Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/330 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Graphene-coated substrates for biochemical and optoelectronic applications
Author: Banerjee, Amrita
View Online: njit-etd2012-091
(xxii, 126 pages ~ 5.2 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Doctor of Philosophy
Program: Electrical Engineering
Document Type: Dissertation
Advisory Committee: Grebel, Haim (Committee co-chair)
Moeller, Karl D. (Committee co-chair)
Tsybeskov, Leonid (Committee member)
Misra, Durgamadhab (Committee member)
Whitman, Gerald Martin (Committee member)
Sirenko, Andrei (Committee member)
Date: 2012-08
Keywords: Graphene
Optoelectronics
Bio-detection
Battery
FET
Surface plasmon
Availability: Unrestricted
Abstract:

Graphene - monolayer or a few layers of graphite -- has proven to possess remarkable properties: large thermal conductivity, mechanical robustness, two-dimensional ultra large electronic mobility, chemical inertness and biochemical compatibility. Realization of some applications has been impeded by lack of a large area deposition method. By using a novel methodology to deposit graphene on solid and perforated substrates, various optoelectronic and biochemical elements have been demonstrated in this thesis: (1) graphene based transistors were fabricated and their characteristics were assessed. The mobility for such transistors exceeded 5000 cm2/V·s, much larger than their silicon based counterparts. Such attribute opens up new potential application in the field of very large scale integration (VLSI). (2) In parallel to vacuum tubes, where accelerated electrons are retained by a biased screen, a graphene based retaining electrode, placed in a wet-cell battery has stopped the battery’s current. In that respect, graphene proved to be a good ionic screening electrode because it does not oxidize easily. Applications could be in the field of ionic transistors and special electrochemical cells. (3) As surface pl asmon waveguides enter the electronic circuitry, surface plasmon sources are required. Graphene based surface pl asmons lasers were fabricated and characterized. Their attributes, illustrated by operational threshold, gain, spectral line narrowing and feedback at 630 nm all alluded to the action of a laser. Such, local pl asmonic sources may find applications in optoelectronic and sensor systems. (4) Infrared (IR) metal-mesh screens have been investigated as optical filters in the visible through the THz spectral region for astronomy and remote sensing applications. By interfacing these metal mesh screens with graphene, new spectroscopic platforms were fabricated. It has been shown that these platforms enhance I R and Raman signals of molecules and, specifically, signal of bio-species at the screens' surface. Biochemical sensing applications are envisioned. (5) Finally, the Raman spectra of molecules, deposited on graphene-coated nano-hole arrays have been investigated. It has been shown that these platforms were able to intensify such Raman signals, significantly. Potential usage of such platforms as biochemical sensors is envisioned.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003