Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/215 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Formation of screen-printed contacts on multicrystalline silicon (mc-Si) solar cells
Author: Mehta, Vishal R.
View Online: njit-etd2010-092
(xviii, 131 pages ~ 11.7 MB pdf)
Department: Committee for the Interdisciplinary Program in Materials Science and Engineering
Degree: Doctor of Philosophy
Program: Materials Science and Engineering
Document Type: Dissertation
Advisory Committee: Ravindra, N. M. (Committee co-chair)
Sopori, Bhushan L. (Committee co-chair)
Tyson, Trevor (Committee member)
Fiory, Anthony (Committee member)
Zhou, Tao (Committee member)
Rupnowski, Przemyslaw (Committee member)
Date: 2010-05
Keywords: Screen printing
Thick film
Silicon solar cells
Silver
Contact metallization
Availability: Unrestricted
Abstract:

Commercial multicrystalline silicon (me-Si) solar cells use screen-printing process for depositing both the Ag paste based gridded front and Al based back (whole area) metal contacts.. This thesis relates to experimental and theoretical studies of contact formation mechanisms in silicon solar cells. Temperature distribution studies during optical processing by. attached thermocouples to cells indicates that the maximum temperature reached under the front silver metal is less. than 800°C; this is lower than the eutectic point of Ag-Si (≈835°C). An analysis of the interaction of Ag particles and Si via the constituents of glass is given. This mechanism leaches metallic ions (solvent metals such as Pb, Bi or Zn), which cover the Ag particles and form a material of surface composition with low-melting-point. The low-temperature melt facilitates agglomeration of Ag and formation of a shallow alloy between Si, Ag, and the solvent metal. Ag-glass-Si interactions lead to the formation of Ag-rich and Si-rich areas at the metal-semiconductor .interface. The non-uniformity of the Ag-si interaction leads to degradation of various electrical parameters (i.e., fill factor and open circuit voltage (Voc)).

A hypothesis invoking ion .exchange phenomena for front contact formation is presented. Ag-Si, Ag-glass, glass-Si and Ag-glass-Si reactions are discussed. SIMS study on etched cells shows that a significant consumption of phosphorous occurs during Si-Ag interaction. Scanning Kelvin Probe Microscopy profiles have been studied to measure the surface potential of the metal semiconductor region. Current Voltage characteristics of the fired cells are presented. An improved technique to cross-section large lengths of wafers/solar. Cells for statistically meaningful analyses of the metal semiconductor interface is presented. Results and applications of study of the temperature distribution across. the cell during firing, by contact thermocouples are presented. Thermal modeling predicts a temperature gradient of more than 10°C across the cell width due to combined effect of shadowing and thermal mass of the metal grid. However, experimentally, no systematic effect of the temperature gradient is seen on the front contact formation mechanism. A study on the back Al -contact formation revealed that Si diffusion led to several defects (e,g. bumps, holes, shunts) in the cells.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003