Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/123 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Alendronate treatment elicits a reduction in fatigue-life of canine cortical bone
Author: Geissler, Joseph Ryan
View Online: njit-etd2012-036
(xviii, 108 pages ~ 2.5 MB pdf)
Department: Department of Biomedical Engineering
Degree: Master of Science
Program: Biomedical Engineering
Document Type: Thesis
Advisory Committee: Van Buskirk, William C. (Committee co-chair)
Fritton, J. Christopher (Committee co-chair)
Arinzeh, Treena Livingston (Committee member)
Date: 2012-01
Keywords: Cortical bone tissue
Fatigue-life
Bisphosphonate treatment
Availability: Unrestricted
Abstract:

Bone serves contradictory needs; bone must be strong yet light, and stiff yet flexible. At the tissue level bone material withstands cyclic loading without failing by dissipating energy via the formation and accumulation of microdamage. Proper removal of this damage in exchange for fresh tissue is vital to bone maintenance, and is achieved through a remodeling process. Imbalanced remodeling leads to osteoporotic fractures. Bisphosphonate drugs are proven to reduce fracture risk. However, the long-term effects of bisphosphonates on tissue-level properties are unknown. This study characterized the fatigue-life of cortical bone tissue after bisphosphonate treatment with alendronate (Aln). 1 1th ribs from 36 skeletally mature female beagles (1-2 years of age) treated daily with either a vehicle control (Cont, 1mL/kg saline) or Aln (0.2 or 1.0 mg/kg) for 3 years were evaluated. From both medial and lateral cortices, 1-6 cortical bone beams of uniform rectangular cross-section (0.5 x 1.5 mm) and length (10 - 12 mm) were prepared. A total of 90 bone beams were mechanically loaded in 4-point bending at specific stress amplitudes, 45- 85 MPa, applied sinusoidally at 2 Hz until fracture or 250,000 cycles. Compared to control, Aln 1.0 beams exhibited significantly lower initial stiffness (15%) and cycles to failure (>3-fold, p<0.05). While control exhibited increased loss of stiffness as a function of increasing stress amplitude, this was not observed with Aln treatment. This first fatigue study of bisphosphonate-treated bone suggests mechanisms behind the atypical cortical bone fracture patterns that have been observed clinically in a subset of patients on long-term bisphosphonate treatment.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003