Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/2097/ in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: A neural analysis-synthesis approach to learning procedural audio models
Author: Serrano, Danzel
View Online: njit-etd2022-071
(ix, 50 pages ~ 5.9 MB pdf)
Department: Department of Data Science
Degree: Master of Science
Program: Data Science
Document Type: Thesis
Advisory Committee: Geller, James (Committee chair)
Cartwright, Mark (Committee member)
Musialski, Przemyslaw (Committee member)
Date: 2022-12
Keywords: Neural sound synthesis
Procedural audio
Machine learning
Deep learning
Generative modeling
Availability: Unrestricted
Abstract:

The effective sound design of environmental sounds is crucial to demonstrating an immersive experience. Classical Procedural Audio (PA) models have been developed to give the sound designer a fast way to synthesize a specific class of environmental sounds in a physically accurate and computationally efficient manner. These models are controllable due to the choice of parameters from analyzing a class of sound. However, the resulting synthesis lacks the fidelity for the preferred immersive experience; thus, the sound designer would rather search through an extensive database for real recordings of a target sound class. This thesis proposes the Procedural audio Variational autoEncoder (ProVE), a general framework for developing a high-fidelity PA model through data-driven neural audio synthesis methods to address the lack of realism in classical PA models. The two-step procedure of training ProVE models is explained through examples of sound classes of footstep sounds and the sound of pouring water.

Furthermore, the thesis demonstrates a web application where users can generate footstep sounds by defining control variables for a pretrained ProVE model to show its capacity for interactive use in sound design workflows. The increase in fidelity from ProVE models is explored through objective evaluations of audio and subjective evaluations against classical PA methods. These results show that these learned neural PA models are feasible for sound design projects. The thesis concludes with a discussion of applications and future research directions.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003