Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/314 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Instabilities in newtonian films and nematic liquid crystal droplets
Author: Lin, Te-Sheng
View Online: njit-etd2012-051
(xi, 101 pages ~ 3.7 MB pdf)
Department: Department of Mathematical Sciences
Degree: Doctor of Philosophy
Program: Mathematical Sciences
Document Type: Dissertation
Advisory Committee: Kondic, Lou (Committee co-chair)
Cummings, Linda Jane (Committee co-chair)
Miura, Robert M. (Committee member)
Moore, Richard O. (Committee member)
Palffy-Muhoray, P. (Committee member)
Date: 2012-05
Keywords: Thin film
Nematic liqiod crystal
Interfacial flow
Instabilities
Newtonian fluids
Availability: Unrestricted
Abstract:

The instabilities of Newtonian films and nematic liquid crystal droplets within the framework of the long wave (lubrication) approximation are studied. For Newtonian films, it is found that, under destabilizing gravitational force, a contact line, modeled by a commonly used precursor film model, leads to free surface instabilities without any additional natural or imposed perturbations. In addition, there is a coupling between the surface instabilities and the transverse (fingering) instabilities which leads to complex behavior. All the observed phenomena are characterized by a single parameter D = (3Ca)1/3 cot α where Ca is the capillary number and α is the inclination angle. Variation of D leads to changes in the wavelike properties of the instabilities, allowing us to observe traveling wave behavior, mixed waves, and waves resembling solitary ones. The study is also extended to explore partially wetting fluids by introducing the disjoining pressure in the thin film equation. It is found that there exists an additional regime where the film breaks up into a series of droplets.

For nematic liquid crystal droplets, a model is derived based on the long wave approach available in the literatures. In particular, the surface anchoring energy is chosen such that very thin films admit the isotropic phase while thick ones remain nematic. The model permits fully nonlinear time-dependent simulations. These simulations, for the appropriate choice of parameter values, exhibit most of the phenomena appearing in the series of experiments. Finally, the influence of elastic distortion energy and the effect of anchoring variations at the substrate are explored through simple linear stability analysis, serving as a good indicator of the behavior of more complicated spreading drops.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003