Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/316 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Mixing of nanoparticles in a stirred tank in high pressure carbon dioxide
Author: Aggarwal, Nitin
View Online: njit-etd2008-001
(xii, 49 pages ~ 7.7 MB pdf)
Department: Department of Chemical Engineering
Degree: Master of Science
Program: Chemical Engineering
Document Type: Thesis
Advisory Committee: Dave, Rajesh N. (Committee chair)
Armenante, Piero M. (Committee member)
Loney, Norman W. (Committee member)
Date: 2008-01
Keywords: Deagglomeration
Nanocomposites
nanoparticles
Availability: Unrestricted
Abstract:

Mixing of nanoparticles of different compositions offers wide opportunities in manufacturing new nanocomposite materials with unique electronic, optical, mechanical, and chemical properties. However, due to large cohesive forces between nanoparticles, they often form large micron-sized agglomerates, thus losing their main advantage of small size and high surface area. Therefore, breaking of these agglomerates is necessary prior to mixing. One of the techniques to achieve deagglomeration and mixing of nanoparticles is based on rapid depressurization/expansion of supercritical suspensions. where the suspension of initially premixed agglomerates in supercritical CO2 pass through the nozzle undergoing deagglomeration as a result of rapid expansion of CO2 and subsequently passing through a shockwave. This technique requires the agglomerates of different constituents to be premixed before passing through the nozzle, and this can achieved in a stirred tank. Study of the stirred mixing of nanoparticles in supercritical CO2 is the main goal of this work. Binary suspension of silica/alumina and silica/titania powders with the average primary particle sizes 16 nm (silica). 13 nm (alumina), and 21 nm (titania) was mixed in a 300 ml pressurized stirred tank at 45°C, both in supercritical and gaseous CO2. The obtained nanopowder mixture was pressed into a pellet. Mixture homogeneity was determined by means of composition variance analysis of the surface of the pellet using energy-dispersive spectroscopy (EDS). Effect of pressure in the range of 400 to 2000 psi, mixing time, and mixing speed on mixture homogeneity was studied.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003