Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/159 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Genome wide search for pseudo knotted non-coding RNAs
Author: Vasavada, Meghana S.
View Online: njit-etd2013-039
(xiii, 119 pages ~ 1.7 MB pdf)
Department: Department of Computer Science
Degree: Master of Science
Program: Bioinformatics
Document Type: Thesis
Advisory Committee: Wang, Jason T. L. (Committee chair)
Wei, Zhi (Committee member)
Liu, Mei (Committee member)
Roshan, Usman W. (Committee member)
Date: 2013-05
Keywords: Non-coding RNAs
NcRNA detection
Genome wide searching
Availability: Unrestricted
Abstract:

Non-coding RNAs (ncRNAs) are the functional RNA molecules that are involved in many biological processes including gene regulation, chromosome replication and RNA modification. Searching genomes using computational methods has become an important asset for prediction and annotation of ncRNAs. To annotate an individual genome for a specific family of ncRNAs, a computational tool is interpreted to scan through the genome and align its sequence segments to some structure model for the ncRNA family. With the recent advances in detecting an ncRNA in the genome, heuristic techniques are designed to perform an accurate search and sequence-structure alignment. This study uses a novel approach for such genome wide search of ncRNAs using the RNATOPS and Infernal software tools, which incorporates heuristic dynamic programming algorithms to carry out the sequence analysis using the profiles of RNA consensus secondary structures.

Genome wide search for ncRNAs from thirteen genomes is performed using RNATOPS and Infernal. The training set of ncRNA multiple sequence alignments is prepared from RFAM and homologous Genomes are retrieved from RNASTRAND database. Through the experiments, performance of each tool is analyzed and compared with respect to their ncRNA search accuracies. It is further interfered that Infernal, compared to RNATOPS, is more accurate in detecting an ncRNA in all the thirteen genomes tested.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003