Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/272 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Response of stretch-injured schwann cells
Author: Iring, Stephanie
View Online: njit-etd2016-052
(x, 43 pages ~ 5.6 MB pdf)
Department: Department of Biomedical Engineering
Degree: Master of Science
Program: Biomedical Engineering
Document Type: Thesis
Advisory Committee: Pfister, Bryan J. (Committee chair)
Haorah, James (Committee member)
Kim, Haesun (Committee member)
Date: 2016-05
Keywords: Stretch injured Schwann cells
Availability: Unrestricted
Abstract:

Axon fibers are covered by myelin sheath. After axonal damage, demyelination follows with the production of debris. In the Central Nervous System many studies have been performed to observe and analyze stretch injured axons, but very little has been done to study the white matter axonal tracts, oligodendrocytes. Schwann cells can help take a first look into stretch injured glia cells from the Peripheral nervous system. In order to observe changes in Schwann Cells a stretch injury device is used to produce the effects of severe and moderate injuries. Schwann Cells are stretch injured in both their undifferentiated and differentiated stages. In characterizing both states of Schwann Cells we observe different outcomes for the influx values in the presence of a calcium-containing buffer and non-calcium containing buffer. In undifferentiated Schwann cells we observe a clear transient influx while in differentiated we see minimal response. To observe morphological changes in myelinated cells after injury we induce Schwann cell differentiation. In differentiated Schwann cells images are taken and analyzed as follows: preinjury, 1 hour after injury, 4 hours after injury, and 24 hours.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003