Articles via Databases
Articles via Journals
Online Catalog
E-books
Research & Information Literacy
Interlibrary loan
Theses & Dissertations
Collections
Policies
Services
About / Contact Us
Administration
Littman Architecture Library
This site will be removed in January 2019, please change your bookmarks.
This page will redirect to https://digitalcommons.njit.edu/theses/384 in 5 seconds

The New Jersey Institute of Technology's
Electronic Theses & Dissertations Project

Title: Inverse solid-liquid fluidization of aerogel granules and its application in removing oil from water
Author: Patel, Gaurav Babubhai
View Online: njit-etd2007-010
(xvii, 82 pages ~ 4.3 MB pdf)
Department: Department of Chemical Engineering
Degree: Master of Science
Program: Chemical Engineering
Document Type: Thesis
Advisory Committee: Pfeffer, Robert (Committee chair)
Dave, Rajesh N. (Committee member)
Huang, Michael Chien-Yueh (Committee member)
Date: 2007-01
Keywords: Fluidization
Inverse fluidized bed
Aerogel granules
Oil removal
Availability: Unrestricted
Abstract:

Fluidization is a very well known unit operation used in the chemical industry for various purposes. Inverse solid-liquid fluidization, where the solid particles to be fluidized are less dense than the fluid, is one of the several different kinds of fluidization being studied for its potential in industrial applications. The present work focuses on finding the hydrodynamic characteristics (minimum fluidization velocity, bed expansion and pressure drop) of an inverse fluidized bed of aerogel granules and using this system to remove oil from an oil-water mixture. The solid particles employed for this study are low density (100 kg/m3) surface treated hydrophobic aerogel (Nanogel®) granules of size in the range of 0.5 to 2.3 mm. These particles are highly porous characterized by a nanosized pore structure and a very high surface area. Since their density is lower than water, they are fluidized downward in a solid-liquid inverse fluidized bed column.

In this work, a constant flow of an oil-water mixture is passed through an inverse fluidized bed of aerogel granules. The oil concentration was determined by measuring the Chemical Oxygen Demand (COD) using a colorimeter. Once the aerogel granules are saturated, they were entrained from the fluidized bed, and separated from the clean stream of water with a fibrous filter.


If you have any questions please contact the ETD Team, libetd@njit.edu.

 
ETD Information
Digital Commons @ NJIT
Theses and DIssertations
ETD Policies & Procedures
ETD FAQ's
ETD home

Request a Scan
NDLTD

NJIT's ETD project was given an ACRL/NJ Technology Innovation Honorable Mention Award in spring 2003