Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/52 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Development of pharmacophore and comfa study of rigid and flexible sigma 2 receptor ligands
Author: Patel, Hemantbhai
View Online: njit-etd2010-009
(ix, 32 pages ~ 2.1 MB pdf)
Department: Department of Chemistry and Environmental Science
Degree: Master of Science
Program: Chemistry
Document Type: Thesis
Advisory Committee: Gund, Tamara M. (Committee chair)
Venanzi, Carol A. (Committee member)
Bozzelli, Joseph W. (Committee member)
Date: 2010-01
Keywords: Pharmacophore
Comfa
Flexible sigma 2 receptor ligands
Availability: Unrestricted
Abstract:

In the present study a pharmacophore and CoMFA model was derived for sigma 2 (62) receptors by using Sybyl 7.2 Software Package. The CoMFA studies used 22 bioactive molecules as a training set and 4 molecules as a test set for the o2 receptor ligands. The geometries and electrostatic charges of all molecules were calculated using various levels of calculations. The geometry optimization and electrostatic charges of all 26 molecules were performed by using semiemprical AM1, ab initio HF/6-31G* and density functional B3LYP/6-31G* in Gaussian 98. The pharmacophore model was derived by using Distance Comparisions (DISCOtech) from 4 partially to highly active 62 receptor ligands. The Comparative Molecular Field Analysis (CoMFA) was developed for 22 bioactive 62 receptor ligands to investigate a three dimensional quantitative structural activity relationship (3D-QSAR) model for 62 receptor ligands. Three CoMFA maps were developed to compare the electrostatic and steric properties of each calculation and molecule. The best CoMFA results were obtained by using a training set of 22 molecules (R2 = 0.999) from B3LYP/6-31G*. The "leave-one-out" cross validation method gave (q2 = 0.602) using four optimal components with optimized geometries and atomic charges. This analysis produced a standard error of estimate of 0.028. The CoMFA results derived from the B3LYP/6-31G* method were better than those from AM1.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003