Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/dissertations/845 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Mechanisms of ionic current changes underlying rhythmic activity recovery after decentralization
Author: Khorkova Sherman, Olga E.
View Online: njit-etd2008-035
(xvi, 132 pages ~ 8.6 MB pdf)
Department: Federated Biological Sciences Department of NJIT and Rutgers-Newark
Degree: Doctor of Philosophy
Program: Biology
Document Type: Dissertation
Advisory Committee: Golowasch, Jorge P. (Committee chair)
Nadim, Farzan (Committee member)
Altan-Bonnet, Nihal (Committee member)
Matveev, Victor Victorovich (Committee member)
Kirkwood, Alfredo (Committee member)
Date: 2008-01
Keywords: Central pattern generator
Ionic current
Crustacea
Rhythmic activity
Availability: Unrestricted
Abstract:

Neuronal networks capableof generating rhythmic output in the absence of patterned sensory or central inputs are widely represented in the nervous system where they support a variety of functions, from learning and memory to rhythmic motor activity such as breathing. To perfectly function in a living organism, rhythm-generating networks have to combine the capability of producing a stable output with the plasticity needed to adapt to the changing demands of the organism and environment. This dissertation used the pyloric network of the crab Cancer borealis to identify potential mechanisms that ensure stability and adaptation of rhythm generation by neuronal networks under changing environmental conditions, in particular after the removal of neuromodulatory input to this network (decentralization). For this purpose, changes in ionic currents during the process of network activity recovery after decentralization were studied. The previously unreported phenomenon of coordinated expression of ionic currents within and between network neurons under normal physiological conditions was described. Detailed time course of alterations in current levels and in the coordination of ionic currents during the process of activity recovery after decentralization was determined for pacemaker and follower neurons. During the investigation of the molecular mechanisms underlying the post-decentralization changes, a novel role of central neuromodulators and of the cell-to-cell communication within the network in maintaining ionic current levels and their coordinations was demonstrated. Finally, the involvement of the two mechanisms of network plasticity, namely extrinsic (activity-dependent) and intrinsic (neuromodulator-dependent) regulation, in the recovery process after decentralization was shown. A thorough understanding of the mechanisms that are responsible for the stability and plasticity of neuronal circuits is an important step in learning how to manipulate such networks to cure diseases, enhance performance, build advanced robotic systems, create a functioning computer model of a living organism, etc. The discovery of a novel mechanism of ionic current regulation, i.e. the inter-dependent coordination of different ionic currents, will potentially contribute to this process.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003