Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/1608/ in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Passive planar terahertz retroreflectors
Author: Desai, Dhruvkumar
View Online: njit-etd2018-045
(xi, 59 pages ~ 5.1 MB pdf)
Department: Department of Physics
Degree: Master of Science
Program: Applied Physics
Document Type: Thesis
Advisory Committee: Federici, John Francis (Committee chair)
Gatley, Ian (Committee member)
Grebel, Haim (Committee member)
Date: 2018-08
Keywords: Wireless communication
Terahertz band
Availability: Unrestricted
Abstract:

As the application of the Terahertz (THz) band (0.1 - 10 THz) is investigated in various settings, wireless communication stands out as an important frontier to explore. The benefits of increased bandwidth and data rates it promises will only be realized if new technology is developed to support it. Specifically, since THz wireless communication links are typically line-of-sight (LoS), the LoS can be blocked by moving obstacles, thereby requiring alternative link paths. One proposed solution for indoor wireless communications involves systems of steerable antennas, reflective "wallpaper", and steerable mirrors which would redirect THz beams around a blocking obstacle.

As an initial step in developing steerable mirrors for THz wireless systems, this thesis describes the development of a passive planar terahertz retroreflector based on the Van Atta array. The retroreflector is optimized and simulated using FEM software, fabricated via a low-cost additive manufacturing method, and characterized using terahertz time-domain spectroscopy. Comparison to a flat metal plate shows an increase in monostatic RCS for off-normal angles of incidence.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003