Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

coprea suxpate cnxsmals真
A HTHTY O．RANSEM
 1950

FOR TH：DBOERE 99
MAST T OF SOLNHOR

1算荧定
GRADWATE DTVESIO
A電 HER

1954

\qquad
Title Page
Approval sheet
Aolmowledgument
Abstrant
Introduction
1 Reviow of ILtereture
II Deneription of Apparatua
III General r rocedure
IV Sequence of study
V Detailad Procedure
A. Messurenent of solution coneentrution
D. Solubsilty Data
C. Manarement of cryatal anowth
VI Calunlathons
VII Date
A. ? whinant Data
8. Primary Data
C. Celculated Date
D. Sumary of Hixsonmknor Data
E. Sunamry of Mecabe-stevens Data
VIII Disprmat and Graphis
IX DLecusston
X Nonenclataxe
XI B1bliograyty

APPROVAL BHENL

APMOCNED BY

oontarel and advioe of Expeutive Asmosiate CorgeKeerfe throughout the oourse of thia thesiat andthe peratisiton of Nu* teJ. Sallivan for use ofthe aryetal apparatam in thla wow

ABSTRACT

The purpose of this work was to study and measure the factors influencing crystal growth.

Approximately 250 single crystals of $\mathrm{CuSO} 4 \cdot 5 \mathrm{H} 20$ were grown under controlled conditions of supersaturation, solution velocity, and temperature.

The data from this work indicates that:
(a) Crystal growth rate is independent of crystal size for the size range covered (4 to 12 mesh).
(b) Crystal growth rate is directly proportional to the degree of supersaturation, or driving force for each concentration of solution studied.
(c) Crystal growth rate varies exponentially with the velocity of the solution passing the crystal

$$
R_{D}=f\left(u^{m}\right)
$$

(d) The value of the exponent " m " increases as the temperature (and concentration) of the growth solution increases. This indicates that there must be more than one dimensionless group containing the velocity term.

The following empirical equations were obtained for the four different solutions used:

Solution - Saturation temperature $=28^{\circ} \mathrm{C}$.

$$
\log \frac{R_{0}}{\Delta C}=0.240 \log u+0.2900
$$

Solution B - Saturation temperature $=37^{\circ} \mathrm{C}$.
$\log \frac{R_{D}}{\Delta C}=0.265 \log u+0.5682$
Solution C - Saturation temperature $=47^{\circ} \mathrm{C}$.

$$
\log \frac{R_{0}}{\Delta C}=0.288 \log u+0.6128
$$

Solution D - saturation temperature $=58^{\circ} \mathrm{C}$.

$$
\log \frac{R_{D}}{\Delta C}=0.407 \log u+0.6721
$$

(e) The following empirical equation was derived which composites the above equations and which effectively summarizes all the data in this work:

$$
\begin{aligned}
& \text { s all the data in this work: } \\
& R_{D}=30,000 \Delta C u^{2} e^{-\frac{2950}{T}}
\end{aligned}
$$

The velocity range in this work was from 2.2 to 20.6 centimeters per second.

TWHODUOTM

41 thoug arybtallistaton sontinate to be one of the mont important mit operntiong littie in known of the

To abtala cush knonledge, nany growth mination of

 diffusional or phyilent prowest. and the hamionl of ionis

It 1. beltaved thit the growth proepse in an intort

(a) totention of goometrie nhap
(b) Ewnined growth undicr forowa tonditione
 ghonamona by vilumiising two oxytola oolliding faet to froe at the int tant ieger in belmg toxreat.
 side of a orystal is axponed to the full fowee of colution rlow.

 This welter hat attempted to obtain dabs, eownelate the effotte

 nind in ondow to obtain the Innal oorrelationti
 cryatals under identionl oondition of supow. athryation, velocity, whd conemtration*
 that obtained by previ ow inventig trore
 GKon ander onditions of unt tant weloozby.

 coluthon monetntration.
6. Obthin bolublitey dita row the copper aulinatem

 Golubility of morgent ccapounde" golubility

 the frot that folution Feloelty (agtation) oxtrete greater

 the deta of H dxton-linnox.
 rute of copper sulphete is aivoctly propertional to the degree of suparsaturetion.
 Knox.

Roferenger

 oonstant Which oontrols growth rate**
 or formous aluen and tound that very faee hed itw own rate of extenction meanured nompully to anface. 緼 onsumed the oapiliary oonstanto were paoportional to the whet of growth of the various faces.

$$
\frac{d w}{d t}=-R_{D}=k \bar{A}(\Delta C)
$$

 temperatare. The following relation was obtained:

$$
k t=\ln \left[\frac{c_{5}-C_{0}}{C_{s}-C}\right]
$$

Mapert 1908 cound cortain salts whose rate of eryitaixemei on wes independent of etswer apeed.
yay growt and low supermetaration growth is binoletalaz
 the growth eppronched a firstmorder reation".
 Thiue of 4 in woye milht tney equation to be sifferent Cow growth and difisotution.

羔erntit - Modifiel Noyea-thitney oquation.

$$
\frac{d \psi}{d t}=\frac{D A}{\delta} \times \Delta C
$$

Bertheng stated thet olution at murface of growing
 whurated - gronth oequra in pulwes, ls diseontinuous.
(a) fivet order weation:

$$
\frac{d x}{d t}=\operatorname{ks} A\left[C_{i}-C_{0}\right]
$$

(b) then etationary atate - dirfualon taises place

$$
\frac{d y}{d t}=\frac{D \bar{A}}{\delta}\left[C_{B}-C_{i}\right]
$$

(e) aombinine bove equations:

$$
\frac{1}{\bar{A}} \frac{\partial x}{d t}=\frac{D}{\delta+D / k}\left(C_{B}-C_{0}\right)=R(\Delta C)
$$

 poumintu mintote.

$$
\begin{equation*}
\frac{d x}{d t}=k\left(c_{B}-c_{0}\right)^{2} \tag{10}
\end{equation*}
$$

(2) Usinalue conviln sager (19hi) The Fate of solution
 inf oquation was obtainad:

$$
\begin{aligned}
& -\frac{d w}{d t}=\frac{D}{\delta} A\left(C_{s}-C_{B}\right)=k A(\Delta C)
\end{aligned}
$$

$$
\begin{aligned}
& A \text { axde of pantlolen }
\end{aligned}
$$

$$
\begin{aligned}
& \delta \text { = affactive finm thitime an } \\
& k \text { krrusion wos oontent }
\end{aligned}
$$

$$
K=\alpha N^{\beta}
$$

watre: K waeblon vinoolty oonstant
N mpor oftrwt

$$
\alpha, \beta>\text { ondtantes }
$$

 intertachill wetation, $\beta \rightarrow 0$

 obtalnot the foliowing eormelatione

$$
-\frac{d c}{d t}=k(c-c \infty)
$$

where $k=\frac{1}{ \pm} \log \frac{m_{0}-m_{\infty}}{n-n_{\infty}}$

(5) Jan Hool 19h4 - Found that Inoreaning viecomity of
 Vifmosity waw inowaned by adition of gum acecia and staroh.
(6) Hixon exd Knex - 395童 - These authom: polleeted
 copper anifate and wegasion melrabe The nuthors wore die to odrelate their date in the folloning mannay:
(a) Duthanion - man wrantex

$$
\left[\frac{F_{D} D_{E}}{D_{m}}\right]=c\left[\frac{D_{e} V \rho}{\mu}\right]^{d}\left[\frac{\mu}{M_{m} D_{m}}\right]^{e}
$$

(b) surfate remotton

$$
w_{a}=F_{R}\left(y_{F}-y_{i}\right)^{\alpha} ; \ln F_{R}=\frac{E}{R T}+b
$$

(e) Diffumion - heat tranger

The mathore conatiewed this to be of negligible etfeot in the gytron frualed.
 oopper sumptite wore introuneed into muperinturatem solution which we agtated in a comvontional voseot.
 aegre of superwatrawhiont

$$
r_{g}=0.00177 L^{1.1} \Delta C^{1.8}
$$

 vaviable, but wher un apparent one sinte the welative Felocity betweon solution and arythel inareacee as the arystal bite ineromses under nownal miximg condition.

Rofamones
Soul crystals waw then enclosed in a perforated onge which was suspended in a flowing teton of solution. Experiment e wore also curried out in - roazprocutine cage.

O mental oorxelata on*

$$
\frac{1}{r_{g}}=\frac{1}{r_{0}+\beta u}+\frac{1}{r_{i}}
$$

$r_{g}=$ growth rate $-\mu / \mathrm{min}$
$r_{0}=$ growth rate at zero velocity
$B=$ constant
$u=$ velocity $-\mathrm{cm} / \mathrm{sec}$.
$r_{i}=$ interfacial growth rate

Y. Dataxiption of Appasatin

The appuratue aned cow the buik of this work consist of the following

 The tube is provided wh th tinpored bottom and thre outiote.
(2) Grutbel givetet - A buntet construatea of 25 man ooppor 4 angle oryetrik. The basiket is bupported In the crywtallise tabe by monne of a sopper vire attrohed to mublew stappor.
 oorution IItoming patt growing eryat mentured by $0-110^{\circ} \mathrm{c}$. thensometer (divia one $0.1^{\circ} \mathrm{C}$).
(4) Digatyox A four inter pyrex beakose
 mormion in corrosive 1iquide This heater is conatmeted of etminkes sted and providod With 3 setting (20w; neds un, hag) for varindie heat outpate mis wiviter eitted the heat outpat gijutement knob uith numamesi seale (remalus $0-10)$ for better contrel of hat output. The

(6) Reoxole Puap - A stainlesw steel centrifugal
 solution.

