Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/345 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Leaching of metals and metalloids from highway marking glass beads and the potential environmental impact
Author: Sandhu, Nimrat K.
View Online: njit-etd2013-017
(xiii, 160 pages ~ 3.0 MB pdf)
Department: Department of Civil and Environmental Engineering
Degree: Doctor of Philosophy
Program: Environmental Engineering
Document Type: Dissertation
Advisory Committee: Axe, Lisa (Committee chair)
Jahan, Kauser (Committee member)
Nelson, Priscilla (Committee member)
Schuring, John R. (Committee member)
Wecharatana, Methi (Committee member)
Date: 2013-01
Keywords: Glass beads
FP-XRF
Leaching of metals
Fractional factorial study
Statistical analysis
TCLP, SPLP
Availability: Unrestricted
Abstract:

Glass beads are embedded in pavement markings to obtain retroreflectivity which plays a crucial role in the lighting-up effect needed for safe driving. Elevated metal and metalloid concentrations of As, Sb, and Pb have recently been observed in imported glass beads. The main objective of this research was to assess the environmental impact associated with applying these imported glass beads in highway markings. To achieve this objective, total metal concentrations were measured using two techniques: hydrofluoric acid digestion followed by inductively coupled plasma mass spectroscopy (HF/ICP-MS), and field portable x-ray fluorescence (FP-XRF) spectroscopy. A number of leaching studies were conducted and included two standard United States Environmental Protection Agency (U.S. EPA) methods: the toxicity characteristic leaching procedure (TCLP) and the synthetic precipitation leaching procedure (SPLP). In addition, a factorial study was conducted to determine the impact of environmentally relevant factors such as pH, chemicals applied on roadways, particle size, and time on metal and metalloid leaching. To compare results among the three types of studies (TCLP, SPLP, and factorial study), a select batch of glass beads with elevated concentrations was used. FP-XRF was observed to be as reliable a tool for measuring total metal and metalloid concentrations and is recommended over the use of HF/ICP-MS. Results demonstrated that the most important factors affecting leaching were pH and time. For anions such as HAsO42- and SbO3-, leaching increased with increasing pH, while for cations including Pb2+, it increased as pH decreased. Sequential extraction was conducted as well to better understand the form of metals and metalloids associated with the glass beads. While 3% were extracted in the exchangeable (As, Mn, and Ba) and the oxidizable forms (Pb), greater than 97% of metals and metalloids were associated with the glass matrix. Further studies to assess leaching as a function of total concentration in the imported batch were conducted for 30 days. Non-parametric statistics were applied to test concentrations that resulted in excess of the groundwater quality criteria. Results demonstrated that the New Jersey Default Leachate Groundwater limits for As were exceeded for 98% of the samples tested. In case of Pb, these limits were exceeded for 58% of the samples and with Sb 15%. These results suggest a potential environmental impact to groundwater used as a drinking water source when either storing glass beads in bulk or disposing of the roadway marking material in bulk.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003