm{ft}^{3} / \mathrm{In}^{2}$, nole, O_{R}
e_{V}	Heat capacity at constant volume, Btu/t, ${ }^{\mathrm{F}}$
$\mathrm{CV}_{V}{ }^{*}$	Heat capacity at constant volume of the gas when exhibiting ideal gas behavior, molal basis, Btu/fmole, ${ }^{\text {F }}$
$0_{V}{ }^{*}$	Heat capacity at constant volume of the gag when oxhlbiting ideal gas behavior, Btu/f, F
p	Absolute pressure, H/square inoh, psia
R	Universal Gas Constant (See Table of Constants)
T	Absolute temmerature, O_{R}, (See Table of Conm stante for conversion frou δ_{F} to O_{R})
V	Molal Volume, cubic feet/tmole
$\mathrm{A}_{0}, \mathrm{~B}_{0}, \mathrm{C}_{0}$	
a, b, c, r,	* Constants for Benedict-rebb-Rubin equation of atate (Soe Table of Constants)
$\triangle 0 \mathrm{p}$	$=C_{p}-C_{p}{ }^{*}$ (Used in calculations by Ecmister methods)

Reference No.

(1) "Petroohemical Process handbook" Petroleum Refiner, 32, Ho. 11, 130 Hovember
(1953)
(2) Sleajeski, E. ., Tnd. Eng. Chem. 43, No. 12, 2923 December
(1951)
(3) Seifarth, J. H. Joffe, J., Tnd. Tnge Cheme: 44 Wo. 12, 2894 December (1952)
(4) Dailey, D. P., Felsing. $\%$. A. Journal Am. Chem. Soo., 65, 42
(1943)
(5) Bucken, A* :eigert, K., Z. Phyeik Chem*. E23, 265
(7) Pitzer, R. S. Ind. Mng. Chem. 36, 829
(8) Rossini et.al, "Selectea Values of physical and rhernodynamie Properties of Hydrocarbons and Related comounds", Camegte rreag (Continuation of work of Amerfean Petroleum Tnctitute Pesearch Project 44 at liational Burenu of Standards, washington, D. ©.)
(1953)
(9) Sage, B. H., "ebster, D. G., Tacey, N. . Ind. Eng. Chem. 29, No. 6, 658
(1937)

(11) Edmister, . 0., Ind. Eng. Chem., 30, No. 3, 352 march (1938)
 dynamics to dyomocarbon Processing Part XITI - Ieat Capacities" published by the Retroleum Refiner
(1948)

RuERYRCES (Continued)

Reference

(15) Benedict, : "ebb, a. \because, Rubin, J. O. Joumal Chem. Phys.: E, 354
(16) Barkelew, C. H. * Valentine, J. I., Furd, U. O., Irans. Am. Inst. Chem. Tngrse, 43, No. 1. 25
(1947)
(17) Hougen, 0. A., watson, K. M., "Chemical Process Principies - Part II", John "iley and Sons, Ince, N. Y.
(1947)
(18) Von Vega, D., "Logarithmic Lables of lumbers and Trigonometrical Functions", D. Van Mrostrand Company, Irc.
(19)

> selleck, F. T., Opfell, J. B., Sage, D. H., Ind. Fng Cneme, 45, 10. 6, 1350