(8) Goglen - m oxdintry leborators eonaenser peoFrifr with inlet and outhet fow cooling water.
(BA) Gooles - eoppew coll five feet long and $1 / 4$ mata Ginxieter uave in plase of tho gian eooler (8) to obtain greaber cooling onpucity.
 what bobtom ontrot
 काrounecing cooling water
 buener wid hor tortwg coollng water.

 of whthot tha glad crystallizar tube to obtain 3 of 4 witution tocition.
(13) Gontrol Pand - Conitgt of two dial-nhoowtate
 of ooppor sulphate mintion ma cooling viter.

VII. Genter proondive

A tolution of predotermind contentwation of copper auphate is introducod into the arybtallimation apparatue. By prehatatirg the soluthon 10 m 150 o. above tho getwation tmapereture, oryutallisttion; of treese up in the appatatex in woided.

The molution prap sis then started to alreulate

 tuxned on. To mantain atable syate the solution
 By contwol. ing the degree of hout input plus hest renoval

The eqlation is then smapled for check on the
 Detailes frocture)
 meral we then indivicumly wighed and plaeed in a coppor wire bagkot, whioh in turn is ausponded in the

 throughout the wan.

At tow the growth prow od (tyox 20 to 120 minutes dopending apen gxowth xtte) the cryttale axp xemeved nua wedghed.

Tho cooling and herting esputbente are then ohenged in proparietion for the next mun.

Geat ie trixen to insax that the trapoxatuat in
 othenwise, the nolntion wil2 break" wad freese up the

 15-30 minatise between woh man. Thia diamolved eny anall cryatala (rawely prement) in the oooler or the ling

 filtowing through supermol.

 mental time wat dovoted to the simultaneous grow bh of
 engle oryatalin were peraittuet to grow nuaponded in a wise buntet th the top of oryetallisemetube A moting bod of erystal at the lower tapered ond of the
 time under identionk pondithon of coneentration and comperatnu*.

Atcor fous wheh expenimonts the wystru Ter btuay whe duanged to oust 4.5 k 20 bectus of the grow ter

 with lume
 the growth of ungle orystals only for remsona lator tuicen up in the Asemastion*

 to that reported by Macabe (1). for solutiona ot $20^{\circ} 0^{\circ}$.

 vas prepmewt (saturation temperatoure ebout $47^{\circ} 0$). Fow

A copper cosling tabe was mabsthtated for the glame cooling condenver pilow to Serlo. III.

 aupersaturation (Δ^{c}).

 oath of them tubes in order to eacertaln tho effect of valoadty on growth wete. hal owity renge of $2,8,7.0$, 11.5, and 20.6 per metond was thus obtelnud. With the glate owy Itintted by the outprit of the puap.

 Weator solution ($\mathrm{C}_{\mathrm{B}}=53$. $\mathrm{TB}_{8}=37^{\circ} \mathrm{C}$)

 as Semien VII.

To oovar fuxther the study of the conventrater on

 true and the there breat fubers in turisat.

The eepper aulphate uned in thitw wex way of taolni and grede:

Brand Name:	Wiehol Triangle Bxant
Producer:	Prelpe Dodge
copper	
	99\% Miniman
Inacolubleat	14. Mextunam

Mathot

 beaker is di telved by honting with pyoximately 300 ce of witer The tempormbur of the folution is thon bexaght to $63^{\circ} \mathrm{c}$.

The wallmixed solution is then quichy ueighed and trenafrored to hydronster eylindef. A atandardised nydrometer is then incorter and a rending rapidiy taken. The tempertare is then noted (invamiabiy $\left.60^{\circ} 0 \pm 0.3^{\circ}\right)$

Data

G4at	Cxy Sola	\% Av	Be 60
90.0	305.5	29.4	24.3
105.0	298.2	35.2	29.0
120.1	301.8	39.8	32.7
135.0	304*4	44.3	36.7
150.0	440.4	34.08	29.1
90.1	369.6	24.4	20.05
45.2	364.2	12.4	9.4

2. The datw wat thon plotted on a large shett of gxagh paper (rectangular coordinttes). The seven pointe
 cxtended gave negetive butue value $\left(-2,2^{*} 3^{6}\right)$ at
 the plot was based on a texperature of 60° G.
3. About 25 polnte were than pieked from the plot and reesi engated. Weight percent was converted to Grara

 per 100 ga. of free water ve. Be $60^{\circ} \mathrm{Ce}$ (Figure I) Conopntration datw fer thi work $\left(C_{p}\right)$ wan obtained from Batum catat by the uew of thin plot. gone akill na reasmable rpeed in required for baiding the bame date. otherwise uxfroe ovapormtion will ohmage the onematration.

DETALLED RKOOEDURE - SOLUELLET DATA

1. Set up apparatu* as shown on Flgure C.
2. Add copper sulfate solution and a large exceas of 20 mesh oxyetmat to the Inner beakw wo that the liquid level is even with that of the outer water beth.
3. Mum on both agitatore and bring the tempermture of the water bath to about $1 / 2{ }^{\circ} \mathrm{C}$. above desired temperature in imnor vessel. Maintain ocnetant teaporatare of outer bath.
4. When the texperature in the inner beaker reachem a onstant value, note the time and tomperature.
S. Maintain temperature of Lm mer and outer fiutis to the neare et $0.1^{\circ} \mathrm{C}$. for $1 / 2$ hour.
5. Stop inner agt tator bllow 15 seeond for any oryatal fines to settle, and quiekiy draw solution ample. obtain baune value by method previousit desoribed.
6. Start innex agitatow, and obtain a cheak baume value on a eecond smple arter 15 minute
7. obthin baume data in this riamer at four othor aaturation teaperaturea. plot a mooth ourve of baume veraua T_{S} to vorify data.
8. Convert baw data and plot concentration vergus saturation temperature on figur I.

 greman.
 ariad opprer bentret.
3. Sumpond bantet in oryatallisea tube mon toperwture is

4. Artur growth poriod, remove banloe and place on a blottow рарер.
 90% thunol.
6. Plaet basixy on another blettew papar.
 to dxy for ten minntet.

GAEGULATIOK - oxystal geometry

Duxing the course of thila work, it watan notad that the

 grown for thi worl had the sano thape and ware yiousily

Fow 2 mpliak of prestatation and evaluation of atata

$$
{ }_{D}=1.120\left[\frac{\omega_{2}^{1 / 3}-w_{1}^{1 / 3}}{\theta}\right]
$$

 $W_{2}=$ final weight of oxstan - mgm
W2 intuth weight of cryatal -mgm

- growth tira - minutes

The oonstmit $(2,120)$ wat obtainod by loalation on

- Obucrved atornge orystal dimmal ow - relabite
 perpenaiseular

(1) Axew $\$=\frac{a^{2}}{2}+2 a^{2}+\frac{a^{2}}{2}=3 a^{2}$
(2) cryatal Folume $5 \times b=3 a^{2} b=4.5 a^{3}$
(3) Cryztal areta $=2[2 a b+2 b c]+2\left(3 a^{2}\right)$

$$
=4\left[1.5 a^{2}+(1.5 a)(1.1 a)\right]+6 a^{2}
$$

$$
=18.6 a^{2}
$$

Cryatal weifint (mgit $=\rho \frac{m g m}{m m^{3}} \times V \mathrm{~mm}^{3}$

$$
\begin{aligned}
W=\rho V & =2.286 \times 4.5 a^{3} \\
a & =0.460 w^{1 / 3}
\end{aligned}
$$

(2) Sphexiaity - The ai to of an imegulax partiole may be

$$
\begin{aligned}
& A=18.6 a^{2}=\pi D^{2} \\
& D=2.43 a=2.43 .\left(.460 w^{1 / 3}\right)=12120 \mathrm{w}^{1 / 3} \\
& R_{D}=\frac{\Delta D}{\theta}=\left[\frac{\Delta w^{1 / 3}}{\theta} \times 1.120\right] \frac{\mathrm{mm}}{\mathrm{~min}} \\
& R_{D} \frac{\mu}{\min }=1,120 \frac{\Delta w^{1 / 3}}{\theta} \\
& \hline
\end{aligned}
$$

(2) Mocabe Methea - The aize of the oryetal 2a expreseat th the maxe poot of the product of the longest and shortot dimention.

$$
\begin{aligned}
& L=\sqrt{a c}=2 a \\
& L=2\left(.460 w^{1 / 3}\right)=.920 w^{1 / 3} \frac{\mathrm{~mm}}{\mathrm{~min}} \\
& R_{L}=920 \frac{\Delta w^{1 / 3}}{\theta}=\frac{\mu}{\min } \\
& R_{D}=1.22 R_{L}
\end{aligned}
$$

Wre diancter $=0.0286$.
15 ruath o日pper sarem enyetal holdey
arywtelliser tube

 (per mquaw inoh)
2.00
$\begin{aligned} \text { \% area of wire } & =2.00 / 6.45 \\ \text { nrea Proter } & =200-31\end{aligned}$

PGKTVEAX AREAS

7alme	mate Inghe員	\qquad	
	0.622	1.50	1.96
	0.824	2.09	3.43
$2^{\prime \prime}$ Ereas	2.049	2.66	5.55
G1ase	1.875	4.77	17.90

sunt ocrrettion is mall atatun arybeti has sumple thape:

$$
\begin{aligned}
& A=6 x^{2} \\
& V=6 x^{3}=\frac{w}{\rho}=\frac{w}{2.286}
\end{aligned}
$$

Fow simpliaity, an meat grystal aorrection for tho glasm tube
 astumad to be 0.07 dent.

