Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/212 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Rice and mouse quantitative phenotype prediction in genome-wide association studies with support vector regression
Author: Aljouie, Abdulrhman Fahad M.
View Online: njit-etd2015-002
(xii, 23 pages ~ 0.9 MB pdf)
Department: Department of Computer Science
Degree: Master of Science
Program: Bioinformatics
Document Type: Thesis
Advisory Committee: Roshan, Usman W. (Committee chair)
Wang, Jason T. L. (Committee member)
Wei, Zhi (Committee member)
Date: 2015-01
Keywords: Quantitative phenotypes prediction
Single nucleotide polymorphisms
Support vector regression
Availability: Unrestricted
Abstract:

Quantitative phenotypes prediction from genotype data is significant for pathogenesis, crop yields, and immunity tests. The scientific community conducted many studies to find unobserved quantitative phenotype high predictive ability models. Early genome-wide association studies (GWAS) focused on genetic variants that are associated with disease or phenotype, however, these variants manly covers small portion of the whole genetic variance, and therefore, the effectiveness of predictions obtained using this information may possibly be circumscribed [ 1 ].

Instead, this study shows prediction ability from whole genome single nucleotide polymorphisms (SNPs) data of 1940 genotyped stoke mouse with - 12k SNPs, and 413 genotyped rice inbred lines with - 40k SNPs. The predictive accuracy measured as the Pearson coefficient correlation between predicted phenotype and actual phenotype values using cross validation (CV), and found a predictive ability for mouse phenotypes MCH, CD8 to be 0.64 and 0.72, respectively.

The study compares whole genome SNPs data prediction methods built using Support Vector Regression (SVR) and Pearson Correlation Coefficient (PCC) to perform SNPs selection and then predict unobserved phenotype using ridge regression and SVR. The investigation shows that ranking SNPs by SVR significantly increases predictive accuracy than ranking with PCC. In general, Ridge Regression perform slightly better prediction ability than predicting with SVR.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003