Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/195 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Using the piezoelectric backscatter signal for remote sensing of neural signals
Author: Alay, Eren
View Online: njit-etd2014-041
(xiii, 51 pages ~ 3.6 MB pdf)
Department: Department of Biomedical Engineering
Degree: Master of Science
Program: Biomedical Engineering
Document Type: Thesis
Advisory Committee: Sahin, Mesut (Committee chair)
Perez-Alvarez, Cesar (Committee member)
Roman, Max (Committee member)
Date: 2014-01
Keywords: Neural signals
Remote sensing
Piezoelectric backscatter
Availability: Unrestricted
Abstract:

In recent studies, various methods to sense neural signals are used and new methods for remote sensing of neural signals are being developed. However, there are still major difficulties in building long-term implantable neural interface systems that can reliably record neural activity and serve as the basis of brain-machine interfaces (BMI). Therefore, this research is conducted to design a remote neural sensing system that is based on modulation of the backscatter signal from a piezoelectric element by the neural signals. The hypothesis is that if the neural signal is detected with a simple amplifier and the output of this amplifier is connected in parallel to a piezoelectric element, the backscattered signal from the piezoelectric element should be modulated by the neural signal amplitudes. To this end, the echo signal from the piezoelectric element is analyzed and the effect of a load resistor is demonstrated. And then, an electronic circuit to implement the modulation function is simulated on the computer and constructed. The experimental results support the main hypothesis of the project.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003