GOHRECWMD WHE AFPHS

$1 / 2^{m}$ max IA $=2.96 x .69 .0 .07=1.28$
3/4" Reven IA $=3.43$ a $69.0 .07=2.29$

Vhact Tx

(1) Sempla onloukthont At mhoostat setting of 65 tha Now wnte it 2000 oe par minute through tho glaza tube. caloulate Feloelty.

$$
u=\frac{2000}{60} \frac{\mathrm{~cm}^{3}}{\mathrm{sec}^{3}} \times \frac{1}{12.0 \mathrm{~cm}^{2}}=2.78 \frac{\mathrm{~cm}}{\mathrm{sec}}
$$

(2) Sample aquouation At mapostat atting of 65 the fiom
 Csiculate veloci $\tan ^{2}$ in $1 / 2^{\prime \prime}$ tabe

$$
x=\frac{1580}{60} \frac{\mathrm{~cm}^{3}}{\mathrm{sec}} \times \frac{1}{1.28 \mathrm{~cm}^{2}}=20.6 \frac{\mathrm{~cm}}{\mathrm{sec}}
$$

GROW
tomenty

$$
w_{a f} \frac{\# \mathrm{~mol}}{h r f t^{2}} \longrightarrow G \frac{\text { mgm }}{\min -\mathrm{mm}^{2}} \longrightarrow R_{D} \frac{\text { microns }}{\min }
$$

cale

$$
W_{a s} \frac{\# \mathrm{~mol}}{\mathrm{hr} \mathrm{ft}^{2}} \times 2497 \frac{\#}{\# \mathrm{~mol}} \times 454000 \frac{\mathrm{mgm}}{\#} \times \frac{1}{60} \frac{\mathrm{hr}}{\mathrm{~min}} \times \frac{1}{305^{2}} \frac{\mathrm{ft}^{2}}{\mathrm{~mm}^{2}}
$$

$W_{\text {af }} \times 20.4=G$

From the growth we aenvernion plot (xatere IIA)

$$
\begin{aligned}
& \nabla_{\mathrm{D}}=14706 \text {, ant } \\
& H_{D}=1470\left(20.4 \omega_{a t}\right) \\
& \pi_{D}=30,000 w_{a}
\end{aligned}
$$

convonet:

$$
\left(y_{v}-y_{i}\right) \frac{\text { mol } \mathrm{CuSO}_{4} \cdot 5 \mathrm{HO}_{0}}{\text { total mols }} \rightarrow \Delta C \frac{\text { grams duSO}}{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}
$$

onlat
(1)

$$
\Delta y=y_{v}-y_{i}
$$

(2) $C_{v}=\frac{\mu_{v}}{1-y_{v}} \times \frac{250}{18} \times 100 ; \quad C_{i}=\frac{y_{i}}{1-y_{i}} \times \frac{250}{18} \times 100$
(3) $\Delta C=1390\left[\frac{y_{v}}{1-y_{i}}-\frac{y_{i}}{1-y_{i}}\right]=\frac{1390 \Delta y_{y}}{1-y_{v}-y_{i}+y_{i} y_{v}}$

stap: $19 y$

$$
\Delta C=1390\left[\frac{\Delta y}{1-2 y_{v}}\right]
$$

PERTLNEXT DATA

SECOND SERTES

10	63.24	47.3	-0.52	-9.9	3.04		Disaclution
11	63.57	45.2	2.57	$7 \cdot 75$		930	Reject mun
12	63.57	$44 \cdot 2$	3.82	16.7	\%	905	
13	63.57	44.2	3.72	22.6	*	905	
14	63.90	42.0	6.60	46.0	*	975	
15	63.90	45.8	2.10	12.4	*	940	

THEN S STES

16	62.25
17	62.58
16	62.91
19	64.23
20	

42.4
42.9
4.0
45.3
46.5
4.50
4.23
3.31
2.75
1.53
$2 * .8$
22.8
17.8
13.8
5.4
2.8
$\#$
$\#$
$\#$

825 825 825
875 850
875

Reject mun
POURTE SERTES

$22 x$	60.60	42.2	3.10	23.7	11.5	1500
$22 z$	60.60	42.2	3.10	20.6	7.0	1160
232	60.60	40.3	5.00	32.1	4.3	690
$24 x$	60.60	39.9	5.40	47.0	7.0	865
242	60.60	39.9	5.40	38.8	4.3	680

KTFMH SEHIES

$25 x$	63.90	40.9	7.65	63.5	20.6	1910
25\%	63.90	40.9		58.5	21.5	1410
26x	63.90	40.4	8.20	61.7	20.6	1900
26Y	63.90	40.4		55.7	11.5	1400
$26 z$	63.90	40.4	*	42.6	7.0	1090
$27 \times$	63.90	43.3	5.10	40.8	20.6	2000
27 x	63.90	43.3		30.1	11.5	1480
272	63.90	43.3	\#	27.6	7.0	1140
28x	64.56	46.5	2.91	21.1	20.6	2110
28Y	64.56	46.5		22.5	11.5	1560
298	64.56	46.5	\cdots	18.0	7.0	1210
29 x	65.55	45.0	$4 * 75$	45.1	20.6	2070
29\%	65.55	45.0		37.5	11.5	1530
298	65.55	45.0	*	34.1	7.0	1160

PETTEMEHE DAFA

STXTE SERTES

30	63.4	46.4	0.9	4.77	2.8	870
31	63.9	45.2	2.9	11.5	2.8	850
32	64.2	45.8	2.4	8.66	3.0	920
33	64.3	30.4	10.6	39.8	2.8	750
34	64.6	42.6	6.4	34.0	2.8	800

SEVETAH SERIES

38	52.8	35.5	1.9	8.84	2.8	820
39	53.1	36.4	1.3	4.64	2.8	820
40	52.5	34.6	2.4	10.4	2.8	800
41	52.5	32.2	4.6	15.2	2.8	765
42	52.6	33.5	3.8	17.0	2.8	775
43	52.5	30.2	6.4	26.9	2.8	730

EIOHTA 3ERIES

45x	51.8	35.5	0.9	8. 30	20.6	2010	
45Y	51.8	35*5	0.9	2.8		Rejeeted	Run
452	51.8	35.5	0.9	7.07	7×0	1150	
46x	51.8	35.5	0.9	5.06	20.6	2010	
165	51.8	35.5	0.9	6.87	11.5	1480	
462	51.8	35.5	0.9	6.35	7.0	2150	
47x	52.37	34.1	2.72	21.3	20.6	1930	
47X	52.37	34.1	2.72	21.0	11.5	1420	
472	52.37	34.2	2.72	19.2	7.0	1100	
48x	52.95	32.2	5.05	37.6	20.6	1840	
48 x	52.95	32.2	5.05	35.4	12.5	1360	
482	52.95	32.2	5.05	31.3	7.0	1050	
49x	52.95	30.35	6.20	42.0	20.6	1800	
49Y	52.95	30.85	6.20	47.6	11.5	1330	
49z	52.95	30.85	6.20	38.3	7.0	1030	

EERTTMEXTEATA

Expit HO.	solution Conerntration C_{B}	$\begin{aligned} & \text { Gxowth } \\ & \text { Temp. }{ }^{\circ} \mathrm{C} \\ & T_{2} \end{aligned}$	Degree Supervatin ΔC	$\begin{gathered} \text { Grouth } \\ \text { Fat } \\ R_{D} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Velocity } \\ & \hline \end{aligned}$	haynolda Number
W1HYH SERXES						
50 A	43.7	24.8	2.3	5.43	2.2	590
$50 x$	43.7	25.0	2.2	8.24	20.6	1820
50x	43.7	25.0	2.2	6.32	21.5	2340
50\%	13.7	25.0	2.1	6.47	7.0	1040
S14	43.7	24.8	2.2	5.16	2.2	590
51 x	43.7	24.8	2.2	6.83	20.6	2850
511	43.7	24.8	2.2	7.47	11.5*	1360
512	43.7	24.8	2.2	6.81	7.0	1050
52A	43.95	26.0	2.35	2.26	2.2	590
$52 x$	43.95	26.0	1.35	3.37	20.6	1840
527	43.95	26.0	1.35	3.50	11 *5	1360
52%	4.3 .95	26.0	1.35	3.16	7.0	1050

