Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/5 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Eis analysis of shear enhanced microfluidic lab-on-a-chip device
Author: Mursalat, Mehnaz
View Online: njit-etd2017-026
(xii, 76 pages ~ 2.7 MB pdf)
Department: Department of Chemical, Biological and Pharmaceutical Engineering
Degree: Master of Science
Program: Chemical Engineering
Document Type: Thesis
Advisory Committee: Basuray, S. (Committee chair)
Barat, Robert Benedict (Committee member)
Simon, Laurent (Committee member)
Ko, Dong Kyun (Committee member)
Date: 2017-01
Keywords: Electrochemical sensors
Electrochemical biosensors
Impedance-based sensing
Availability: Unrestricted
Abstract:

Electrochemical sensors and biosensors have received much attention owing to the feasibility demonstrated regarding instrumental simplicity, decent cost, and portability during the detection of a wide range of biological and pharmaceutical macromolecules. Carbon-based nanomaterials, including carbon nanotubes, have garnered tremendous interest for their unique thermal, mechanical, electronic and catalytic properties while designing these sensors. Whenever the macromolecules interact with a bio-recognition element on the electrode transducer surface, a measurable change in the electrical current or potential takes place. To achieve lower limits of detection, the use of sensor surfaces modified with nanostructured materials such as nanotubes, or nanoparticles is becoming increasingly significant. The study aims to design a CNT-based electrochemical glass sensor which purifies monoclonal antibody in the presence of its biorecognition element (e.g. an antigen). The system utilizes an open-flow carbon nanotube platform for monoclonal antibody purification using impedance-based sensing (EIS). The open flow allows rapid concentration of the target molecules and shear-enhanced specificity leading to maximum hydrodynamic shear force. Interdigitated electrodes are used to trap multi-walled carbon nanotubes. The principals involved in fabricating such a device can be applied for the detection of some other pharmaceutical molecules. At the same time, CNTs replaced by ZnO and Al2O3 based nanomaterials can also be taken into account for detection of various macromolecules for better sensitivity and better specificity.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003