Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/202 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Advanced classification of OFDM and MIMO signals with enhanced second order cyclostationarity detection
Author: Shi, Miao
View Online: njit-etd2010-039
(xv, 126 pages ~ 6.2 MB pdf)
Department: Department of Electrical and Computer Engineering
Degree: Doctor of Philosophy
Program: Electrical Engineering
Document Type: Dissertation
Advisory Committee: Bar-Ness, Yeheskel (Committee chair)
Haimovich, Alexander (Committee member)
Abdi, Ali (Committee member)
Giannakis, Georgios B. (Committee member)
Su, Wei (Committee member)
Date: 2010-01
Keywords: Modulation classification
MIMO
Cyclostationarity
OFDM
Availability: Unrestricted
Abstract:

With the emergence of cognitive radio and the introduction of new modulation techniques such as OFDM and MIMO, the problem of Modulation Classification (MC) becomes more challenging and complicated. In the first part of the thesis, we explore the automatic modulation classification to blindly distinguish OFDM from single carrier signals. We use the fourth order cumulants; an approach which in the past has been also applied to classify single carrier signals. A blind OFDM parameter estimation scheme was then followed, which includes the estimation of number of subcarriers, CP length, timing and frequency offset and the oversampling factor for the OFDM signal. For the second part of the thesis, we improve the statistical signal processing techniques that were used in the first part. Particularly, the second order cyclostationarity based methods have been examined and improved. Based on the fact that most of the cyclostationary communication signals has a real cyclostationary part and a complex non-cyclostaionary part, we suggest an approach that enhance the second order cyclostationarity and hence increase its probability of detection. Using such improved second-order cyclostationarity, we present an improved synchronization method based on second order cyclostationarity. With the proposed approach, it is shown that the timing estimator, is independent of the frequency offset estimator, and therefore performs better than the previously proposed class of blind synchronization methods. To negate the dependence of the blind synchronization scheme on the prior knowledge of the raised cosine pulse shaping filters, we proposed a blind roll-off factor estimator based on the second order cyclostationarity. Last, we address the MIMO classification problem, wherein we estimate the number of transmitting antennas. Here the second order cyclostationarity test has been applied in distinguishing STC from BLAST modulation.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003