TEWHR SBFIES

534	80.1	57.8	1.5	8.92	2.2	712
54 a	80.3	50.3	2.0	5.47	2.2	725
55	77.87	58.5	-2.7	-13.5	2.8	DSAmolution
56	76.24	54.8	2.2	9.66	2.8	912
57	78.24	55.1	3.54	22.3	2.8	880
58			GROWTE	SATMRA票ON		
59	78.4	53.6	5.8	39.8	2.8	854
60 A	78.6	55.1	3.9	24.8	2.2	690
60 x	78.6	55.2	3.9	60.7	20.6	2140
60x	78.6	55.1	3.9	50.7	12.5	1590
60\%	78.6	55.2	3.9	44.0	7.0	1230

9						ne jeeted Run
21\%	60.60	45.6	0.62		01.g	olution, Rejoet
35	64.5	48.2	4	-6.66	2.8	Disaciution
37	65.2	49.4	-21	-21.6	2.8	Disaolution

$\begin{aligned} & \text { xpite } \\ & \text { no. } \end{aligned}$	Inizial cryetal 		Cube Root DAfrarenes	Growth Tant Minuten	Average Crowth Temp.	Bature of solution	Hotes
	w_{1}	w_{2}	$\Delta\left(w^{1 / 3}\right)$	θ	T_{2}	$\mathrm{Be}_{2}{ }^{60}$	
	2.6	Lout					Moany
b	9.7	16.4	0.408				Grow th
-	14.9	22.6	0.367	128	$27.4{ }^{\circ}$	$25.8{ }^{\circ}$	
${ }^{\text {a }}$	19.1	28.4	0.376				orystals
-	23.5	33.2	0.349				
P	34.2	50.2	0.445				
Avg.			0.389 avg.				
6	6.7	6.4	0.247				
b	13.6	25.9	0.128				
-	19.8	23.1	0.142	60	27.35*	$25.7{ }^{4}$	
d	30.0	34.4	0.143				
-	14.7	27.1	0.127				
1	22.2	24.4	0.136				
Avg*			0.137 ave*				
7	8.4	10.9	0.186				
b	15.9	20.4	0.217				
-	23.1	28.6	0.209	73	27.8	25.67°	
d	34.4	42.4	0.210				
.	17.1	22.3	0.196				
1	24.4	30.0	0.208				
Avg.			0.2014 avg.				
	20.8	23.8	0.189				
b	20.3	23.5	0.136	120	$27.8{ }^{*}$	25.4*	
。	28.0	31.8	0.130				
d	41.0	46.4	0.146				
Avg*			0.250 avg.				
	7.7	32.9	0.374				Much mossy
b	19.1	28.9	0.394				growth on
c	27.2	39.2	0.390	54	$45 .{ }^{*}$	32.3	oryatale
d	36.7	49.0	0.336				Rejeot mum
Avg*			0.374 avg*				
b	18.1	8.5	-0.586				
-	22.3	12.7	-0.544	65	47.3*	$33.8{ }^{6}$	Dissolution
d	25.1	12.2	-0.625				
Avg.			-0.577				

PBIWARY DATA - STMQAFE

$p^{* t}$ 10.	Instam Wef ght Cryatal mes	Flnal Walgint Crymbet mes	Cube Root Dfifemenge	osowth Minutes	AVerage Guowth Tomp:	```Butrus* ar solution```	Notea
	w_{1}	W_{2}	Δ ($\omega^{\prime \prime}$)	θ	T2	$B e^{60}$	
	$\begin{gathered} 6.0 \\ 14.4 \\ \frac{15.7}{26.3} \end{gathered}$	$\begin{aligned} & 14.5 \\ & 23.5 \\ & 24.2 \\ & 36.5 \end{aligned}$	$\begin{aligned} & 0.141 \\ & 0.430 \\ & 0.388 \\ & 0.1405 \end{aligned}$	60	45.20	$31.4{ }^{\circ}$	
Avg.			0.426 - ${ }^{\text {c }}$				
$\begin{aligned} & a \\ & b \\ & d \end{aligned}$	$\begin{aligned} & 7+1 \\ & 12+6 \\ & 16+\frac{1}{2} \\ & 33+7 \end{aligned}$	$\begin{aligned} & 21.7 \\ & 36.5 \\ & 37.6 \\ & 66.5 \end{aligned}$	$\begin{aligned} & 0.866 \\ & 1.054 \\ & 0.823 \\ & 0.823 \end{aligned}$	60	44.10	31.9°	Silght moses growth on crystal:
AvE*			0.892 avg*				
$\begin{aligned} & 3 a \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 23.5 \\ & 24 \cdot 2 \\ & 34.5 \end{aligned}$	$\begin{aligned} & 27+7 \\ & 41.4 \\ & 43 \cdot 3 \\ & 64.0 \end{aligned}$	$\begin{aligned} & 0.587 \\ & 0.595 \\ & 0.620 \\ & 0.620 \end{aligned}$	30	$44 \cdot 2 *$	32.9	
AFE.			0.606 avg .				
$\begin{aligned} & a \\ & b \\ & \text { e } \end{aligned}$	$\begin{aligned} & 6 . \frac{1}{10.8} \\ & 15.3 \\ & 16.8 \end{aligned}$	$\begin{aligned} & 25 * 2 \\ & 27 * 8 \\ & 32.9 \\ & 32.7 \end{aligned}$	$\begin{aligned} & 1.104 \\ & 0.818 \\ & 0.719 \\ & 0.637 \end{aligned}$	20	42.00	$32.0{ }^{\circ}$	3light motey Growth on orymtala
Ave.			0.820 avg				
$\begin{gathered} \quad \\ b \\ b \end{gathered}$	$\begin{array}{r} 7.2 \\ \frac{24}{20.2} \end{array}$	$\begin{aligned} & \frac{11}{21} \cdot 8 \\ & 20 . \end{aligned}$	$\begin{aligned} & 0.347 \\ & 0.337 \\ & 0.309 \\ & \hline \end{aligned}$	30	$45.8{ }^{\circ}$	32.0	
AVE			0.331 *8*				
$\begin{array}{r} 1 \\ b \\ b \end{array}$	$\begin{aligned} & 15.8 \\ & 19 * 5 \\ & 23.8 \end{aligned}$	$\begin{aligned} & 29.4 \\ & 35.0 \end{aligned}$ 42.4	$\begin{aligned} & 0.577 \\ & 0.576 \\ & 0.613 \end{aligned}$	29	$42.4{ }^{\circ}$	32.5	
Aves			0.559 ave				
6	$\begin{aligned} & \frac{11}{2}+\frac{1}{5} \\ & 24,3 \end{aligned}$	$\begin{aligned} & 22.2 \\ & 30.0 \\ & 43.9 \end{aligned}$	$\begin{aligned} & 0.579 \\ & 0.622 \\ & 0.632 \end{aligned}$	30	$42.9{ }^{\circ}$	31.66	
lvg.			0.607 avg.				

$\begin{aligned} & x_{1} t^{\prime} \\ & \text { No. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Ind tital } \\ & \text { Woignt } \\ & \text { Cryatal } \\ & \text { mga } \end{aligned}$	Finnt werght cxyetal	Cube Root pifferente	Growth THE Mnutes	Average Growth 2emp.	Bawne a solution	Noted
	w_{1}	w_{2}	$\Delta\left(w^{1 / 3}\right)$	θ	T_{2}	$\mathrm{Be}_{2}{ }^{60}$	
$\begin{array}{r} 8 \\ b \\ b \\ b \end{array}$	$\begin{aligned} & 10,0 \\ & 14 * 5 \\ & 19.9 \end{aligned}$	$\begin{aligned} & 2 . .5 \\ & 34.5 \\ & 40.0 \end{aligned}$	$\begin{aligned} & 0.626 \\ & 0.812 \\ & 0.712 \end{aligned}$	45	$44.0{ }^{\circ}$	31.76	
Nvg.			0.717 avg.				
$\begin{aligned} & a \\ & b \\ & b \end{aligned}$	$\begin{array}{r} 9.3 \\ \frac{18}{26.3} \end{array}$	$\begin{aligned} & 19 * 1 \\ & 33 . \frac{1}{4} \end{aligned}$	$\begin{aligned} & 0.572 \\ & 0.574 \\ & 0_{.52} \end{aligned}$	45	45*30	$32.0{ }^{\circ}$	
Ave.			0.553 avg.				
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & \frac{19.3}{25.3} \end{aligned}$	$\begin{aligned} & 17.8 \\ & 27 * 0 \\ & 36.9 \end{aligned}$	$\begin{aligned} & 0.322 \\ & 0.314 \\ & 0.390 \end{aligned}$	60	46.5	$32.3{ }^{\circ}$	
Avg.			0.342 avg.				
1 x	23.7	tost	\%				Crystal fell
I	28.4	Lost	\%	30	$45.6{ }^{\circ}$	$31.0{ }^{\circ}$	
2	29.3	13.8	-0,683				pismolukion He jeot Run
x	21.5	Last	*				
I	29.9	52.2	0.632	30	$42.2{ }^{6}$	$32.0{ }^{\circ}$	
z	19.2	33.7	0.550				
X	33.7	Lowt	x				
\mathbf{x}	15.5	Loat	χ	20	$40 \cdot 34$	$32.0{ }^{\circ}$	
2	4.4	27.9	0.570				
	15.5	Lent					
I	28.3	42.8	0.836	20	$39.9{ }^{\circ}$	31.00	
2	20.0	39.4	0.689				

