Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/95 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Context-aware collaborative storage and programming for mobile users
Author: Khan, Mohammad A.
View Online: njit-etd2016-109
(xv, 114 pages ~ 4.4 MB pdf)
Department: Department of Computer Science
Degree: Doctor of Philosophy
Program: Computer Science
Document Type: Dissertation
Advisory Committee: Borcea, Cristian (Committee chair)
Gehani, Narain (Committee member)
Curtmola, Reza (Committee member)
Ding, Xiaoning (Committee member)
Iamnitchi, Adriana Ioana (Committee member)
Date: 2016-08
Keywords: Mobile users' collaboration
Mobile cloud programming
Collaborative social network
Location-time based programming
Social network centrality
Dynamic groups
Availability: Unrestricted
Abstract:

Since people generate and access most digital content from mobile devices, novel innovative mobile apps and services are possible. Most people are interested in sharing this content with communities defined by friendship, similar interests, or geography in exchange for valuable services from these innovative apps. At the same time, they want to own and control their content. Collaborative mobile computing is an ideal choice for this situation. However, due to the distributed nature of this computing environment and the limited resources on mobile devices, maintaining content availability and storage fairness as well as providing efficient programming frameworks are challenging.

This dissertation explores several techniques to improve these shortcomings of collaborative mobile computing platforms. First, it proposes a medley of three techniques into one system, MobiStore, that offers content availability in mobile peer-to-peer networks: topology maintenance with robust connectivity, structural reorientation based on the current state of the network, and gossip-based hierarchical updates. Experimental results showed that MobiStore outperforms a state-of-the-art comparison system in terms of content availability and resource usage fairness.

Next, the dissertation explores the usage of social relationship properties (i.e., network centrality) to improve the fairness of resource allocation for collaborative computing in peer-to-peer online social networks. The challenge is how to provide fairness in content replication for P2P-OSN, given that the peers in these networks exchange information only with one-hop neighbors. The proposed solution provides fairness by selecting the peers to replicate content based on their potential to introduce the storage skewness, which is determined from their structural properties in the network. The proposed solution, Philia, achieves higher content availability and storage fairness than several comparison systems.

The dissertation concludes with a high-level distributed programming model, which efficiently uses computing resources on a cloud-assisted, collaborative mobile computing platform. This platform pairs mobile devices with virtual machines (VMs) in the cloud for increased execution performance and availability. On such a platform, two important challenges arise: first, pairing the two computing entities into a seamless computation, communication, and storage unit; and second, using the computing resources in a cost-effective way. This dissertation proposes Moitree, a distributed programming model and middleware that translates high-level programming constructs into events and provides the illusion of a single computing entity over the mobile-VM pairs. From programmers’ viewpoint, the Moitree API models user collaborations into dynamic groups formed over location, time, or social hierarchies. Experimental results from a prototype implementation show that Moitree is scalable, suitable for real-time apps, and can improve the performance of collaborating apps regarding latency and energy consumption.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003