Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/94 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Accelerating data-intensive scientific visualization and computing through parallelization
Author: Chu, Dongliang
View Online: njit-etd2016-107
(xiii, 129 pages ~ 3.8 MB pdf)
Department: Department of Computer Science
Degree: Doctor of Philosophy
Program: Computer Science
Document Type: Dissertation
Advisory Committee: Wu, Chase Qishi (Committee chair)
Borcea, Cristian (Committee member)
Gerbessiotis, Alexandros V. (Committee member)
Ding, Xiaoning (Committee member)
Chen, Yi (Committee member)
Date: 2016-08
Keywords: Scientific visualization
Scientific computing
Image composition
QR decomposition
Order dependency
Order independence
Availability: Unrestricted
Abstract:

Many extreme-scale scientific applications generate colossal amounts of data that require an increasing number of processors for parallel processing. The research in this dissertation is focused on optimizing the performance of data-intensive parallel scientific visualization and computing.

In parallel scientific visualization, there exist three well-known parallel architectures, i.e., sort-first/middle/last. The research in this dissertation studies the composition stage of the sort-last architecture for scientific visualization and proposes a generalized method, namely, Grouping More and Pairing Less (GMPL), for order-independent image composition workflow scheduling in sort-last parallel rendering. The technical merits of GMPL are two-fold: i) it takes a prime factorization-based approach for processor grouping, which not only obviates the common restriction in existing methods on the total number of processors to fully utilize computing resources, but also breaks down processors to the lowest level with a minimum number of peers in each group to achieve high concurrency and save communication cost; ii) within each group, it employs an improved direct send method to narrow down each processor’s pairing scope to further reduce communication overhead and increase composition efficiency. The performance superiority of GMPL over existing methods is evaluated through rigorous theoretical analysis and further verified by extensive experimental results on a high-performance visualization cluster.

The research in this dissertation also parallelizes the over operator, which is commonly used for α-blending in various visualization techniques. Compared with its predecessor, the fully generalized over operator is n-operator compatible. To demonstrate the advantages of the proposed operator, the proposed operator is applied to the asynchronous and order-dependent image composition problem in parallel visualization.

In addition, the dissertation research also proposes a very-high-speed pipeline-based architecture for parallel sort-last visualization of big data by developing and integrating three component techniques: i) a fully parallelized per-ray integration method that significantly reduces the number of iterations required for image rendering; ii) a real-time over operator that not only eliminates the restriction of pre-sorting and order-dependency, but also facilitates a high degree of parallelization for image composition.

In parallel scientific computing, the research goal is to optimize QR decomposition, which is one primary algebraic decomposition procedure and plays an important role in scientific computing. QR decomposition produces orthogonal bases, i.e.,“core” bases for a given matrix, and oftentimes can be leveraged to build a complete solution to many fundamental scientific computing problems including Least Squares Problem, Linear Equations Problem, Eigenvalue Problem. A new matrix decomposition method is proposed to improve time efficiency of parallel computing and provide a rigorous proof of its numerical stability.

The proposed solutions demonstrate significant performance improvement over existing methods for data-intensive parallel scientific visualization and computing. Considering the ever-increasing data volume in various science domains, the research in this dissertation have a great impact on the success of next-generation large-scale scientific applications.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003