Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/227 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Modeling of electrical behavior of graphene-based ultracapacitors
Author: Dzisah, Patrick
View Online: njit-etd2015-066
(xiii, 62 pages ~ 1.7 MB pdf)
Department: Committee for the Interdisciplinary Program in Materials Science and Engineering
Degree: Master of Science
Program: Materials Science and Engineering
Document Type: Thesis
Advisory Committee: Ravindra, N. M. (Committee chair)
Jaffe, Michael (Committee member)
Opyrchal, Halina (Committee member)
Mani, Balraj Subra (Committee member)
Hammond, Willis B. (Committee member)
Date: 2015-05
Keywords: Graphene-based ultracapacitors
Energy storage
Availability: Unrestricted
Abstract:

Graphene has been identified as a promising material for energy storage, especially for high performance ultracapacitors. Graphene-based ultracapacitors show high stability, significantly-improved capacitance and energy density with fast charging and discharging time at a high current density, due to enhanced ionic electrolyte accessibility in deeper regions. The surface area of a single graphene sheet is 2630 m2/g, substantially higher than values derived from Brunauer Emmett Teller (BET) surface area measurements of activated carbons used in the current electrochemical double layer capacitors.

In an ultracapacitor cell, chemically modified graphene (CMG) materials demonstrate high specific capacitances of 135 and 99 F/g in aqueous and organic electrolytes, respectively. In addition, high electrical conductivity gives these materials consistently good performance over a wide range of voltage scan rates.

This paper reports a modeling methodology to predict the electrical behavior of a 2.7 V/650 F ultracapacitor cell. The ultracapacitor cell is subject to the charge/discharge cycling with constant-current between 1.35 V and 2.7 V. The charge/discharge current values examined are 50, 100, 150, and 200 A. A three resistor-capacitor (RC) parallel branch model is employed to calculate the electrical behavior of the ultracapacitor. The simulation results for the variations of the cell voltage as a function of time for various charge/discharge currents are in good agreement with the experimental measurements.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003