PRIMAEY DATA - SUY ARE

$\begin{aligned} & \text { Sxp }{ }^{1} \text { to } \\ & \text { Noo } \\ & \hline \end{aligned}$	Initial woight orystal \qquad	Final Weight cryintal $\xrightarrow{\text { neman }}$	Cube Root pirforenae	orowh Timb Minutas	Average Growth pronp.	Bexume of solution	Notes
	w,	W_{2}	$\theta\left(\omega^{1 / 3}\right)$	θ	T_{2}	$\mathrm{Be}_{2} 60$	
$25 \times$	20.6	58.0	1.130				
Y	26.4	45.8	1.038	20	$40.9{ }^{\circ}$	$32.0{ }^{\circ}$	
z	20.6	Lont	\%				
26 x	13.9	43.0	1.099				
\pm	19.2	49.1	0.988	20	40.4*	32,0	
2	28.9	56.0	0.758				
27 x	13.5	30.0	0.725				
\mathbf{Y}	15.1	27.2	0.535	20	43.36	$32.0{ }^{\circ}$	
7	14.4	25.0	0.490				
88	15.1	23.1	0.376				
Y	16.2	25.2	0.401	20	46.5*	32.2°	
z	21.2	29.5	0.320				
9 X	16.0	36.7	0.803				
Y	22.0	41.7	0.667	20	45.00	32.50	
2	21.7	39.2	0.609				
$\begin{array}{ll} 0 & a \\ & b \\ & 0 \end{array}$	$\begin{aligned} & 14.8 \\ & 21.7 \\ & 32.2 \end{aligned}$	$\begin{aligned} & 16.7 \\ & 23 * 2 \\ & 34.8 \end{aligned}$	$\begin{array}{r} 0.201 \\ 0.070 \\ 0.085 \end{array}$	20	$46.4{ }^{\circ}$	32.85*	
Avg*			0.085 avg.				
$\begin{array}{ll} 2 a \\ b \\ b \end{array}$	$\begin{aligned} & 16.7 \\ & 23.4 \\ & 34.4 \end{aligned}$	$\begin{aligned} & 21.2 \\ & 28.2 \\ & 42.2 \end{aligned}$	$\begin{aligned} & 0.212 \\ & 0.184 \\ & 0.220 \end{aligned}$	20	45.20	$32.0{ }^{\circ}$	
Avg.			0.205 avg*				

$\begin{aligned} & \mathrm{xp}^{2} \mathrm{t} \\ & \mathrm{NoO} \\ & \hline \end{aligned}$	Initial waight Oryetal \qquad	Hinaz Welightcrystal mex	Cube Root pifterenes	Growth Time Minutas	Average Growth T隹里。	$\begin{aligned} & \text { Buxane } \\ & \text { of } \\ & \text { solntion } \end{aligned}$	Hoteat
	W_{1}	W_{2}	$\Delta\left(w^{1 / 3}\right)$	θ	T_{2}	Be_{2}^{60}	
$\begin{aligned} & 2, ~ a \\ & t a . b \\ & a, ~ \\ & \text { Avg. } \end{aligned}$	$\begin{aligned} & 21.2 \\ & 28 * 2 \\ & 42 * 2 \end{aligned}$	$\begin{aligned} & 19.1 \\ & 27 * 2 \\ & 42.8 \end{aligned}$	$\begin{aligned} & -0.094 \\ & -0.035 \end{aligned}$	20	$47.4{ }^{\circ}$	$32.0{ }^{\circ}$	Disanolution Poor Growth Chook
			－0．046 avg．				
$\begin{aligned} & a \\ & b \\ & b \end{aligned}$	$\begin{aligned} & 19.2 \\ & 27 * 2 \\ & 142.6 \end{aligned}$	23.3 $31 * 3$ 47.1	$\begin{aligned} & 0.182 \\ & 0.142 \\ & 0.139 \end{aligned}$	20	$45 *{ }^{\circ}$	32.20	Velooity singhtiy higher then
Avg＊			0．154 ave				rest of series． By exror．
4	23.3 33.3	44 54	0.676 0.629	18	$38.4{ }^{\circ}$	32．3＊	slight mose on arystala－tim out zhort due to＂oreaking＂ of soin－High sucersataration
Avg＊			0.638 avg				
5	18.6	15.7	－0．344	20	48．20	$32.2{ }^{\circ}$	Dismolution
ca．${ }^{\text {b }}$	19.522.8	20.0	－0．093				
Avg.							
a	15．7	28.2	0.540		42.8	32.20	
b	17.5	32.5	0.592	20			
－	20．0	34.2	0.532				
Avg＊			0.554 avg．				
	20.8	26.6	－0．199	10	$49.4{ }^{\text {e }}$	32．4＊	Disaolution
tal	40.3	34.2	－0．185				
n＊			－0．192 ave				
\cdots	10.016.324.4	13.6	0.233	30	$35.5{ }^{\circ}$	28.45°	
b		21.1	0.229				
－		31.1	0.245				
Avg＊			0.236 avg．				
	13.6	15.4	0.101	30	$36.4{ }^{\circ}$	$28.55{ }^{\circ}$	
b	21．1	24.3	0.133				
	31.1	$35 * 4$	0.238				
Avge			0.224 avg．				

PRYMARY DASA - SUMGAX

$\begin{aligned} & \text { zxp: } t_{4} \\ & \text { Hop. } \end{aligned}$	Inital Hakght Cryatal Hexs	Pinal Weight Guytat 	Cube noot Difforente	Growth Time 植matas	Avarage Growth Tenve	$\begin{aligned} & \text { Soane } \\ & \text { selution } \end{aligned}$	Notes
	w_{1}	w_{2}	$\Delta\left(w^{1 / 3}\right)$	θ	T_{2}	Be^{60}	
$\begin{array}{r} 40 \mathrm{a} \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 25 \cdot 4 \\ & 24+3 \\ & 35 \cdot 4 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 28.9 \\ & 43.5 \end{aligned}$	$\begin{aligned} & 0.199 \\ & 0.170 \\ & 0_{.1} 182 \\ & \hline \end{aligned}$	20	34.6	28.35*	
Avg.			0.184 avg				
$\begin{aligned} & 41 \\ & \text { atd. } \\ & \text { n) } \\ & \text { Ave. } \end{aligned}$	$\begin{aligned} & 19.4 \\ & 20.9 \\ & 41.9 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 29.0 \\ & 41.3 \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { Growth } \end{aligned}$	20	37.2*	$28.45{ }^{\circ}$	Result oheelat solubility c教
$\begin{aligned} & 42 \mathrm{a} \\ & \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 19.4 \\ & 29.0 \\ & 41.3 \end{aligned}$	$\begin{aligned} & 26.0 \\ & 36.8 \\ & 52.9 \end{aligned}$	$\begin{aligned} & 0.276 \\ & 0.255 \\ & 0.272 \end{aligned}$	20	32*2*	29.35°	
Ave.			O. 263 avg.				
$43 \frac{a}{b}$	$\begin{array}{r} 7.7 \\ 12.7 \\ 21.6 \end{array}$	$\begin{aligned} & \text { Lowt } \\ & \frac{17.8}{3} \\ & 30.2 \end{aligned}$	$\begin{gathered} x \\ 0_{2} 277 \\ 0.328 \end{gathered}$	20	$33.5{ }^{\circ}$	29.45	
Avg.	,		0.303 avg				
$\begin{array}{ll} 44 & a \\ b \\ b \end{array}$	$\begin{aligned} & 17.8 \\ & 30.2 \\ & 36.8 \end{aligned}$	$\begin{aligned} & 30.3 \\ & 46.2 \\ & 54.0 \end{aligned}$	$\begin{aligned} & 0.506 \\ & 0.475 \\ & 0.154 \end{aligned}$	20	$30.1{ }^{\circ}$	28.35°	
Avg.			0.478 avg				
45 x	17.6	22.5	0.222				
\mathbf{Y}	16.9	18.4	0.074	30	35.5 ${ }^{\circ}$	$28.1{ }^{\circ}$	*Roject 45 Y low reault
z	14.3	27.9	0.189				
$16 \times$	22.5	29.6	0.270%				WLow
Y	18.4	27.2	0.367	60	35.5	28.1*	
z	17.9	25.8	0.339				

