Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/164 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: NIR light transmission through skin and muscle
Author: Ozgulbas, Deniz
View Online: njit-etd2013-044
(xiii, 59 pages ~ 1.5 MB pdf)
Department: Department of Biomedical Engineering
Degree: Master of Science
Program: Biomedical Engineering
Document Type: Thesis
Advisory Committee: Sahin, Mesut (Committee chair)
Alvarez, Tara L. (Committee member)
Perez-Castillejos, Raquel (Committee member)
Date: 2013-05
Keywords: NIR light transmission
Availability: Unrestricted
Abstract:

Light has been used extensively in the medical field for both therapeutic and diagnostic applications. Tissue optical window or therapeutic window defines the range of wavelengths where the light has the maximum transmittance through tissue. In this range, absorption and scattering effects are relatively lower when compared to the visible or middle infrared wavelengths. Knowledge of the transmittance through tissue can help determine the effective light intensities in medical applications.

The objective of this thesis is to determine the NIR light transmission through different thicknesses of animal tissue and its spatial spread due to the scattering effect. Primarily pork skin and muscle tissues are used due to their similar optical properties to human tissue. Tissue thicknesses range from 4 mm to 20 mm. A NIR LED array with the wavelength of 875 nm serves as the light source. A commercial photodiode is used for measurements of the transmitted light intensities.

The results demonstrate a transmittance of 18% for 4 mm tissue thickness and 3% for 20 mm and vary exponentially in between. Scattering increases the spatial spread of the light beam and makes it very difficult to focus inside the tissue. In addition to the transmittance measurements, temperature elevation due to the NIR light illumination is investigated. Thermocouple measurements show a temperature increase of 1.2 °C on the surface of the tissue slab at the light intensities tested in this project.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003