Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/102 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Design and evaluation of an adaptable vector coprocessor for multicores
Author: Steele, Timothy William
View Online: njit-etd2011-110
(xi, 76 pages ~ 1.4 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Master of Science
Program: Electrical Engineering
Document Type: Thesis
Advisory Committee: Ziavras, Sotirios (Committee chair)
Hou, Edwin (Committee member)
Hu, Jie (Committee member)
Date: 2011-05
Keywords: Multi-core environments
Vector coprocessor sharing policies
Availability: Unrestricted
Abstract:

Future applications for multi-core processor systems will require increased signal processing power along with increased resource utilization and decreased power consumption. Conservative power consumption will be of paramount importance primarily for battery-powered portable multi-core platforms (e.g., advanced cell phones, tablet computers, etc.). This thesis investigates the robustness, efficiency and effectiveness of vector coprocessor sharing policies in multi-core environments. Vector coprocessor sharing is based on an innovative design for a vector lane that forms the building block for the creation of larger vector coprocessors. This innovative lane design contains a floating-point multiply unit, a floating-point add/subtract unit, a miscellaneous function unit, a load/store unit, and a vector register file. The design was prototyped and benchmarked on a field programmable gate array (FPGA) for a multitude of configurations to evaluate the performance and power consumption. The configurations included one or two host processors and two, four, eight, sixteen or thirty-two lanes. Sample applications in benchmarking were the fast Fourier transform, finite impulse response filter, matrix multiplication and LU matrix decomposition. As an additional experiment, a reconfigurable unit was added to the lane and configured as either a combined floating-point multiply/add or a floating-point divide to better match the needs of specific applications. The results show the versatility of the design towards high performance and controllable power consumption.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003