SBHEAX DAY - BYHEAKY

$\text { Exp }{ }^{*}$Noe		Initial Velght Cryatal 노ㄴㅛㅕㄹ	Pinal Wel gat crystal rex	Cube Root Dutroneme	Grouth Time Minutas	Average Gwowth Tomes.	$\begin{aligned} & \text { Baup } \\ & \text { of } \\ & \text { Solution } \end{aligned}$	20tala
		W_{1}	W_{2}	$\Delta\left(w^{1 / 3}\right)$	θ	T_{2}	Be_{2}^{60}	
47	\boldsymbol{X}	23.0	39.8	0.570				
	\underline{T}	22.2	38.3	0.560	30	$34.1{ }^{\circ}$	$28.3{ }^{\circ}$	
	z	27.6	43.4	0.512				
48	x	23.8	44.6	0.670				
	I	32.5	55.8	0.630	20	32.2*	28.5	
	2	20. 4	35.6	0.558				
49	\mathbf{X}	19.1	41.4	0.786				
	\boldsymbol{Y}	18.2	43.6	0.890\%	21	30.85*	28.5*	*F4.gh
	2	22.4	$44+2$	0.717				
50	\%	$\begin{aligned} & 14 * 2 \\ & 20.4 \\ & 21.6 \end{aligned}$	$\begin{aligned} & 19.7 \\ & 28.1 \\ & 29.1 \end{aligned}$	$\begin{aligned} & 0_{4} 279 \\ & 0.308 \\ & 0_{2} 282 \end{aligned}$	\rangle	$24.8{ }^{\circ}$		
				0.290 avg	>60		$25.0{ }^{\circ}$	
	X	15.1	24.7	0.440				$u=20.6$
	Y	13.5	20.1	0.338		25.0 ${ }^{\circ}$		$\mathcal{U}=12.5$
	2	17.9	26.0	0.346				$\chi=7.0$
$\frac{51}{A}$	a	$\begin{aligned} & 19.7 \\ & 29.7 \\ & 29.1 \end{aligned}$	$\begin{aligned} & 26.5 \\ & 35.9 \\ & 38.2 \end{aligned}$	$\begin{aligned} & 0.280 \\ & 0.259 \\ & 0.269 \end{aligned}$	λ			
Ave.				0.276 **	$>_{60}$	24.80	25.0*	
X		24.7	35.2	0.365				
\mathbf{Y}		20.1	30.3	0.399				
7		26.0	36.8	0.364)			

$\begin{gathered} \text { Exp } t_{0} \\ x_{10} \\ \hline \end{gathered}$	Initial Woight Crymtal \qquad	Finak Weight cryatal 	Cube Hoot Difterenge	Growth THe Minates	Average Growth Tens.	Beara of Solution	Notes
	w_{1}	W_{2}	$\Delta\left(w^{1 / 3}\right)$	θ	T2	$B e_{2}{ }^{60}$	
$\begin{array}{ll} 52 & 0 \\ 4 & 6 \\ \hline \end{array}$	$\begin{aligned} & 26.5 \\ & 35.9 \\ & 38.1 \end{aligned}$	$\begin{aligned} & 29+6 \\ & 40.3 \\ & 42.4 \end{aligned}$	0.112 0.129 0.122)			
Avg.			0.121 av	60	26.0	25.2*	
x	35.2	42.3	0.207				
\mathbf{Y}	30.3	36.1	0.187				
z	36.8	42.7	0.169				
$\begin{gathered} 53 \\ A \end{gathered}$	$\begin{aligned} & 16.3 \\ & 46.0 \end{aligned}$	$\begin{aligned} & 19.8 \\ & 51.9 \end{aligned}$	$\begin{aligned} & 0.170 \\ & 0.2147 \end{aligned}$	20	$57.8{ }^{\circ}$	36.7°	
Avg.			0.159 av				
$\begin{aligned} & 54: \\ & A \end{aligned}$	$\begin{aligned} & 19.8 \\ & 36.2 \end{aligned}$	$\begin{aligned} & 22.0 \\ & 39.5 \end{aligned}$	$\begin{aligned} & 0.097 \\ & 0.098 \end{aligned}$	20	$58.3{ }^{\circ}$	$36.75{ }^{\circ}$	
Avg*			0.0975 av				
$\begin{array}{ll} 55 & a \\ i \end{array}$	$\begin{aligned} & 22.0 \\ & 39.5 \end{aligned}$	Lost 31.7	$\stackrel{\pi}{2}$	20	58.5	36.1*	Dissolution
ave.			-0.24] wv				
56	$\begin{aligned} & 19.5 \\ & 24.0 \end{aligned}$	$\begin{aligned} & 23.5 \\ & 28.5 \end{aligned}$	$\begin{aligned} & 0.172 \\ & 0.172 \end{aligned}$	20	56.8*	36.2°	
Avg.			0.2725				
57	$\begin{aligned} & 23.5 \\ & 28.5 \end{aligned}$	$\begin{aligned} & 34.6 \\ & 41,2 \end{aligned}$	$\begin{aligned} & 0.395 \\ & 0.399 \\ & 0.3 \end{aligned}$	20	55.2°	36.2°	
Avg.			0.397 av				
58	$\begin{aligned} & 34 * 6 \\ & 43.2 \end{aligned}$	$\begin{aligned} & 34: 4 \\ & 41.6 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	15	$57.4{ }^{\circ}$	$36.15{ }^{\circ}$	No growth aolubility
Avg.					57.4	36.15	Bavee oheok.
$59 \frac{a}{b}$	$\begin{aligned} & 34.4 \\ & 4.6 \end{aligned}$	$\begin{aligned} & 62 \\ & 73 \end{aligned}$	$\begin{aligned} & 0.706 \\ & 0.724 \end{aligned}$	20	$53.6{ }^{\circ}$	36.25	
Avg.			0.710 av				

PEYMARY DATA - SUFMARY

	nun	solution Saturation Tems. ${ }^{\circ}{ }^{\circ}$		Soluthion Velocity or/8es.	Solution Denasaty 	Solution 7iacosity \qquad	$\frac{R_{D}}{\Delta C}$	$\left[R_{D}\right]_{u=1}$	$\left[_{\Delta D}\right]_{u=1}$
		Ts	D	x	5	μ			
1	5	29.6	4.77	3.04	1.23	2.29	2.93	2.80	1.47
	6	29.2	4 t	3.		2.18	2.50	2.96	1.25
	7	29.2	*	*	*	2.16	2.44	2.41	2.85
	8	28.4	\#	\#	\#	2.12	2.82	3.08	2.16
2	12	47.2	4.77	3.04	1.29	2.06	4.38	12.0	3.14
	13	47.2	4	3	1.29	2,06	6.08	16.3	4.36
	14	47.4	*	*	*	2.13	6.98	33.1	5.01
	15	47.4	*	\%	*	2.99	5.90	8.9	4.23
3	16	46.2	$4 \cdot 77$	2.80	1.29	2.08	5.07	16.8	$3 \cdot 74$
	17	46.4			1.29	2.08	5.39	16.8	3.97
	18	44.7	*	*	1.26	1.97	5.37	13.1	3.96
	19	47.4	n	*	1.29	2.03	5.02	10.2	3.71
4	22Y	44.8	2.09	21.5	1.28	2.06	7.65	21.6	3.74
	222	44.8	2.66	7.0		2.06	6.65	21.6	3.74
	23z	44.8	2.66	$4 \cdot 3$!	2.13	6.42	20.8	4.15
	248	44.8	2.09	7.0	\#	2.16	8.70	26.6	4.92
	242	44.8	2.66	$4 \cdot 3$	n	2.16	7.20	25.2	4.67
5	25x	47.4	1.58	20.6	1.29	2.20	8.3	27.4	3.58
	$25 x$	\%	2.09	11.5	\%	2.20	7.65	28.6	3.74
	26x	47.4	1.58	20.6	\#	2.22	7.52	26.6	3.24
	26\%		2.09	11.5	*	2.21	6.8	27.2	3.32
	262	4	2.66	7.0	*	2.21	5.2	24.0	2.93
	$27 x$	47.4	2.58	20.6	*	2.10	8.0	17.6	3.45
	278	\%	2.09	11.5	\%	2.10	5.9	$24 \cdot 7$	2.88
	272	$\stackrel{\text { \% }}{47.9}$	2.66	7.0	\%	2.10	5.42	15.5	3.04
	28 x	47.9	1. 58	20.6	\%	1.99	21. $\frac{1}{8}$	9.1	4.77
	28\%	*	2.09	11.5	*	2.99	11.8	11.0	$5 \cdot 75$
	282	${ }_{4}^{\text {\# }} 6$	2.66	7.0	*	2.99	9.42	10.2	5.28
	29x	48,6	1. 58	20.6	\%	2.03	9.5	19.4	4.08
	294		2.09 2.66	11.5 7.0	\#	2.03 2.03	7.9	18.3 19.2	5.85
	292	\%	2.66	7.0	"	2,03	7.18	19.2	4.04
6	30	47.0	4.77	2.8	1.29	1.97	$5 \cdot 3$	3.50	3,90
	31	47.4		2.8		2.03	4.0	8.45	2.91
	33	47.6	\#	3.0	*	2.00	3.61	6.27	2.62
	34	47.6	\%	2.8	-	2.30	3.76	29.2	2.75
	36	47.9	\%	2.8	*	2.14	4.85	22.8	3.56
7		37.4	4.77	2,8	1.26	2.08		6.69	
	39	37.8	*	\%	\#	2.05	3.57	3.52	2.70
	40	37.2	*	*	"	2.10	4.34	7.90	3.29
	4	37.2	"	\%	*	2.20	3.26	1124	2.48
	43	37.4	\#	*	*	2.17	4.47	12.9	3.40
	44	37.2	n	\#	*	2.30	$4 \cdot 20$	20.4	3.29

