Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/239 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Study of controlled release of active pharmaceutical ingredients from functionalized nanoclays and polymer matrices
Author: Ha, Jin Uk
View Online: njit-etd2011-009
(xxvii, 179 pages ~ 16.8 MB pdf)
Department: Department of Chemical, Biological and Pharmaceutical Engineering
Degree: Doctor of Philosophy
Program: Chemical Engineering
Document Type: Dissertation
Advisory Committee: Xanthos, Marino (Committee chair)
Gogos, Costas G. (Committee member)
Khusid, Boris (Committee member)
Simon, Laurent (Committee member)
Bilgili, Ecevit Atalay (Committee member)
Hyun, Kun S. (Committee member)
Huang, Michael Chien-Yueh (Committee member)
Wang, Peng (Committee member)
Date: 2011-01
Keywords: Nanoclay
Drug delivery
Sustain release
Hydrotalcite
Hot melt extrusion
Clay modification
Availability: Unrestricted
Abstract:

This dissertation contains the results of three related novel investigations in the field of structure-property-processing relationships of pharmaceutical polymer-based products. They are: a) modification of a pharmaceutical anionic nanoclay with two different Active Pharmaceutical Ingredients (APIs) to produce nanohybrid API carriers intended to be used alone or in acrylic polymer matrices, b) comparison of binary systems containing the above APIs in the selected acrylic polymers in terms of their miscibilities with the polymer, but in the absence of nanoclay, and c) comparison of the polymer/API binary systems with ternary polymer/API/Clay systems.

For the first study, the calcination method which can be directly applied to carbonated hydrotalcite was used and successfully achieved API intercalations. During reconsitution of the clay, the crystalline APIs in the clay interlayer was apparently transformed in an amorphous state, and as a result it showed increased apparent solubility in the simulated body fluids.

The second study dealt with API-polymer miscible or immiscible systems prepared by different mixing methods. The selected APIs have low solubility at the low pH of the aqueous medium and different solubility parameters by comparison with the polymer. The Eudragit® E100/ DIK-Na+ mixture produced by batch melt mixing showed an API solid dispersion whereas the Eudragit® E100/ IND system produced an API solid solution. These different morphologies were anticipated by calculating API and polymer solubility parameters and were confirmed by several analytical methods. The miscible API-polymer system showed better apparent solubility in the aqueous media. In order to confirm the effect on apparent solubility of the different API physical states differing in particle size or crystallinity, solvent casting and twin screw extruder mixing were also compared with batch mixing. The amorphous API in the polymer matrix showed improved apparent solubility as compared to its crystalline state. This confirmed that the state of API in the polymer matrix is the most important factor to increase its apparent aqueous solubility.

The third segment of this research focused on the API release from the ternary system (API/clay/polymer) produced by hot melt mixing. A novel approach in order to have a sustained API release by utilizing the nanoclays was attempted. Since the API present in the clay interspacing may experience one more step in its release by diffusion as compared to the binary system, the API from the ternary system showed a slower and more controlled release than the one from the binary system. Controlled API release from such a ternary system produced by hot melt mixing, to the best of our knowledge, has not been reported in the literature.

The mechanisms of APIs release in solution from the aforementioned systems were identified by using the Korsmeyer-Peppas (Power law) and Peppas-Sahlin models.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003