Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/74 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: A haptic control system for functional electrical stimulation of paraplegic legs
Author: Shaker, Mark R.
View Online: njit-etd2010-109
(xi, 68 pages ~ 4.1 MB pdf)
Department: Department of Biomedical Engineering
Degree: Master of Science
Program: Biomedical Engineering
Document Type: Thesis
Advisory Committee: Foulds, Richard A. (Committee chair)
Adamovich, Sergei (Committee member)
Sahin, Mesut (Committee member)
Date: 2010-08
Keywords: Functional electrical stimulation (FES)
Haptic interface
Availability: Unrestricted
Abstract:

Functional electrical stimulation (FES) is a means by which paraplegic men and women can use their natural legs for walking. In FES the impaired muscles are stimulated with electricity in a proper cycle to cause the legs to move in a walking pattern. It can be greatly beneficial for paraplegics however, current systems are not widely used because they are difficult to control in a useful manner.

The system proposed here uses a haptic interface, one that utilizes the sense of touch, attached to a user’s index and middle fingers. The haptic device allows the wearer to feel with the fingers what would normally be felt by the feet. Movement of the fingers is monitored and the positions of the two fingertips can be used to dictate the appropriate positions for the feet to be moved to using FES. Therefore, by moving the fingers in a cyclic pattern similar to that of walking, a stimulation pattern needed for activation of leg muscles to allow walking can be generated. Further, by having the sense of feeling for the feet translated to the fingers a person could have improved control over their legs.

To test the feasibility of this system a virtual simulation was developed. The simulation navigated a virtual environment using the finger walking technique. The trajectory and velocity of the movements of the subjects was compared to normal human gait and it was found that finger walking greatly resembles natural human gait. Further, it was determined that control was enhanced by haptic feedback. These results show that FES walking can benefit from a controller that incorporates haptics.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003