	Solut son Saturetion 	Dinswater trube. eng.	Solution Veloalty con/tiog.	Solutiton Denstity + 10	Solution Wacosaty On	$\frac{R_{D}}{\Delta C}$	$\left[R_{D}\right]_{u=1}$	${\frac{\left[R_{\Delta}\right]_{u}}{\Delta C}}^{\Delta C}$
	Ts:	D	Ur	ρ	μ			
458	36.4	1.58	20.6	1.26	2.04	9.22	3.70	4.12
45Y	\#,	2.66	7.0	2. 26	2.04	7.86	4.18	4.65
46x	36.4	3.58	20.6		2,04	5.6		
46Y	\%	2.09	11.5	*	2.04	7.6	3.58	3.98
462	${ }^{6}$	2.66	7.0	\#	2.04	7.2	3.76	4.27
47x	37.0	2.58	20.6	*	2.13	7.83	9.5	3.50
477	,	2.09	11.5	\%	2.2.3	7.70	10.9	4.01
472	*	2.66	7.0	*	2.23	7.05	11.4	4.19
48x.	37.6	2. 58	20.6	*	2.23	7.45	16.8	3.33
487	\%	2.09	11.5	\%	2.23	7.00	18.4	3.64
402	*	2.66	7.0	\%	2.23	6.20	28.5	3.66
49\%	37.6	2.58	20.6	\cdots	2.26	6.78	18.7	3.02
49Y		2.09	11.5	*	2.26	7.68	24.6	4.00
4\%\%	\#	2.66	7.0	*	2.88	6.38	22.7	3.66
508.	27.3	4.77	2.2	2.23	2.20	2.36	4.45	1.93
X		1.50	20.6		-	3.92	3.96	1.88
\%	*	2.09	21.5	\#	$\stackrel{\square}{*}$	3.02	3.51	1.67
2	\#	2.66	7.6	\cdots	*	3.08	4.02	1.92
514.	27.3	4.77	2.2		2.17	2.34	4.23	1.92
X	-	2.58	20.6	"	*	3.11	3.28	2.48
T	\#	2.09	11.5	\#	*	3.40	4.25	1.89
2	*	2.66	7.0	\%	"	3.10	4.23	1.92
52A	27.6	4.77	2.2	,	2.28	1.67	1.85	1.37
X		2.58	20.6	\%	.	2.87	1.86	1.36
\mathbf{Y}	*	2.09	12.5	"	*	2.59	1.94	1.44
2	-	2.66	7.0	*	*	2.34	1.96	1.45
534	58.8	4.77	2.2	1.33	1. 96	5.95	6.50	4.33
544	59.0	4.77	2.2		1.95	5.47	3.98	3.98
56	57.6	4.77	2.8	*	1.95	8.78	6.37	5.79
57	57.6	4.77	2.8	*	2.02	6.30	14.7	4.15
59	57.7	4.77	2.8	*	2.08	6.87	26.2	4.52
6 Om	578	4.77	2.2	\%	2.02	6.36	18.05	4.63
60 x	\%	2.58	20.6	*		15.5	17.75	4.55
60 Y	*	2.09	11.5	\%	\%	13.0	18.8	4.82
60%	*	2.66	7.0	*	*	12.3	20.0	5.13

	$\begin{aligned} & \text { gatupation } \\ & \text { rempt } \\ & \text { ect } \end{aligned}$	orowth Rate $B_{D}=\mu / \min$	Supereatyn $\Delta C=\frac{g^{m} B U}{100 g_{m} F w}$	Valoul by $u=1$ /eco	$\left(\frac{R_{D}}{\Delta C}\right)$	$\left[\frac{R_{0}}{u^{m}}\right]$
$\begin{aligned} & \frac{1}{2} \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	29.5 $=$ $=$	$\begin{array}{r} 4.05 \\ 3.84 \\ 4.80 \\ .74 \\ .77 \end{array}$	$\begin{aligned} & 3.54 \\ & 2.86 \\ & 2.40 \\ & 0.70 \\ & 0.70 \end{aligned}$	$\begin{array}{r} 2.39 \\ 3.17 \\ 6.0 \\ 33.6 \\ 33.6 \end{array}$	$\begin{aligned} & 1.15 \\ & 1.34 \\ & 2.00 \\ & 1.06 \\ & 1.10 \end{aligned}$	
6	41.50	7.62	2.32	31.7	3.28	2.95
7		6.57	1.76	16.8	3.69	3.00
8	*	2.94	1.62	1.7	I. 83	2.40
9	*	1.82	.96	2.8	2.89	1.35
10	*	. 94	.65	$4 \cdot 24$	1.45	. 61
11	\%	2.23	1.30	2.56	1.71	1.62
12	*	1.50	. 66	7.0	2.20	. 86
13	!	3.30	1.29	11.0	2.56	1.75
14	\%	2.72	. 625	39.4	4.35	1.00
$\frac{15}{4}$	*	4.89	2. 49	17.0	3.28	2.22
16	\%	2.93	. 87	28.6	3.37	1.17
17	$53.4{ }^{\circ}$	7.05	1.93	$4 \cdot 24$	3.65	4.4
18	\%	4.86	1.11	7.62	3.44	2.45
19	\#	9.81	3.87	2.45	2.54	7.2
20	\#	3.30	. 76	12.0	4.23	1.48
21	*	8.91	1.29	31.0	6.90	2.8
22	n	14.79	3.24	9.75	4.57	6.9
33	-	12.0	2.46	18.0	8.22	3.4
24	*	5.37	.69	102.0	7.77	1.10
25	72.10	18.66	2.13	1.12.0	26.5	1.01
26	*	49*26	2.63	56.0	18.7	4.07
27	*	27.24	1.56	95.0	17.2	1.61
28	*	24*09	1.90	61.0	22.7	1.88
29	\#	12.81	1.09	110.0	12.3	. .69
30	*	17.76	1. 59	44.2	12.2	1.71
31	-	14.61	2.35	17.6	6.22	2.44
32	*	7.65	+90	36.6	8.50	. 82
33	*	12.54	1.63	20.8	7.70	1.91
34 35	\cdots	4.20 9.00	2.82	11.7 6.8	5.12	.91 2.73
36	*	8.10	2. 25	7.5	3.17	2.73 2.32
37	*	6.09	1.11	7.05	5.49	1.85
38	*	6.60	1.85	9.02	3.57	1.69

SUMAARY OF MCABE DATA $(\triangle C=0.9)$

Hediprogating Gage Expertnents

Runs	Veloclby cm/ates.	Growth Rett $R_{L}=\mu /$ min	$R_{D}=\mu / /_{\text {min }}$	Rate Ro/ ΔC
180-183	. 9	1.21	1.48	1.64
177-9	1.6	2.36	1.66	1.84
184-7	2.6	1.42	4.73	1.92
158-63	3.3	2.62	1.98	2.20
172-3	6.9	1. 47	1.79	1.99
274-6	23.9	1.55	1.89	2.10

Stationary Cage guporimentis

Rumb	Veloolty salselen	Growth Rate $R_{L}=\mu / \mathrm{min}$.	$\begin{aligned} & \text { Grow th } \\ & R_{D} \end{aligned}$	$R D / \Delta C$
186-92	- 2	1.26	1.4x	1.57
208-12	. 6	1.41	1.72	2.91
192-5	1.0	1.53	1.87	2.08
221-15	2.4	1.61	1.96	2. 18
196-9	2.9	2.72	2.08	2.31
216-19	2.3	1.80	2.20	2.44
200. 3	2.7	1.92	2.34	2.60
220-222	2.7	2.85	2.26	2.52
204-7	3.6	1.92	2.34	2.60

FIGURE E

F(y)

Figure $2 B$

FIGUAE TI

figure III

fíure Viili

FIGURE IX

SOLUTION VELOCITY $\mathrm{cm} / \mathrm{seg}$.

