Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/108 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: The mechanical testing of single nanofiber
Author: Dahule, Pratik Manohar
View Online: njit-etd2012-022
(xi, 67 pages ~ 1.5 MB pdf)
Department: Department of Mechanical and Industrial Engineering
Degree: Master of Science
Program: Mechanical Engineering
Document Type: Thesis
Advisory Committee: Jaffe, Michael (Committee co-chair)
Narh, Kwabena A. (Committee co-chair)
Pfister, Bryan J. (Committee member)
Collins, George (Committee member)
Date: 2012-01
Keywords: Polymer nanofibers
Availability: Unrestricted
Abstract:

Polymer nanofibers exhibit properties that make them a favorable material for the development of tissue engineering scaffolds, filtration devices, sensors, and high strength lightweight materials. Perfectly aligned PLLA Nanofibers were fabricated by an electrospinning technique under optimum conditions and the diameter of the electrospun fibers can easily be tailored by adjusting the concentration of the polymer solution. To align the nanofibers, special arrangement was made in terms of two aluminum plates. Good alignment of polymer nanofibers on specimen was confirmed by SEM observation. The effect of different electro-spinning parameters on maximum fiber length, average fiber diameter, diameter uniformity, and fiber quality was explored in this study. The force applied on the nanofiber was measured with the help of AFM by satisfying Hooke's Law. The elastic properties of PLLA nanofiber were investigated with the atomic force microscope (AFM). The elasticity was calculated by analyzing the recorded force curves with the help of the Hertz model. Mechanical testing confirmed that the single aligned nanofiber can be an advancement in the commercial applications of nanofibers.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003