DISCOSSION - EXPERIMSMTAL WEYHOD

Severvi weoin work were required to beacme faniliar with the apparatus. Difficulties oneountered and problems to be worked out wert a follows:

1. Obtaining close control of ceoling water temperetaxe.
2. Obtaining elose control of heatex input.
3. Aandiing of arystals and tanpling - from (Ruidimed bet.
4. Avolemnee of nuelail fomation and freesemp of the appavatus.
5. Fina a mufricientiy ecourato method for measurement of alution ooncentration.
6. Obtain accurate data on olubility at copper mulphate.
7. Use of the rheostat for varying the solution veloalty gete only narrow rang of velocitias.
8. Obtaining wide range of $\Delta 0$.
9. Mengurentent of exystal growth.
 in leeping the cooling when constant $\left(4, / 2^{6} \%\right.$). This wat reanedied by uaing a large bueket as zerervele. Good ternperte ture ontrol waw obtained by adding quantity of oold water about every ten minutes.

To obtain better heat oontrel. the olectrio hogter wa gradukted with ten aivisionse This onmbled the wniter to meok and dupileate deared operating condibowin in mort amount of time.

Beosuse of the mitiplict ty of variables in orystal g*ovth fluid beds and due to expeminentil airicultios, the uriter acalad to conemtrate on anglo exyotalis pather than a la rge quantity of oxyatale. Although the apparatur was dangued by loenl equiment compmy for fluid-bed oryatal experimentis, the witer found it adnptable for aingle eryatal Foric. This aimplisted the operation of the apparatue and onabled the whtor to colleet considerable date in relettioly nort mount of tire. Singlo orystal: ould be groun uxder atendy
atate conditions, for teveral hour ir neecasamy, With only 3 or 4 erystal: in the aystem, nueleation wes inhimited. Fer the asab zeamon, no filter on poreus plate wat needed.

Any nueleli formed in the aubwooled portion of the apparatas were avept into the diasolver, wherein they dissolved unier controlled uniaturation conditions. It was found that cotention thw of two minutem, modornte agitation, and a soluti on kept one or two degrees above the enturation point wowld rupidiy redissolve the invisible nueloli fomed dixing the course of man.

Solution conotortration was mentured by tatazardized hydronetor. feriodic reading throughout a man cheoked consistentiy to the ntarest $0.1^{\circ} \mathrm{Be}$.

7faing the aclubility date from the Internationnz exietcal Tables (stated to be only mavatate to 4) thw witer found shat diseolution or shrinisege of the crytetals oneurred under mpposealy eupersaturnted conititions. Solubility ata from Seldell "Solubilithea of Inorgenie Cctopounde" wen plotted, gave eurve wish did not coincide uith IOT. The mater then
㫷
 The velidity of the durve was then oxeded by plesing oryathas undez stenem on onditions in th oryetallizer for a leagth of time (1 e 30 minutes). No shange in welght resulted.
 (220 veltis D.C.) parnitted ilmited mange ot folution Feloaithen (nee Fig. II). In addithon, the pump wonia atall at low apecdis. To obeain veloelty appead, the writer hooked up avvaral tubes in aerioe this had the adal ciond advantege in that aeveral orystula could begrown mimultancousiy without a souree of $\triangle C$ error, since the temperature drop asrose the eerles of tabee was found to be negilgible when the systen wa in equilibrik

The witor feals that kixson" a range of ΔC was indted because of the presene of bed of exybtal and a filter in
 nuelelt would have a very large presempe drop. Function of the dismolver has been previousiy desoribed.

The witter folt that the simplest and most rapla way to monaure dryetal growth was wh the use or an anajytical belanet. Linear growth oould most oasily be oxpresed at the differene. between the cube roots of the final and inithal
velghte $\left(w_{2}^{1 / 3}-u_{2}^{1 / 3}\right)$. This fown of expresesion atanot be visuallsed, howevir, nor compared with the work of other:

The writer chose MoCabel s unitw because they wore aimple. In oxder to campare with Hixion, tho writer converted growth unite firat to $\frac{W_{2}-W_{1}}{A \theta}=0$ and then to R_{D}.

Acearding to the Intemnationel Gxitioal Tableat the presence of "betaw roma of oopper aulphate oecura at about $60^{\circ} \mathrm{C}$. This temperature is bove the range $\left(27^{\circ}-58^{\circ} \mathrm{C}\right)$ tudied
 bove this tempervture (seo हigure VII):

Orowth rates obtained geve with that of Mocabe' a cage oxperiratats, but are about twiee an high as Hixaonta. This may be due parbly to a afforence in asamed oryetal geanetry, and alao to on bagemafitet. Hixaon naed orytetala bout one half inch in site as aompared with onemelehth inoh used by the writer. The unantitative efreote of colution velooity were found to agee wth both weoabel and gixacnls findings.

Thif writar la unabl to agree with inixaon's aomplex complation for teveral peamona:
2. Growth rate wis found to be independent of particle size this would not be twue in e huidized bed of errystals where stetiling valocity conc into play. In any coter this whiter fola thet the D tow in ge showld be the tube alsmeter. A moditiod Ro would be needed to correlate fluldebed atudiod mather than modify the D terng thit vinter would atterppt to modify the un velooity value. min modisied velocity could probably be obtained by ceriving seme palation involving Stolne: Law, cettling veloelty tet.
2. A plot of growth rate ve. Refmold number annot give parillel ourves on legeleg paper beonua the offect of velocity varies with solution concentration (or temperature).
3. Diffusivity data is quewtionable.
4. Hixaon andued the viscomity to be oonstant wegaxdess of the erfeat of abmcooling for a given autaration temperatuxe. Application of the log μ ve log absolute temperature rule for abtaining viacositita; indi caten a 10% inoremse in the viscosity value for five degrees of tub cooling.

Feetors to be coniliered for futare woxk on the atudy of oxyatal frowth should include:

1. Correlation with aetivities or degree of ionization - compare with use of coneentraw tion valuea.
2. The signiricanee of a "Critical" oryetal sise mbove wiloh perfeot orystals cannot or are difficult to grow.
3. The affeot and a ohani mer of pf on growth.

The witter foels that diserepaneises and the sattor of data in aryutal growth work are not due to the orrere involved in measurement, but due to the erystal itsolf. The aause may 1i. in a film of dohydrated material or dust on the oryatal service, the prosence of imperfections on the aurface, ete.

A poasible mems of overcoming this is by preparing the oryatel - parhaps ahort sukmersion in alightiy under. saturation solutione the time of growth may be factor. A time-growth ourve would alamify this.

The data from this work, though greater in quantity, La probably inferior to Hixsons from the standpoint of seetter, partioulariy in the eariy runs.

Data on the low coneontration ($\mathrm{T}_{\mathrm{S}}=27^{\circ}$) runm is inaurficient to conflym the linoar effect of ΔC; or to disprove Mecabet equation (using an agitator; tank, large quantity of meed)

$$
n_{L}=f(\Delta c 1,8)
$$

NOWEXCLAURE

$c_{3}=$ solution eoneentration $\mathrm{gy} \mathrm{CuSO}_{4} \cdot \mathrm{SH}_{2} \mathrm{O} \mathrm{pax}$ 100 gm . fret mater
W - Holght orymtal - aga
v - volume eryatal - min
A - aven oryetal - mu ${ }^{2}$
θ - 秧
$n_{D}=\frac{\Delta D}{\theta} \quad n_{M}=\frac{\Delta L}{\theta}$
D winamter of aphare having ant area as oryatal -
$L \quad=$ quare root of long x shost sides of wrytal $-\mu$
T_{S} enturation tomp of solution ${ }^{\circ} \mathrm{C}$.T abaolute temportture ${ }^{\mathrm{K}}$.
$u=$ veloeity mi/tes.

BLBLTOGIAABYY

Roremense

(1) "Tnit Operation Review". Ind. Sng. Onom*, Jan. 53
(2) "Rate of solution of Cryetals", Wimhelm, Conklin, and Sauer, Ind. Eng. Chem. 33. p. 453-7 (1941)
(3) Mrit Operation Review", Ind. Eng. Chew. 40 (1948)
(4) "Kinetion of Suerose Crystallisation", A. Van Hook; Ind. Eng. Chem. 36. p. 1042-8 (1944)
(5) "Kineties of Suspose Crystallisation". A. Van Hook, Ind. Eng. Onem. 37. p. 782-5 (1945)
(6) UEffect of Agitation on Growth of Single Cryatals". A. W, Hixaon and K.L. Knox, Ind. Bng. Ghom. 43, p. 2144-51 (1951)
(7) "hate of Growth of Crystals in Aqueous Solutions", W.L. MaCmbe and R.P. Stevens. Chem. Eng. Prog. 47 , p. 168-74 (1951)
(8) Mature and Measure of Agitation , A.W. Hixaon, Ind. Eng. Chein 36. P. 480.96 (1944)

"Veloesty of Crystallisation from Aqueoum Solutions". N. P. Comple 11: Chom Soo. Joumni (London) 107. p. 475-8 (1915)
(11) International Guthoal Tables. IV. p. 222*
(12) Solubilition of Inorgame and Metal organie Compoundas A. Seidell, Vol. I: 1940, Ven Nostrand Co. N. Y.

